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Abstract. We prove certain L2pRnq bilinear estimates for Fourier extension operators associ-

ated to spheres and hyperboloids under the action of the k-plane transform. As the estimates
are L2-based, they follow from bilinear identities: in particular, these are the analogues of a

known identity for paraboloids, and may be seen as higher-dimensional versions of the classical

L2pR2q-bilinear identity for Fourier extension operators associated to curves in R2.

1. Introduction

For n ě 2, let U be an open subset in Rn´1 and φ : Rn´1 Ñ R be a smooth function parametris-
ing a hypersurface S “ tpξ, φpξqq : ξ P Uu. Associated to S, define the Fourier extension operator

Efpzq :“

ż

U

eipx¨ξ`tφpξqqfpξqdξ,

where z “ px, tq P Rn´1ˆR and f P L1pUq. The terminology extension comes from the fact that E

is the adjoint operator to the restriction of the Fourier transform to S, that is E˚hpξq “ phpξ, φpξqq.
Stein observed in the late 1960s that under certain curvature hypothesis on S it is possible to obtain
LppUq ´ LqpRnq estimates for E besides the trivial L1pUq ´ L8pRnq ones implied by Minkowski’s
inequality. In particular, the Fourier restriction conjecture asserts that if S is compact and has
everywhere non-vanishing Gaussian curvature

}Ef}LqpRnq ď C}f}LppUq

should hold for all q ą 2n
n´1 and 1

q ď
n´1
n`1

1
p1 . This conjecture is fully solved for n “ 2 [16, 33],

but is still open for n ě 3 and constitutes one of the main open problems in Euclidean Harmonic
Analysis. The first fundamental result in this direction was the Stein–Tomas [31, 28] restriction
estimate

(1.1) }Ef}
L

2pn`1q
n´1 pRnq

ď C}f}L2pUq;

note that this estimate is best possible in terms of the exponent q for f P L2pUq. Over the last few
years, there has been a great interest in establishing the sharp value of C and the existence and
characterisation of extremisers in (1.1) depending on the underlying surface S: see for instance
[17] or the most recent survey [20].

Substantial improvements on (1.1) have been achieved over the last few decades. An important
ingredient for this has been the bilinear and multilinear approach. These estimates generally adopt
the form

(1.2) }

k
ź

j“1

Ejfj}Lq{kpRnq ď C
k
ź

j“1

}fj}LppUjq,
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where the Ej are associated to hypersurfaces Sj satisfying certain transversality hypotheses. A
key feature of these inequalities is that, under such additional hypotheses, it is possible to obtain

estimates for p “ 2 and 2n
n´1 ă q ă 2pn`1q

n´1 . The interested reader is referred, for instance, to

[32, 29] for the theory of bilinear restriction estimates and to [4] for the multilinear approach; see
also the survey papers [30, 1].

An elementary instance of a bilinear estimate is in fact the identity

(1.3) }E1f1E2f2}
2
L2pR2q “ p2πq

2

ż

U1ˆU2

|f1pξ1q|
2|f2pξ2q|

2

|φ11pξ1q ´ φ
1
2pξ2q|

dξ1 dξ2,

which follows from an application of Plancherel’s theorem and a change of variables; note that under
the transversality hypothesis |φ11pξ1q ´ φ12pξ2q| ą c ą 0 for ξ1 P U1, ξ2 P U2, one may interpret
the identity (1.3) in the framework of (1.2). Of course the presence of L2 on the left-hand-side in
(1.3) is key for the use of Plancherel’s theorem. This bilinear approach has its roots in the work of

Fefferman [16] and may also be extended to higher dimensions. Identifying Ejfj “ {gjdµj , where
gj : Rn Ñ R is the lift of fj to Sj , i.e., gjpξ, φjpξqq “ fjpξq and dµj is the parametrised measure in
Sj defined via

ż

Rn
gpηqdµpηq “

ż

Uj

gpξ, φjpξqq dξ,

one may obtain the L2pRnq bilinear estimate

(1.4) }E1f1E2f2}
2
L2pRnq ď }|g1|

2dµ1 ˚ |g2|
2dµ2}L1pRnq}dµ1 ˚ dµ2}L8pRnq ď C}f1}

2
L2pU1q

}f2}
2
L2pU2q

,

after an application of Plancherel’s theorem and the Cauchy–Schwarz inequality, provided one
assumes the transversality condition }dµ1 ˚ dµ2}L8pRnq ď C ă 8. It should be remarked that the

exponent here is q “ 4 ě 2pn`1q
n´1 if n ě 3. This is very much in contrast to the setting (1.2), in

which the main goal is to obtain estimates when q ă 2pn`1q
n´1 ; bilinear and multilinear estimates of

that type are deep and difficult and will not be explored in this paper.
It is interesting to compare (1.3) and (1.4). The first observation is that (1.3) is an identity,

whilst (1.4) is an inequality. The second one is the presence of the weight factor |φ11pξ1q´φ
1
2pξ2q|

´1

in (1.3); the transversality weight |dµ1 ˚ dµ2| in (1.4) does not necessarily have a closed form in
terms of the variables of integration of f1 and f2.

The main purpose of this paper is to further exploit the elementary 2-dimensional analysis in
(1.3) into higher dimensions. More precisely, we wish to obtain a bilinear identity in higher di-
mensions which incorporates an explicit weight factor amounting to some transversality condition;
we note that an alternative higher dimensional version of (1.3) has recently been obtained by
Bennett and Iliopoulou [5] in a n-linear level. To this end, we shall replace the L2pRnq in (1.4) by
a mixed-norm L1pRn´2q ˆ L2pR2q. Given x “ px̄, x2q P Rn´2 ˆ R2, taking the L1-norm in the x̄
variables will essentially reduce matters to a 2-dimensional analysis in the x2 “ pxn´1, xnq vari-
ables, where the resulting extension operators E1 and E2 will correspond to sections of the original
surfaces by 2-dimensional planes parallell to ξ1 “ ¨ ¨ ¨ “ ξn´2 “ 0. This question has already been
addressed by Planchon and the second author [26] if the underlying hypersurfaces are paraboloids.
The motivation in their work came from the relevant role played by this type of inequalities in the
global behaviour of large solutions of non-linear Schrödinger equations; more concretely we refer to
the so called interaction Morawetz inequality introduced by Colliander, Keel, Staffillani, Takaoka
and Tao in [15]. Here we further explore the existence of those bilinear identities for two other
fundamental surfaces, such as the sphere and the hyperboloid.

Before describing our results in detail we shall first review the known results in the case of
paraboloids, as they will provide the framework and context to understand our results.

1.1. Estimates for paraboloids. In recent years, starting with the work of Ozawa and Tsutsumi
[25] for the paraboloid S1 “ S2 “ tpξ, |ξ|

2q : ξ P Rn´1u, there has been an increasing interest in
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understanding the weight |dµ1 ˚ dµ2| in (1.4) so that a L2-bilinear estimate

(1.5) }E1f1E2f2}
2
L2pRnq ď C

ż

U1ˆU2

KS1,S2
pξ1, ξ2q|f1pξ1q|

2|f2pξ2q|
2 dξ1 dξ2

holds for some kernel KS1,S2 and such that the constant C is best possible; in many cases, extrem-
isers for the above kind of inequalities have also been characterised. This has been mostly studied
for paraboloids [9], cones [7], spheres [19, 10] and hyperboloids [24, 22], with the corresponding
natural interpretations in PDE.

It should be noted that the bilinear estimates (1.3) and (1.4) also hold when E2f2 is replaced
by its complex conjugate E2f2. This is of course of interest when S1 “ S2 and f1 “ f2, as then
the bilinear estimates can be reinterpreted as L2 estimates of |Ef |2. In particular, in the case of
paraboloids, the identity (1.3) may be reinterpreted as

(1.6)

ż

RˆR
|Dx|u|

2|2 dx dt “
1

2p2πq2

ż

RˆR
|ξ ´ η||xu0pξq|

2|xu0pηq|
2 dξ dη

or simply
ż

RˆR
|D1{2

x |u|2|2 dx dt “
1

2
}u0}

2
L2pRq}u0}

2
L2pRq

in order to avoid the singularity of the resulting weight |φ1pξq´φ1pηq| “ 2|ξ´η|; here we interpret the
extension operator upx, tq “ E|u0px, tq as the solution of the free Schrödinger equation iBtu´∆u “ 0
in Rd associated to the initial data upx, 0q “ u0pxq, with the normalisation of the Fourier transform
considered in §2.1. Note that, for this specific case, it is crucial that the multiplier associated to
Dx coincides precisely with |φ1pξq ´ φ1pηq|. Moreover, Ozawa and Tsutsumi [25] made use of the
Radon transform to obtain the higher dimensional version

(1.7) }p´∆qp2´dq{4|u|2}2L2
x,tpRdˆRq ď OTpdq}u0}

2
L2pRdq}u0}

2
L2pRdq

where the constant OTpdq “ 2´dπp2´dq{2

Γpd{2q is sharp after verifying that for u0pxq “ e´|x|
2

the in-

equality becomes an identity; see also [9, 3]. An interesting feature from the identity (1.6) is that
it may be used to prove local well-posedness of cubic non-linear Schrödinger equations.

Motivated by the applications to non-linear PDE in [15], Planchon and the second author [26]
established certain higher dimensional analogues of the R1`1 identity (1.6). Up to that point
all higher dimensional versions of (1.6), or more generally (1.3), were inequalities rather than
identities. Their estimates also involved the Radon transform in the spatial variables1, which in
fact features in the statement of the identity. Recall that given a linear k-dimensional subspace
π P Gk,n and y P πK, the k-plane transform of a function f is defined as

Tk,nfpπ, yq :“

ż

π

fpx` yqdλπpxq,

where Gk,n denotes the Grassmanian manifold of all k-dimensional subspaces in Rn and dλπ is the
induced Lebesgue measure on π. The cases k “ 1 and k “ n´1 correspond to the X-ray transform
X and the Radon transform2 R respectively. With this, it was shown in [26] that given ω P Sn´1

(1.8)

ż

R

ż

R
|BsRp|up¨, tq|2qpω, sq|2 dsdt`Jωpuq“

π

p2πq2d`1

ż

Rd

ż

Rd
|pξ´ηq ¨ω||xu0pξq|

2|xu0pηq|
2 dξ dη,

where

Jωpuq :“

ż

R

ż

R

ż

pxωyKq2

ˇ

ˇupx` sω, tqBsupy ` sω, tq ´ upy ` sω, tqBsupx` sω, tq
ˇ

ˇ

2
dλpxωyKq2px, yqdsdt.

1Note that the Radon transform in the spatial variables in upx, tq amounts to a pn ´ 2q-plane transform in the

context of the extension operators Efpzq.
2The Radon transform Rf is identified with a function in Sn´1

` ˆ R setting Rfpω, sq ” RfpxωyK, sωq.
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ξK

ζK

ξK ` ζK

ξ̃K

ζ̃K

0

rπζ S1
rπξ S1

Figure 1. The new points ξ̃K P rπξ S1 and ζ̃K P rπζ S1 in πK are the reflected points

of ξK and ζK with respect to ξK ` ζK.

Of course fixing ω “ ed (or any other coordinate vector) the first term on the left-hand-side amounts
to }Bs}|u|

2}L1pRd´1q}
2
L2
xd,t

pR2q
, which in the absence of the derivative Bs becomes }u}4

L4
xd,t

pR2;L2pRd´1qq
;

note the contrast with the L4-nature of (1.3) and (1.4).
The approach in [26] to establish (1.8) uses integration-by-parts arguments as in [15] and extends

to versions of (1.8) for nonlinear Schrödinger equations with nonlinearity of the type ˘|u|p´1u,
where p ě 1. Estimates like (1.8) were used, for instance, to show scattering for solutions of those
non-linear equations (previously obtained by Nakanishi [23]; see also [14]) or to deduce Bourgain’s
[8] bilinear refinement of the Strichartz estimate.

However, it is possible to obtain (1.8) via Fourier analysis taking advantage of applications of
Plancherel’s theorem, in the spirit of (1.3) and (1.4). In this paper we will see how to exploit
this approach to obtain variants of (1.8) when the underlying extension operator is associated to
spheres or hyperboloids. This should be understood as an exploration of the interaction of the
k-plane transform and |Ef |2; see also the recent paper [2] or the upcoming preprint [6] for further
examples of this phenomenon.

1.2. Estimates for the sphere. In the case of the sphere Sn´1
r ” rSn´1 of radius r in Rn, it is

considered the more classical form of the extension operator

g ÞÑ zgdσnr ,

where dσnr denotes the induced normalised Lebesgue measure on Sn´1
r and g P L1pSn´1

r q. The

following L2-identities for Tn´2,np{g1dσnr
{g2dσnr q are obtained.

Theorem 1.1. Let n ě 3. Let π P Gn´2,n and let πK denote the orthogonal subspace to π. For
each z P Rn, write z “ zπ ` zK, where zπ is the orthogonal projection of z into π. Then

ż

πK

ˇ

ˇ

ˇ
p´∆yq

1{4Tn´2,np{g1dσnr
{g2dσnr qpπ, yq

ˇ

ˇ

ˇ

2

dλπKpyq(1.9)

“ CSn´1

ż

pSn´1
r q2

Kπ,Sn´1
r
pξ, ζqg1pξqḡ2pξ

π ` ξ̃Kqg2pζqḡ1pζ
π ` ζ̃Kqdσnr pξqdσnr pζq

where

Kπ,Sn´1
r
pξ, ζq :“

2

|ξK ` ζK|
, CSn´1 :“ p2πq2pn´1q,

rξ “
a

r2 ´ |ξπ|2 and ξ̃K, ζ̃K P πK are the reflected points of ξK and ζK in πK with respect to the

line passing through the origin and ξK ` ζK, that is ξK ` ζK “ ξ̃K ` ζ̃K (see Figure 1).

Of course the L2-nature of the inequality on its left-hand-side allows one to take advantage
of Plancherel’s theorem. As briefly described before §1.1, the key presence of the pn ´ 2q-plane
transform reduces the problem to a 2-dimensional analysis, and one is left to understand the
convolution of two weighted measures associated to concentric circles of different radii in the
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subspace πK » R2. The main advantage with respect to (1.4) is that in this setting it is possible
to express h1dσ2

r1 ˚ h2dσ2
r2pξ

K ` ζKq as the weight dσ2
r1 ˚ dσ2

r2pξ
K ` ζKq times an evaluation of

the functions h1 and h2 at points depending on ξK and ζK. Note that the scenario (1.4) is
overdetermined and prevents one from obtaining an identity when L2-norm with respect to all
variables is taken to the bilinear term E1f1E2f2.

Given complex numbers a, b, c, d P C, the well known identity

(1.10) ab̄c̄d “
1

2

`

|ac|2 ` |bd|2 ´ |ac̄´ bd̄|2
˘

` iImpab̄c̄dq

may be used in Theorem 1.1 to replace the 4-linear wave interaction

g1pξqḡ2pξ
π ` ξ̃Kqg2pζqḡ1pζ

π ` ζ̃Kq

in (1.9) by an alternative expression involving |g1pξq|
2|g2pζq|

2 and which is closer in spirit to (1.8).

Corollary 1.2. Let n ě 3 and π P Gn´2,n. Then
ż

πK

ˇ

ˇ

ˇ
p´∆yq

1{4Tn´2,np{g1dσnr
{g2dσnr qpπ, yq

ˇ

ˇ

ˇ

2

dy(1.11)

“ CSn´1

ż

pSn´1
r q2

Kπ,Sn´1
r
pξ, ζq|g1pξq|

2|g2pζq|
2 dσnr pξqdσnr pζq ´ Iπ,Sn´1

r
pg1, g2q,

where

Iπ,Sn´1
r
pg1, g2q :“

CSn´1

2

ż

pSn´1
r q2

Kπ,Sn´1
r
pξ, ζq|g1pξqg2pζq ´ g2pξ

π ` ξ̃Kqg1pζ
π ` ζ̃Kq|2 dσnr pξqdσnr pζq.

Of course the term Iπ,Sn´1
r
pg1, g2q ě 0 and is identically zero if g1 and g2 are constant functions,

so it may be dropped from (1.11) at the expense of losing the identity, leading to a sharp inequality
which fits in the context of (1.5). Thus, the term Iπ,Sn´1

r
pg1, g2q may be interpreted as the distance

of such a resulting inequality to become an identity.3

As the k-plane transform satisfies the Fourier transform relation

(1.12) FyTk,nfpπ, ξq “ pfpξq for ξ P πK,

one may easily obtain by means of Plancherel’s theorem the relation

(1.13) }f}2L2pRnq “
p2πq´k

|Gn´k´1,n´1|
}p´∆yq

k{4Tk,nf}
2
L2pGk,n,L2pπKqq.

Thus, on averaging Theorem 1.1 over all π P Gn´2,n one has the following.

Corollary 1.3. Let n ě 3. Then

}p´∆q
3´n
4 p{g1dσnr

{g2dσnr q}
2
L2pRnq ď p2πq

2´nCSn´1

ż

pSn´1
r q2

KSn´1
r
pξ, ζq|g1pξq|

2|g2pζq|
2 dσnr pξqdσnr pζq

where

KSn´1
r
pξ, ζq :“

1

|G1,n´1|

ż

Gn´2,n

Kπ,Sn´1
r
pξ, ζqdµGpπq.

In the particular case n “ 3 and after setting g1 “ g2, the right-hand-side in Corollary 1.3
amounts to a bilinear quantity appearing in the work of Foschi [18] on the sharp constant in the
Stein–Tomas inequality (1.1) for S2. Thus, appealing to his work, one can deduce the following.

Corollary 1.4 (Stein–Tomas [31], Foschi [18]).

(1.14) }zgdσ3}L4pR3q ď 2π}g}L2pS2q.

Besides the value for the sharp constant, Foschi [18] also showed that the only real valued
extremisers are constant functions; the existence of extremisers was previously verified in [12, 13].

3The inequality resulting from dropping I
π,Sn´1

r
pg1, g2q in (1.11) may be obtained more directly by an application

of the Cauchy–Schwarz inequality: see §5.1
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H1
mπζ

H1
mπξ

ξω

ζω

- ξω ` ζω

ξ̃ω

ζ̃ω

Figure 2. If ξω ` ζω lies in the vertical axis, the new points ξ̃ω and ζ̃ω are the
reflected points of ξω and ζω with respect to that axis. For ease of notation, ξω is
identified with the point pξω, φmπξ pξ

ωqq P H1
mπξ

, and similarly for the other points.

Solution to the Helmholtz equation. Consider the Helmholtz equation ∆u ` k2u “ 0 in Rn. If

supRą0
1
R

ş

BR
|u|2 ă 8, then there exists g P L2pSn´1

k q such that u “ {gdσSn´1
k

. Theorem 1.1 and

the subsequent corollaries may be then interpreted in that context.

1.3. Estimates for the hyperboloid. A similar analysis to the one described for Sn´1 may be
carried for one of the components of the elliptic hyperboloid in Rd`1, defined by

Hdm :“ tpξ, ξd`1q P Rd ˆ R : ξd`1 “ φmpξq :“
a

m2 ` |ξ|2u

and equipped with the Lorentz invariance measure dσHdm , defined by

(1.15)

ż

Hdm
gpξ, ξd`1qdσHdmpξ, ξd`1q “

ż

Rd
gpξ, φmpξqq

dξ

φmpξq
.

A function f P L1pRdq is identified with its lift g to Hdm, given by gpξ, φmpξqq “ fpξq, and note

{gdσHdmpx, tq “

ż

Rd
eix¨ξeit

?
m2`|ξ|2fpξq

dξ
a

m2 ` |ξ|2

where px, tq P Rn “ Rd ˆ R. A natural reason to split into a space-time domain is in view of the

connection of {gdσHdm with the Klein–Gordon propagator eit
?
m2´∆f ; this will be further discussed

below. Thus, considering the Radon transform in the space variables - as in (1.8) and as opposed
to Theorem 1.1, where no time role is given and therefore pn ´ 2q-plane transform is taken - one
obtains the following.

Theorem 1.5. Let d ě 2. Let ω P Sd´1
` and let π :“ xωyK P Gd´1,d be the orthogonal subspace to

xωy. For each x P Rd, write x “ xπ ` xωω, where xω “ x ¨ ω. Then
ż

R

ż

R

ˇ

ˇ

ˇ
B1{2
s Rp {g1dσHdmp¨, tq

{g2dσHdmp¨, tqqpω, sq
ˇ

ˇ

ˇ

2

dsdt

“ CHd

ż

pRdq2
Kω,Hdmpξ, ζqf1pξqf̄2pξ

π ` ξ̃ωωqf2pζqf̄1pζ
π ` ζ̃ωωq

dξ

φmpξq

dζ

φmpζq

where

Kω,Hdmpξ, ζq :“
|ξω ´ ξ̃ω|1{2|ζω ´ ζ̃ω|1{2

|ξωφmpζq ´ ζωφmpξq|
and CHd “ p2πq

2d.

Above, the points pξ̃ω, φmπξ pξ̃
ωqq P H1

mπξ
and pζ̃ω, φmπζ pζ̃

ωqq P H1
mπζ

are the image under L´1 of the

reflected points of Lppξω, φmπξ pξ
ωqqq and Lppζω, φmπζ pζ

ωqqq in R2 with respect to the vertical axis

respectively, where L is the unique Lorentz transformation mapping pξω ` ζω, φmπξ pξ
ωq ` φmπζ pζ

ωqq

to the vertical axis and mπ
ξ :“

a

m2 ` |ξπ|2 (see Figure 2).



k-PLANE TRANSFORM AND FOURIER EXTENSION OPERATORS 7

As in the case of the sphere, the use of the Radon transform in Rd and Plancherel’s theorem
reduces the above estimate to explicitly understand h1dσH1

m1
˚h2dσH1

m2
pξω`ζω, φm1

pξωq`φm2
pζωqq.

In fact, note that the value of Kω,Hdm amounts to the expression
ˇ

ˇ

ˇ

´

1 1
φ1mπ

ξ
pξωq φ1mπ

ζ
pζωq

¯
ˇ

ˇ

ˇ
corrected

with the natural weight 1
φmπ

ξ
pξωqφmπ

ζ
pζωq coming from the definition of dσH1

m
. This should be

compared with the elementary two-dimensional identity (1.3). The presence of the numerator

|ξω ´ ξ̃ω|1{2|ζω ´ ζ̃ω|1{2 is due to the action of B
1{2
s on Rp {g1dσHdmp¨, tq

{g2dσHdmp¨, tqq. Moreover, one

can explicitly write ξ̃ω and ζ̃ω in terms of ξ, ζ and ω, leading to the more compact expression

Kω,Hdmpξ, ζq “
2pφmpξq ` φmpζqq

pφmpξq ` φmpζqq2 ´ ppξ ` ζq ¨ ωq2
.

As before, one may use (1.10) to rewrite Theorem 1.5 in the spirit of (1.8).

Corollary 1.6. Let d ě 2 and ω P Sd´1
` . Then

ż

R

ż

R

ˇ

ˇ

ˇ
B1{2
s Rp {g1dσHdmp¨, tq

{g2dσHdmp¨, tqqpω, sq
ˇ

ˇ

ˇ

2

dsdt

“CHd

ż

pRdq2
Kω,Hdmpξ, ζq|f1pξq|

2|f2pζq|
2 dξ

φmpξq

dζ

φmpζq
´Iω,Hdmpf1, f2q

where

Iω,Hdmpf1, f2q :“
CHd

2

ż

pRdq2
Kω,Hdmpξ, ζq|f1pξqf2pζq ´ f2pξ

π ` ξ̃ωωqf1pζ
π ` ζ̃ωωq|2

dξ

φmpξq

dζ

φmpζq
.

As R “ Td´1,d, the use of the Plancherel’s relation (1.13) after averaging over ω P Sd´1
` yields

the following.

Corollary 1.7. Let d ě 2. Then

}p´∆xq
2´d
4 p {g1dσHdm

{g2dσHdmq}
2
L2
x,tpRdˆRq ď p2πq

1´dCHd

ż

pRdq2
KHdmpξ, ζq|f1pξq|

2|f2pζq|
2 dξ

φmpξq

dζ

φmpζq

where

KHdmpξ, ζq :“
1

2

ż

Sd´1

Kω,Hdmpξ, ζqdσdpωq.

The Klein–Gordon propagator. The solution to the Klein–Gordon equation ´B2
t u`∆u “ m2u in

Rd ˆ R, with initial data upx, 0q “ f0pxq, Btupx, 0q “ f1pxq is given by

upx, tq “ eit
?
m2´∆f´pxq ` e

´it
?
´∆f`pxq

where f` “
1
2 pf0 ` ip

?
m2 ´∆q´1f1q and f´ “

1
2 pf0 ´ ip

?
m2 ´∆q´1f1q and

e˘it
?
m2´∆fpxq :“

1

p2πqd

ż

Rd
eix¨ξe˘it

?
m2`|ξ|2

pfpξq dξ.

Note that e˘it
?
m2´∆fpxq “ p2πq´dppgdσHdmq p px, tq; where pg is the lift of pf

a

m2 ` | ¨ |2 to Hdm.

Thus, Theorem 1.5 and Corollaries 1.6 and 1.7 may be re-interpreted in terms of eit
?
m2´∆; in

particular, setting KGpdq “ p2πq´4dCHd , the estimate in Corollary 1.7 reads as

}p´∆xq
2´d
4 peit

?
m2´∆f1eit

?
m2´∆f2q}

2
L2
x,tpRd`1q

ďKGpdq

ż

pRdq2
KHdmpξ, ζq|

pf1pξq|
2| pf2pζq|

2φmpξqφmpζqdξdζ.

Structure of the paper. Section 2 contains some notation and standard observations which will
be useful throughout the paper. In Section 3 we revisit the convolution of weighted measures of
circles and hyperbolas. Section 4 contains the proofs of Theorems 1.1 and 1.5 whilst Section 5 is
concerned with the derivation of the several corollaries. Finally, we provide a Fourier analytic proof
of the identity (1.8), together with a further discussion on Fourier bilinear identities associated to
paraboloids.
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2. Notation and preliminaries

2.1. Fourier transform. We work with the normalisation of the Fourier transform

Fpfqpξq “ pfpξq “

ż

Rn
eiz¨ξfpzqdz and F´1pfqpzq “

1

p2πqn

ż

Rn
e´iz¨ξfpξqdξ.

With this normalisation,

zf ˚ g “ pf ¨ pg, xfgpξq “ p2πq´n pf ˚ pgpξq,
p

pfpzq “ p2πqnf̃pzq,
p

p̄fpzq “ p2πqnf̄pzq,

where f̃pzq :“ fp´zq, Plancherel’s theorem adopts the form

} pf}L2pRnq “ p2πq
n{2}f}L2pRnq

and the n-dimensional Dirac delta is

δnpaq “
1

p2πqn

ż

Rn
eia¨z dz.

2.2. k-plane transform. The Grassmannian manifold Gk,n of all k-dimensional subspaces of Rn
is equipped with an invariant measure dµG under the action of the orthogonal group. This measure
is unique up to a constant, and is chosen to be normalised as

|Gk,n| “
ż

Gk,n
dµGpπq “

|Sn´1| ¨ ¨ ¨ |Sn´k|
|Sk´1| ¨ ¨ ¨ |S0|

.

Given π P Gk,n and ξ P πK, the relation (1.12) between the k-plane transform Tk,n and the Fourier
transform easily follows from the definition

(2.1) FyTk,nfpπ, ξq “
ż

πK
eiy¨ξTk,nfpπ, yqdλπKpyq “

ż

πK
eiy¨ξ

ż

π

fpx` yqdλπpxqdλπKpyq “ pfpξq

after changing variables z “ x`y and noting that ξ ¨x “ 0 for ξ P πK. This and the known identity
(see for instance [21, Chapter 2])

ż

Sn´1

fpωqdσnpωq “
1

|Gn´k´1,n´1|

ż

Gk,n

ż

Sn´1XπK
fpωqdσnπKpωqdµGpπq,(2.2)

yield via Plancherel’s theorem and a change to polar coordinates the Plancherel-type identity (1.13)
for the k-plane transform.

2.3. Lorentz transformations. The Lorentz group L is defined as the group of invertible linear
transformations in Rd`1 preserving the bilinear form

pz, uq ÞÑ zd`1ud`1 ´ zdud ´ ¨ ¨ ¨ ´ z1u1.

It is well known that the measure dσHdm is invariant under the action of the subgroup of L that

preserves the hyperboloid Hdm, denoted by L`. More precisely,
ż

Hdm
f ˝ LdσHdm “

ż

Hdm
f dσHdm

for all L P L`. It is also a well known fact that given P “ pξ, τq P Rd`1 with τ ą |ξ|, there exists

a Lorentz transformation L P L` such that Lpξ, τq “ p0,
a

τ2 ´ |ξ|2q; see for instance [27]. For
d “ 1, this transformation is given by

(2.3) L ” LγP :“

ˆ

cosh γP ´ sinh γP
´ sinh γP cosh γP

˙

, where γP :“ ln

d

τ ` ξ

τ ´ ξ
;
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S1
r2

‚x

txu ` S1
r1

0
‚

P`2 pxq

‚

P´2 pxq
‚

P´1 pxq

‚

P`1 pxq
‚

Figure 3. The points P`2 pxq, P
´
2 pxq P S1

r2 Xptxu`S1
r1q and the points P`1 pxq :“

x´ P´2 pxq, P
´
1 pxq :“ x´ P`2 pxq P S1

r1 .

recall that P may be expressed in hyperbolic coordinates as P “ pξ, τq “ prP sinh γP , rP cosh γP q,

where rP :“
a

τ2 ´ ξ2. The inverse Lorentz transformation that maps p0, rP q back to pξ, τq is
given by L´γP .

3. Convolution of weighted measures

As is discussed in the introduction, a key ingredient in the proof of Theorems 1.1 and 1.5 is
to understand convolutions of two weighted measures associated to concentric circles of different
radii in R2 and to rectangular hyperbolas in R2 with foci lying on the same line but with different
major axis. The computation of such convolutions is standard; see, for instance [18, 10] for the
circular case or [27, 11] for the hyperbolic case. The main key feature here is that the convolution
is carried with respect to weighted measures, and thanks to the key fact of being in R2, one can
give a precise evaluation of such weights at certain points.

3.1. Circles. Given r P R`, let dσ2
r denote the normalised Lebesgue measure of S1

r ” rS1, that is

ż

S1r
gpωqdσ2

rpωq “

ż

S1
gprωqdσ2pωq,

and recall that dσ2pωq “ δ1p1´|ω|q dω “ 2δ1p1´|ω|
2qdω, where dω denotes the Lebesgue measure

on R2.
Given 0 ă r1 ď r2, the domain of integration in dσ2

r1 ˚ dσ2
r2pxq is S1

r2 X ptxu ` Sr1q. This set
is non-empty if and only if |x| P rr2 ´ r1, r2 ` r1s and consists of one point in the tangent case
|x| “ r2 ´ r1 or |x| “ r2 ` r1 and of two points otherwise. In the non-empty case, fix vx P S1 such
that vx ¨ x “ 0 and is the π{2 degrees rotation of x in the anti-clockwise direction, and let P`2 pxq
and P´2 pxq denote the points in S1

r2 X ptxu ` Sr1q such that P`2 pxq ¨ vx ě 0 and P´2 pxq ¨ vx ď 0

respectively; note that P`2 pxq “ P´2 pxq in the tangent case. Define P´1 pxq :“ x´P`2 pxq P S1
r1 and

P`1 pxq :“ x´ P´2 pxq P S1
r1 . Observe that P`j pxq and P´j pxq are reflected points one another with

respect to the line passing through the origin containing x: see Figure 3.

Lemma 3.1. Let r1, r2 P R such that 0 ă r1 ď r2. Then

g1dσ2
r1 ˚ g2dσ2

r2pxq “
2g1pP

`
1 pxqqg2pP

´
2 pxqq ` 2g1pP

´
1 pxqqg2pP

`
2 pxqq

a

´p|x|2 ´ pr2 ` r1q
2qp|x|2 ´ pr2 ´ r1q

2q

if |x| P rr2 ´ r1, r2 ` r1s.
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H1
m2

txu ´H1
m1

H1
m1

x
‚

‚

Q`2 pxq

‚ Q´2 pxq

‚Q´1 pxq

‚Q`1 pxq

Figure 4. The pointsQ`2 pxq, Q
´
2 pxq P H

1
m2
Xptxu´H1

m1
q and the pointsQ`1 pxq :“

x´Q´2 pxq, Q
´
1 pxq :“ x´Q`1 pxq P H

1
m1

.

Proof. A computation shows

g1 dσ2
r1 ˚ g2 dσ2

r2pxq “

ż

S1

ż

S1
g1pr1ω1qg2pr2ω2qδ2px´ r1ω1 ´ r2ω2qdσ2pω1qdσ2pω2q

“
2

r2
2

ż

S1

ż

R2

g1pr1ω1qg2pr2ω2qδ2

´ x

r2
´
r1

r2
ω1 ´ ω2

¯

δ1p1´ |ω2|
2qdσ2pω1qdω2

“
1

r1|x1|

ż

S1
g1pr1ω1qg2px´ r1ω1qδ1

´ r2
2

2r1|x|
´
|x|

2r1
´

r1

2|x|
`

x

|x|
¨ ω1

¯

dσ2pω1q

“: I`pxq ` I´pxq,

where I`pxq corresponds to the integration over S1
`pxq :“ tω P S1 : x ¨ ω ě 0u and I´pxq to the

integration over S1
´pxq :“ S1zS1

`pxq “ tω P S1 : x ¨ ω ď 0u.
Denoting by αx the clockwise angle between e1 and x and Pxpuq “ pcospαx`arccospuqq, sinpαx`

arccospuqqq, the expression for I`pxq becomes, after a change of variable,

I`pxq “
1

r1|x1|

ż 1

´1

δ1

´ r2
2

2r1|x|
´
|x|

2r1
´

r1

2|x|
` u

¯

p1´ u2q´1{2g1pr1Pxpuqqg2px´ r1Pxpuqqdu

“
1

r1|x|

´

1´
´ r2

2

2r1|x|
´
|x|

2r1
´

r1

2|x|

¯2¯´1{2

g1pP
`
1 pxqqg2pP

´
2 pxqqχtr2´r1ď|x|ďr2`r1upxq

“
2g1pP

`
1 pxqqg2pP

´
2 pxqq

a

´p|x|2 ´ pr2 ` r1q
2qp|x|2 ´ pr2 ´ r1q

2q
χtr2´r1ď|x|ďr2`r1upxq

noting that r1Pxpuq “ P`1 pxq after integrating in u. Arguing similarly for I´pxq concludes the
proof. �

3.2. Hyperbolas. Consider the Lorentz invariant measure dσH1
m

defined in (1.15). Given 0 ă

m1 ď m2, the domain of integration in dσH1
m1
˚ dσH1

m2
pxq is H1

m2
X ptxu ´H1

m1
q. Reasoning as in

the previous case, this set is non-empty if and only if
a

x2
2 ´ x

2
1 ě m1`m2 and consists of one single

point in the tangent case
a

x2
2 ´ x

2
1 “ m1`m2 and of two points otherwise; here x “ px1, x2q P R2.

In the non-empty case, let Q`2 pxq and Q´2 pxq denote the points in H1
m2
X ptxu ´ H1

m1
q such that

`

Q`2 pxq´x
˘

¨e1 ě 0 and
`

Q´2 pxq´x
˘

¨e1 ď 0 respectively; of course Q`2 pxq “ Q´2 pxq in the tangent

case. Define Q`1 pxq “ x´Q´2 pxq P H1
m1

and Q´1 pxq “ x´Q`2 pxq P H1
m1

(see Figure 4).

Lemma 3.2. Let m1,m2 P R such that 0 ă m1 ď m2. For each x “ px1, x2q P R2 such that
x2

2 ě x2
1 one has

g1dσH1
m1
˚g2dσH1

m2
pxq “

2g1pQ
`
1 pxqqg2pQ

´
2 pxqq ` 2g1pQ

´
1 pxqqg2pQ

`
2 pxqq

a

px2
2 ´ x

2
1q

2 ´ 2px2
2 ´ x

2
1qpm

2
1 `m

2
2q ` pm

2
1 ´m

2
2q

2
χ
t
?
x2
2´x

2
1ěm1`m2u

pxq.

Proof. By invariance of the measure dσH1
m

under Lorentz transformations, it suffices to prove the

above identity for x “ p0, zq. Indeed, note that if Lx P L` is the Lorentz transformation satisfying
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Lxpxq “ p0, zq “ p0,
a

x2
2 ´ x

2
1q, then

g1dσH1
m1
˚ g2dσH1

m2
pxq “

ż

H1
m1

ż

H1
m2

g1pωqg2pνqδ2px´ ω ´ νqdσH1
m1
pωqdσH1

m2
pνq

“

ż

H1
m1

ż

H1
m2

g1pL
´1
x pωqqg2pL

´1
x pνqqδ2pp0, zq ´ ω ´ νqdσH1

m1
pωqdσH1

m2
pνq

“ h1dσH1
m1
˚ h2dσH1

m2
p0, zq

where hj “ gj ˝L
´1
x ; the reduction to the vertical axis then follows from noting that hjpQ

˘
` p0, zqq “

gjpQ
˘
` pxqq for j, ` “ 1, 2. Next,

h1dσH1
m1
˚ h2dσH1

m2
p0, zq “

ż

H1
m1

ż

H1
m2

h1pωqh2pνqδ2pp0, zq ´ pω1, ω2q ´ pν1, ν2qq dσH1
m1
pωqdσH1

m2
pνq

“

ż

R
h1pω1, φm1pω1qqh2p´ω1, φm2pω1qq

δ1pz ´ φm1
pω1q ´ φm2

pω1qq

φm1
pω1qφm2

pω1q
dω1.

Splitting R “ R´ Y R` and doing the change of variables

v “ φm1pω1q ` φm2pω1q, with
dω1

φm1
pω1qφm2

pω1q
“

dv

ω1v
,

on each half-line one has

h1dσH1
m1
˚ h2dσH1

m2
p0, zq “

ż 8

m1`m2

´

h1pω1, φm1pω1qqh2p´ω1, φm2pω1qq

` h1p´ω1, φm1pω1qqh2pω1, φm2pω1qq

¯

δ1pz ´ vq
dv

ω1v

where ω1 above is the function of v

ω1 “ ω1pvq :“

a

v4 ´ 2v2pm2
1 `m

2
2q ` pm

2
1 ´m

2
2q

2

2v
.

Noting that Q˘1 p0, vq “ p˘ω1pvq, φm1
pω1pvqqq and Q˘2 p0, vq “ p¯ω1pvq, φm2

pω1pvqqq, one has

h1dσH1
m1
˚ h2dσH1

m2
p0, zq “

2h1pQ
`
1 p0, zqqh2pQ

´
2 p0, zqq ` 2h1pQ

´
1 p0, zqqh2pQ

`
2 p0, zqq

a

z4 ´ 2z2pm2
1 `m

2
2q ` pm

2
1 ´m

2
2q

2
1tzěm1`m2u,

completing the proof. �

4. The proof of Theorems 1.1 and 1.5

4.1. Proof of Theorem 1.1. By simplicity we work on the unit sphere r “ 1; the result for Sn´1
r

follows analogously. Given π P Gn´2,n, let πK denote its orthogonal subspace. For each ξ P Rn,

write ξ “ ξπ ` ξK, where ξπ P π and ξK P πK, and let rπξ :“
a

1´ |ξπ|2. Given x P π and y P πK,

{gjdσnpx` yq “

ż

Sn´1

eipx`yq¨ξgjpξqdσnpξq

“

ż

|ξπ |ď1

eix¨ξ
π

ż

rπξ S1
eiy¨ξ

K

gjpξ
π ` ξKqdσKrπξ pξ

Kqdλπpξ
πq

“

ż

|ξπ |ď1

eix¨ξ
π

FKpgj,ξπdσKrπξ qpyqdλπpξ
πq

where gj,ξπ pωq :“ gjpξ
π`ωq, FK denotes the Fourier transform in πK and dσKrπξ denotes the induced

normalised Lebesgue measure of rπξ S1 in πK, which can be of course identified with dσ2
rπξ

. Then,
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by Plancherel’s theorem in π,

Tn´2,np{g1dσn{g2dσnqpπ, yq “

ż

π

{g1dσnpx` yq{g2dσnpx` yqdλπpxq

“ p2πqn´2

ż

|ξπ |ď1

FKpg1,ξπdσKrπξ qpyqF
Kpg2,ξπdσKrπξ

qpyqdλπpξ
πq.

A further application of Plancherel’s theorem in πK yields
ż

πK
|p´∆yq

1{4Tn´2,np{g1dσn{g2dσnqpπ, yq|2 dλπKpyq

“ p2πq2pn´1q

ż

|ξπ |ď1

ż

|ζπ |ď1

ż

πK
|v|

`

g̃1,ξπdσKrπξ ˚
K ḡ2,ξπdσKrπξ

˘

pvq
`

g̃1,ζπdσKrπζ
˚K ḡ2,ζπdσKrπζ

˘

pvq

where the right-hand-side is integrated with respect to the measure dλπKpvqdλπpξ
πqdλπpζ

πq. For
fixed ξπ, ζπ with |ξπ| ď 1 and |ζπ| ď 1, the innermost integral above equals

(4.1)

ż

prπξ S1q2ˆpr
π
ζ S1q2

|ξK´ηK|1{2|ζK´µK|1{2g1,ξπ pξ
Kqḡ2,ξπ pη

Kqg2,ζπ pζ
Kqḡ1,ζπ pµ

KqdΣKξπ,ζπ pξ
K, ηK, ζK, µKq

where

dΣKξπ,ζπ pξ
K, ηK, ζK, µKq :“ δpξK ` ζK ´ ηK ´ µKqdσKrπξ pξ

KqdσKrπξ pη
KqdσKrπζ pζ

KqdσKrπζ pµ
Kq.

Observe that one may rewrite the above integral as
ż

rπξ S1ˆr
π
ζ S1

g1,ξπ pξ
Kqg2,ζπ pζ

Kq
`

h2,ξdσ
K
rπξ
˚K h1,ζdσ

K
rπζ

˘

pξK ` ζKqdσKrπξ pξ
KqdσKrπζ pζ

Kq

where h2,ξpη
Kq :“ ḡ2,ξπ pη

Kq|ξK´ ηK|1{2 and similarly for h1,ζ . As πK – R2, assuming without loss
of generality that rπξ ď rπζ , one can appeal to Lemma 3.1 to evaluate

(4.2)
`

h2,ξdσ
K
rπξ
˚K h1,ζdσ

K
rπζ

˘

pξK ` ζKq “
2h2,ξpξ

Kqh1,ζpζ
Kq ` 2h2,ξpξ̃

Kqh1,ζpζ̃
Kq

b

´p|ξK ` ζK|2 ´ prπζ ` r
π
ξ q

2qp|ξK ` ζK|2 ´ prπζ ´ r
π
ξ q

2q

after noting that if x “ ξK ` ζK then pP`1 pxq, P
´
1 pxq, P

`
2 pxq, P

´
2 pxqq “ pξK, ξ̃K, ζK, ζ̃Kq, where

ξ̃K, ζ̃K P πK are the reflected points of ξK and ζK with respect to ξK ` ζK. Note that the implicit
support condition rπζ ´ rπξ ď |ξK ` ζK| ď rπζ ` rπξ in (4.2) always holds under the assumption

rπξ ď rπζ . Observe that h2,ξpξ
Kq “ h1,ζpζ

Kq “ 0, so manipulating the denominator one has

`

hξdσ
K
rπξ
˚K hζdσ

K
rπζ

˘

pξK ` ζKq “

˜

|ξK ´ ξ̃K||ζK ´ ζ̃K|

prπξ r
π
ζ q

2 ´ pξK ¨ ζKq2

¸1{2

ḡ2,ξπ pξ̃
Kqḡ1,ζπ pζ̃

Kq(4.3)

for all ξK P rπξ S1 and ζK P rπζ S1. Next note that |ξK ^ ζK|2 “ prπξ r
π
ζ q

2 ´ pξK ¨ ζKq2, but also

|ξK ^ ζK|2 “ 1
4 |ξ

K ` ζK|2|ξK ´ ξ̃K||ζK ´ ζ̃K|, as the points satisfy the relation ξK ` ζK “ ξ̃K ` ζ̃K.
Then

˜

|ξK ´ ξ̃K||ζK ´ ζ̃K|

prπξ r
π
ζ q

2 ´ pξK ¨ ζKq2

¸1{2

“
2

|ξK ` ζK|
,

and combining the above estimates one obtains
ż

πK
|p´∆yq

1{4Tn´2,np{g1dσn{g2dσnqpπ, yq|2 dλπKpyq

“ p2πq2pn´1q

ż

|ξπ |ď1

ż

|ζπ |ď1

ż

rπξ S1ˆr
π
ζ S1

Kπ,Sn´1pξ, ζqg1,ξπ pξ
Kqg2,ζπ pζ

Kqḡ2,ξπ pξ̃
Kqḡ1,ζπ pζ̃

KqdΣπpξ, ζq

“ p2πq2pn´1q

ż

pSn´1q2
Kπ,Sn´1pξ, ζqg1pξqg2pζqḡ2pξ

π ` ξ̃Kqḡ1pζ
π ` ζ̃Kqdσnpξqdσnpζq,

completing the proof of Theorem 1.1; above dΣπpξ, ζq :“ dσKrπξ pξ
KqdσKrπζ pζ

Kqdλπpξ
πqdλπpζ

πq.
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4.2. Proof of Theorem 1.5. Given ω P Sd´1
` and π “ xωyK P Gd´1,d write, for each ξ P Rd,

ξ “ ξπ ` ξωω, where ξω “ ξ ¨ ω and let mπ
ξ :“

a

m2 ` |ξπ|2. Given s P R and x P π,

{gjdσHdmpx` sω, tq “

ż

Rd
eipx`sωq¨ξ`it

?
m2`|ξ|2fjpξq

dξ
a

m2 ` |ξ|2

“

ż

π

eix¨ξ
π

ż

R
eisξ

ω
`it
?
m2`|ξπ |2`|ξω |2fjpξ

π ` ξωωq
dξω

a

m2 ` |ξπ|2 ` |ξω|2
dλπpξ

πq

“

ż

π

eix¨ξ
π

F2pgj,ξπdσH1
mπ
ξ

qps, tqdλπpξ
πq,

where fj,ξπ pνq :“ fjpξ
π ` νωq for all ν P R and gj,ξπ denotes the lift of fj,ξπ to H1

mπξ
, and F2

denotes the 2-dimensional Fourier transform. Reasoning as in the proof of Theorem 1.1,
ż

R

ż

R
|B1{2
s R

`

{g1dσHdmqp¨, tq
{g2dσHdmp¨, tq

˘

pω, sq|2 dsdt

“ p2πq2d
ż

π

ż

π

ż

R

ż

R
|v|pg̃1,ξπdσH1

mπ
ξ

˚2 ḡ2,ξπdσH1
mπ
ξ

qpv, τqpg̃1,ζπdσH1
mπ
ζ

˚2 ḡ2,ζπdσH1
mπ
ζ

qpv, τq,

where the right-hand-side is integrated with respect to the measure dv dτ dλπpξ
πqdλπpζ

πq. The
innermost integral above in dv dτ equals

ż

R

ż

R
f1,ξπ pξ

ωqf2,ζπ pζ
ωq
`

H2,ξdσH1
mπ
ξ

˚H1,ζdσH1
mπ
ζ

˘

pPξ,ζ,ωq
dξω

φmπξ pξ
ωq

dζω

φmπζ pζ
ωq
,

where H2,ξ is the lift of h2,ξpηq :“ f̄2,ξπ pηq|ξ
ω´η|1{2 to H1

mπξ
(similarly for H1,ζ) and Pξ,ζ,ω denotes

the point
Pξ,ζ,ω :“

`

ξω ` ζω, φmπξ pξ
ωq ` φmπζ pζ

ωq
˘

.

Denoting by rP the hyperbolic radius of Pξ,ζ,ω, that is, r2
P “ pφmπξ pξ

ωq ` φmπζ pζ
ωqq2 ´ pξω ` ζωq2,

Lemma 3.2 yields

(4.4)
`

H2,ξdσH1
mπ
ξ

˚H1,ζdσH1
mπ
ζ

˘

pPξ,ζ,ωq “
2h2,ξpξ

ωqh1,ζpζ
ωq ` 2h2,ξpξ̃

ωqh1,ζpζ̃
ωq

b

r4
P ´ 2r2

P

`

pmπ
ξ q

2 ` pmπ
ζ q

2
˘

`
`

pmπ
ξ q

2 ´ pmπ
ζ q

2
˘2

where pξ̃ω, φmπξ pξ̃
ωqq “ Q´1 pPξ,ζ,ωq P H1

mπξ
and pζ̃ω, φmπζ pζ̃

ωqq “ Q`2 pPξ,ζ,ωq P H1
mπζ

. After an

algebraic manipulation and noting that h1,ζpζ
ωq “ h2,ξpξ

ωq “ 0, (4.4) becomes

`

H2,ξdσH1
mπ
ξ

˚H1,ζdσH1
mπ
ζ

˘

pPξ,ζ,ωq “
|ξω ´ ξ̃ω|1{2f̄2,ξπ pξ̃

ωq|ζω ´ ζ̃ω|1{2f̄1,ζπ pζ̃
ωq

|ξωφmπζ pζ
ωq ´ ζωφmπξ pξ

ωq|
.

Putting all the estimates together as in the proof of Theorem 1.1 concludes now the proof.

Remark 4.1. As the points in the pairs pQ`1 p0, zq, Q
´
1 p0, zqq and pQ`2 p0, zq, Q

´
2 p0, zqq are sym-

metric with respect to the vertical axis, it is a simple exercise to obtain an expression for ξ̃ω and
ζ̃ω via Lorentz transformations. Indeed, let γP denote the hyperbolic angle of Pξ,ζ,ω and let LγP
denote, as in (2.3), the Lorentz transformation such that LγP pPξ,ζ,ωq “ p0, rP q. Then

Q`1 p0, rP q “ LγP pξ
ω, φmπξ pξ

ωqq “ pmπ
ξ sinhpγξ ´ γP q,m

π
ξ coshpγξ ´ γP qq

Q´2 p0, rP q “ LγP pζ
ω, φmπζ pζ

ωqq “ pmπ
ζ sinhpγζ ´ γP q,m

π
ζ coshpγζ ´ γP qq.

Clearly,

Q´1 p0, rP q “ p´m
π
ξ sinhpγξ ´ γP q,m

π
ξ coshpγξ ´ γP qq

Q`2 p0, rP q “ p´m
π
ζ sinhpγζ ´ γP q,m

π
ζ coshpγζ ´ γP qq

and

Q´1 pPξ,ζ,ωq “ L´γP pQ
´
1 p0, rP qq “ pm

π
ξ sinhp2γP ´ γξq,m

π
ξ coshp2γP ´ γξqq

Q`2 pPξ,ζ,ωq “ L´γP pQ
`
2 p0, rP qq “ pm

π
ζ sinhp2γP ´ γζq,m

π
ζ coshp2γP ´ γζqq,
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so ξ̃ω “ mπ
ξ sinhp2γP ´ γξq and ζ̃ω “ mπ

ζ sinhp2γP ´ γζq. In particular, this allows one to rewrite
the kernel as

Kω,Hdmpξ, ζq “

`

mω
ξm

ω
ζ | sinhpγξ ´ γP q|| coshpγξ ` γP q|| sinhpγζ ´ γP q|| coshpγζ ` γP q|

˘1{2

mω
ξm

ω
ζ | sinhpγξ ´ γζq|

.

Remark 4.2. Note that

|ξω ´ ξ̃ω| “ |pL´1
γP pLγP pξ

ω, φmπξ pξ
ωqq ´ LγP ppξ̃

ω, φmπξ pξ̃
ωqqqq1| “ |pL

´1
γP p2a, 0qq1| “ 2|a| coshpγP q,

where a :“ mπ
ξ sinhpγξ ´ γP q. As |ξω ´ ξ̃ω| “ |ζω ´ ζ̃ω| and the denominator in (4.4) is easily seen

to be equal to |a|rP (see the proof of Lemma 3.2), the kernel Kω,Hdm may then be expressed as

Kω,Hdm “
2pφmπξ pξ

ωq ` φmπζ pζ
ωqq

pφmπξ pξ
ωq ` φmπζ pζ

ωqq2 ´ pξω ` ζωq2

after noting that coshpγP q “ pφmπξ pξ
ωq ` φmπζ pζ

ωqq{rP .

5. Corollaries

5.1. Proof of Corollary 1.2. By (1.9) it is clear that the expression

(5.1) g1pξqḡ2pξ
π ` ξ̃Kqg2pζqḡ1pζ

π ` ζ̃Kq

on its right-hand-side is real and positive. The identity (1.10) then yields that (5.1) equals to

1

2

`

|g1pξqg2pζq|
2 ` |g2pξ

π ` ξ̃Kqg1pζ
π ` ζ̃Kq|2 ´ |g1pξqg2pζq ´ g2pξ

π ` ξ̃Kqg1pζ
π ` ζ̃Kq|2

˘

.

The negative term above immediately gives raise to the expression Iπ,Sn´1pg1, g2q, whilst the posi-
tive terms amount to the same expression over the integral sign, finishing the proof.

Observe that the resulting sharp inequality
(5.2)
ż

πK

ˇ

ˇ

ˇ
p´∆yq

1{4Tn´2,np{g1dσn{g2dσnqpπ, yq
ˇ

ˇ

ˇ

2

dyďCSn´1

ż

pSn´1q2
Kπ,Sn´1pξ, ζq|g1pξq|

2|g2pζq|
2dσnpξqdσnpζq

obtained from dropping the negative term in (1.11) may be deduced more directly via a simple
application of the Cauchy–Schwarz inequality. Note that (4.1) is a positive quantity, so in particular
equals to its modulus. By the triangle inequality, the left-hand-side of (1.9) is controlled by

ż

|ξπ |ď1

ż

|ζπ |ď1

ż

prπξ S1q2ˆpr
π
ζ S1q2
|ξK ´ ηK|1{2|ζK ´ µK|1{2|g1,ξπ pξ

Kq||g2,ξπ pη
Kq||g2,ζπ pζ

Kq||g1,ζπ pµ
Kq|(5.3)

dΣKξπ,ζπ pξ
K, ηK, ζK, µKqdλπpξ

πqdλπpζ
πq.

Applying the Cauchy–Schwarz inequality with respect to the measure dΣKξπ,ζπ dλπpξ
πqdλπpζ

πq,
the above is further controlled by
ż

|ξπ |ď1

ż

|ζπ |ď1

ż

rπξ S1ˆr
π
ζ S1
|g1,ξπ pξ

Kq|2|g2,ζπ pζ
Kq|2

`

hξdσ
K
rπξ
˚K hζdσ

K
rπζ

˘

pξK ` ζKqdσKrπξ pξ
KqdΣπpξ, ζq

where hξpη
Kq :“ |ξK ´ ηK|1{2 and similarly for hζ ; above dΣπpξ, ζq :“ dσKrπζ pζ

Kqdλπpξ
πqdλπpζ

πq.

Evaluation of the innermost convolution as in (4.3) yields then the desired inequality (5.2).

5.2. Proof of Corollary 1.3. Given π P Gn´2,n, Plancherel’s theorem and the relation (2.1)
yields

ż

πK

ˇ

ˇ

ˇ
p´∆yq

1{4Tn´2,nhpπ, yq
ˇ

ˇ

ˇ

2

dλπKpyq “ p2πq
´2

ż

πK
|ξK||phpξKq|2dλπKpξ

Kq.
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Averaging over all π P Gn´2,n, and using (2.2) and polar coordinates
ż

Gn´2,n

ż

πK
|ξK|3´n|phpξKq|2|ξK|n´2dλπKpξ

KqdµGpπq

“

ż

Gn´2,n

ż 8

0

ż

Sn´1XπK
r3´n|phprωq|2rn´2r dr dσn,KpωqdµGpπq

“ |G1,n´1|

ż 8

0

ż

Sn´1

r3´n|phprωq|2rn´1 dr dσnpωq

“ |G1,n´1|p2πq
n

ż

Rn
||∇|

3´n
2 hpxq|2 dx,

which completes the proof on taking h “ {g1dσn{g2dσn.

5.3. Proof of Corollary 1.4. Recall ξ “ ξπ ` ξK. For n “ 3, π “ xωy, where ω P G1,3 » S2
`.

Then ξπ “ pξ ¨ ωqω and ξK “ ξ ´ pξ ¨ ωqω, so

|ξK ` ζK|2 “ |ξ ` ζ|2 ` |pξ ` ζq ¨ ω|2 ´ 2ppξ ` ζq ¨ ωq2 “ |ξ ` ζ|2
´

1´
´

pξ ` ζq

|ξ ` ζ|
¨ ω

¯2¯

.

Noting that |G1,2| “ π,

KSn´1pξ, ζq “
2

|G1,2|

ż

S2
`

dσ3
`pωq

|ξK ` ζK|
“

2π

π|ξ ` ζ|

ż 1

´1

du
?

1´ u2
“

2π

|ξ ` ζ|
.

Thus

}zgdσ3}4L4pR3q ď p2πq
4

ż

S2

ż

S2

1

|ξ ` ζ|
|gpξq|2|gpζq|2 dσ3pξqdσ3pζq

and the desired sharp Stein–Tomas inequality for the sphere follows from the following fact due to
Foschi [18],

(5.4)

ż

S2

ż

S2

1

|ξ ` ζ|
|gpξq|2|gpζq|2 dσ3pξqdσ3pζq “ }g}4L2pS2q,

which holds for g antipodally symmetric. The reduction to the antipodally symmetric may be done
as in [18], using the Cauchy–Schwarz inequality for real numbers

(5.5) ac` bd ď
a

a2 ` b2
a

c2 ` d2.

Indeed, note that in the proof of (5.2) via the Cauchy–Schwarz inequality given in Section 5.1, one
may replace |gξπ pξ

Kq||gξπ pη
Kq| in the innermost integral in (5.3) by

|gξπ pξ
Kq||gξπ pη

Kq| ` |gξπ p´ξ
Kq||gξπ p´η

Kq|

2
,

and using (5.5) this is bounded by |g#
ξπ pξ

Kq||g#
ξπ pη

Kq|, where for any function h, the function h#

denotes h#pξq :“
a

phpξq ` hp´ξqq{2, which is antipodally symmetric. One can argue similarly to

replace |gζπ pζ
Kq||gζπ pµ

Kq| by |g#
ζπ pζ

Kq||g#
ζπ pµ

Kq|. Thus, the right hand side in (5.2) is replaced by

(5.6)

CSn´1

ż

|ξπ |ď1

ż

|ζπ |ď1

ż

rπξ S1ˆr
π
ζ S1

2

|ξK ` ζK|
|g#
ξπ pξ

Kq|2|g#
ζπ pζ

Kq|2 dσ1
rξπ
pξKqdσ1

rζπ
pζKqdλπpξ

πqdλπpζ
πq.

One desires, however, to have g# rather than g#
ξπ and g#

ζπ . By a change of variables, the integrand

4|g#
ξπ pξ

Kq|2|g#
ζπ pζ

Kq|2 may be further replaced by
`

|g#
ξπ pξ

Kq|2 ` |g#
´ξπ pξ

Kq|2
˘`

|g#
ζπ pζ

Kq|2 ` |g#
´ζπ pζ

Kq|2
˘

,

which equals

|g#pξq|2|g#pζq|2` |g#pξq|2|g#pζK´ ζπq|2` |g#pξK´ ξπq|2|g#pζq|2` |g#pξK´ ξπq|2|g#pζK´ ζπq|2.
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A further change of variables in each of the terms allows to see that (5.6) equals

CSn´1

ż

pSn´1q2
Kπ,Sn´1pξ, ζq|g#pξq|2|g#pζq|2 dσnpξqdσnpζq,

as desired for the later application of Foschi’s identity (5.4) on antipodally symmetric functions.

5.4. Proof of Corollary 1.6. This follows the same argument as that of Corollary 1.2.

5.5. Proof of Corollary 1.7. The proof follows from the same argument as in §5.2. Indeed, the
elementary argument therein yields the relation

}p´∆q`{2f}2L2pRdq “ p2πq
´pd´1q}B

d´1
2 ``

s Rf}2
L2
ω,spS

d´1
`

,Rq,

from which Corollary 1.7 follows from taking ` “ p2´dq{2 after averaging over ω P Sd´1
` ; note that

ω in the Radon transform R only runs over Sd´1
` » Gd´1,d.

6. The bilinear identity (1.8) for paraboloids revisited

The purpose of this final section is to provide an alternative proof for the identity (1.8) via
Fourier analysis. The proof follows the same scheme as those of Theorems 1.1 and 1.5 with a little
twist, which is available when taking one full derivative in the s-variable in the case of paraboloids.

To see this, let Pda :“ tpξ, |ξ|2`aq : ξ P Rdu denote the paraboloid in px, tq P RdˆR with tangent
plane t “ a at its vertex; if a “ 0 we simply denote it by Pd. Let dσPda denote the parametrised

measure on Pda, which satisfies {gdσPdapx, tq “ Efpx, tq where E is the extension operator associated

to φpξq :“ |ξ|2 ` a and g is the lift of the function f : Rd Ñ C to Pda.

Given ω P Sd´1
` and π “ xωyK P Gd´1,d write, for each ξ P Rd, ξ “ ξπ ` ξωω, where ξω “ ξ ¨ ω.

Given s P R and x P π,

{gjdσPdpx` sω, tq “

ż

Rd
eipx`sωq¨ξ`it|ξ|

2

fjpξq dξ

“

ż

π

eix¨ξ
π

ż

R
eisξ

ω
`it|ξπ |2`it|ξω |2fjpξ

π ` ξωωqdξω dλπpξ
πq

“

ż

π

eix¨ξ
π

F2pgj,ξπdσP2
|ξπ |2

qps, tqdλπpξ
πq,

where fj,ξπ pνq :“ fjpξ
π ` νωq, F2 denotes the 2-dimensional Fourier transform and gj,ξπ is the lift

of fj,ξπ to P2
|ξπ |2 . Reasoning as in the proof of Theorem 1.1,

ż

R

ż

R
|BsR

`

{g1dσPdp¨, tq{g2dσPdp¨, tq
˘

pω, sq|2 dsdt

“p2πq2d
ż

π

ż

π

ż

R4

|ξω ´ ηω||ζω ´ µω|f1,ξπ pξ
ωqf̄2,ξπ pη

ωqf̄1,ζπ pµ
ωqf2,ζπ pζ

ωqdΣξπ,ζπ pξ
ω, ηω, µω, ζωq

where

dΣξπ,ζπ pξ
ω, ηω, µω, ζωq :“δpξω´ηω`ζω´µωqδppξωq2´pηωq2`pζωq2´pµωq2qdξωdηωdµω dζωdλπpξ

πqdλπpζ
πq.

Arguing similarly,

Jωp{g1dσPd , {g2dσPdq“p2πq
2d

ż

π

ż

π

ż

R4

pζωµω ´ ζωηω ´ ξωµω ` ξωηωqf1,ξπ pξ
ωqf̄2,ξπ pη

ωqf̄1,ζπ pµ
ωqf2,ζπ pζ

ωq

with respect to the measure dΣξπ,ζπ pξ
ω, ηω, µω, ζωq, where JωpG1, G2q is the bilinearisation of

Jωpuq; namely the integrand is replaced by

G1px` sω, tqBsG2py ` sω, tq
`

BsḠ1py ` sω, tqḠ2px` sω, tq ´ Ḡ1py ` sω, tqBsḠ2px` sω, tq
˘

´G2py ` sω, tqBsG1px` sω, tq
`

Ḡ2px` sω, tqBsḠ1py ` sω, tq ´ BsḠ2px` sω, tqḠ1py ` sω, tq
˘

.

Noting that

(6.1) |ξω ´ ηω||ζω ´ µω| ` pζωµω ´ ζωηω ´ ξωµω ` ξωηωq “ |ξω ´ µω|2
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if pξω, ηω, µω, ζωq P supp pdΣξπ,ζπ q, one can combine the two terms above to obtain

ż

R

ż

R
|BsR

`

{g1dσPdp¨, tq{g2dσPdp¨, tq
˘

ps, ωq|2 dsdt` Jωp{g1dσPd , {g2dσPdq(6.2)

“ p2πq2d
ż

π

ż

π

ż

R4

|ξω ´ µω|2f1,ξπ pξ
ωqf̄2,ξπ pη

ωqf̄1,ζπ pµ
ωqf2,ζKpζ

ωqdΣξπ,ζπ pξ
ω, ηω, µω, ζωq.

For fixed ξω and µω, the only solution for the equations in the δ function is ηω “ ξω and ζω “ µω.
Thus, the right-hand-side above equals

p2πq2d

2

ż

ξπ

ż

ζπ

ż

R2

|ξω ´ µω|f1,ξπ pξ
ωqf̄2,ξπ pξ

ωqf̄1,ζπ pµ
ωqf2,ζπ pµ

ωqdξω dµω dλπpξ
πqdλπpζ

πq

and if f1 “ f2,

p2πq2d

2

ż

π

ż

π

ż

R2

|ξω ´ µω||fξπ pξ
ωq|2|fζπ pµ

ωq|2 dξω dµω dλπpξ
πqdλπpζ

πq

which of course is

p2πq2d

2

ż

Rd

ż

Rd
|pξ ´ ηq ¨ ω||fpξq|2|fpηq|2 dξ dη.

In the language of the Schrödinger equation, u “ E|u0, so the right hand side is

π

p2πqd`1

ż

Rd

ż

Rd
|pξ ´ ηq ¨ ω||xu0pξq|

2|xu0pηq|
2 dξ dη

and one obtains the desired identity (1.8).

Averaging over all ω P Sd´1
` after dropping the term Jωpuq from the obtained identity and noting

that
ż

Sd´1

|pξ ´ ηq ¨ ω| dσnpωq “ 2|ξ ´ η|

ż 1

0

up1´ u2q
d´3
2 du “

2|ξ ´ η|π
d´1
2

Γppd` 1q{2q
,

one has
(6.3)

}p´∆xq
3´d
4 p|u|2q}2L2

x,tpRdˆRq ď p2πq
1´d π

p2πqd`1

π
d´1
2

Γppd` 1q{2q

ż

Rd

ż

Rd
|ξ ´ η|xu0pξq|

2|xu0pηq|
2 dξ dη

and the constant simplifies as PVpdq :“ 2´3dπ
1´5d

2

Γp d`1
2 q

; this inequality was also obtained in [3] in a

more direct way.

Remark 6.1. The honest analogue of Theorems 1.1 and 1.5 in the context of paraboloids is given
by the bilinear identity

ż

R

ż

R
|B1{2
s R

`

{g1dσPdp¨, tq{g2dσPdp¨, tq
˘

ps, ωq|2 dsdt(6.4)

“
p2πq2d

2

ż

π

ż

π

ż

R2

f1,ξπ pξ
ωqf̄2,ξπ pζ

ωqf̄1,ζπ pξ
ωqf2,ζπ pζ

ωqdξω dζω dλπpξ
πqdλπpζ

πq.

In contrast to the previous case, one solves here the equations in the δ functions in terms of ξω and
ζω; the solution in terms of ξω and µω is now degenerate in terms of the weight |ξω ´ ηω|1{2|ζω ´
µω|1{2, which vanishes in this case. Note that, in (6.2), the fact of taking one full derivative

with respect to s and adding the term Jωp{g1dσPd , {g2dσPdq had the effect of replacing the weight
|ξω ´ ηω||ζω ´ µω| by |ξω ´ µω|2 thanks to the algebraic identity (6.1), allowing to solve in those
variables.
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As in the case of spheres and hyperboloids, the identity for complex numbers (1.10) allows to
rewrite (6.4) as

ż

R

ż

R
|B1{2
s R

`

{g1dσPdp¨, tq{g2dσPdp¨, tq
˘

ps, ωq|2 dsdt

“
p2πq2d

2

ż

π

ż

π

ż

R2

|f1,ξπ pξ
ωq|2|f2,ζπ pζ

ωq|2 dξω dζω dλπpξ
πqdλπpζ

πq ´ Iωpf1, f2q

where

Iωpf1, f2q :“
p2πq2d

4

ż

π

ż

π

ż

R2

|f1,ξπ pξ
ωqf2,ζπ pζ

ωq ´ f1,ζπ pξ
ωqf2,ξπ pζ

ωq|2 dξω dζω dλπpξ
πqdλπpζ

πq.

Unlike Jωpfq, the term Iωpf, fq does not have an obvious closed expression in terms of physical

variables. Setting f1 “ f2 and averaging over all ω P Sd´1
` after dropping Iωpf, fq one obtains

}p´∆xq
2´d
4 p|u|2q}2L2

x,tpRdˆRq ď p2πq
1´d p2πq

2d

2

|Sd´1|

2
}|u0}

4
L2pRdq “

2´dπ
2´d
2

Γpd{2q
}u0}

4
L2pRdq,

which is the Ozawa–Tsutsumi estimate (1.7); note that for d “ 2 this amounts to the L4pR2`1q

Strichartz estimate. The interested reader should look at the work of Bennett, Bez, Jeavons
and Pattakos [3] for a unified treatment of the Ozawa–Tsutsumi estimates (1.7), the inequalities
deduced from (6.3), and a more general case with an arbitrary number of derivatives on the left-
hand-side of such inequalities.
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