BILINEAR IDENTITIES INVOLVING THE i-PLANE TRANSFORM AND
FOURIER EXTENSION OPERATORS

DAVID BELTRAN AND LUIS VEGA

ABSTRACT. We prove certain L?(R™) bilinear estimates for Fourier extension operators associ-
ated to spheres and hyperboloids under the action of the k-plane transform. As the estimates
are L2-based, they follow from bilinear identities: in particular, these are the analogues of a
known identity for paraboloids, and may be seen as higher-dimensional versions of the classical
L?(R?)-bilinear identity for Fourier extension operators associated to curves in R2.

1. INTRODUCTION

For n > 2, let U be an open subset in R*~! and ¢ : R”~! — R be a smooth function parametris-
ing a hypersurface S = {(§, ¢(€)) : £ € U}. Associated to S, define the Fourier extension operator

Ef(z) = jU (HEHD©) f(¢) de,

where z = (z,t) e R" ! xR and f € L'(U). The terminology extension comes from the fact that E
is the adjoint operator to the restriction of the Fourier transform to S, that is E*h(§) = iAL(f, ?(&)).
Stein observed in the late 1960s that under certain curvature hypothesis on S it is possible to obtain
LP(U) — LY(R™) estimates for E besides the trivial L!(U) — L*(R") ones implied by Minkowski’s
inequality. In particular, the Fourier restriction conjecture asserts that if S is compact and has
everywhere non-vanishing Gaussian curvature

|Eflagny < Clflew)

should hold for all ¢ > 2% and | < 275 .;. This conjecture is fully solved for n = 2 [16, 33,
but is still open for n > 3 and constitutes one of the main open problems in Euclidean Harmonic
Analysis. The first fundamental result in this direction was the Stein-Tomas [31, 28] restriction
estimate
(1.1) IEFI 20y < Clfl2wy;

L T (R%)

n

note that this estimate is best possible in terms of the exponent g for f € L2(U). Over the last few
years, there has been a great interest in establishing the sharp value of C' and the existence and
characterisation of extremisers in (1.1) depending on the underlying surface S: see for instance
[17] or the most recent survey [20].

Substantial improvements on (1.1) have been achieved over the last few decades. An important
ingredient for this has been the bilinear and multilinear approach. These estimates generally adopt
the form

k k
(1.2) [ n Eifilpammny < C H I fillze @,
j=1

Jj=1
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where the F; are associated to hypersurfaces \S; satisfying certain transversality hypotheses. A
key feature of these inequalities is that, under such additional hypotheses, it is possible to obtain
estimates for p = 2 and % <q < % The interested reader is referred, for instance, to
[32, 29] for the theory of bilinear restriction estimates and to [4] for the multilinear approach; see
also the survey papers [30, 1].

An elementary instance of a bilinear estimate is in fact the identity

2 _ (972 | f1(&1) %] f2(&2)]?
(13) 111152 e ey = (2m) LMUQ 91(6r) — h(Ea)]

which follows from an application of Plancherel’s theorem and a change of variables; note that under
the transversality hypothesis |¢](&1) — ¢5(&2)| > ¢ > 0 for & € Uy, & € Us, one may interpret

the identity (1.3) in the framework of (1.2). Of course the presence of L? on the left-hand-side in
(1.3) is key for the use of Plancherel’s theorem. This bilinear approach has its roots in the work of

d; déa,

Fefferman [16] and may also be extended to higher dimensions. Identifying E;f; = gj/d;j , where
g;j : R™ — Ris the lift of f; to S, i.e., g;(&, ¢;(§)) = f;(§) and dp; is the parametrised measure in
S defined via

[ amantm = [ steorenac

Uj

one may obtain the L?(R™) bilinear estimate

(1.4) |E1fiBafalTony < 19112 dpn # g2l ?dpa|| 1 my [ dpn # dpall Lo @ny < ClA T2 0 12l 72 1)

after an application of Plancherel’s theorem and the Cauchy—Schwarz inequality, provided one
assumes the transversality condition |[dju; * dua| e ®ny < C < . It should be remarked that the

exponent here is ¢ = 4 > % if n > 3. This is very much in contrast to the setting (1.2), in
which the main goal is to obtain estimates when ¢ < %; bilinear and multilinear estimates of

that type are deep and difficult and will not be explored in this paper.

It is interesting to compare (1.3) and (1.4). The first observation is that (1.3) is an identity,
whilst (1.4) is an inequality. The second one is the presence of the weight factor ¢} (£1) — ¢4 (€2)| ™
in (1.3); the transversality weight |duq * dps| in (1.4) does not necessarily have a closed form in
terms of the variables of integration of f; and fs.

The main purpose of this paper is to further exploit the elementary 2-dimensional analysis in
(1.3) into higher dimensions. More precisely, we wish to obtain a bilinear identity in higher di-
mensions which incorporates an explicit weight factor amounting to some transversality condition;
we note that an alternative higher dimensional version of (1.3) has recently been obtained by
Bennett and Iliopoulou [5] in a n-linear level. To this end, we shall replace the L?(R™) in (1.4) by
a mixed-norm L!'(R"~2) x L?(R?). Given x = (z,2”) € R""2 x R?, taking the L'-norm in the Z
variables will essentially reduce matters to a 2-dimensional analysis in the " = (x,_1,,) vari-
ables, where the resulting extension operators F; and E5 will correspond to sections of the original
surfaces by 2-dimensional planes parallell to & = --- = &,_2 = 0. This question has already been
addressed by Planchon and the second author [26] if the underlying hypersurfaces are paraboloids.
The motivation in their work came from the relevant role played by this type of inequalities in the
global behaviour of large solutions of non-linear Schrédinger equations; more concretely we refer to
the so called interaction Morawetz inequality introduced by Colliander, Keel, Staffillani, Takaoka
and Tao in [15]. Here we further explore the existence of those bilinear identities for two other
fundamental surfaces, such as the sphere and the hyperboloid.

Before describing our results in detail we shall first review the known results in the case of
paraboloids, as they will provide the framework and context to understand our results.

1.1. Estimates for paraboloids. In recent years, starting with the work of Ozawa and Tsutsumi
[25] for the paraboloid S1 = Ss = {(&,]£]?) : € € R"™1}, there has been an increasing interest in
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understanding the weight |dju1 * dus| in (1.4) so that a L?-bilinear estimate

(1.5) |EvfiBa fol 7o (ny < OJ Ks,,s5, (61, €)1 [1(60) [ fo (&) * dés déo

Uy xUs
holds for some kernel Kg, g, and such that the constant C' is best possible; in many cases, extrem-
isers for the above kind of inequalities have also been characterised. This has been mostly studied
for paraboloids [9], cones [7], spheres [19, 10] and hyperboloids [24, 22], with the corresponding
natural interpretations in PDE.

It should be noted that the bilinear estimates (1.3) and (1.4) also hold when Es fs is replaced
by its complex conjugate Esfs. This is of course of interest when S; = S5 and f; = fo, as then
the bilinear estimates can be reinterpreted as L? estimates of |[Ef|2. In particular, in the case of
paraboloids, the identity (1.3) may be reinterpreted as

212 _ # _ —~ 2|~ 2
(L6) fM\Dzw lwdt = 5o f & = nll@ ()P l@n)|? dé dn

or simply
1
| 1D PR ot = 3 ol agey ol e
RxR

in order to avoid the singularity of the resulting weight |¢'(£)—¢'(n)| = 2|£—n]; here we interpret the
extension operator u(x,t) = Eug(x,t) as the solution of the free Schrédinger equation idyu—Au = 0
in R? associated to the initial data u(z,0) = ug(z), with the normalisation of the Fourier transform
considered in §2.1. Note that, for this specific case, it is crucial that the multiplier associated to
D, coincides precisely with |¢'(£) — ¢'(n)|. Moreover, Ozawa and Tsutsumi [25] made use of the
Radon transform to obtain the higher dimensional version

(L.7) [(=2) D 22 gy < OT(d)]uol 72z luol 72 (eay

% is sharp after verifying that for up(x) = e~1#” the in-

where the constant OT(d) =
equality becomes an identity; see also [9, 3]. An interesting feature from the identity (1.6) is that
it may be used to prove local well-posedness of cubic non-linear Schrodinger equations.

Motivated by the applications to non-linear PDE in [15], Planchon and the second author [26]
established certain higher dimensional analogues of the R'*! identity (1.6). Up to that point
all higher dimensional versions of (1.6), or more generally (1.3), were inequalities rather than
identities. Their estimates also involved the Radon transform in the spatial variables!, which in
fact features in the statement of the identity. Recall that given a linear k-dimensional subspace
T€Gr,and y € 7L, the k-plane transform of a function f is defined as

Tynf(m,y) = f f(@ + ) dAn(a),

where Gy, , denotes the Grassmanian manifold of all k-dimensional subspaces in R” and dA; is the
induced Lebesgue measure on w. The cases k = 1 and k = n— 1 correspond to the X-ray transform
X and the Radon transform? R respectively. With this, it was shown in [26] that given w € S*~!

s R(|u(-,1)]?)(w, s)|* ds ) J—— —n)-w||To(€)|?|wo(n))?
(18) | [ 10RO )P dsat+ L) = gy | [ -l @OF @I e dn,
where

Jo(u) :=f J J- lu(z + sw, t)0su(y + sw,t) — u(y + sw, t)dsu(z + sw, t)‘2 dA((uwyry2 (@, y) ds dt.
RIRJ ({w)t)?

INote that the Radon transform in the spatial variables in u(z,t) amounts to a (n — 2)-plane transform in the
context of the extension operators Ef(z).
2The Radon transform R f is identified with a function in Sz_l x R setting Rf(w, s) = Rf({w)t, sw).
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1

FIGURE 1. The new points £+ € rgSl and (* e rgSl inmw
of ¢+ and ¢t with respect to &4 4 ¢*.

are the reflected points

Of course fixing w = e4 (or any other coordinate vector) the first term on the left-hand-side amounts

to [0 lJul?| 1 (ga-1) ”iid [(R2)’ which in the absence of the derivative d; becomes HuHiid (R L2(RI-1)))

note the contrast with the L*-nature of (1.3) and (1.4).

The approach in [26] to establish (1.8) uses integration-by-parts arguments as in [15] and extends
to versions of (1.8) for nonlinear Schrédinger equations with nonlinearity of the type 4|ulP~tu,
where p > 1. Estimates like (1.8) were used, for instance, to show scattering for solutions of those
non-linear equations (previously obtained by Nakanishi [23]; see also [14]) or to deduce Bourgain’s
[8] bilinear refinement of the Strichartz estimate.

However, it is possible to obtain (1.8) via Fourier analysis taking advantage of applications of
Plancherel’s theorem, in the spirit of (1.3) and (1.4). In this paper we will see how to exploit
this approach to obtain variants of (1.8) when the underlying extension operator is associated to
spheres or hyperboloids. This should be understood as an exploration of the interaction of the
k-plane transform and |E f|?; see also the recent paper [2] or the upcoming preprint [6] for further
examples of this phenomenon.

1.2. Estimates for the sphere. In the case of the sphere S?~! = rS"~1 of radius r in R, it is
considered the more classical form of the extension operator

g~ gdo?,

where do” denotes the induced normalised Lebesgue measure on SP~! and g € L'(SP1). The

following L2-identities for T, 2., (mm) are obtained.

Theorem 1.1. Letn > 3. Let m € G,_2,, and let 7t denote the orthogonal subspace to w. For
each z € R, write z = 2™ + 2+, where 2™ is the orthogonal projection of z into 7. Then

w [

where

P — 2
(—ANYAT, 0 (grdoftgedop) (m,y)| s (y)

= Cgn f( oy Kre (609102067 + £9)g2(Q)q1(¢™ + ¢) oyt (§) da (¢)

. 2 . 2(n—1)
KmS;H(gaC) = Wa Csn-1 1= (2m) )
re = A/r2 — €% and &+, (e b are the reflected points of €+ and ¢+ in L with respect to the
line passing through the origin and &+ + (&, that is &+ + ¢+ = €4 + ( (see Figure 1).

Of course the L?-nature of the inequality on its left-hand-side allows one to take advantage
of Plancherel’s theorem. As briefly described before §1.1, the key presence of the (n — 2)-plane
transform reduces the problem to a 2-dimensional analysis, and one is left to understand the
convolution of two weighted measures associated to concentric circles of different radii in the
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subspace 7+ ~ R2. The main advantage with respect to (1.4) is that in this setting it is possible
to express hido? * hodo? (€ + () as the weight do? * do2, (¢+ + () times an evaluation of
the functions h; and ho at points depending on &% and ¢*+. Note that the scenario (1.4) is
overdetermined and prevents one from obtaining an identity when L2-norm with respect to all
variables is taken to the bilinear term E; f1 Es fs.

Given complex numbers a, b, ¢, d € C, the well known identity

_ 1 _ _
(1.10) abed = 5(\ac|2 + |bd* — |ac — bd|?) + ilm(abed)

may be used in Theorem 1.1 to replace the 4-linear wave interaction

91() g2 (€™ + £1)g2(Q) g1 (€™ + ¢H)

in (1.9) by an alternative expression involving |g1(€)|?|g2(¢)|? and which is closer in spirit to (1.8).

Corollary 1.2. Letn >3 and m € G,,—2,,. Then

——— 2
(111) [ ]8T, 2 (o oy (r.)| dy
where

C n—
I gni(g1,g2) = —or J
ISl 2 (

= Cgn J(S"_l)f(ﬂ,sz?l(f’ Olgr(©)Plg2(O)? doy (€) do (¢) — I gn-1(91, 92),

o Knt (€ 011(002(0) = 92(€7 + (€T + P () Ao (0)
Of course the term I gn (91,92) = 0 and is identically zero if g; and g5 are constant functions,
so it may be dropped from (1.11) at the expense of losing the identity, leading to a sharp inequality
which fits in the context of (1.5). Thus, the term I gn— (91, 92) may be interpreted as the distance
of such a resulting inequality to become an identity.?
As the k-plane transform satisfies the Fourier transform relation

~

(112) FyTinf(m, &) = f(£) for ¢ € 7,
one may easily obtain by means of Plancherel’s theorem the relation
2 (2m)~* k/4 2
(1.13) HfHL2(R") = [ I(=Ay) Tk,anm(gk,,L,L?(ni))-

Thus, on averaging Theorem 1.1 over all 7 € G,,_5 , one has the following.

Corollary 1.3. Let n > 3. Then
3-—n  ———
I(~8) 5 (91007 92007 [3a ey < (27)* " Con f(g) Koy 1 (6,011 (O)192(C)? dot(€) do(€)

where
1

Gl Jg, s

Kgp-1(6,0) : K gp-1(&,¢) dpg(m).

In the particular case n = 3 and after setting g1 = g2, the right-hand-side in Corollary 1.3
amounts to a bilinear quantity appearing in the work of Foschi [18] on the sharp constant in the
Stein-Tomas inequality (1.1) for S?. Thus, appealing to his work, one can deduce the following.

Corollary 1.4 (Stein—Tomas [31], Foschi [18]).
(1.14) lgdo3||parsy < 27| gllp2(s2)-

Besides the value for the sharp constant, Foschi [18] also showed that the only real valued
extremisers are constant functions; the existence of extremisers was previously verified in [12, 13].

3The inequality resulting from dropping I <n—1 (91,92) in (1.11) may be obtained more directly by an application
of the Cauchy—Schwarz inequality: see §5.1
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FIGURE 2. If € + (¥ lies in the vertical axis, the new points £ and ¢ are the
reflected points of £¥ and (¥ with respect to that axis. For ease of notation, £“ is

identified with the point (£¥, ¢m§ (&9) e H,lng, and similarly for the other points.

Solution to the Helmholtz equation. Consider the Helmholtz equation Au + k2w = 0 in R”. If
SUPR-o & SBR lu|? < o0, then there exists g € L?(S}"!) such that u = gdogr—1. Theorem 1.1 and
the subsequent corollaries may be then interpreted in that context.

1.3. Estimates for the hyperboloid. A similar analysis to the one described for S*~! may be
carried for one of the components of the elliptic hyperboloid in R?*!, defined by

Hﬁl ={(§,8ar1) € RYxR: Ear1 = Pm(E) = vVm? + [€]?}

and equipped with the Lorentz invariance measure doy. , defined by
dg

1.15 .
( ) fH ¢m (5)
A function f e L'(R?) is identified with its lift g to HY,, given by g(&, ¢ (€)) = f(£), and note

e e d
gdoya (z,t) = J e e Wﬂﬂzf(é)i5
e e+ ¢
where (z,t) € R” = R? x R. A natural reason to split into a space-time domain is in view of the
connection of gdoya with the Klein-Gordon propagator eVm*=A £ this will be further discussed
below. Thus, considering the Radon transform in the space variables - as in (1.8) and as opposed

to Theorem 1.1, where no time role is given and therefore (n — 2)-plane transform is taken - one
obtains the following.

(6. €ue1) Aoy (6.6011) = | 9(6.6,(6)

d
m

Theorem 1.5. Letd > 2. Let w e Si‘l and let ™ := <w>L € Gyg—1,q4 be the orthogonal subspace to
(w). For each x € R, write x = 2™ + a*w, where 2 = v -w. Then

— —_ 2
f J ‘a;/ZR(gldUHgn<'7t)92do-Hd () (w, )| dsdt
R JR ’ "

o d e s B OV s o 06
= Cur | | K (CORORE + EDRORC +E0) 55 o5

where
S [ 2
K d = d Cya = (2 .
w,Hg, (f?g) |£w¢m(<) — Cw¢m(§)| an H ( 77)
Above, the points (é“’,qﬁmg () e H}ng and (f“,gbmg(g:w)) € H}nz are the image under L™ of the
reflected points of L((§”, dmz(£”))) and L((¢¥, dmz(¢¥))) in R? with respect to the vertical axis

respectively, where L is the unique Lorentz transformation mapping (§* + (%, Pmz (&) + Pmz (<))

to the vertical azis and mf := /m? + [{7|? (see Figure 2).
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As in the case of the sphere, the use of the Radon transform in R? and Plancherel’s theorem
reduces the above estimate to explicitly understand hydog, *hodow (“4CY, o, (69)+Dm, (C¥)).

1 1
In fact, note that the value of K, ga amounts to the expression ‘(dfmg(&“) ¢'m2, (gw))‘ corrected
with the natural weight m coming from the definition of dop: . This should be
'IYLg TYLC m

compared with the elementary two-dimensional identity (1.3). The presence of the numerator
|¢w — gw|1/2|¢w — (@|1/2 ig due to the action of 0% on R(g1doge (-,t)g%ﬁ(~,t)). Moreover, one

m

can explicitly write 5“’ and C"J in terms of &, ¢ and w, leading to the more compact expression

K, ma () = 2(¢m (€) + dm(C))

(@m (&) + om(0)* = (€ +C) - w)*
As before, one may use (1.10) to rewrite Theorem 1.5 in the spirit of (1.8).

Corollary 1.6. Let d > 2 and w € S‘fl. Then

— ——— 2
| [ |ov2Regitog (gm0 ) asat
RJR

= d d 2 2 dg dc i
=Ca|  Koong € OB OPIRO 5y 5oy~ et (1 o)
where
- CHd " _ g cw T Tw 2 df dC
g (o) = 50 || s € OO RO~ BE + EDAC +F0f 5500 2

As R = Ty_1,4, the use of the Plancherel’s relation (1.13) after averaging over w € S‘fl yields
the following.

Corollary 1.7. Let d = 2. Then

2 iy < (27 1Cs f Ky (€ OUAOPLEOP 55 50

e d¢

”(_A:c) = (gldUHd ggdGHd)

m

where
Kiag (6.0 1= 3 | Kuiny (6.0 d0(0)

The Klein—Gordon propagator. The solution to the Klein-Gordon equation —d?u + Au = m?u in

R? x R, with initial data u(x,0) = fo(x), du(x,0) = fi(z) is given by
u(w,t) = VTR () + e VIRE (2)
where fi = 5(fo +i(v/m? —A)~' f1) and f- = 5(fo —i(v/m? — A)~' f1) and

+itv/m2—A L 1 ix- ita/m24|€|2 7
VIR (@) im o | S VT ) ag

Note that eTVm*=A f(z) = (2m)~*(gdowa ) ~ (x,t); where § is the lift of F/mZ+ % to HY,.

Thus, Theorem 1.5 and Corollaries 1.6 and 1.7 may be re-interpreted in terms of e!*V™*~2; in
particular, setting KG(d) = (2m)~*?Cya, the estimate in Corollary 1.7 reads as

[(=A0) 5 YR [t VTR )R i <KG<d)ﬁRd§Ha (& OO PO bm (€) dm(C)dEdC.

Structure of the paper. Section 2 contains some notation and standard observations which will
be useful throughout the paper. In Section 3 we revisit the convolution of weighted measures of
circles and hyperbolas. Section 4 contains the proofs of Theorems 1.1 and 1.5 whilst Section 5 is
concerned with the derivation of the several corollaries. Finally, we provide a Fourier analytic proof
of the identity (1.8), together with a further discussion on Fourier bilinear identities associated to
paraboloids.
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2. NOTATION AND PRELIMINARIES

2.1. Fourier transform. We work with the normalisation of the Fourier transform
FOEQ=FO = [ s amd FUE - IGLS

With this normalisation,

Frg=19.  Fe@=0n"f=56), [f)=en"ie),
where f(z) := f(—z), Plancherel’s theorem adopts the form

[/l z2(eny = (2m)™ 2] £ 12 gny

and the n-dimensional Dirac delta is

1 a2z
On(a) = G JRH e"? dz.

2.2. k-plane transform. The Grassmannian manifold Gy, of all k-dimensional subspaces of R"
is equipped with an invariant measure dug under the action of the orthogonal group. This measure
is unique up to a constant, and is chosen to be normalised as

_ _ s s
|gk’n|_Jk dug(m) = |Sk=1]...|SO

o

= ?

@)

(2) = (2m)" f(2),

QI

Given m € G, and £ € 7L, the relation (1.12) between the k-plane transform Tk and the Fourier
transform easily follows from the definition

(21) —Fka,nf(Wﬂg) = f

T

~

VT f(m,y) e (y) = fl e’V f Flo+y) dAn(z) dAqs(y) = f()

after changing variables z = x 4+ and noting that £-z = 0 for £ € 7. This and the known identity
(see for instance [21, Chapter 2])

) P w)dol (w ™
ey [ sar@ =gt [ ] ) @) dus(,

yield via Plancherel’s theorem and a change to polar coordinates the Plancherel-type identity (1.13)
for the k-plane transform.

2.3. Lorentz transformations. The Lorentz group L is defined as the group of invertible linear
transformations in R4*! preserving the bilinear form

(z,u) ¥ Zg41Ugs1 — 2dUg — * -+ — 21U7.
It is well known that the measure doya is invariant under the action of the subgroup of £ that
preserves the hyperboloid Hgl, denoted by L£*. More precisely,

» fOLdO'HE’in = JHd de’HE’in

for all L € £L*. Tt is also a well known fact that given P = (¢, 7) € R4 with 7 > |¢|, there exists

a Lorentz transformation L € £t such that L(&,7) = (0,4/72 — |£|?); see for instance [27]. For
d = 1, this transformation is given by

coshyp  —sinh~yp
—sinhyp  coshvyp

(2.3) L=L,, = ( ) ) where vp :=1In

T—ﬁ;
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FIGURE 3. The points P, (z), Py () € Sg N ({x}+ S}l) and the points P, (z) :=
x— Py (z), P{ (z) =2 — Py (z)€S;, .

recall that P may be expressed in hyperbolic coordinates as P = (£, 7) = (rp sinhyp,rp coshyp),
where rp := 4/72 — &2. The inverse Lorentz transformation that maps (0,rp) back to (£, 7) is
given by L_,,.

3. CONVOLUTION OF WEIGHTED MEASURES

As is discussed in the introduction, a key ingredient in the proof of Theorems 1.1 and 1.5 is
to understand convolutions of two weighted measures associated to concentric circles of different
radii in R? and to rectangular hyperbolas in R? with foci lying on the same line but with different
major axis. The computation of such convolutions is standard; see, for instance [18, 10] for the
circular case or [27, 11] for the hyperbolic case. The main key feature here is that the convolution
is carried with respect to weighted measures, and thanks to the key fact of being in R?, one can
give a precise evaluation of such weights at certain points.

3.1. Circles. Given r € Ry, let do? denote the normalised Lebesgue measure of S! = rS!, that is
| srdote) = | gtrw)do (o),
st st

and recall that do?(w) = 01 (1 — |w|) dw = 26, (1 — |w|?) dw, where dw denotes the Lebesgue measure
on R2.

Given 0 < 71 < 73, the domain of integration in do? * doZ, (z) is S}, n ({&} +S;,). This set
is non-empty if and only if |x| € [re — r1,72 + r1] and consists of one point in the tangent case
|#| = ro — 1 or |z| = ro + 71 and of two points otherwise. In the non-empty case, fix v, € S* such
that v, - x = 0 and is the 7/2 degrees rotation of = in the anti-clockwise direction, and let P;" (z)
and P; (z) denote the points in S}, n ({2} +S,,) such that P;"(z) - v, > 0 and Py (z) - v, <0
respectively; note that Py (x) = P; (x) in the tangent case. Define Py (z) := x — P (z) € S}, and
P (x) := & — Py (z) € S],. Observe that P;"(x) and P; (z) are reflected points one another with
respect to the line passing through the origin containing x: see Figure 3.

Lemma 3.1. Let r1,75 € R such that 0 < ry < rg. Then

2 2 201 (Py (%)) g2(Py (@) + 291 (Pr (2))g2(P5" (x))
doZ * godo? () =
grdom, = 9200, (8 = = e et ) (e = (r2 —11)7)

if |x| € [re — 71,72 + 1]
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FIGURE 4. The points Q5 (z), Q5 (z) € H},LQ m({x}fH,lm) and the points Q7 (z) :=
r =~ Q3 (2),Q7 (2) =2 — Qf (v) € H,

Proof. A computation shows

g1 dO’E1 * (o d0'32 (iE) = Jl J1 gl(lel)gz('l"Q(.dg)52({E —Triw; — 7’20‘)2) d02(w1) d0'2(LU2)
S S

r
= f J g1( 7“10-21)92(7‘2&12)52(* - L —w2)§1(1 — |w2|?) do? (w1 ) dws
7’2 st Jr2 )
Y SO PIE SN (. S s R P PETO
= rw T —Trw - 4 2w ) deP(w
7‘1|:c1| Sl91 1W1)9g2 1W1)01 2r1|x| o 2|x| \33| 1 1

= 1"(z) + I (),

where I (z) corresponds to the integration over S! (z) := {w € S' : - w > 0} and 1™ () to the
integration over S! (z) := S"\S! (z) = {weS' 1 z-w < 0}.

Denoting by «,, the clockwise angle between ey and x and P, (u) = (cos(a +arccos(u)), sin(a,, +
arccos(u))), the expression for I+(x) becomes, after a change of variable,

|z] 2\—1/2
I*(z) = _m 1— P — P
.1' 7"1|£L'1| f 27"1|£L" 27,1 2|CL" + )( U ) gl(rl i(u))QQ(x 1 $(u)>du

- (1 (2 - B Y T P )P (@) @)
7”1|l“ 2T1|x| 2T1 2|x| gl 1 gQ 2 X{Tz—T1<|w|<T2+T1}

2g1(P;" (2))g2(Py (x)) y o "
V=22 = (r2 + 1)) (|22 = (r2 — 11)?) {ra—mi<|o|<ra+ri}

noting that ry P,(u) = Pj (z) after integrating in u. Arguing similarly for I (z) concludes the
proof. O

3.2. Hyperbolas. Consider the Lorentz invariant measure dog defined in (1.15). Given 0 <
m1 < mg, the domain of integration in dUH}n1 * daH}n2 (z) is H}nQ N ({z}— H}m) Reasoning as in
the previous case, this set is non-empty if and only if n/2% — 22 > m; +my and consists of one single
point in the tangent case \/3 — x? = my +ma and of two points otherwise; here z = (z1, 72) € R%.
In the non-empty case, let Q3 (z) and Q3 () denote the points in H},, ~ ({a} — H;, ) such that
(Q3F (z)—x)-e1 = 0 and (Q3 (z) —x) -e1 < 0 respectively; of course Q3 (z) = Q5 (x) in the tangent
case. Define Qf (z) = x — Q3 (z) e HY,, and Q7 (z) = — Q3 (x) € H},,, (see Figure 4).
Lemma 3.2. Let my,ma € R such that 0 < my < ma. For each x = (x1,22) € R? such that
x3 = a3 one has

291(Q1 (2))92(Q3 (7)) + 291 (Q7 (x))g2(Q3 (2)) ().
V(@3 — a2 — 2023 — ad)(mF +m3) + (mF —mig)? VA eEEm )
Proof. By invariance of the measure dog: under Lorentz transformations, it suffices to prove the
above identity for z = (0, z). Indeed, note that if L, € LT is the Lorentz transformation satisfying

grdog *gadogy () =
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L.(z) = (0,2) = (0,4/2% — 22), then

mo

gldUH},Ll * ggdUH}”2 (z) = J J g1 (w)g2(V)d2(x —w — V) dO’H}HI (w)dom (v)
HY, JHL,

= J f g1 (L7 (W) g2 (L (v))02((0, 2) — w — v) doy, (w)dow (v)
]H[l Hl

mo

my mo

= hldJH}nl * thUH}nz (0, Z)
where h; = gjoL;"; the reduction to the vertical axis then follows from noting that h;(Q7 (0, 2)) =
gj(Q}(x)) for j,¢ = 1,2. Next,

hidomy, * hodom; 0,2) = J hi(w)ha(¥)82((0, 2) — (w1, ws) — (v1,12)) dom, (w) dom, (v)

HL - JHL

mq mo

o (Z — d)ml (wl) - ¢m2 (Wl))
Gy (W1) Py (w1)

- JR B (1, Gy (1)) (—w1, g (1)) dwy.

Splitting R = R_ U R, and doing the change of variables

_ . dw1 _ d7’0
v ¢m1 (W1) * ¢m2 (W1)7 Wlth ¢7n1 (w1)¢m2 (wl) w1V ’

on each half-line one has
0

dos, »hadorgy, (0.9) = [ (ma(wr,ém (1)) hal1, s (1))
mi+mz

dv

(0, By () a1, Oy (1)) )01z =)

where w; above is the function of v

=B )+ = )

20 '
Noting that Q¥ (0,v) = (+w1(v), dm, (w1(v))) and QF (0,v) = (Fw1(v), Gm, (w1(v))), one has
2hy (QIF((L Z))hg(Qg (07 Z)) + 2h1(QI(0, Z))h2(Q5r (07 z))

Vet = 222(mf + m3) + (mf —m3)?

w1 =wi(v) :=

hldUH}nl * hgd(TH}n2 (O,Z) =

1{z>m1 +ma}>s

completing the proof. O

4. THE PROOF OF THEOREMS 1.1 AND 1.5

4.1. Proof of Theorem 1.1. By simplicity we work on the unit sphere r = 1; the result for SP~1
follows analogously. Given 7 € G,_a.,, let 7 denote its orthogonal subspace. For each ¢ € R”,
write & = €™ + &1, where €™ € m and ¢+ € 7, and let 78 i=4/1 = |72 Givenz e m and y € i,

G (@) = [ g ©d070)
= [ e e ok (€ e
|em|<1 rEst ¢
- J ¢ F (g 6 o) (4) dAn (€7)
l€mI<1

where g; ¢x (w) := gj (€™ +w), F denotes the Fourier transform in 7t and da‘,rj.zr denotes the induced

normalised Lebesgue measure of rgSl in %, which can be of course identified with dafg. Then,
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by Plancherel’s theorem in 7,

Ty 2n(grdongado™) (7, y) = f 91do™(z + y)gado™ (2 + y) ds(2)

= P e dn ) 0 F e o)) (€
£m|<1
A further application of Plancherel’s theorem in 71 yields

f AT, (910" godo™ ) () dArs (9)

- (%)2(”_1)[ J f [01(91,67dorz +7 Gogrdory ) (v) (g1, oy +t Gacrdoy) (v)
lem|<1 J|¢mI<1 It ¢ ¢

where the right-hand-side is integrated with respect to the measure d\ 1 (v) dA;(¢™) d\(¢™). For
fixed €™, ¢™ with |£™| < 1 and |¢™| < 1, the innermost integral above equals

(4.1) f = 2 =t P g (€5)F2,en () g2 (CH)Grcr () ASE en (€5, 1, ¢ i)
(ré‘Sl)zx('rSSl)2
where
ASge o (€5, ¢ o) == 0(€h + ¢ =t = pt) oy (67) dog () oy (CF) oy ().

Observe that one may rewrite the above integral as
J- s 1 (fl)gz,cﬂ(Cl)(hz,gdU% *t h1,cdarlg)(§l +¢h) dartw (€h) dUrLg ()
rg xrg

where hg ¢ (nh) = Go.ex (nh)|€L — n*|Y/? and similarly for hy . As 7 =~ R? assuming without loss
of generality that r¢ <rf, one can appeal to Lemma 3.1 to evaluate

2h2,¢ (§5)h1,c(¢F) + 2h2,e (€9 P (CH)
VT UEE + CHP = (7 D) + R = (7 = rE)?)
after noting that if = &% + ¢+ then (P (z), Py (x), Py (x), Py (x)) = (¢+,&4, ¢, ¢Y), where

&L, ¢t e mt are the reflected points of €+ and ¢+ with respect to £+ + ¢+. Note that the implicit
support condition 77 —rf < €+ + ¢t < r& 4+ rf in (4.2) always holds under the assumption

(4.2) (hagdoys * by cdoge ) (€5 +¢F) =

rf <r7. Observe that ho ¢ (€1) = h1,¢(¢1) = 0, so manipulating the denominator one has
€ —gHiet — ¢t
R — (€ CD)
for all &+ € r7S" and ¢+ € rg~Sl. Next note that (&5 A CHP = (rErE)? = (€8 - ¢, but also
|E A CH2 = 16 + CHP|EE — €H[¢E = ¢F, as the points satisfy the relation &5 + ¢+ = &+ + ¢

Then 12
et -yt =\ 2
(rFrD? - (€5 ¢H? ) T
and combining the above estimates one obtains

| 84T, 2 (3107520 7. 9) P s ()

1/2
(4.3)  (hedoyy += hedopz) (€5 + () = < 2> G267 (€716 (CH)

Skl N | Kot (6, Q1.6 (€5)92,0 (CH).e0 ()0 (C1) A5 (€, C)
lem|<t Ji¢m|<1 JrEstxrzst

= (2m)*(") f K 5n-1(€,0)91(£)92(0)g2(€™ + EM)ar (¢C™ + ¢H) do™(€) do™(€),

(Sn—1)2
completing the proof o eorem 1.1; above (&, () = do= fopee - - .
leting th f of Th 1.1; above d¥, (&, ¢ digid,%cgidAgﬂdAg”
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4.2. Proof of Theorem 1.5. Given w € Sflfl and m = (W)t € G414 write, for each ¢ € R,
§ ="+ &w, where ¥ = - w and let m{ := /m? + |{7[2. Given s € R and z € ,

g*da T+ S(U,t :f ez(ersw)'erlt\/va é. 4
00, (4 1) = | O
) ™ 1sEY 41 T w dgw
| o j s HINmIHIETIHET 67y gy) AL (€7)
L R ! \/m2+|§ﬂ'|2+|£w|2

- J eiw‘f";ﬁ(gj,gﬂdaﬂ}ﬂ)(s,t) dA(€7),

where fjex(v) = fj(€7 + vw) for all v € R and gj¢x denotes the lift of f;ex to Hp, mT> and F?
denotes the 2-dimensional Fourier transform. Reasoning as in the proof of Theorem 1.1,

| [ 18R {g1domg ) g2 () 0,9 sl
R JR

= [ [ [ el oy 2 gaerdony 0oy 2 gagedon, (0,7).

where the right-hand-side is integrated with respect to the measure dvdr dA;(§7)dA;(¢™). The
innermost integral above in dv dr equals
[ [ 1@ (@) cdon , « oy )(Pec) - 5
o Jp TS 0w, > Hocdom, ) Fecw) 5 ) Gmr (@)’
where Hy ¢ is the lift of ho¢(n) 1= faer (17)[€9 —n|"/? to Hing (similarly for H; ) and P ¢, denotes
the point

Pew = (67 + (7 bz (€) + dmz (C)).
Denoting by rp the hyperbolic radius of P ¢, that is, r% = (quE (&) + qu (€))% — (&¥ 4 ¢¥)?,
Lemma 3.2 yields
2h2,¢ (€)1,¢(C2) + 2h2,6 (€)1 ¢ (C¥)
Vb =23 ((mg)? + (m)?) + ()2 — (mF)2)?

where (£¥, Pmy (€“)) = Q7 (Pecw) € H}ng and ((¥, Py ((¥) = QF (Pecw) € ng. After an

algebraic manipulation and noting that hy ¢(¢*) = ho ¢(£*) = 0, (4.4) becomes

|6 — €912 fa,en (62)1¢% — C¥IM2 fren (C¥)
|§“¢mg(C“) _Cw(bmg(gw” .

Putting all the estimates together as in the proof of Theorem 1.1 concludes now the proof.

Remark 4.1. As the points in the pairs (Q7 (0,2),Q7 (0,2)) and (Q3 (0, 2),Q5 (0, 2)) are sym-

metric with respect to the vertical axis, it is a simple exercise to obtain an expression for ¥ and

¢ via Lorentz transformations. Indeed, let vp denote the hyperbolic angle of Pe¢wandlet L,
denote, as in (2.3), the Lorentz transformation such that L., (Pe ¢ o) = (0,7p). Then

Q1 (0,7p) = Lyp (€%, iz (€7)) = (m sinh(ye — vp), m{ cosh(ve — vp))
Q2 (0,7p) = Ly, (C¥, dmz (¢*)) = (m sinh(y¢ — yp), m¢ cosh(v¢ —vp)).

(4.4) (HQ{dUH}ng * Hl,CdUH;LZr)(P&C,w) =

(Haedog + Hycdog ) (Pecow) =
£ EP:

Clearly,
Q1 (0,rp) = (fmgr sinh(~ye
Q3 (0,7p) = (—m sinh(y¢

vp), mg cosh(ve —vp))
7p),m cosh(vc —7p))
and
1 (0,7p)) = (mg sinh(2yp — ¢), mg cosh(27p — 7))
Q3 (Pecw) = Loy (Q3 (0,7p)) = (mf sinh(2yp — 7¢), m{ cosh(2vp — 7¢)),
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SO é“ =mg sinh(2yp — 7¢) and g:“’ =mg sinh(2yp — 7¢). In particular, this allows one to rewrite
the kernel as
. . 1/2
(mgm¢| sinh (¢ — )| cosh(qe + vp)]|sinh(vc — 7#)|| cosh(z +72)])
mgm¢|sinh(ye — v¢)| '

Kw,Hfﬁ (fa C) =

Remark 4.2. Note that
162 = &) = [(L3 A (Lyp (€2, bz (6%)) = Ly (€7, Gz (€)1 = |(L52(2a,0))1] = 2a] cosh(yp),

where a := m sinh(ye —yp). As [€¥ — €| = |¢* — ¢¥| and the denominator in (4.4) is easily seen
to be equal to |a|rp (see the proof of Lemma 3.2), the kernel K, y« may then be expressed as

K _ 2(Pmz (€7) + dmz (C¥))
O (g (69) + bz (C9))% — (€2 + (¥)?

after noting that cosh(yp) = (¢mg (€¥) + gbmg(C“’))/TP-

5. COROLLARIES

5.1. Proof of Corollary 1.2. By (1.9) it is clear that the expression

(5.1) 91()72(E™ + E5)g2(Qgr (¢ +¢H)
on its right-hand-side is real and positive. The identity (1.10) then yields that (5.1) equals to

%(Igl(ﬁ)gz(é)l2 +g2(€7 + EN)g(C™ + CH)P = 191(€)92(C) — g2(€™ + EH)ga (¢™ + (D).

The negative term above immediately gives raise to the expression I gn-1(g1, g2), whilst the posi-
tive terms amount to the same expression over the integral sign, finishing the proof.

Observe that the resulting sharp inequality
(5.2)

J.

obtained from dropping the negative term in (1.11) may be deduced more directly via a simple
application of the Cauchy—Schwarz inequality. Note that (4.1) is a positive quantity, so in particular
equals to its modulus. By the triangle inequality, the left-hand-side of (1.9) is controlled by

(5.3) j f f €5 21eE — 2 en (€9 e (70 g2.cr (D)l gr.cm (1))
[€7 <1 J[¢TI<1 J(rfSt)2x(

rgsi)?

— 2
(AT, (g1dom godo™) (m, y)‘ dy< Cst(Sn_lf)gw,sm (& O1g1(9)?|92(Q)[Pda™(€) do™(¢)

A% - (€5, %, Ch ) dAw(€7) dAR(CT).

Applying the Cauchy—Schwarz inequality with respect to the measure dZé,%,, dA (&™) dA (C™),
the above is further controlled by

J J J |91,¢ (gl)|2|927<"(&)‘2(h§d0% - h(dgi‘z‘_)({l n CJ_)dO}J-_g (1) A, (€, 0)
€7 <1 J[¢m|<1 JrEstxrzs?

where he(nt) := |¢X — nt|Y2 and similarly for h¢; above d¥. (€, ) := daf:Zr (¢H) dAL(€7) AN (CT).

Evaluation of the innermost convolution as in (4.3) yields then the desired inequality (5.2).

5.2. Proof of Corollary 1.3. Given m € G,_3,, Plancherel’s theorem and the relation (2.1)

yields
-[TL

(-8 Tz, dhes ) = (2072 |4 IR(ED P (€9)
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Averaging over all 7 € G,,_2 ,,, and using (2.2) and polar coordinates
|| e et ans ¢ dugto)
Gn—2,n J7

Y ~

= f J J 37 h(rw) [Pr 2 dr da"’L(w) dpg ()

Gn-2,n JO JSP—1Amd

w ~

= |g1,n,1|f f 37 h(rw) Prt T dr do™ (w)
0 Jsn—1

3—n

— (Grna|(20)" j 195" o) ?
R’n

which completes the proof on taking h = g/;d?‘gg/d;‘.

5.3. Proof of Corollary 1.4. Recall £ = ™ + ¢4 For n = 3, m = (w), where w € Gy 3 ~ S%.
Then €™ = (¢ - w)w and &+ = ¢ — (€ w)w, so

(€+0) 2
€5 ¢ = e+ CP e+ Q) wl —2(e+ 0w = le+ P (1= (g ) )
Noting that |Gy 2| = T,

2 do? (w) 2m

2t 1 du
KS"—l(&C) = |ng| 52 |§L+<L‘ = ﬂ-‘§+<| f—l m - |£+<‘

Thus 1
o0 ey < 2n)* [ [l ©PI(Q R a (€ o)

and the desired sharp Stein—Tomas inequality for the sphere follows from the following fact due to
Foschi [18],

1
(5.4 |, | eg Pl ar€)do*(0) = ol

which holds for g antipodally symmetric. The reduction to the antipodally symmetric may be done
as in [18], using the Cauchy—Schwarz inequality for real numbers

(5.5) ac + bd < \/a? + b2/c? + d2.

Indeed, note that in the proof of (5.2) via the Cauchy—Schwarz inequality given in Section 5.1, one
may replace |gex (€1)||gex (nh)] in the innermost integral in (5.3) by

|9~ (€5)[ger ()] + 1ger (=€)l gex (=)
2 b
and using (5.5) this is bounded by |g?f, (§J-)||gffr (nt)|, where for any function h, the function h#
denotes h# (€) := /(h(€) + h(—£))/2, which is antipodally symmetric. One can argue similarly to
replace |ge=(¢1)||gen (ut)] by |gZ~%{ (CJ‘)Hg?i (uh)]. Thus, the right hand side in (5.2) is replaced by
(5.6)

L 2 Horel\i20 F LN\ 12 1 1 1 1 T T
] J VN (0 (€1 PIg ()P do, (€9) do. (¢ AAH(E7) AL (7).

€4+ ¢
One desires, however, to have g7 rather than g?fr and g?fr. By a change of variables, the integrand
4|g?fr (fl)|2|g2ﬁ (¢1)]? may be further replaced by

(\gﬁ (€I + |giw EH1?) (|g?i(4l)|2 + Igin (¢H1P),
which equals
197 (©)12197 (O)17 + |97 (&) Plg7 (¢F — ¢ + g7 (€1 — €M) Pg? (O + |97 (€1 — €M7 (¢ — ¢T)
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A further change of variables in each of the terms allows to see that (5.6) equals
Cono | Keon s & 0l ©Plg? (O a7 (€) 4o Q)

as desired for the later application of Foschi’s identity (5.4) on antipodally symmetric functions.
5.4. Proof of Corollary 1.6. This follows the same argument as that of Corollary 1.2.

5.5. Proof of Corollary 1.7. The proof follows from the same argument as in §5.2. Indeed, the
elementary argument therein yields the relation

—(d— L )
I8 ey = @r) V2T Y RIZ, o,
from which Corollary 1.7 follows from taking ¢ = (2 — d)/2 after averaging over w € Si‘l; note that
w in the Radon transform R only runs over S‘i‘l ~ Gg—1,4.

6. THE BILINEAR IDENTITY (1.8) FOR PARABOLOIDS REVISITED

The purpose of this final section is to provide an alternative proof for the identity (1.8) via
Fourier analysis. The proof follows the same scheme as those of Theorems 1.1 and 1.5 with a little
twist, which is available when taking one full derivative in the s-variable in the case of paraboloids.

To see this, let P4 := {(¢, |¢]? +a) : € € RY} denote the paraboloid in (x,t) € R? x R with tangent
plane t = a at its vertex; if a = 0 we simply denote it by P%. Let dopa denote the parametrised

measure on P¢, which satisfies gd/(;% (z,t) = Ef(x,t) where E is the extension operator associated
to ¢(€) := €2 + a and g is the lift of the function f : R? — C to P<.

Given w € Si‘l and m = (W)t € Gg_1 4 write, for each £ € RY, ¢ = ™ + £¥w, where & = ¢ - w.
Given s€ R and z € ,

gjdopa(z + sw,t) = J ei(IJrsw)'&it‘E'zfj(f) d¢
R

~ [ jR HEHIETIHIET (67 1 gw) dg” o (€7)

B J emfﬂ-}ﬂ(gjﬁ"daﬂbl?&”\z (5, 8) AAx(E7),

where fjex(v) := f;(§™ +vw), F? denotes the 2-dimensional Fourier transform and g; ¢~ is the lift
of fjer to IP’|2£,,|2. Reasoning as in the proof of Theorem 1.1,

Jf|as7z(gl’d£d(.,t)gﬁg\w(.,t))(w,s)|2dsdt
R JR

= [ [ 16 =6 e (€) o 0 e () e (€) A co (€,1 1,6
where o
d8gn,cx (€9 0%, 1%, C¥) 1= 0(6° =" +¢¥ =)0 (€)= (n*)*+(C¥)* = (p)?)de“ dn“ dp® d¢®dAx (€7)d AR (CT).
Arguing similarly,
Jo(91d0pa, g2dopa) = (277)2dj j JW(CWMUJ —(Un® = €p + €90°) fren (€9) faer () Frem (1) fa,cx (C)
with respect to the measulreTr dﬂng’U (&Y, n¥, u¥, ¢¥), where J,(G1,G2) is the bilinearisation of
Jw(u); namely the integrand is replaced by

G1(z + sw, 1)0sGa(y + sw, ) (0sG1(y + sw, t)Ga(z + sw, t) — G1(y + 5w, 1)0G2(x + sw, 1))
— Ga(y + sw, 1)0G1 (x + 5w, ) (G2(x + sw,t)0sG1(y + sw, t) — 0sGa( + sw, )Gy (y + sw, t)).

Noting that
(6.1) €2 = II¢ — | + (¢ = ¢ — €9 p¥ + ) = [ —



k-PLANE TRANSFORM AND FOURIER EXTENSION OPERATORS 17

if (£¥,n%, uv, (%) € supp (dX¢~ ¢ ), one can combine the two terms above to obtain

(6.2) JR JR 10sR (g1dpa (-, ) gadopa (-, 1)) (s,w)|* ds dt + Jo(g1dopa, gadopa)
= [ [ [ 160 = P e € o ) e () o () S o (69,7 1, 6°).

For fixed & and u“, the only solution for the equations in the § function is n* = £“ and (“ = u.
Thus, the right-hand-side above equals

T 2d _ _
C | 16 = il € aer (€ () o (1) 62 A ro(€7) dA(67)
and if f1 = fQ7

T 2d
% J f f 169 = 1| e (€| o () A€ dpa AR (€7) dAR (CT)
which of course is
(2m)* o b
] e wls@rPp s an

In the language of the Schrodinger equation, u = E1yg, so the right hand side is
m o~ 21—~ 2
- —n)- ded
oy |, | €= sl Pimm e de dr

and one obtains the desired identity (1.8).
Averaging over all w € Sﬁfl after dropping the term J,, (u) from the obtained identity and noting
that

miy — 2l — ol [l — 5 gy HE T
[, e =m-wldonw) =2l —nl | w1 —ut)5* du = B

one has
(6.3)

d—
™ ™

) T )z sy < ) G T 175y 6~ RO a0

1-—5d
273(171, 5

and the constant simplifies as PV(d) := e
2

; this inequality was also obtained in [3] in a

more direct way.

Remark 6.1. The honest analogue of Theorems 1.1 and 1.5 in the context of paraboloids is given
by the bilinear identity

04 [ [ 108200 (- Ogadora ) (.0 dsde
R JR

(27'(‘)251 W\ F WY £ w w w w - -
=7 = P B = dew d¢¥ dM, d\, )
2 LURJL& (€% f,6m (C) fr,cm (€7) fa,c= (€¥) A€ AC® dAR (€7) dAx (CT)

In contrast to the previous case, one solves here the equations in the § functions in terms of £“ and
¢¥; the solution in terms of £ and u“ is now degenerate in terms of the weight [ — 7<|'/2|¢* —
p“|'/2, which vanishes in this case. Note that, in (6.2), the fact of taking one full derivative
with respect to s and adding the term J,, (g?ia\w, g}ia\w) had the effect of replacing the weight
|9 — n@][¢¥ — u*| by |€¥ — p¥|? thanks to the algebraic identity (6.1), allowing to solve in those
variables.
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As in the case of spheres and hyperboloids, the identity for complex numbers (1.10) allows to
rewrite (6.4) as

JJ|a;/27z(gﬁ£d<.,t)ggd'@(-,t))@,w)ﬁdsdt
R JR
2d
= C [ e €71 (€4 ag 462 ahn(€0) An() — Lol o)

where
(27T)2d

Lt fe) = P | ] 1 (€726 (6) = frge (€) fage ()P A6 4G dAn(€7) dn 7).
m Jmr JR2
Unlike J,(f), the term I,(f, f) does not have an obvious closed expression in terms of physical

variables. Setting f; = fo and averaging over all w € Sfl after dropping I,(f, f) one obtains
2—d

2-a 4 (277)2(1 |Sd—1| - Q—dﬂ. 5
I(=Az) " (|U|2)H%f~;vt(n§dm) < (2m)! 5 THWH%Q(W) = WHUOH%Z(W)’

which is the Ozawa—Tsutsumi estimate (1.7); note that for d = 2 this amounts to the L*(R**1)
Strichartz estimate. The interested reader should look at the work of Bennett, Bez, Jeavons
and Pattakos [3] for a unified treatment of the Ozawa—Tsutsumi estimates (1.7), the inequalities
deduced from (6.3), and a more general case with an arbitrary number of derivatives on the left-
hand-side of such inequalities.
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