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Abstract

In this paper we propose a derivation of the Michelson–Sivashinsky
(MS) equation that is based on front propagation only, in opposition to
the classical derivation based also on the flow field. Hence, the charac-
teristics of the flow field are here reflected into the characteristics of the
fluctuations of the front positions. As a consequence of the presence of
the nonlocal term in the MS equation, the probability distribution of
the fluctuations of the front positions results to be a quasi-probability
distribution, i.e., a density function with negative values. We discuss
that the appearance of these negative values, and so the failure of the
pure diffusive approach that we adopted, is mainly due to a restoring
property that is inherent to the phenomenology of the MS equation.
We suggest to use these negative values to model local extinction and
counter-gradient phenomena.
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In this Short Communication we focus on the hydrodynamic in-
stabilities in turbulent premixed combustion that are described by the
Michelson–Sivashinsky (MS) equation [1, 2, 3]. In particular, we test
the feasibility of a derivation of the MS equation that is based on front
propagation only, in opposition to the classical derivation based also
on the flow field. Hence, the characteristics of the flow field are here re-
flected into the characteristics of the fluctuations of the front positions.
In particular, the nonlocal term in the MS equation, that from classical
derivation emerges in relation with the flow velocity at the interface,
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now explictly emerges in the evolution equation of the probability den-
sity function (PDF) of the fluctuations of the front positions.

By studying the information entropy of the PDF of the fluctua-
tions of front position and its rate, it emerges that the MS equation
describes a dynamic that includes the restoring of the system con-
dition. Hence, the fluctuations of the front position are not driven
by a diffusive motion only, but also and more by a wave-like motion.
This wave-like motion restores the system configuration. This restor-
ing property, that is related to the nonlocal term, is responsible for
negative values of the PDF of front position fluctuations and high-
lights that a pure diffusive model is not consistent with the dynamics
of the MS equation. Notwithstanding this, we propose such negative
values as a mere ad hoc modeling approach for local extinction and
counter-gradient phenomena. The discussed derivation can be under-
stood also as an alternative method for computing the solution of MS
equation that provides properties that are complementary to, for ex-
ample, the skewness of the flame curvature [4, 5] or the stability of the
front [6, 7, 8].

The one-dimensional MS equation is

∂φ

∂t
=
∂2φ

∂x2
−
(
∂φ

∂x

)2

− D1
xφ , (1)

where D1
x is the nonlocal space-fractional derivative in the sense of

Riesz–Feller [9] of order 1. According to the standard derivation of
MS equation in cylindrical symmetry [3], function φ(x) represents the
height of the flame in point x of the axis directed along the size of the
cylinder. Hence, in MS equation the space derivative and the nonlo-
cality refers to ”neighbor” points belonging to the flame plane. The
main idea here is to replace these tangential ”neighboring” effects into
random effects, namely φ(x) is still the height of the flame with respect
to a reference located in x but such height is modeled as the average
position of a random front fluctuating with respect to a reference front,
and these fluctuations are from a tangential plane.

In analogy with a previous modelling approach [10], we introduce
the field g(y, t) defined by

g(y, t) =

∫
Ω̌(t)

Pc(y − ŷ; t) dŷ , (2)

where Ω̌(t) is the domain enclosed by the front contour provided by
the G-equation for the mean front position [11]

∂Ǧ

∂t
+ û · ∇Ǧ = sT ‖∇Ǧ‖ , (3)

where sT is the turbulent burning velocity, and Pc(x; t) is the PDF of
the fluctuations of the front positions.

Let any point x of equation (1) be the point of tangency of an
iso-line of g(y, t) such that all these points of tangency x form both
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the space-axis in equation (1) and also the whole envelope of a family
of reference fronts (in analogy with Huygen’s principle): this family is
the consequence of the evolution of an ensemble of source points.

The fluctuations of the positions of the random front are in the
tangential direction with respect to the reference front Ǧ, then we
look for an evolution equation for the PDF of front fluctuations in this
direction only, such that it reduces to a one-dimensional problem along
an axis that we call r. Consider the fractional differential equation

∂Pc
∂t

=
∂2Pc
∂r2

− D1
rPc , Pc(r; 0) = δ(r) , (4)

then its solution can be written in integral form as follows

Pc(r, t) =
1

2π

∫ +∞

−∞
e−iξr e−ξ

2t+|ξ|t dξ . (5)

The second term on the RHS of (4), because of the sign minus, may
be understood as a counter-damping effect of an harmonic oscillator.

Finally, since the fluctuations of the positions of the random front
are in the tangential direction with respect to the reference front Ǧ,
and it holds ∇Pc ·∇Ǧ = 0, under the assumptions of null-mean velocity
field, i.e., û = 0, the evolution equation of g(y, t) along the tangential
axis r is

∂g

∂t
=
∂2g

∂r2
− D1

rg +

∫
Ľ(t)

sT (r̂, t)Pc(r − r̂; t) dr̂ , (6)

where Ľ(t) is the size of a section of the domain Ω̌(t) aligned with the
tangential axis r. Let s∗T (ŷ, t) = sT (ŷ, t)∇ · ň, with ň = ∇Ǧ/‖∇Ǧ‖,
then by comparing (1) and (6) we set

−
(
∂g

∂r

)2

=

∫
Ľ(t)

s∗T (r̂, t)Pc(r − r̂; t)dr̂ ≡ ω , (7)

and s∗T turns out to be

s∗T (r, t) =
1

2π

∫ +∞

−∞
e−iξr eξ

2t−|ξ|t ω̃(ξ, t) dξ . (8)

Hence, for any given point x, the solution φ(x, t) to the MS equation
(1) is equal to g(0, t) that can be obtained by computing the integral
(2) where the kernel function Pc is the Green function of (4) and Ǧ is
the solution of the G-equation (3) with sT established by using (8) for
s∗T .

We stress that the PDF of fluctuations which solves (4) emerges
to be a quasi-probability distribution showing negative values that
requires high care, see Figures 1 and 2. This fact addresses a non-
complete correspondence between the proposed modelling approach
for random front propagation and the MS equation. In particular, we
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argue that this failure is mainly due to a restoring property of the
nonlocal term, i.e.,

1

2
D1
xφ =

1

4π

∫ +∞

−∞

∫ +∞

−∞
|ξ| eiξ(x−µ)φ(µ, t) dξdµ = v∗ , (9)

where v∗ is the velocity of the flow field at the interface. Then, as a
mere modeling approach, the negative values of the quasi-probability
can be interpreted as due to local reversibility of the Eulerian progress
variable that can be ascribed to the so-called counter-gradient phe-
nomenon. This means that if a fixed point is occupied by a burned
volume it turns to be occupied by an unburned one and then the mod-
elization of the local extinction follows, together with the counter-
gradient.

To study this restoring we consider the information entropy of the
modulus of the PDF Pc(x; t), namely:

S(t) = −
∫
|Pc| ln |Pc|dx , (10)

and the plots of the entropy and the entropy production rate dS/dt
are displayed in Figure 3.

The entropy production rate is a measure for the irreversibility of
a process. The diffusion equation represents the canonical irreversible
process and has positive entropy production. The wave propagation
corresponds to the reversible process and has zero entropy production.
In Figure 3, we observe that the rate of the information entropy decays
faster, i.e., ∼ t−2.6, than in the standard diffusive case, i.e., ∼ t−1.

In order to reproduce a similar decay of the rate of information
entropy, we look for a simpler equivalent to |Pc| that share similarities
with respect to the spatial and temporal variations observed in Figure
2. In particular, we chose a function that expresses temporal and
spatial variations in a first window of time, and then decayed to a
standing spatial wave depending only on x. The selected wave-like
function consists of the superposition of a wave and decaying wave-like
disturbances with high frequency. In formulas it reads:

η(x, t) = cos
[x

2

]
+ cos[30x]t−0.6 . (11)

In Figure 4, the information entropy and its rate of function |η(x, t)|
are displayed against the scaling t−1 and t−2.6, and the fast decay
t−2.6 is plotted as reference for the entropy. The fact that the same
decay of entropy rate of Figure 3 is expressed by making use of a
simpler analytical representation, confirms that the salient features
of the Green function of the fractional differential equation (4) are a
spatial (traveling) wave with initial spatio-temporal perturbations.

To conclude, the solution provided by formula (2) highlights through
the function Pc the existence of a restoring wave-like motion inside the
MS equation. Such behaviour cannot be reproduced by a pure diffusive
process, and from this the emergence of negative values of Pc and the
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failure of the proposed approach. This wave-like motion is introduced
in the MS equation through the nonlocal velocity v∗ defined in (9).
This nonlocal term, together with its sign, provides a restoring force
that does not allow for modelling the MS dynamic by diffusive random
fronts only [10].

The emergence of a quasi-probability suggests the idea to introduce,
in analogy with quantum mechanics, a probability amplitude whose
squared modulus provides the observable for the purely propagating
front. In formulas, the following can be stated.

Let C = |C| eiQ = CR + iCI be a probability amplitude with real
and imaginary part. If we assume that function g(y, t) defined in (2),
and related to the MS equation (1) as previously derived, corresponds
to the square of the real part of C, then we have

g = C2
R = |C|2 − C2

I , (12)

where accordingly to definition (2)

|C|2 =

∫
Pc≥0

Pc(x− x̂, t) dx̂ , (13)

and

C2
I = −

∫
Pc<0

Pc(x− x̂, t) dx̂ . (14)

Hence, the negative values of the quasi-probability result to be asso-
ciated to the imaginary part of the probability amplitude C and they
have a role in slowing the propagation because C2

I ≥ 0. In particular,
if we integrate (2) in space we have that in correspondence of the neg-
ative values of the quasi-probability there is a reduction of the mass
amount. Actually, the negative values highlight where statistically the
fraction of burned mixture is replaced by unburned mixture.

From this reasoning, we propose to use the negative intervals of
the quasi-probability for modelling the non-propagating features of
the process as local extintion and counter-gradient phenomena. In
fact, the negative values refer to a Eulerian local reversibility of the
progress variable (and not to a reversibility of the Lagrangian volume
of mixture), that occurs because of the entering of fresh mixture into
a volume just now fully burned. This effect can be ascribed first to
the local extinction, that stops the propagation of the combustion, and
then to the so-called counter-gradient, which is generated by the den-
sity difference between reactants and products, that pushes back the
front of the burned mixture.
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Figure 1: Top: evolution in time of the quasi-probability Pc (5). The colors
from brown to purple stay for time since t = 0.3 to t = 18. Bottom: the
same as in the Top panel but for the function |Pc| normalized in order to
represent a probability density function.
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Figure 2: Surface plot of Pc. Space is reported in the horizontal axis and
time in the vertical axis. The appeareance of the two new modes around the
x-t point (±10, 7) establihes a connection with the peak in the information
entropy, see Figure 3. We hypothesize that the solution of the considered
fractional differential equation (4) due to its nonlocal nature creates new
information (two new maximums appear in the quasi Probability Pc) thus
decreasing the entropy rate of the PDF portrayed in figure 1.
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Figure 3: Information entropy (Top) and its rate (Bottom) of the PDF |Pc|
versus time. Blue stars and red dots decay as t−1 and t−2.6, respectively.
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Figure 4: Information entropy (Top) and its rate (Bottom) of function
|η(x, t)| defined in (11) versus time. Green line and orange stars decay
as t−1 and t−2.6, respectively.
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