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Abstract. We establish continuity mapping properties of the non-centered
fractional maximal operator Mβ in the endpoint input space W 1,1(Rd) for

d ≥ 2 in the cases for which its boundedness is known. More precisely, we prove

that for q = d/(d − β) the map f 7→ |∇Mβf | is continuous from W 1,1(Rd)

to Lq(Rd) for 0 < β < 1 if f is radial and for 1 ≤ β < d for general f . The

results for 1 ≤ β < d extend to the centered counterpart Mc
β . Moreover, if

d = 1, we show that the conjectured boundedness of that map for Mc
β implies

its continuity.

1. Introduction

Given f ∈ L1
loc(Rd) and 0 ≤ β < d , the non-centered fractional Hardy-Littlewood

maximal operator Mβ is defined by

Mβf(x) := sup
B̄(z,r)3x

rβ

|B(z, r)|

∫
B(z,r)

|f(y)|dy

for every x ∈ Rd . The centered version of Mβ , denoted by M c
β , is defined by

taking the supremum over all balls centered at x. The non-fractional case β = 0
corresponds to the classical maximal function, which we denote by M = M0.

In recent years, there has been considerable interest in understanding the reg-
ularity properties of M and Mβ . This study was initiated by Kinnunen [13], who
showed that if f ∈W 1,p(Rd) with 1 < p <∞, then Mf ∈W 1,p(Rd) and

|∇Mf(x)| ≤M(|∇f |)(x) (1.1)

almost everywhere in Rd. His result extends in a straightforward way to the frac-
tional case in the scaling line 1

q = 1
p −

β
d ; more generally, any Lp − Lq bounded

sublinear operator A on Rd that commutes with translations preserves the bound-
edness at the derivative level if 1 < p, q <∞, that is

‖Af‖1,q ≤ C‖f‖1,p.

At the endpoint p = 1, one cannot expect boundedness of Mβ from W 1,1 to W 1, d
d−β

to hold, as Mβ fails to be bounded at the level of Lebesgue spaces. However, one
may still ask the question of whether the map f 7→ |∇Mβf | is bounded from W 1,1

to L
d

d−β . This problem has received a lot of attention in recent years and in the
case β = 0 is commonly referred to as the W 1,1–problem. In this case, despite
the question is still open, there are positive results for d = 1 [27, 1, 16] and for
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d > 1 if the function f is radial [19]; see also [11, 9, 5, 26, 24, 23, 15] for related
results and [4, 6, 22] for similar results in the discrete setting. In the fractional case
0 < β < d, it was observed by Carneiro and the second author [7] that the case
β ≥ 1 follows from combining Sobolev embeddings with the following smoothing
property of fractional maximal functions due to Kinnunen and Saksman [14]: if
f ∈ Lp(Rd) with 1 < p < d and 1 ≤ β < d/p, then

|∇Mβf(x)| ≤ CMβ−1f(x) (1.2)

almost everywhere in Rd. Together with the boundedness ofMβ−1 and the Gagliardo–
Nirenberg–Sobolev inequality,

‖∇Mβf‖q ≤ C‖Mβ−1f‖q ≤ C‖f‖ d
d−1
≤ C‖∇f‖1

for q = d
d−β , establishing the endpoint Sobolev bound for β ≥ 1. Here and in (1.2)

the results continue to hold for M c
β .

The case 0 < β < 1 is considerably more difficult. The one dimensional case
was established by Carneiro and the second author [7], whilst in higher dimensions
Luiro and the second author [20] proved its validity for radial functions. More
recently, the first author, Ramos and Saari [2] obtained the boundedness result for
d ≥ 2 without the radial hypothesis but for certain variants of Mβ . Such variants
correspond to a lacunary version of the maximal function Mβ and to maximal
functions of convolution type with smoother kernels than χB(0,1).

The maximal functions Mβ are sublinear operators, and therefore its bound-
edness on Lebesgue spaces implies its continuity. However, this property is not
preserved at the derivative level: the map f 7→ |∇Mβf | is no longer sublinear.
Therefore, it is a non-trivial question to determine the continuity of f 7→ |∇Mβf |
as a map from W 1,p(Rd) to Lq(Rd). This question was first posed by Haj lasz and
Onninen [12], where it was attributed to Iwaniec. The first affirmative results in
this direction were obtained by Luiro [17] for β = 0 in the non-endpoint cases
p > 1, although his analysis extends to the fractional setting; see also his work
[18] for more general maximal operators in non-endpoint cases, which includes an
interesting result for Mβ in the case 1 ≤ β < d.

In analogy to the boundedness problem, the continuity at the endpoint p = 1 is
a much subtler question. In recent years, there has been progress in this direction
for d = 1: Carneiro, the second author and Pierce [8] established the continuity
for d = 1 and β = 0, and the second author [21] showed the analogous result for
d = 1 and 0 < β < 1. The main goal of this paper is to explore the analogous
questions in higher dimensions for the cases in which the boundedness of the map
f 7→ |∇Mβf | from W 1,1 to Lq is known. In particular, we obtain positive results
for the fractional case. Similarly to the boundedness, our analysis naturally splits
in two cases depending on whether 0 < β < 1 or 1 ≤ β < d; this is dictated by the
availability of (1.2) in the latter case.

Theorem 1.1. Let Mβ ∈ {Mβ ,M
c
β}. If 1 ≤ β < d, the operator f 7→ |∇Mβf |

maps continuously W 1,1(Rd) into Ld/(d−β)(Rd).

The range 0 < β < 1 is more interesting as the inequality (1.2) is no longer at
our disposal. However, we are able to give positive results for radial functions; note
that boundedness of Mβ at its derivative level is currently only known under this
assumption. This constitutes the main result of this paper.1

Theorem 1.2. If 0 < β < 1, the operator f 7→ |∇Mβf | maps continuously

W 1,1
rad(Rd) into Ld/(d−β)(Rd).

1The space W 1,1
rad in Theorem 1.2 denotes the subspace of W 1,1 consisting of radial functions.
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The proof of this theorem differs from its one dimensional counterpart, which
strongly uses that Mf and Mβf are in L∞(R) if f ∈ W 1,1(R). In fact, the one-
dimensional arguments will only continue to work in higher dimensions in the re-
stricted range d − 1 < β < d which is, in particular, covered by Theorem 1.1, or
inside an annulus A(a, b) with 0 < a < b < ∞ in the case we consider small radii.
Our approach will combine the one-dimensional arguments in A(a, b) and a refine-
ment of the techniques used in [20] to show the bound ‖∇Mβf‖d/(d−β) ≤ C‖∇f‖1
for radial functions.

Moreover, our arguments can be combined with those in [21] to yield a conjectural
result in one dimension regarding the continuity of the map f 7→ |(M c

βf)′| from

W 1,1(R) to L1/(1−β)(R). Our result depends upon the boundedness of that map
between such function spaces, which is currently an open question.

Theorem 1.3. Let 0 < β < 1. Assume that ‖(M c
βf)′‖Lq(R) ≤ C‖f ′‖L1(R) holds for

q = 1/(1 − β). Then the operator f 7→ |(M c
βf)′| maps continuously W 1,1(R) into

Lq(R).

Finally, it is noted that some of our arguments also continue to work without the
radial assumption, for β = 0 and for the centered maximal function. In particular,
the analysis can always be reduced to showing the continuity inside a compact set
K; this will be discussed in Section 4.3.

Structure of the paper. Section 2 contains many auxiliary results that will be
used in the proofs of the main theorems. The proofs of Theorems 1.1, 1.2 and 1.3
are provided in Sections 3, 4 and 5 respectively. Finally, an alternative proof for
the range β ∈ (d− 1, d) based on a one dimensional analysis will be provided in an
Appendix.

Acknowledgements. The authors are indebted to Hannes Luiro for a clarifica-
tion regarding his previous work [17] and to Emanuel Carneiro, Cristian González
and Juha Kinnunen for valuable comments. They also would like to thank BCAM,
ICTP and UCLA for supporting research visits that helped to the development of
this project. The second author would like to thank Carlos Pérez for his hospital-
ity during his visit to BCAM. The authors are also grateful to the referee for the
valuable suggestions.

2. Preliminaries

Notation. Throghout this paper, the value of the Lebesgue exponent q will always
be q = d/(d − β). Given a measurable set E ⊂ Rd, χE denotes the characteristic
function of E and Ec := Rd\E its complementary set in Rd. For c ∈ R , we denote
by cE the concentric set to E dilated by c. The integral average of f ∈ L1

loc(Rd)
over E is denoted by fE =

∫
E
f . The notation A . B is used if there exists C > 0

such that A ≤ CB, and similarly A & B and A ∼ B. The implicit constant may
change from line to line but will be always independent of the relevant parameters
(such as the index j), and depend only on the dimension d and the fractional order
β. The volume of the d-dimensional unit ball is denoted by ωd.

2.1. The families of good balls and good radii. Fix 0 ≤ β < d. Given a
function f ∈ W 1,1(Rd) and a point x ∈ Rd, define the family of good balls for f at
x as

Bβx(f) :=
{
B(z, r) : x ∈ B̄(z, r), Mβf(x) = rβ

∫
B(z,r)

|f(y)|dy
}
.
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Note that Bβx(f) 6= ∅ for all x ∈ Rd if f ∈ L1(Rd). Moreover, Bβx(f) is a compact
set in the sense that if B(zk, rk) ∈ Bβx(f) for all k ∈ N and zk → z and rk → r as
k →∞, then B(z, r) ∈ Bβx(f).

For ease of notation, Bβx(f) will be simply denoted by Bβx , and given a sequence

of functions {fj}j∈N the associated families of good balls are denoted by Bβx,j . The

families of good radii Rβx and Rβx,j are defined as the subsets of R consisting of the

radii associated to good balls in Bβx and Bβx,j respectively.

If 0 < β < d, the value r = 0 6∈ Rβx for almost every x ∈ Rd. This is
indeed a simple consequence of the Lebesgue differentiation theorem. Assume
that {B(zk, rk)}k∈N is a family of balls containing x such that rk → 0; then
{x} = B(x, 0) ∈ Bβx by compactness. By Lebesgue differentiation theorem

rβk

∫
B(zk,rk)

|f | → 0× f(x) = 0 a.e. as k →∞,

but Mβf(x) > 0 for any f not identically zero.
If β = 0, a similar argument yields that 0 6∈ R0

x on the set {x ∈ Rd : Mf(x) >
f(x)}.

An important observation is the following relation between the sets Bβx.j and Bβx ,

which constitutes the fractional higher dimensional analogue of Lemma 12 in [8].

Lemma 2.1. Let f ∈ W 1,1(Rd) and {fj}j∈N ⊂ W 1,1(Rd) be such that ‖fj −
f‖W 1,1(Rd) → 0 as j → ∞. For a.e. x ∈ Rd, let {(zj , rj)}j∈N ⊂ Rd × [0,∞) be

a sequence of centers and radii such that Bx,j = B(zj , rj) ∈ Bβx,j. If (z, r) is an

accumulation point of {(zj , rj)}j∈N, then B(z, r) ∈ Bβx .

Proof. Set f0 = f , and for every j ≥ 0 let Ej be the set of the Lebesgue points of
fj . Define E = ∩j≥0Ej ; note Rd \ E is a set of measure zero. Consider a point
x ∈ E and assume, without loss of generality, that (zj , rj)→ (z, r) as j →∞ (going
through a subsequence, if necessary) and that r 6= 0. Note the convergence∣∣∣Mβfj(x)− rβ

∫
B(z,r)

|f(y)|dy
∣∣∣

.
rβj
rdj

∫
Rd
|fj − f |+

∣∣∣ ∫
Rd
|f(y)|

(rβj
rdj
χB(zj ,rj)(y)− rβ

rd
χB(z,r)(y)

)
dy
∣∣∣→ 0

as j → ∞. The first term goes to 0 as rj → r > 0 and ‖fj − f‖L1(Rd) → 0
as j → ∞. The convergence of the second term may be seen by the dominated
convergence theorem, as f ∈ L1, (zj , rj) → (z, r) as j → ∞ and rj , r > C for

some constant C and j large enough. As ‖fj − f‖Lp(Rd) → 0 for 1 ≤ p ≤ d
d−1 ,

then ‖Mβfj −Mβf‖Lr(Rd) → 0 as j → ∞ for some r > d
d−β and therefore there

is a subsequence {Mβfjk}k∈N converging to Mβf almost everywhere as k →∞, so
B(z, r) ∈ Bβx(f).

We conclude the proof observing that, by contradiction, the case r = 0 does not
happen for x ∈ E. To see this, define the set Aj = {y ∈ E : M(fj − f)(y) > 1}. If
|{j ∈ N : x /∈ Aj}| =∞ then going through a subsequence, if necessary,

Mβfjk(x) ≤ rβjkM(fjk − f) +
rβjk
rdjk

∫
Bz,rjk

|f | → 0 + 0× |f(x)| = 0

by the Lebesgue differentiation theorem, which is a contradiction. Otherwise, if
|{j ∈ N : x /∈ Aj}| <∞ then

x ∈ A :=
⋃
j0≥1

⋂
j≥j0

Aj ,
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which is a measure zero set as a consequence of the weak (1,1) inequality for the
maximal operator M and the hypothesis ‖fj − f‖L1(Rd) → 0. �

In the case of M c
β , the family of good balls Bβx is just determined by the family

of good radii Rβx . Of course, Lemma 2.1 continues to hold in this case, where z = x
and zj = x for all j ∈ N.

2.2. The derivative of Mβ. In order to understand the weak derivative ∇Mβf ,
it is useful to recall the concept of approximate derivative. A function f : R → R
is said to be approximately differentiable at a point x0 ∈ R if there exists a real
number α such that, for any ε > 0, the set

Aε =

{
x ∈ R :

|f(x)− f(x0)− α(x− x0)|
|x− x0|

< ε

}
has x0 as a density point. In this case, the number α is called the approximate
derivative of f at x0 and it is uniquely determined. It follows directly from the
definition that if f is differentiable at x0 then it is approximately differentiable at
x0, and the classical and approximate derivatives coincide. In the absence of differ-
entiability, if the weak derivative of f exists it also coincides with the approximate
derivative [10, Theorem 6.4].

Haj lasz and Maly [11] showed that M c
0f is approximate differentiable, and their

arguments easily adapt to the non-centered maximal operator and to the fractional
setting. Moreover, the boundedness

‖∇Mβf‖q ≤ C‖∇f‖1

for 1 ≤ β < d [14] and β ∈ (0, 1) if f is radial [20] implies that Mβf is weakly differ-
entiable in those cases and therefore its weak derivative equals to its approximate
derivative, leading to the following lemma.

Lemma 2.2 (Derivative of the maximal function [20]). Let f ∈ W 1,1(Rd) and
x ∈ Rd. Then, for all B = B(z, r) ∈ Bβx , we have that

(i) If 1 ≤ β < d, then Mβf is weakly differentiable and for almost every
x ∈ Rd its weak derivative ∇Mβf satisfies

∇Mβf(x) = rβ
∫
B

∇|f |(y) dy

and the same holds for M c
βf .

(ii) If β ∈ (0, 1) and f is a radial function, then Mβf is differentiable a.e.,
and for almost every x ∈ Rd its derivative ∇Mβf satisfies

∇Mβf(x) = rβ
∫
B

∇|f |(y) dy.

We call this identity Luiro’s formula.

The value of the approximate derivative of Mβf is a simple computation which
can be obtained arguing as in [11] or [20], and has its roots in the work of Luiro
[17]. The stronger statement in (ii) regarding the a.e. differentiability of Mβf
in the radial case is a consequence of the one-dimensional result of Carneiro and
the second author [7], who showed that for d = 1, the maximal function Mβf is
absolutely continuous and therefore differentiable almost everywhere in the classical
sense; this extends to higher dimensions when acting on radial functions.
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2.3. A Brézis–Lieb type reduction. In order to prove both Theorem 1.1 and
1.2, we will show that for any f ∈ W 1,1(Rd) and {fj}j∈N sequence of functions in
W 1,1(Rd) such that ‖fj − f‖W 1,1(Rd) → 0 as j →∞, then

‖∇Mβfj −∇Mβf‖Ld/(d−β)(Rd) → 0 as j →∞. (2.1)

The classical Brézis–Lieb lemma [3] reduces the proof of (2.1) to showing that∫
Rd
|∇Mβfj |

d
d−β →

∫
Rd
|∇Mβf |

d
d−β as j →∞

provided the almost everywhere convergence

∇Mβfj(x)→ ∇Mβf(x) a.e. as j →∞ (2.2)

holds.
The rest of this section is devoted to show (2.2), which is the content of the

forthcoming Lemma 2.4.

2.4. Almost everywhere convergence of the derivatives. In order to show
(2.2) we extend to higher dimensions and to the fractional case the strategy of
Carneiro, Pierce and the second author [8]. Their arguments do not straightforward
generalise to higher dimensions due to the lack of uniform convergence of Mβfj to
Mβf (which holds for d = 1 and W 1,1(R)-functions).

In view of the representation of the derivative of Mβ in Lemma 2.2, it is useful
to note that convergence of fj to f in W 1,1 implies convergence of their modulus.
A proof of this functional analytic result is provided below for completeness as we
could not find it in the literature. This fact was implicitly used in the work of
Luiro [17], to whom we are grateful for a helpful conversation regarding a step in
the proof. It is noted that the one-dimensional version of this result has a slightly
simpler proof based on the fundamental theorem of calculus; see [8, Lemma 14].

Lemma 2.3. Let f ∈ W 1,1(Rd) and {fj}j∈N ⊂ W 1,1(Rd) be such that ‖fj −
f‖W 1,1(Rd) → 0 as j →∞. Then ‖|fj | − |f |‖W 1,1(Rd) → 0 as j →∞.

Proof. Of course ‖|fj | − |f |‖L1(Rd) ≤ ‖fj − f‖L1(Rd) → 0 follows from the triangle
inequality. To see that ‖∇|fj | − ∇|f |‖L1(Rd) → 0, define the sets Xj := {x ∈
Rd : fj(x) > 0}, Yj := {x ∈ Rd : fj(x) < 0} and Zj := {x ∈ Rd : fj(x) = 0}
for all j ∈ N, and let X,Y and Z be defined similarly with respect to f . It
then suffices to show the convergence on each of the nine subsets obtained by
intersecting Xj , Yj , Zj with X,Y, Z. Note that on Xj ∩X, Yj ∩ Y and Zj ∩Z, one
has |∇|fj |−∇|f || = |∇fj−∇f | and therefore the convergence on those sets follows
from the hypothesis ‖∇fj −∇f‖L1(Rd) → 0.

On Xj ∩ Z and Yj ∩ Z, one should note that ∇f = ∇|f | = 0 except for a set of
measure zero. Indeed, if I ⊂ Z has positive measure, one has f(x) = |f(x)| = 0 on
I and therefore ∇f = ∇|f | = 0. Then |∇|fj | − ∇|f || = |∇fj −∇f | a.e. on Xj ∩ Z
and Yj ∩Z and the convergence on such sets follows again simply by the hypothesis
‖∇fj −∇f‖L1(Rd) → 0. The terms corresponding to Zj ∩X and Zj ∩ Y follow in
a similar manner.

On Xj ∩ Y ,∫
Xj∩Y

|∇|fj | − ∇|f || =
∫
Xj∩Y

|∇fj +∇f | ≤
∫
Rd
|∇fj −∇f |+

∫
Xj∩Y

2|∇f |.

The first term goes to 0 as j →∞, as by hypothesis ‖∇fj −∇f‖L1(Rd) → 0.
To show that second term goes to 0, it suffices to see that |Xj ∩ Y | → 0 as

j → ∞. Indeed, assume that this assumption holds and, for a contradiction, that
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there exists a subsequence jk and c > 0 such that

lim
k→∞

∫
Xjk∩Y

2|∇f | ≥ c.

As it is assumed that |Xjk ∩ Y | → 0, there exists a further subsequence jk` for
which χXjk`∩Y

→ 0 a.e., and thus the dominated convergence theorem yields

lim
`→∞

∫
Xjk`

2|∇f | = 0,

a contradiction. Finally, to show that |Xj ∩ Y | → 0, for any given ε > 0, let δ > 0
be such that

|Aδ| := |{x ∈ Rd : 0 < f(x) ≤ δ}| ≤ ε/2.
The set {x ∈ Rd : fj(x) < 0 and f(x) < δ} is contained in {x ∈ Rd : |f(x) −
fj(x)| > δ}, and the measure of the latter converges to 0 as j → ∞ by hypothesis
(convergence in L1 implies convergence in measure). Thus, there exists j0 ∈ N large
enough so that

|Bδ| := |{x ∈ Rd : fj(x) < 0 and f(x) < δ}| ≤ ε/2
for all j ≥ j0. As Xj ∩ Y := Aδ ∪ Bδ, the result follows from combining the two
previous displays. The term corresponding to Yj ∩X follows analogously, and the
proof is then concluded. �

We now have all the necessary ingredients to prove (2.2). The proof is a minor
variant of its one-dimensional counterpart in [8, Lemma 15]; full details are given
below for completeness.

Lemma 2.4. Let f ∈ W 1,1(Rd) and {fj}j∈N ⊂ W 1,1(Rd) be such that ‖fj −
f‖W 1,1(Rd) → 0 as j →∞. Then

∇Mβfj(x)→ ∇Mβf(x) a.e. as j →∞ (2.3)

if Luiro’s formula holds for Mβ, and the same holds for M c
β.

Proof. Set f0 = f , and for every j ≥ 0 let Ej be the set of measure zero for which
Lemma 2.2 fails for fj . The set E := ∪j≥0Ej continues to have measure zero. Let
F be the sets of measure zero for which Lemma 2.1 fails. That is, if x ∈ F and
{(zj , rj)}j∈N is a sequence where B(zj , rj) ∈ Bβx , an accumulation point (z, r) of
{(zj , rj)}j∈N does not necessarily satisfy B(z, r) ∈ Bβx . It then suffices to prove the
desired result for x ∈ D := Rd\(E ∪ F ).

Given x ∈ D, there exist δ = δ(x) > 0 andN = N(x) <∞ such thatRβx ⊂ [δ,N ].

We claim that there exists j0 = j0(x) such that Rβx,j ⊂ (δ/2, 2N) for j ≥ j0.

Otherwise, we may find a sequence {rjk}k≥1 ⊂ [0, δ/2] ∪ [2N,∞). If there exists
a constant C < ∞ such that {rjk}k∈N ⊂ [0, δ/2] ∪ [2N,C], the sequence {rjk}k∈N
admits a convergent subsequence {rjk` }`∈N. By Lemma 2.1, lim`→∞ rjk` ∈ R

β
x

but by construction this limit lies in [0, δ/2] ∪ [2N,C], which is a contradiction.
If one cannot find such a C < ∞, there exists a subsequence {rjk` }`∈N such that
lim`→∞ rjk` =∞, which is again a contradiction by Lemma 2.1.

Let rj ∈ Rβx,j for j ≥ j0 and zj such that Bj = B(zj , rj) ∈ Bβx,j . Using the above
lower bound on rj and Lemma 2.2 one has

|∇Mβfj(x)| . rβ−dj

∫
Bj

|∇|fj || ≤ δβ−d(‖∇|fj | − ∇|f |‖L1(Rd) + ‖∇|f |‖L1(Rd)) ≤ C

for j ≥ max{j0, j1}, where j1 is such that ‖∇|fj | − ∇|f |‖L1(Rd) < ε for some
ε. Then {∇Mβfj(x)}j∈N is a bounded sequence. Consider any convergent sub-
sequence {∇Mβfjk(x)}k∈N. As the sequence {rjk}k∈N is bounded, passing to a
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further subsequence one may assume that (zjk` , rjk` ) → (z, r) as ` → ∞, where

B(z, r) ∈ Bβx by Lemma 2.1. By Lemma 2.2

∇Mβfjk` (x) = rβjk`

∫
Bjk`

∇|fjk` | and ∇Mβf(x) = rβ
∫
B(z,r)

∇|f |.

Then ∇Mβfjk` (x)→ ∇Mβf(x) as `→∞, as∣∣∣rβjk`
∫
Bjk`

∇|fjk` | − r
β

∫
B(z,r)

∇|f |
∣∣∣

.
rβjk`
rdjk`

∫
Rd

∣∣∇|fjk` | − ∇|f |∣∣+

∫
Rd
|∇|f ||

(rβjk`
rdjk`

χBjk`
(y)− rβ

rd
χB(z,r)(y)

)
dy → 0

as `→∞; the first term goes to 0 by Lemma 2.3 whilst the second term can be seen
to go to 0 by the dominated convergence theorem, as f ∈ W 1,1 and the radii rjk`
are bounded below. Then, the original convergent subsequence {∇Mβfjk(x)}k∈N
converges to ∇Mβf(x) as k → ∞. As this holds for any convergent subsequence
{∇Mβfjk(x)}k∈N of {∇Mβfj(x)}j∈N, one has that ∇Mβf(x) is the unique accumu-
lation point of {∇Mβfj(x)}j∈N, and thus the result follows because such a sequence
is bounded. �

Remark 2.5. Note that the above proof also shows that, in particular, for any
0 < β < d,

Mβfj(x)→Mβf(x) (2.4)

a.e. on Rd as j → ∞, provided ‖fj − f‖W 1,1 → 0. Note that for d = 1, or d > 1
and β ∈ (d − 1, d) this is slightly easier due to the L∞ boundedness of Mβ for
f ∈W 1,1(Rd). The same holds for M c

β .

2.5. A classical convergence result. Finally, the following classical variant of
the dominated convergence theorem will be used several times throughout the pa-
per.

Theorem 2.6 (Generalised Dominated Convergence Theorem). Let 1 ≤ p < ∞
f, g ∈ Lp(Rd) and {fj}j∈N and {gj}j∈N be sequences of functions on Lp(Rd) such
that

(i) |fj(x)| ≤ |gj(x)| a.e.,
(ii) fj(x)→ f(x) and gj(x)→ g(x) a.e. as j →∞,
(iii) ‖gj − g‖Lp(Rd) → 0.

Then ‖fj − f‖Lp(Rd) → 0.

The proof of this theorem is standard and consists in two applications of Fatou’s
lemma; see for instance [25, Chapter 4, Theorem 19].

3. The case 1 ≤ β < d: Proof of Theorem 1.1

This follows from a simple application of the Generalised Dominated Conver-
gence Theorem together with the inequality (1.2) and the a.e. convergences (2.3)
and (2.4).

Indeed, let f ∈W 1,1(Rd) and {fj}j∈N ⊂W 1,1(Rd) such that ‖fj−f‖W 1,1(Rd) →
0 as j →∞. Recall the inequality (1.2) of Kinnunen and Saksman [14],

|∇Mβfj(x)| ≤Mβ−1fj(x) for all j > 0,

which holds for all 1 ≤ β < d as fj ∈ Lr for 1 ≤ r ≤ d
d−1 . By Lemma 2.4, one has

∇Mβfj → ∇Mβf a.e. as j →∞.
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By Remark 2.5

Mβ−1fj →Mβ−1f a.e. as j →∞
and, moreover, the sublinearity and boundedness of Mβ−1 implies

‖Mβ−1fj −Mβ−1f‖
L

d
d−β (Rd)

. ‖fj − f‖
L

d
d−1 (Rd)

. ‖∇fj −∇f‖L1(Rd) → 0

as j →∞.
The hypothesis of Theorem 2.6 are then satisfied, yielding

‖∇Mβfj −∇Mβf‖
L

d
d−β (Rd)

→ 0 as j →∞,

as desired.

4. The case 0 < β < 1 for radial functions: Proof of Theorem 1.2

The proof strategy for Theorem 1.2 consists in studying separately what happens
inside and outside a large compact set K. The main difficulty relies in establishing
convergence in K; the term corresponding to Kc may be seen as an error term.
This strategy was already used by the second author in the one dimensional case
[21]. However, the techniques used therein to analyse K and Kc only continue to
work in very specific situations, and we need to develop a new approach in higher
dimensions to deal with the general situation.2

In order to overcome the higher dimensional obstacles, we make use of some
fundamental observations that proved to be useful in establishing the bound

‖∇Mβf‖q ≤ C(d, β)‖∇f‖1 (4.1)

for radial f in [20]. We remark that in contrast to [21], our analysis outside the
compact set is rather general and continues to hold for general function, any dimen-
sion, the centered case and any 0 ≤ β < d (including the classical Hardy–Littlewood
maximal operator) provided the bound (4.1) holds in each corresponding case. This
will be appropriately discussed in Section 4.3.

4.1. Preliminaries. A trivial but important observation for the non-centered max-
imal function is that if |∇Mβf(x)| 6= 0 and B ∈ Bβx , then x ∈ ∂Bx: as Bx is an
admissible ball for all y ∈ Bx, one would have Mβf(x) ≤ Mβf(y) for all y ∈ Bx,
so if x lied in the interior of the ball, it would be a local minimum for Mβf and
therefore ∇Mβf(x) = 0.

Arguing in a similar manner, if f is a radial function, |∇Mβf(x)| 6= 0 and
Bx ∈ Bβx , the center of the ball B must lie in the direction joining x and the
origin: otherwise, there is a point y lying in the interior of Bx with |y| = |x| which
by radiality satisfies |∇Mβf(x)| = |∇Mβf(y)|, and the previous argument would
imply |∇Mβf(y)| = 0. Thus, if Bx = B(zx, rx) ∈ Bβx , one has zx = cxx for some
constant cx. However, by radiality and the argument just described, one must have
cx ≥ 0, as otherwise −x lies in the interior of Bx. Then we are left with two cases:
either

Bx ⊆ B(0, |x|) or Bx ⊂ B(0, |x|)c. (4.2)

The first case corresponds to 0 ≤ cx ≤ 1 and the second one to cx > 1.
Next we shall recall two preliminary lemmas observed in [20] that will be useful to

the proof of Theorem 1.2. The first one corresponds to a refinement of Kinnunen’s
pointwise estimate (1.1).

2As mentioned in the Introduction, the analysis on K for d = 1 in [21] only extends in a natural
way to higher dimensions if d−1 < β < d; further details of this will be provided in the Appendix
A
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Lemma 4.1 (Lemma 2.9 [20]). Suppose that f ∈ W 1,1
loc (Rd), 0 < β < d and

Bx ∈ Bβx for some x ∈ Rd \ {0} such that Bx ⊂ B(0, |x|). Then∣∣∣∣ ∫
Bx

∇|f |(y) dy

∣∣∣∣ ≤ ∫
Bx

|∇f(y)| |y|
|x|

dy .

The second one is a refinement of the Kinnunen–Saksman inequality (1.2), which
in fact is an implicit consequence of their proof. It is noted that this refinement
also works for the centered maximal function - this will be used in Section 4.3

Lemma 4.2 ([14]). Suppose that f ∈W 1,1
loc (Rd), 0 < β < d and Bx ∈ Bβx for some

x ∈ Rd, and let rx denote the radius of Bx. Then∣∣∣rβx ∫
Bx

∇|f |(y) dy
∣∣∣ ≤ C(d, β)rβ−1

x

∫
Bx

|f(y)|dy.

In fact, Luiro and Madrid [20, Lemma 2.7] obtained a further refinement which
consists on an equality with a boundary term arising from integration-by-parts,
although such a stronger statement will not be needed for the purposes of this
paper.

Remark 4.3. The above lemmas continue to hold for β = 0 if x is such that
Mf(x) > f(x), which ensures 0 /∈ R0

x.

4.2. Inside a compact set K ⊂ Rd, d > 1. We first prove convergence inside a
compact set K.

Proposition 4.4. Let 0 < β < 1, f ∈ W 1,1(Rd) and {fj}j∈N ⊂ W 1,1(Rd) radial
functions such that ‖fj − f‖W 1,1(Rd) → 0. Then, for any compact set K = B̄(0, b),

‖∇Mβfj −∇Mβf‖Lq(K) → 0 as j →∞, (4.3)

where q = d/(d− β).

To this end, we start establishing the desired result for the auxiliary operator

M I
βfj(x) := sup

B̄(z,r)3x,r≤|x|/4

rβ

|B(z, r)|

∫
B(z,r)

|f(y)|dy.

In the case β = 0 this operator was introduced by Luiro [19]. Its fractional coun-
terpart was implicitly studied in [20], and in particular

‖∇M I
βf‖Lq(Rd) . ‖∇f‖L1(Rd) (4.4)

holds for radial f from the analysis on the set E3 in [20].
The following lemmas will be crucial to analyse the convergence of M I

β at the
derivative level.

Lemma 4.5. Let 0 < β < 1, f ∈ W 1,1(Rd) and {fj}j∈N ⊂ W 1,1(Rd) radial
functions such that ‖fj − f‖W 1,1(Rd) → 0. Then, for every ε > 0 there is a ball
B1 = B(0, a) such that

‖∇M I
βf‖Lq(B1) < ε and ‖∇f‖L1(B1) < ε,

and, moreover,

‖∇M I
βfj‖Lq(B1) < ε and ‖∇fj‖L1(B1) < ε

for all j ≥ j(ε).

Proof of Lemma 4.5. For every ε > 0 there exists a ball B = B(0, δ) such that
‖∇f‖L1(B) < ε and ‖∇M I

βf‖Lq(B) < ε, also there exists j(ε) such that ‖∇fj −
∇f‖L1(Rd) < ε for all j ≥ j(ε). Then ‖∇fj‖L1(B) < 2ε for all j ≥ j(ε). Moreover

‖∇M I
βfj‖Lq( 2

3B) ≤ ‖∇M I
β(fjχB)‖Lq(B) . ‖∇fj‖L1(B) < 2ε
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for all j ≥ j(ε), where the first inequality follows by the definition of M I and
the second one from the boundedness (4.4). The conclusion is obtained choosing
B1 = 2

3B. �

Lemma 4.6. Let 0 ≤ β < 1, f ∈ W 1,1(Rd) and {fj}j∈N ⊂ W 1,1(Rd) radial
functions such that ‖fj − f‖W 1,1(Rd) → 0. Then, for any annulus A(a, b) := {x ∈
Rd : a ≤ |x| ≤ b} with 0 < a < b/3 < ∞ we have that ‖fj − f‖L∞(A(a,b)) → 0 as

j →∞ then ‖M I
βfj −M I

βf‖L∞(A(2a,2b/3)) → 0.

Proof. Let f̃ , f̃j : (0,∞)→ R be such that f(x) = f̃(|x|) and fj(x) = f̃j(|x|). Note

that ∇f(x) = f̃ ′(|x|) x
|x| and ∇fj(x) = f̃ ′j(|x|) x

|x| . By hypothesis one has that∫ ∞
0

|f̃j(t)− f̃(t)|td−1 dt→ 0 and

∫ ∞
0

|f̃ ′j(t)− f̃ ′(t)|td−1 dt→ 0 (4.5)

as j → ∞. Note that given g ∈ W 1,1((0,∞)), by the Fundamental Theorem of
Calculus,

|g(x)| ≤ |g(y)|+
∫ b

a

|g′(t)|dt

for any x, y ∈ [a, b]. Averaging over y ∈ [a, b] one has

|g(x)| ≤ 1

b− a

∫ b

a

|g(t)|dt+

∫ b

a

|g′(t)|dt.

Applying this for g = f̃j − f̃ , it follows that for a ≤ |x| ≤ b,

|fj(x)−f(x)| ≤ 1

(b− a)ad−1

∫ b

a

|f̃j(t)− f̃(t)|td−1 dt+
1

ad−1

∫ b

a

|f̃ ′j(t)− f̃ ′(t)|td−1 dt

and using (4.5) it follows that ‖fj − f‖L∞(A(a,b)) → 0 as j →∞.

Finally, note that for 2a ≤ |x| ≤ 2b/3, one has M I
βf = M I

β(fχA(a,b)), as the

admissible radii r in the definition of M I
β satisfy r ≤ |x|/4. �

The next Lemma follows similarly to Lemma 2.4.

Lemma 4.7. Let 0 < β < 1, f ∈ W 1,1(Rd) and {fj}j∈N ⊂ W 1,1(Rd) radial
functions such that ‖fj − f‖W 1,1(Rd) → 0. Then

∇M I
βfj(x)→ ∇M I

βf(x) a.e as j →∞. (4.6)

In view of the previous lemmas, the desired convergence result for M I
β on radial

functions can be obtained using the one-dimensional arguments in [21]. Those ar-
guments cannot be extended to Mβ , as the full maximal operator lacks the uniform
convergence obtained in Lemma 4.6. This is in contrast with d = 1, where uniform
convergence follows for Mβ for convergent sequences of functions in W 1,1(R).

Proposition 4.8. Let 0 < β < 1, f ∈ W 1,1(Rd) and {fj}j∈N ⊂ W 1,1(Rd) radial
functions such that ‖fj − f‖W 1,1(Rd) → 0. Then, for any compact set K = B̄(0, b),

‖∇M I
βfj −∇M I

βf‖Lq(K) → 0 as j →∞, (4.7)

where q = d/(d− β).

Proof. By Lemma 4.5 it suffices to show the convergence for any annulus A(a, b)
with 0 < a < b/3 <∞. By Lemma 4.7 and the dominated convergence theorem, it
suffices to show that there exist a constant C > 0 and j0 ∈ N such that

|∇M I
βfj(x)| ≤ C for all x ∈ A(a, b) and all j ≥ j0 ,

as constants are integrable on bounded domains.
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To this end, let CA, CA,j > 0 be such that

inf
x∈A(a,b)

M I
βf(x) = CA and inf

x∈A(a,b)
M I
βfj(x) = CA,j ;

note that these constants always exist provided f is not identically 0. By Lemma 4.6
one has ‖M I

βfj−M I
βf‖L∞(A(a,b)) → 0 as j →∞, so there exists j1(A) ∈ N such that

CA,j > CA/2 for all j > j1(A). For each x ∈ A(a, b), let Bx,j := B(zx,j , rx,j) ∈ Bβx,j .
Then

CA/2 ≤ rβx,j
∫
Bx,j

|fj | ≤ rβx,j‖fj‖L∞(A(a,b)) . r
β
x,j‖f‖L∞(A(a,b)) (4.8)

for j > j0 := max{j1(A), j2(A)} where j2(A) ∈ N is large enough so that ‖fj −
f‖L∞(A(a,b)) ≤ ‖f‖L∞(A(a,b)), which holds by Lemma 4.6. As β > 0, one has the

uniform lower bound rx,j & (CA)1/β =: C̄A > 0.
This uniform lower bound on the radius together with Lemmas 2.2 and 2.3 yield

the desired bound

|∇M I
βfj(x)| ≤

∣∣∣rβx,j ∫
Bx,j

∇|fj |(y) dy
∣∣∣

.
1

(C̄A)d−β
(
‖∇|fj | − ∇|f |‖L1(Rd) + ‖∇|f |‖L1(Rd)

)
. 1

for all x ∈ A(a, b) and all j > j0.
�

Remark 4.9. The arguments used for to prove Proposition 4.8 continue to work
for the centered version of M I

β .

Now we are in position to obtain our desired convergence result for the full Mβ

at the derivative level on compact sets.

Proof of Proposition 4.4. Set f0 = f , and let Ej be the set of measure zero for
which Lemma 2.2 fails for fj . The set E := ∪j≥0Ej continues to have measure
zero. Let F , G and H be the set of measure zero for which Lemmas 2.1, 2.4
and Remark 2.5 fail respectively. It then suffices to show (4.7) for K replaced by

K̃ := K\(E ∪ F ∪G ∪H), which for ease of notation is relabelled as K.
For all j > 0 we have K = K0

j ∪Uj∪Vj∪Wj , where K0
j = {x ∈ K : ∇Mβfj(x) =

0} and

Uj = {x ∈ K \K0
j : ∃ Bx,j ∈ Bβx,j with rx,j > |x|/4 and Bx,j ⊂ B(0, |x|)c},

Vj = {x ∈ K \K0
j : ∃ Bx,j ∈ Bβx,j with rx,j > |x|/4 and Bx,j ⊂ B(0, |x|)}

and

Wj = {x ∈ K \K0
j : Mβf(x) = M I

βf(x)}.
The definitions of Uj and Vj are motivated by the two types of balls that one needs
to consider when |∇Mβfj(x)| 6= 0: see the discussion at the beginning of Section
4.1 and display (4.2). The additional constraint rx,j > |x|/4 is included because
the case of small radii has already been analysed via the operator M I

β . Define the
functions

uj(x) :=

∫
Rd
|∇|fj |(y)|

χB(0,|y|)(x)

|y|d
dy,

and

vj(x) :=
1

|x|d

∫
B(0,|x|)

|∇fj(y)| |y|
|x|

dy.
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By Lemma 2.2,

|∇Mβfj(x)|q ≤ 1

(ωd)q−1
‖∇|fj |‖q−1

1

∣∣∣ ∫
Bx,j

∇|fj |(y) dy
∣∣∣ for all x ∈ K. (4.9)

Note that as |∇Mβfj(x)| 6= 0 on Uj ∪Vj , the good balls Bx,j ∈ Bβx,j are of the type
described in the previous subsection: x ∈ ∂Bx,j and the center of Bx,j belongs to
the line joining x and the origin; this features in the following bounds on Uj and
Vj .

For every x ∈ Uj , if y ∈ Bx,j one has rx,j ≥ |y| − |x| ≥ |y| − 4rx,j and |x| ≤ |y|.
Then∣∣∣ ∫

Bx,j

∇|fj |(y) dy
∣∣∣ ≤ 5d

ωd

∫
Rd
|∇|fj |(y)|

χB(0,|y|)(x)

|y|d
dy =

5d

ωd
uj(x) on Uj .

For every x ∈ Vj , one has |x|/4 < rx,j ≤ 2|x| and Lemma 4.1 then yields∣∣∣ ∫
Bx,j

∇|fj |(y) dy
∣∣∣ ≤ 4d

ωd|x|d

∫
B(0,|x|)

|∇fj(y)| |y|
|x|

dy =
4d

ωd
vj(x) on Vj .

Using (4.9) in Uj ∪ Vj and the previous estimates, for all j > 0,

|∇Mβfj(x)|q . ‖∇|fj |‖q−1
1

(
uj(x) + vj(x)

)
+ |∇M I

βfj(x)|q on K. (4.10)

The desired result will follow from an application of the generalised dominated
convergence theorem (Theorem 2.6) for functions on L1. Indeed, a successful ap-
plication of that theorem would yield

‖|∇Mβfj |q − |∇Mβf |q‖L1(K) → 0 as j →∞,

and consequently ∫
K

|∇Mβfj |q →
∫
K

|∇Mβf |q as j →∞.

Convergence on Lq(K) would now follow from the Brézis–Lieb lemma (see Subsec-
tion 2.3). Therefore, it suffices to verify the hypothesis of Theorem 2.6 with the
sequences involved in (4.10).

Concerning the left-hand-side, the estimate ‖∇Mβf‖q . ‖∇f‖1 in [20] implies
that the sequence {|∇Mβfj(x)|q}j∈N is on L1(K). Moreover, Lemma 2.4 ensures
that |∇Mβfj |q → |∇Mβf |q a.e. as j →∞, satisfying the desired hypothesis.

Concerning the right-hand-side, by Lemma 4.7 and Proposition 4.8 one has that

|∇M I
βfj(x)| → |∇M I

βf(x)| and ‖∇M I
βfj −∇M I

βf‖Lq(K) → 0 (4.11)

as j →∞, so it suffices to show

uj(x)→ u(x) and ‖uj − u‖1 → 0 as j →∞, (4.12)

vj(x)→ v(x) and ‖vj − v‖1 → 0 as j →∞ (4.13)

where u and v are defined analogously to uj and vj respectively but with fj re-
placed by f . Indeed, Lemma 2.3 ensures that ‖∇|fj | − ∇|f |‖1 → 0 as j → ∞,
so together with (4.11), (4.12) and (4.13) this implies that the right-hand-side on
(4.10) converges a.e. and on L1, as desired for the application of Theorem 2.6.

The rest of the proof is devoted to verify (4.12) and (4.13).
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4.2.1. The case of uj. For any x 6= 0, one trivially has

|uj(x)− u(x)| ≤
∫
Rd
|∇|fj |(y)−∇|f |(y)|

χB(0,|y|)(x)

|y|d
dy

≤ 1

|x|d
‖∇|fj | − ∇|f |‖1 → 0 as j →∞

as |y| ≥ |x|, so uj → u a.e. as j →∞. Moreover, by Fubini’s theorem

‖uj − u‖1 ≤
∫
Rd
|∇|fj |(y)−∇|f |(y)|

∫
Rd

χB(0,|y|)(x)

|y|d
dxdy

. ‖∇|fj | − ∇|f |‖1 → 0 as j →∞.

4.2.2. The case of vj. Similarly, for any x 6= 0,

|vj(x)− v(x)| ≤ 1

|x|d

∫
B(0,|x|)

|∇fj(y)−∇f(y)| |y|
|x|

dy

≤ 1

|x|d
‖∇fj −∇f‖1 → 0 as j →∞.

Moroever, by Fubini’s theorem and a change to polar coordinates one has

‖vj − v‖1 ≤
∫
Rd
|∇fj(y)−∇f(y)||y|

∫
B(0,|y|)c

|x|−d−1 dxdy

. ‖∇fj −∇f‖1 → 0 as j →∞,
as desired. This concludes the proof of Proposition 4.4.

�

4.3. Smallness outside a compact set 3K. In order to conclude the proof of
Theorem 1.2, it suffices to show smallness outside a compact set. Our argument
relies on Lemma 4.2, and therefore continues to work for the case β = 0, the
centered maximal function M c

β and does not require any radial hypothesis on the
functions.

Proposition 4.10. Let 0 ≤ β < d, f ∈ W 1,1(Rd) and {fj}j∈N ⊂ W 1,1(Rd) such
that ‖fj − f‖W 1,1(Rd) → 0. Assume that Mβ ∈ {Mβ ,M

c
β} satisfies

‖∇Mβf‖q ≤ ‖∇f‖1, (4.14)

where q = d/(d− β). Then, for any ε > 0 there exists a compact set K and jε > 0
such that

‖∇Mβfj −∇Mβf‖Lq((3K)c) < ε

for all j ≥ jε.

The above lemma may be applied in our case as the bound (4.14) is satisfied for
the non-centered fractional maximal function Mβ acting on radial functions. As is
mentioned above, it is remarked that it would also apply to the centered case, to
general functions and to β = 0 provided the hypothetical endpoint Sobolev bound
(4.14) holds in such cases.

Proof. Let 1 < p < d
d−1 and r be such that 1

r = 1
p −

β
d . As fj , f ∈ W 1,1, one has

fj , f ∈ Lp, and by the boundedness of Mβ one has

‖Mβf‖r . ‖f‖p. (4.15)

Given ε > 0, let K be a compact set satisfying∫
Kc

|f | < ε,

∫
Kc

|∇f | < ε,

∫
Kc

|Mβf |r < εr and

∫
Kc

|∇Mβf |q < (ε/2)q (4.16)
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for some r > q; note that the two last conditions follow from (4.15) and the hy-
pothesis (4.14). Moreover, let jε > 0 be such that

‖fj − f‖L1(Rd) < ε and ‖∇fj −∇f‖L1(Rd) < ε (4.17)

for all j ≥ jε.
For every j ≥ jε write (3K)c = Y j1 ∪Y

j
2 , where Y j1 := {x ∈ (3K)c : K∩Bx,j = ∅}

and Y j2 = (3K)c \ Y j1 . By the triangle inequality and the last condition in (4.16) it
suffices to show ∫

(3K)c
|∇Mβfj |q < (ε/2)q for all j ≥ jε.

On Y j1 one may replace fj by fjχRd\K . Using (4.14), (4.16) and (4.17),∫
Y j1

|∇Mβfj(y)|q dy ≤
∫
Rd
|∇Mβ(fjχRd\K)(y)|q dy

. ‖∇(fjχRd\K)‖q
L1(Rd)

. ‖(∇fj)χRd\K‖
q
L1(Rd)

≤ ‖∇fj −∇f‖qL1(Rd)
+ ‖(∇f)χRd\K‖

q
L1(Rd)

. 2εq

for all j ≥ jε.
If x ∈ Y j2 one has rx,j > |x|/3. This and Lemma 4.2 imply3

|∇Mβfj(x)| ≤ C(d, β)

rx,j
Mβfj(x) ≤ 3C(d, β)

|x|
Mβfj(x).

For p and r as above, note that r > q and qr
r−q > d. Then, by Hölder’s inequality,

(4.15), (4.16) and (4.17),∫
Y j2

|∇Mβfj(x)|q dx .
(∫

Y j2

(Mβfj)
r
) q
r
(∫

Y j2

|x|
−rq

(r−q) dx
) r−q

r

(4.18)

.

((∫
Y j2

(Mβ(fj − f))r
) 1
r

+
(∫

Y j2

(Mβf)r
) 1
r

)q
. (‖fj − f‖Lp(Rd) + ε)q

≤ (2ε)q

for all j ≥ jε, as the values of q and r ensure that the second integral in (4.18) is
uniformly finite provided K contains the unit ball. Reverse engineering the choice
of ε in (4.16) and (4.17) concludes the proof. �

4.4. Concluding the argument: Proof of Theorem 1.2. This is now a simple
consequence of Propositions 4.4 and 4.10. Given ε > 0, by Proposition 4.10 there
exist a compact set K and jε,1 > 0 such that

‖∇Mβfj −∇Mβf‖Lq((3K)c) < ε/2

for all j ≥ jε,1. As 3K is itself a compact set, Proposition 4.4 shows that there
exists jε,2 > 0 such that

‖∇Mβfj −∇Mβf‖Lq(3K) < ε/2

for all j ≥ jε,2. Therefore

‖∇Mβfj −∇Mβf‖Lq(Rd) < ε

for all j ≥ max{jε,1, jε,2}, as desired.

3Note that for β = 0, if x ∈ Y j2 then 0 6∈ R0
x, and Lemma 4.2 can safely be applied in this case.
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5. The case M c
β if d = 1: Proof of Theorem 1.3

As in the previous section, we first use Proposition 4.10 to show that it suffices to
see the convergence inside any compact set K. The convergence in the compact set
then follows from adapting the ideas for the non-centered Mβ used by the second
author in [21, Theorem 1] or in the proof of Proposition 4.8. Note that it is crucial
that if d = 1, ‖fj − f‖W 1,1(Rd) → 0 as j →∞ ensures uniform convergence.

It is important to note that the monotonicity arguments used in [21] to show
smallness of (Mβf)′ outside a compact set do not adapt to the centered maximal
operator Mβ and therefore Proposition 4.10 plays a crucial rôle here.

Appendix A. The case β ∈ (d− 1, d)

The goal of this appendix is to show the limitations of the one dimensional
techniques in [21], which only extend to higher dimensions in the limited range
β ∈ (d− 1, d); note that this range is already subsumed by Theorem 1.1.

Let f ∈ W 1,1 and {fj}j∈N ⊂ W 1,1 such that ‖fj − f‖W 1,1(Rd) → 0 as j → ∞.

By Sobolev embedding and interpolation with L1, one has ‖fj − f‖Lp(Rd) → 0 for

all 1 ≤ p ≤ d
d−1 as j →∞. Note that for p = d/β and any ball Br of radius r,

rβ
∫
Br

|f(y)|dy ≤
(∫

Rd
|f(y)|p dy

)1/p

,

so

|Mβfj(x)−Mβf(x)| ≤ |Mβ(fj − f)(x)| ≤ ‖fj − f‖d/β → 0 as j →∞

for all x ∈ Rd provided 1 ≤ d/β ≤ d
d−1 , which requires d− 1 ≤ β < d. Thus, in this

regime of β, there is uniform convergence of Mβfj to Mβf . Interpolation with the

convergence of Mβfj to Mβf in L
d

d−β ,∞(Rd), which holds by assumption, yields

the convergence on Lr(Rd) with d
d−β < r ≤ ∞.

The convergence inside any compact set K of ∇Mβfj to ∇Mβf on Ld/(d−β)

follows as in the proof of Proposition 4.8 with some minor modifications. First, it
is not needed to remove a small ball near the origin, as in the range d− 1 ≤ β < d
there is uniform convergence4 of Mβfj to Mβ in Rd. Therefore, the compact set
can be treated all in one go and can be analysed as the annulus A(a, b). The lack
of convergence ‖fj − f‖L∞(K) can be overcome replacing the bound (4.8) by

CK/2 ≤ rβx,j
∫
Bx,j

|fj | ≤ rαx,j‖fj‖s′ . rαx,j‖f‖s′

which now holds for j > max{j1(K), j2(K)} where j2(K) is large enough so that
‖fj−f‖s′ ≤ ‖f‖s′ for 1 ≤ s′ ≤ d

d−1 , where α := β−d/s′. Note that if α = β−d/s′ >
0, one has the uniform lower bound rx,j & (CK)1/α =: C̄K > 0. Thus, it is required

that s′ > d/β and s′ < d
d−1 , which holds if d−1 < β < d.5 This immediately yields

the desired uniform lower bound on the radius and the convergence in the compact
set can be concluded as in Proposition 4.8.

In order to show smallness outside a compact set K, one can argue as in Propo-
sition 4.10 or, more directly, appeal to the Kinnunen–Saksman inequality (1.2)
instead of its refined version in Lemma 4.2, which is at our disposal in the range

4The uniform convergence is a key point in the argument to relate the constants CA,j and CA,

and it is not available if 0 < β < d− 1.
5The required conditions on s do not allow to obtain the case β = d − 1; in particular, this

method does not yield results for the classical case β = 0 if d = 1.
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β ∈ (d− 1, d) for d > 1, yielding∫
Kc

|∇Mβfj |q .
∫
Kc

|Mβ−1f |q +

∫
Kc

|Mβ−1(f − fj)|q.

As f ∈ L
d
d−1 (Rd), one has Mβ−1f ∈ Lq(Rd) and one can then choose K so that∫

Kc |Mβ−1f |q < εq. For the second term, one can use the boundedness of Mβ−1

and the convergence of fj to f in L
d
d−1 as j →∞ to conclude∫

Kc

|Mβ−1(f − fj)|q .
(∫

Rd
|f − fj |

d
d−1

)q(d−1)/d

. εq

provided j is large enough.
Finally, it is remarked that the inequality (1.2) does not yield a favourable

estimate in one dimension to show smallness outside a compact set. Instead,
given a fixed compact set K = [−R,R], the argument in [21] for d = 1 splits

Rd\3K = Y j1 ∪ Y
j
2 , where Y j1 := {x 6∈ 3K : |R| 6∈ Bx,j} and Y j2 is the comple-

mentary set in Rd\3K. The smallness in Y j1 is obtained as in Proposition 4.10.

However, to show smallness on Y j2 , the author makes use of the fundamental the-
orem of calculus after observing some monotonocity properties satisfied Mβf ; this
is very attached to the case d = 1 and does not extend to higher dimensions or
the centered case M c

β . The more general Proposition 4.10 now subsumes the one

dimensional case in [21].
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José Madrid, Department of Mathematics, University of California, Los Angeles
(UCLA), Los Angeles, California, 90024, USA

E-mail address: jmadrid@math.ucla.edu


