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ABSTRACT: Our inability to predict the behavior of
biological systems severely hampers progress in bioengineer-
ing and biomedical applications. We cannot predict the effect
of genotype changes on phenotype, nor extrapolate the large-
scale behavior from small-scale experiments. Machine learning
techniques recently reached a new level of maturity, and are
capable of providing the needed predictive power without a
detailed mechanistic understanding. However, they require
large amounts of data to be trained. The amount and quality of data required can only be produced through a combination of
synthetic biology and automation, so as to generate a large diversity of biological systems with high reproducibility. A sustained
investment in the intersection of synthetic biology, machine learning, and automation will drive forward predictive biology, and
produce improved machine learning algorithms.

■ A NEW BIOLOGY FOR A NEW CENTURY

Biology has changed radically in the past two decades,
transitioning from a descriptive science into a design science.
The discovery of DNA as the repository of genetic
information, and of recombinant DNA as an effective way to
modify it, has first led into the development of genetic
engineering and later the field of synthetic biology. Synthetic
biology1 goes beyond the historical practice of a biological
research based on describing and cataloguing (e.g., Linnaean
taxonomic classification or phylogenetic tree development),
and aims to design biological systems to a given specification
(e.g., production of a given amount of a medical drug or
targeted invasion of a specific type of cancer cell).
This transition into an industrialized synthetic biology is

expected to affect most human activities, from improving
human health, to producing renewable biofuels to combat
climate change.2 Some examples commercially available now
include synthetic leather and spider silk, renewable biodiesel
that propels the Rio de Janeiro public bus system, vegan
burgers with meat taste, and sustainable skin-rejuvenating
cosmetics.
In this effort, new tools enable us to bioengineer cells faster

than ever: CRISPR-enabled genetic editing has revolutionized
our ability to edit DNA in vivo, DNA synthesis productivity
improves as fast as Moore’s law, transcriptomics data volume
has a doubling rate of 7 months, and high-throughput
workflows for proteomics and metabolomics are emerging.
Furthermore, the miniaturization and automation of these

techniques through microfluidic chips3 promise a future where
data analysis rather than data production will be the bottleneck
in biological research.

■ OBSTACLES TO AN EXPONENTIAL INCREASE IN
SYNTHETIC BIOLOGY PRODUCTIVITY

However, despite new tools and exponentially increasing data
volumes, synthetic biology cannot yet fulfill its true potential
due to our inability to predict the behavior of biological
systems. Arguably, the most pressing problems are our inability
to predict the phenotype of biological systems when their
DNA is altered, and the difficulty of using small scale
experiments to predict the behavior at large scales.
In general, while we can make the DNA changes we intend

on target cells, the end result on their behavior is usually
unpredictable.4 This limitation has led to a traditional
bioengineering approach that involves randomizing exper-
imental efforts hoping for an improved result, or using
arduously gathered biological intuition. This approach is
hardly scalable, and has resulted in long development times:
for example, it took 150 person-years of effort for heterologous
expression of the 16-enzyme artemisinin pathway, and 575
person-years of effort for DuPont’s 1,3-propanediol.5
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Furthermore, we lack the ability to extrapolate large-scale
behavior from small-scale experiments. In bioengineering, a
key bottleneck is designing fermentation systems that reliably
scale up lab results (1−100 mL) to commercial volumes
(100−106 L). Failure to do so and meet production timelines
resulted in the past in the inability to address high-volume
production, economic losses, and significantly decreased
investment in the field. Amyris, for example, had to announce
major changes to its financing, strategy, and production targets
after falling significantly short of their target of producing nine
million liters of farnesene.6 In biomedical applications, we
cannot use information on cell culture experiments to reliably
extrapolate the implications on human health. This short-
coming forces researchers to rely on proxy systems (animal
models) such as mice, rats, pigs, monkeys, or rabbits. These
animal models imperfectly represent human biology in
biomedicine: the average rate of successful translation from
animal models to clinical cancer trials is less than 8%. These
failures significantly contribute to the billion dollar figures
routinely cited for new drug development.7

While these two problems (predicting phenotype from DNA
and scaled behavior) are perhaps more evident in the field of
synthetic biology, they are shared with (and inherited from)
the rest of biology. For example, it would be transformative to
predict (1) plant phenotype from its genome, (2) soil
microbial community impact on its environment and globally
on Earth’s climate from the study of pure cultures, or (3)
mammalian metabolism from single cell studies. Any advance
in these two problems will positively impact other subfields of
biology. Further hurdles facing synthetic biology (e.g., product
extraction and downstream purification, supplement precursor
cost, toxicity, long-term stability, reproducibility, cross-talk) are
important, but less generally impactful if solved.

■ MACHINE LEARNING’S PREDICTIVE CAPABILITIES

Machine learning can provide predictive power without the
need for detailed mechanistic understanding, by learning the
underlying regularities in experimental data. Training data is
used to statistically link a set of inputs to a set of outputs
through models that are expressive enough to represent almost
any relationship, without being encumbered by biased
assumptions. In this vein, machine learning has been used to
predict pathway dynamics, optimize pathways through trans-
lational control, diagnose skin cancer, detect tumors in breast
tissues, and predict DNA and RNA protein-binding
sequences.8−10 Furthermore, machine learning can be used
to design synthetic biology systems: it can be used to learn the
relationship between phenotype and the genetic parts used in
genetic circuits, thus allowing more stable circuits.

But machine learning algorithms are data-hungry: they
require abundant data to be trained and be effective. The
recent revolution in machine learning was enabled not by new
algorithms, but rather by (1) growing computational power
and (2) the availability of large training libraries. Image
recognition in the field of artificial vision would have most
likely not reached superhuman performance if it had to be
trained on pictures captured on photographic film and
physically mailed from photographers to artificial intelligence
researchers. The availability of large image libraries enabled by
automated digital image acquisition through charge-coupled
device (CCD) cameras, and its dispersal through the Internet,
have been key to its development.

■ MACHINE LEARNING NEEDS AUTOMATION TO BE
TRULY EFFECTIVE

We cannot produce the quantity and quality of data needed for
effective machine learning without using automation. The
situation we face in biology is akin to using mailed paper
pictures: most assays are low-throughput and manual, and
most phenotypic data is produced and analyzed within the
same lab. Although this is beginning to change, the rate is not
fast enough to support machine learning approaches (except
for the field of genomics). To make matters worse, historical
data not always meet the requirements for machine learning to
be effective (e.g., lack of standardized data collection), so it is
important that new data are collected with these needs in
mind. Competitions such as the Critical Assessment of
methods of protein Structure Prediction (CASP) provide a
good example of how to promote community effort for this
purpose.
Large-scale high-quality data is necessary but not sufficient:

proper experimental design is fundamental to leverage machine
learning. Opportunities in this area run in both directions:
high-quality data generation for training machine learning
algorithms necessitates experimental designs that carefully
consider the different effects influencing the response; and
machine learning can be used to choose the next set of
experiments in order to improve experimental data quality and
reduce the estimation errors. In this area, “robot scientists”
(chemical experiment planners) have proven successful in
synthetic chemistry, and are expected to play an important role
in synthetic biology.
Hence, we need to invest in capabilities that couple machine

learning algorithms with high-throughput, fast-turnaround,
automated phenotyping approaches, to solve biological
problems whose solution is of wide applicability (Figure 1).
Possible approaches involve robotic liquid handler platforms,
microfluidics, or cloud laboratories. Future challenges include
acquiring data in real time, developing comprehensive

Figure 1. Synthetic biology, machine learning, and automation complement each other naturally. Combined, they can significantly increase our
bioengineering capabilities and produce new biomedical applications.
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noninvasive assays, taking the human out of the loop, and
developing workflows and data standards that ensure
reproducibility.
While this approach is already being embraced in industry

(e.g., Amyris, Zymergen, Ginkgo, Genomatica), it would
significantly benefit academic research. The availability of
large amounts of high-quality data would enable computational
biologists to produce robust theories without the need of
running their own experimental facilities, and the theory
produced by these data sets would allow experimentalists to
better design experiments and tackle questions of general
relevance. Furthermore, this division of labor would enable
higher productivity and allow for addressing more ambitious
biological questions. Indeed several academic biofoundries
have recently appeared (e.g., Edinburgh Genome Foundry,
Illinois Biological Foundry for Advanced Biomanufacturing,
Agile BioFoundry, Manchester SynBioChem, Tianjin Univer-
sity BioFoundry), which can provide the ideal environment for
the integration of synthetic biology, machine learning, and
automation, if properly directed and resourced (see Figure 2
for the role of machine learning and automation in the Design-
Build-Test-Learn cycle).

■ PREDICTIVE SYNTHETIC BIOLOGY WILL
DRAMATICALLY IMPACT BIOLOGY AND INSPIRE
COMPUTER SCIENCE

A significant opportunity lies in the integration of synthetic
biology, machine learning, and automation, enabling disruptive
changes in both biology and computer science. This
integration can not only produce transformational synthetic
biology applications for the production of biomaterials,
biofuels and biomedical applications, but also enable a better
mechanistic understanding. Unlike for other domains where
machine learning is leveraged productively (e.g., image

recognition), for many of the current synthetic biology
applications we have a significant (but not complete)
knowledge of the underlying processes. Coupling the
predictive ability of machine learning models with the
possibilities afforded by new synthetic biology tools to easily
modify the system components will allow us to probe and
expand our mechanistic understanding. We expect this
improved understanding to help us generate new types of
machine learning algorithms: after all, machine learning staples
such as genetic algorithms and artificial neural networks were
inspired by biological analogies. This integration will require a
tight multidisciplinary collaboration among biologists, mathe-
maticians, engineers, chemists, physicists, and computer
scientists in order to be successful.
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Hećtor García Martín: 0000-0002-4556-9685
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
P.C. acknowledges the funding from the UK Biotechnology
and Biological Sciences Research Council (BBSRC) and UK
Engineering Physical Sciences Research Council (EPSRC)
under grant BB/M017702/1, “Centre for synthetic biology of
fine and speciality chemicals (SYNBIOCHEM)” and from
BBSRC under grant BB/R506497/1 “Flexible Talent Mobi-
lity”. T.R. and H.G.M. performed this work as part of the DOE
Agile BioFoundry (http://agilebiofoundry.org), supported by
the U.S. Department of Energy, Energy Efficiency and
Renewable Energy, Bioenergy Technologies Office, and the
DOE Joint BioEnergy Institute (http://www.jbei.org), sup-
ported by the Office of Science, Office of Biological and
Environmental Research, through contract DE-AC02-
05CH11231 between Lawrence Berkeley National Laboratory
and the U.S. Department of Energy. The Department of
Energy will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).
H.G.M. was also supported by the Basque Government
through the BERC 2018-2021 program and by Spanish
Ministry of Economy and Competitiveness MINECO:
BCAM Severo Ochoa excellence accreditation SEV-2017-
0718.

■ REFERENCES
(1) Cameron, D. E., Bashor, C. J., and Collins, J. J. (2014) A brief
history of synthetic biology. Nat. Rev. Microbiol. 12, 381−390.
(2) Committee on Industrialization of Biology: A Roadmap to
Accelerate the Advanced Manufacturing of Chemicals, Board on
Chemical Sciences and Technology, Board on Life Sciences, Division
on Earth and Life Studies, National Research Council. (2015)
Industrialization of Biology: A Roadmap to Accelerate the Advanced
Manufacturing of Chemicals, National Academies Press, Washington,
D.C., DOI: 10.17226/19001.
(3) Heinemann, J., Deng, K., Shih, S. C. C., Gao, J., Adams, P. D.,
Singh, A. K., et al. (2017) On-chip integration of droplet microfluidics
and nanostructure-initiator mass spectrometry for enzyme screening.
Lab Chip 17, 323−331.

Figure 2. Machine learning and automation can be used to improve
the basic synthetic biology Design-Build-Test-Learn (DBTL) cycle in
different ways. Automation allows rapid growing and assembly of
genetic designs through robotics and microfluidics platforms, high-
throughput omics quantification, and experimental data analysis.
Machine learning can drive each step in the cycle through generation
of the experimental planning, smart selection of samples for
quantification, model inference from experimental data, and design
rules for the next iteration.

ACS Synthetic Biology Viewpoint

DOI: 10.1021/acssynbio.8b00540
ACS Synth. Biol. 2019, 8, 1474−1477

1476

mailto:hgmartin@lbl.gov
http://orcid.org/0000-0002-0993-5625
http://orcid.org/0000-0002-4556-9685
http://agilebiofoundry.org
http://www.jbei.org
http://energy.gov/downloads/doe-public-access-plan
http://dx.doi.org/10.17226/19001
http://dx.doi.org/10.1021/acssynbio.8b00540


(4) Gardner, T. S. (2013) Synthetic biology: from hype to impact.
Trends Biotechnol. 31, 123−125.
(5) Hodgman, C. E., and Jewett, M. C. (2012) Cell-free synthetic
biology: thinking outside the cell. Metab. Eng. 14, 261−269.
(6) The Rise and Fall of the Company That Was Going To Have Us All
Using Biofuels, https://www.fastcompany.com/3000040/rise-and-fall-
company-was-going-have-us-all-using-biofuels.
(7) Avorn, J. (2015) The $2.6 billion pill−methodologic and policy
considerations. N. Engl. J. Med. 372, 1877−1879.
(8) Costello, Z., and Martin, H. G. (2018) A machine learning
approach to predict metabolic pathway dynamics from time-series
multiomics data. npj Syst. Biol. Appl. 4, 19.
(9) Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau,
H. M., et al. (2017) Dermatologist-level classification of skin cancer
with deep neural networks. Nature 542, 115−118.
(10) Jervis, A. J., Carbonell, P., Vinaixa, M., Dunstan, M. S.,
Hollywood, K. A., and Robinson, C. J. (2019) Machine learning of
designed translational control allows predictive pathway optimization
in Escherichia coli. ACS Synth. Biol. 8, 127.

ACS Synthetic Biology Viewpoint

DOI: 10.1021/acssynbio.8b00540
ACS Synth. Biol. 2019, 8, 1474−1477

1477

https://www.fastcompany.com/3000040/rise-and-fall-company-was-going-have-us-all-using-biofuels
https://www.fastcompany.com/3000040/rise-and-fall-company-was-going-have-us-all-using-biofuels
http://dx.doi.org/10.1021/acssynbio.8b00540

