
Forward-in-Time Goal-Oriented Adaptivity
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Abstract

In goal-oriented adaptive algorithms for partial differential equations, we
adapt the finite element mesh in order to reduce the error of the solution
in some quantity of interest. In time-dependent problems, this adaptive al-
gorithm involves solving a dual problem that runs backward in time. This
process is, in general, computationally expensive in terms of memory stor-
age. In this work, we define a pseudo-dual problem that runs forward in
time. We also describe a forward-in-time adaptive algorithm that works for
some specific problems. Although it is not possible to define a general dual
problem running forwards in time that provides information about future
states, we provide numerical evidence via one-dimensional problems in space
to illustrate the efficiency of our algorithm as well as its limitations. Finally,
we propose a hybrid algorithm that employs the classical backward-in-time
dual problem once and then performs the adaptive process forwards in time.

Keywords: linear advection-diffusion equation, goal-oriented adaptivity,
pseudo-dual problem, error representation, Finite Element Method

1. Introduction

Goal-oriented adaptive algorithms are widely employed in engineering
[15–17, 20, 24]. This technology seeks to accurately approximate relevant
solution features of partial differential equations (PDEs), called quantities
of interest. We often quantify these features as functionals of the solution.
The main objective of goal-oriented adaptivity is to reduce the error in the
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quantity of interest [1, 14, 18]. The general process is as follows: we define an
auxiliary dual problem, with the output functional as the source. Then, we
represent the error in the quantity of interest as an integral over the whole
domain employing the errors of both primal and dual problems. Finally, we
obtain an upper bound of the error in the quantity of interest in terms of
local element contributions that drive the adaptive process.

To perform goal-oriented adaptivity in time, we need a full space-time
variational formulation of the problem [9]. From this formulation, we can
represent the error in the quantity of interest as an integral over the whole
space-time domain employing the errors of the primal and dual problems.
In this case, the dual problem is also a time-dependent PDE but running
backwards in time. Most authors [5, 10, 22] select discontinuous-in-time
test functions to discretize both primal and dual problems. This selection
decouples the resulting systems and we can solve them as time-marching
schemes [2, 21, 25]. However, as the dual problem runs backward in time,
the goal-oriented adaptive process involves solving two problems running in
opposite directions in time. This fact implies that we need to store all the
information coming from the primal and dual problems in order to estimate
the error contributions and perform the adaptivity.

We can find different strategies for time-domain goal-oriented adaptivity
in the literature: in [3] for the wave equation, in [9, 22] for parabolic problems
and in [23, 26] for nonlinear problems. The aforementioned work employs
implicit time marching-schemes to solve the primal and dual problems as
it is known that they have variational structure. Recently, the authors in
[6] derived a goal-oriented a posteriori error estimation for Implicit-Explicit
schemes employing quadrature rules. Finally, in [13] we proved that ex-
plicit Runge-Kutta methods can be reinterpreted as Galerkin methods and
from this work, we derived in [12] an explicit-in-time goal-oriented adaptive
algorithm for linear parabolic problems.

In this work, following the ideas presented in [7, 8, 11], we define a
pseudo-dual problem that, as the primal problem, runs forward in time.
Then, we define a forward-in-time goal-oriented adaptive process. In the
proposed algorithm, we solve the primal and dual problems at a fixed time
step to adapt the corresponding spatial mesh before we move to the next
time step. This is possible because both primal and dual problems run in the
same direction in time. This approach overcomes the memory storage issue
of the classical algorithm. We can perform the adaptivity as we calculate
the solution, thus we do not need to store the solution at every time step for
each iteration. However, this algorithm only works in some specific problem
configurations. For example, in diffusion problems where the quantity of
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interest is localized in some area of the spatial domain and has support in
the whole time interval. For advection-diffusion problems and for problems
where the quantity of interest is placed in a reduced late time interval, the
pseudo-dual problem we define is not generally well defined. In general, it is
not possible to define a dual problem running forward in time that captures
the necessary information from the future time steps. Nevertheless, the
method works properly in several relevant instances and could be useful in
some engineering problems when some features of the solution are known
beforehand. As an alternative for advection-diffusion problems, we also
propose a hybrid algorithm that solves the classical dual problem backwards
in time once. Then, we set the initial condition of the pseudo-dual problem
as the initial condition of the classical dual problem. Finally, the adaptive
process is performed forwards in time. In both algorithms proposed herein,
we only need to store the solutions of the primal and dual problems at one
time step to perform the adaptivity.

The paper is organized as follows: Section 2 shows the strong and weak
formulations and the discretization of the linear advection-diffusion equa-
tion. Section 3 introduces the classical dual problem and the classical error
representation. Section 4 defines the proposed pseudo-dual problem. Section
5 explains the classical goal-oriented adaptive algorithm in space for a fixed
time grid, the proposed forward-in-time goal-oriented adaptive process, and
the hybrid algorithm. Section 6 presents the numerical results showing in
which situations the algorithm performs properly and also when performs
poorly. Finally, Section 7 summarizes the conclusions.

2. Primal problem

In this section we introduce the strong and weak formulations, and the
discretization of the primal problem.

2.1. Strong formulation

Let Ω an open bounded subset of Rd with d = {1, 2, 3} and I = (0, T ] ⊂
R, we consider the linear advection-diffusion equation

ut −∇ · (κ∇u) + a · ∇u = f in Ω× I,
u = 0 in ∂Ω× I,

u(0) = u0 in Ω,

(1)

where ∂Ω denotes the boundary of Ω and the solution u(x, t) represents the
temperature distribution in a body.
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The source term f(x, t), the initial condition u0(x), the diffusivity tensor
κ(x) and the velocity field a(x) are known data. We assume that a(x) is a
bounded divergence-free vector field, ∇·a = 0, and κ(x) is a bounded above
and strictly positive symmetric, second order tensor.

2.2. Weak formulation

We derive a space-time formulation of problem (1) [3, 22]. We consider
the Hilbert space

V := H1
0 (Ω) = {u ∈ H1(Ω) | u = 0 on ∂Ω},

and its dual V ′ = H−1(Ω). We introduce the test space V := L2(I;V ),
which is the Bochner space of all integrable functions in time taking values
in V , and we denote its dual space as V ′ := L2(I;V ′).

We need for the solution to be in V and also ut ∈ V ′, so we consider the
trial space

U := {u ∈ V | ut ∈ V ′},

which is continuously embedded in C(Ī;L2(Ω)), therefore, all functions in
U are globally continuous in time.

Now, we multiply the equation in (1) by the test functions v ∈ V, we in-
tegrate over the space-time domain Ω×I and we impose the initial condition
in weak form. Then, the weak formulation of (1) is:

Find u ∈ U such that∫
I
〈ut, v〉 dt+

∫
I
(κ∇u,∇v) dt+

∫
I
(a · ∇u, v) dt =

∫
I
〈f, v〉 dt, ∀v ∈ V,

(u(0), w) =(u0, w), ∀w ∈ L2(Ω),

(2)

where we assume that f ∈ V ′ and u0 ∈ L2(Ω).
Here, u(0) := u(x, 0), 〈·, ·〉 denotes the duality pairing between the spaces

V and V ′, (·, ·) is the inner product in L2(Ω) and we

B(u, v) :=

∫
I
〈ut, v〉 dt+

∫
I
(κ∇u,∇v) dt+

∫
I
(a · ∇u, v) dt. (3)

2.3. Discretization

For the discretization of problem (2), we employ a discontinuous Galerkin
(DG) method in time and a finite element (FE) method in space.

First, we define a partition of the time interval Ī = [0, T ] as

0 = t0 < t1 < . . . < tm−1 < tm = T, (4)
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and we denote by Ik = (tk−1, tk], τk := tk − tk−1, ∀k = 1, . . . ,m and
τ := max

1≤k≤m
τk.

In order to fully discretize problem (2), we select a finite element space
V k
h ⊂ V associated to each time step tk, ∀k = 0, . . . ,m and we select the

following discrete space

Vτh := {vτh ∈ L2(I;V ) | vτh|Ik
∈ Pr(Ik;V k

h ), ∀k = 1, . . . ,m, vτh(0) ∈ V 0
h } ⊂ V.

where Pr(Ik;V
k
h ) is the space of all polynomials with degree less or equal

than r on the interval Ik taking values in V k
h .

The functions in Vτh could be discontinuous at each time step tk, so we
define the jump of the function v at tk as [[v]]k := v(t+k )− v(t−k ), where

v(t+k ) := lim
s−→0+

v(tk + s), v(t−k ) := lim
s−→0+

v(tk − s).

The authors in, [19, 22], state that a Discontinuous Galerkin formulation
of (2) is {

Find uτh ∈ Vτh such that
BDG(uτh, vτh) = F (vτh) ∀vτh ∈ Vτh,

(5)

where

BDG(u, v) : =
m∑
k=1

∫
Ik

(
〈ut, v〉+ (κ∇u,∇v) + (a · ∇u, v)

)
dt

+
m∑
k=1

(
[[u]]k−1, v(t+k−1)

)
+ (u(0−), v(0−)),

F (v) : =
m∑
k=1

∫
Ik

〈f, v〉 dt+ (u0, v(0−)).

We can express

BDG(u, v) =
m∑
k=1

Bk(u, v) +
m∑
k=1

(
[[u]]k−1, v(t+k−1)

)
+ (u(0−), v(0−)), (6)

where Bk(·, ·) is the restriction of the bilinear form B(·, ·) to Ik.
As the test functions in (5) are discontinuous-in-time, we can split the

statement into m local-in-time problems and solve it using a time-marching
scheme. From [3] we know that when r = 0, the resulting scheme obtained
from (5) is algebraically equivalent to the backward Euler method in time.
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3. Dual problem and error representation

In this section, we define the dual problem we employ to derive the
classical error representation.

3.1. Output functional and dual problem

We consider a quantity of interest given by a linear functional L : U ⊂
V −→ R, the output functional which quantifies a relevant feature of the
solution.

In this paper, we consider linear output functionals of the form

L(v) =

∫
I
〈g, v〉 dt+ (zT , v(T )),

where g ∈ V ′ and zT ∈ L2(Ω) are given functions.
In order to represent the error in the quantity of interest, we introduce

the following dual problem

−
∫
I
〈zt, v〉 dt+

∫
I
(κ∇z,∇v) dt−

∫
I
(a · ∇z, v) dt =

∫
I
〈g, v〉 dt, ∀v ∈ V,

(z(T ), w) =(zT , w), ∀w ∈ L2(Ω).

(7)

where B∗(·, ·) is the adjoint operator of the form B(·, ·)

B∗(z, v) := −
∫
I
〈zt, v〉 dt+

∫
I
(κ∇z,∇v)dt−

∫
I
(a · ∇z, v)dt.

For this particular case, the corresponding strong formulation of (7) is
−zt −∇ · (κ∇z)− a · ∇z = g in Ω× I,

z = 0 in ∂Ω× I,
z(T ) = zT in Ω,

(8)

and we conclude that the dual problem runs backwards in time.

3.2. Discretization of the dual problem

The discontinuous Galerkin formulation of problem (7) is{
Find zτh ∈ Vτh such that
B∗

DG
(zτh, vτh) = L(vτh) ∀vτh ∈ Vτh,

(9)

6



where B∗
DG

(·, ·) is the resulting bilinear form after integrating by parts in
time and the advection term in space the form BDG(·, ·)

B∗
DG

(z, v) : =

m∑
k=1

∫
Ik

(
− 〈zt, v〉+ (κ∇z,∇v)− (a · ∇z, v)

)
dt

−
m−1∑
k=0

(
[[z]]k, v(t−k )

)
+ (z(T−), v(T−)).

In the same way as the primal problem, we solve the dual problem (7)
employing time-marching scheme but running backwards in time.

3.3. Error representation

First, as Vτh 6⊂ U because functions in Vτh are discontinuous in time and
functions in U are globally continuous, we define the following space

Vτ = {v ∈ V | v ∈ L2(Ik;V ), vt ∈ L2(Ik;V
′), ∀k = 1, . . . ,m},

which is the minimum subspace of V containing both Vτh and U .
Now, problem (2) holds for any subspace of V. In particular, we select

Vτ and adding both equations in (2), we obtain

B(u, vτ ) + (u(0), vτ (0)) = F (vτ ) ∀vτ ∈ Vτ .

Since the solutions of (2) and (7) are continuous in time, the jump terms
are zero, so they also satisfy problems (5) and (9), respectively. Therefore,
we consider the following continuous and discrete primal problems

Find u ∈ U and uτh ∈ Vτh such that

BDG(u, vτ ) = F (vτ ) ∀vτ ∈ Vτ ⊂ V,
BDG(uτh, vτh) = F (vτh) ∀vτh ∈ Vτh,

(10)

and the continuous dual problem{
Find z ∈ U such that

B∗
DG

(z, vτ ) = L(vτ ) ∀vτ ∈ Vτ ⊂ V.
(11)

We define the error of the primal problem as e = u − uτh ∈ Vτ ⊂ V.
Now, substituting u by e in (11) and integrating by parts in time and in
space the advection term, we obtain the classical error representation

L(e) = B∗
DG

(z, e) = BDG(e, z), (12)

which represents the error in the quantity of interest as an integral over the
whole space-time domain Ω× I.
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4. Forward-in-time pseudo-dual problem

The existing goal-oriented adaptive strategies based on time-marching
schemes are computationally expensive because we need to solve the primal
problem forward in time, while the dual problem is solved backwards in
time.

To reduce the computational cost and implementation complexity, we in-
troduce an alternative dual problem, which we denote pseudo-dual problem
that, as the primal problem, runs forward in time.

We consider the following pseudo-dual problem{
Find z̃ ∈ U such that

B̃(z̃, vτ ) = L(vτ ) ∀vτ ∈ Vτ ,
(13)

where B̃(·, ·) is an alternative bilinear form and since e ∈ Vτ , we obtain the
following error representation,

L(e) = B̃(z̃, e). (14)

For example, if we select B̃(z̃, v) = BDG(z̃, v), as z̃ is a continuous func-
tion in time, we have that

B(z̃, vτ ) + (z̃(0), vτ (0)) =

∫
I
〈g, vτ 〉 dt+ (zT , vτ (T )), ∀vτ ∈ Vτ .

Now, as explained in [4], we can express the right-hand-side of the previous
equation as

B(z̃, vτ ) + (z̃(0), vτ (0)) =

∫
I
〈g, vτ 〉 dt+

∫
I

(δ(t− T )zT , vτ ) dt, ∀vτ ∈ Vτ ,

(15)
where δ(t−T ) is a Dirac delta distribution. Therefore, following the same ar-
gument as in Section 3, we conclude that the initial condition of the pseudo-
dual problem is zero and both functions g and zT are part of the source.

We can solve problem (13) forward in time using a time-marching scheme.
However, as we show in the numerical results, the pseudo-dual problem is
only properly defined for particular problems.

5. Goal-oriented adaptivity in space

In this section, we first describe the classical goal-oriented adaptivity in
space for a fixed time mesh [23]. Then we propose an alternative strategy
based on the pseudo-dual problem (13).
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In the error representation (12), we need the exact solutions u and z of
the primal and dual problems, respectively. Since they are unavailable, we
approximate them numerically by enriching the subspace, Vτh and selecting
u ∼ uτ h

2
∈ Vτ h

2
, z ∼ zτ h

2
∈ Vτ h

2
.

We define the following error

eτ h
2

:= uτ h
2
− uτh,

and we approximate the exact error as

e = u− uτh ∼ uτ h
2
− uτh = eτ h

2
.

We focus on reducing the error in the quantity of interest coming from
the spatial discretization, i.e., L(eτ h

2
).

5.1. Classical goal-oriented adaptive algorithm

The classical goal-oriented adaptive strategy in space is based on the
error representation (12)

L(eτ h
2
) = BDG

(
eτ h

2
, zτ h

2

)
,

or equivalently from (6)

L(eτ h
2
) =

m∑
k=1

nk∑
i=1

BΩk
i
(eτ h

2
, zτ h

2
) +

(
[[eτ h

2
]]k−1, zτ h

2
(t+k−1)

)
Ωk

i

+

+

n0∑
i=1

(
eτ h

2
(0−), zτ h

2
(0−)

)
Ω0

i

,

(16)

where {Ωk
i }i=1,...,nk

, ∀k = 0, . . . ,m is a partition of the spatial domain Ω at
t = tk. Here, (·, ·)Ωk

i
and BΩk

i
denote the restrictions of (·, ·) and Bk(·, ·) to

each element Ωk
i , respectively.

Applying the triangle inequality in (16), we obtain an upper bound of
the error in the quantity of interest

|L(eτ h
2
)| ≤

m∑
k=1

nk∑
i=1

∣∣∣∣BΩk
i
(eτ h

2
, zτ h

2
) +

(
[[eτ h

2
]]k−1, zτ h

2
(t+k−1)

)
Ωk

i

∣∣∣∣+
+

n0∑
i=1

∣∣∣∣(eτ h
2
(0−), zτ h

2
(0−)

)
Ω0

i

∣∣∣∣ ,
(17)
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which may guide the goal-oriented adaptive process.
Now, we define the error estimator of each time step as

Est0 : =
∣∣∣(eτ h

2
(0−), zτ h

2
(0−)

)∣∣∣ ,
Estk : =

∣∣∣Bk(eτ h
2
, zτ h

2
) +

(
[[eτ h

2
]]k−1, zτ h

2
(t+k−1)

)∣∣∣ , (18)

∀k = 1, . . . ,m, and the error estimator of each spatial element Ωk
i as

η0
i : =

∣∣∣∣(eτ h
2
(0−), zτ h

2
(0−)

)
Ω0

i

∣∣∣∣ ,
ηki : =

∣∣∣∣BΩk
i
(eτ h

2
, zτ h

2
) +

(
[[eτ h

2
]]k−1, zτ h

2
(t+k−1)

)
Ωk

i

∣∣∣∣ , (19)

∀i = 1, . . . , nk, and ∀k = 1, . . . ,m.
Finally, Figure 1 illustrates a classical process to perform goal-oriented

adaptivity in space for a fixed time grid. The input arguments of the clas-
sical algorithm are the time grid {τk}k=1,...,m, the spatial mesh at each time
step {Mk

h}k=0,...,m, a tolerance tol1 and two parameters θ, λ ∈ [0, 1]. We first
calculate the primal solutions uτh and uτ h

2
forward in time. Then, we com-

pute the dual solution zτ h
2

and the estimators Estk backward in time. For

all spatial meshes satisfying Estk ≥ θ · max
0≤k≤m

Estk, we refine those elements

in space that satisfy ηki ≥ λ · max
1≤i≤nk

ηki . The process ends when the relative

error 100 · |L(eτ h
2
)|/|L(uτ h

2
)| is lower than the fixed tolerance tol1.

5.2. Forward-in-time goal-oriented adaptive algorithm

We now describe a goal-oriented adaptive strategy based on the pseudo-
dual problem (13) when B̃(z̃, v) = BDG(z̃, v) that runs forwards is time.

From (14), we have

L(eτ h
2
) = BDG(z̃τ h

2
, eτ h

2
),

and obtain an upper bound of the error in the quantity of interest

|L(eτ h
2
)| ≤

m∑
k=1

nk∑
i=1

∣∣∣∣BΩk
i
(z̃τ h

2
, eτ h

2
) +

(
[[z̃τ h

2
]]k−1, eτ h

2
(t+k−1)

)
Ωk

i

∣∣∣∣+
+

n0∑
i=1

∣∣∣∣(z̃τ h
2
(0−), eτ h

2
(0−)

)
Ω0

i

∣∣∣∣ .
(20)
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t0 t1 . . . tm

Primal problem Primal problem . . . Primal problem

Dual problem Dual problem . . . Dual problem

Error estimator

Refine mesh

Error estimator

Refine mesh

. . . Error estimator

Refine mesh

Figure 1: Classical goal-oriented adaptive algorithm.

We construct the estimators following a similar technique to the one we
describe for (18) and (19). The algorithm we propose describes a forward-
in-time goal-oriented adaptivity process for the spatial error for a fixed time
grid. As before, the input arguments are the time grid {τk}k=1,...,m, the
spatial mesh at each time step {Mk

h}k=0,...,m, a tolerance tol2, a parameter
λ ∈ [0, 1] and the maximum number of iterations per time step. We calculate
the solutions uτh, uτ h

2
, zτ h

2
and the estimators Estk at each time step. Then,

if Estk is greater than a tolerance tol2, we refine the elements in space
satisfying ηki ≥ λ · max

1≤i≤nk

ηki . Figure 2 illustrates the proposed adaptive

algorithm.
Although the computational time in the proposed forward-in-time adap-

tive algorithm is similar to the classical one, there is a considerable saving in
memory storage. In this algorithm, we do not need to store the solutions of
the primal and dual problems at all times to perform the adaptive process.
The adaptivity is performed as the solutions are calculated. However, as we
show in the numerical results, the pseudo dual problem we proposed in (13)
is inadequate to solve certain problems. In those situations, we propose a
hybrid algorithm in the next section.

5.3. Hybrid algorithm

In order to overcome the difficulties of the forward-in-time adaptive al-
gorithm to properly refine the mesh in some problems, we propose a hybrid

11



t0 t1 . . . tm

Primal problem Primal problem . . . Primal problem

Pseudo-dual

problem

Pseudo-dual

problem
. . .

Pseudo-dual

problem

Error estimator

Refine mesh

Error estimator

Refine mesh

. . . Error estimator

Refine mesh

Figure 2: Proposed forward-in-time goal-oriented adaptive algorithm.

algorithm. We select the pseudo-dual problem (13) with

B̃(z̃, vτ ) = BDG(z̃, vτ )− (zτ h
2
(0), vτ (0)), (21)

where zτ h
2
(0) is the approximated solution of the classical dual problem (7)

at t = 0. Selecting (21), formula (15) becomes

B(z̃, vτ )+(z̃(0), vτ (0)) =

∫
I
〈g, vτ 〉 dt+

∫
I

(δ(t− T )zT , vτ ) dt+(zτ h
2
(0), vτ (0)),

and therefore, the initial condition of the pseudo-dual problem is zτ h
2
(0).

Now, from (21) we have that

|L(eτ h
2
)| ≤

m∑
k=1

nk∑
i=1

∣∣∣∣BΩk
i
(z̃τ h

2
, eτ h

2
) +

(
[[z̃τ h

2
]]k−1, eτ h

2
(t+k−1)

)
Ωk

i

∣∣∣∣+
+

n0∑
i=1

∣∣∣∣(z̃τ h
2
(0−), eτ h

2
(0−)

)
Ω0

i

−
(
zτ h

2
(0−), eτ h

2
(0−)

)
Ω0

i

∣∣∣∣ .
(22)

However, z̃τ h
2
(0−) = zτ h

2
(0−) from the definition of (21), so the last term of

(22) is zero and we do not have an error indicator for the first mesh.
Therefore, we define the following upper bound of the error in the quan-

tity of interest that is larger than (22) but includes an estimator for the first
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mesh in time as in Sections 5.1 and 5.2

|L(eτ h
2
)| ≤

m∑
k=1

nk∑
i=1

∣∣∣∣BΩk
i
(z̃τ h

2
, eτ h

2
) +

(
[[z̃τ h

2
]]k−1, eτ h

2
(t+k−1)

)
Ωk

i

∣∣∣∣+
+

n0∑
i=1

∣∣∣∣(z̃τ h
2
(0−), eτ h

2
(0−)

)
Ω0

i

∣∣∣∣ .
(23)

As in Section 5.1, from (23) we define the error estimators Estk and ηki ,
∀i = 1, . . . , nk and ∀k = 0, . . . ,m. In this hybrid algorithm, we first solve
the classical dual problem (7) in the fine mesh backwards in time. Then,
we follow the same strategy defined in Section 5.2 employing zτ h

2
(0) as the

initial condition for the pseudo-dual problem. Therefore, we need to solve
the dual problem backwards in time once and then we can perform the entire
goal-oriented adaptive process forward in time. In this algorithm, although
we solve the classical dual problem once, we only need to store the solution
in the first time step to start the adaptive process forwards in time as in
Section 5.2. Figure 3 illustrates the proposed hybrid adaptive algorithm.

t0 t1 . . . tm

Dual problem Dual problem . . . Dual problem

Pseudo-dual

problem

Pseudo-dual

problem
. . .

Pseudo-dual

problem

Primal problem Primal problem . . . Primal problem

Error estimator

Refine mesh

Error estimator

Refine mesh

. . . Error estimator

Refine mesh

Figure 3: Proposed hybrid goal-oriented adaptive algorithm.
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6. Numerical results

6.1. Example 1: Diffusion problem

We consider problem (1) with d = 1, Ω = [0, 1], T = 1, f(x, t) =
(1 + π2t) sin(πx), u(0) = 0, a = 0 and a discontinuous diffusion coefficient

κ(x) =

{
10, x ∈ [0.25, 0.75],

0.01, elsewhere.

We also consider the following output functional

L(u) =

∫
I

∫
Ω0

u(x, t) dxdt,

where Ω0 = (0, 0.25) ∪ (0.75, 1) is a subdomain of Ω. From (8), we have
that the final condition of the dual problem is null and the source term is a
function whose value is 1 in Ω0 and vanishes outside Ω0.

For the discretization, we employ constant-in-time basis functions (r =
0) and linear functions in space. We set 100 time steps and in space, we
start the adaptive process with a coarse mesh consisting of 8 elements.

Figure 4 shows the solution of the primal problem (2) and Figure 5 shows
the solution of the dual problems (7) and (13). We can see that the problem
(13) is the same as (7) but running forward in time.

0 0.5 1
0

0.5

1

x

t

0

2

4

Figure 4: Solution of the primal problem.
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(a) Dual problem.
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(b) Pseudo-dual problem.

Figure 5: Solution of the dual (left) and pseudo-dual (right) problems.

Now, we perform goal-oriented adaptivity employing both the classical
strategy and the proposed forward-in-time process. Figure 6 shows the es-
timation and the upper bound of the error in the quantity of interest using
the classical approach and setting tol1 = 10−3 and θ = λ = 0.25. Figure 7
shows the error and the upper bound for the proposed algorithm when we
set tol2 = tol1/100, λ = 0.25 and a maximum of seven iterations per time
step. Finally, Figure 8 shows the adapted grids using both algorithms. We
conclude that both grids are similar but with our algorithm we obtain more
uniform refinements in the area where the diffusion term is discontinuous.

We conclude that, for this problem, the forward-in-time adaptive algo-
rithm performs similarly to the classical algorithm. We achieve a relative
error of 10−3 with 104 degrees of freedom in both cases. However, the pro-
posed forward-in-time adaptive algorithm is computationally cheaper than
the classical one as it performs the adaptivity while both problems, primal
and dual, are solved forward in time. In that way, it is unnecessary to store
the adjoint solution for all time steps, and one can only save the previous
and current time steps solutions, maximizing memory savings. This also
simplifies data structures and implementation. Also, it is expected that this
algorithm will minimize the number of adaptive iterations, as confirmed via
numerical results.
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Figure 6: Error in the quantity of interest and upper bound (17) for uniform refinements
in space (left) and using the classical algorithm (right).
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Figure 7: Error in the quantity of interest and upper bound (20) for uniform refinements
in space (left) and using the forward-in-time algorithm (right).
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Figure 8: Adapted grids employing the classical algorithm (left) and the forward-in-time
algorithm (right).

6.2. Example 2: Advection-diffusion problem

Let d = 1, Ω = [0, 1], T = 0.25, κ = 0.025, a = 2.5, f(x, t) = 0 and a
discontinuous initial condition

u0(x) =

{
1, x ∈ [0.125, 0.375],

0, elsewhere.

In this problem, the initial condition is propagated due to the positive
advection coefficient and a boundary layer is formed at the final time steps
in the right endpoint on the spatial domain. We seek to reduce the error in
the boundary layer, therefore we consider an output functional of the form

L(u) =

∫
I0

∫
Ω0

u(x, t) dxdt,

where I0 × Ω0 = (0.75, 1)× (0.2, 0.25) ⊂ I × Ω.
As before, we set 100 time steps and in space and we start the adaptive

process with a coarse mesh composed of 8 elements. Figure 9 shows the
solution of the primal problem (2) and Figure 10 shows the solution of
the dual problem (7) and the pseudo-dual problem (13). In this case, the
solution of the pseudo-dual problem is zero in the entire space-time domain
except in the quantity of interest.
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Figure 9: Solution of the primal problem.
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Figure 10: Solution of the dual (left) and pseudo-dual (right) problems.

Figure 11 shows the error in the quantity of interest and the upper bound
using the classical algorithm when we set tol1 = 10−1 and θ = λ = 0.2.
Figure 12 shows the error and the upper bound employing the proposed
algorithm setting tol2 = 0, λ = 0.2 and a maximum of seven iterations per
time steps. Finally, Figure 13 shows the adapted grids using both processes.

We conclude that, for this kind of problems, the proposed forward-in-
time adaptive process performs poorly because the algorithm only produces
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refinements within the support of the output functional. By construction,
this algorithm ignores the propagation of the initial condition of the primal
problem due to the advection term.

As a partial remedy to this limitation of our forward-in-time algorithm,
in the next section, we propose a hybrid algorithm that provides better
results for advection-diffusion problems.
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Figure 11: Error in the quantity of interest and upper bound (17) for uniform refinements
in space (left) and using the classical algorithm (right).
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Figure 12: Error in the quantity of interest and upper bound (20) for uniform refinements
in space (left) and using the forward-in-time algorithm (right).
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Figure 13: Adapted grids employing the classical algorithm (left) and the forward-in-time
algorithm (right).

6.3. Example 3: Hybrid algorithm for advection-diffusion problems

We consider the same example as in Section 6.2 and we employ the
hybrid algorithm described in Section 5.3

Figure 14 shows the solution of the pseudo-dual problem. For the hybrid
algorithm, we set tol2 = 0, λ = 0.2 and a maximum of seven iterations per
time step. Figure 15 shows the error in the quantity of interest and its upper
bound, while Figure 16 exhibits the adapted grid employing the proposed
hybrid algorithm.

We conclude that the hybrid algorithm not only refines the mesh where
the support of the output functional is localized, but it also captures the
path of the advection.
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Figure 14: Solution of the pseudo-dual problem.
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Figure 15: Error in the quantity of interest and upper bound (23) for uniform refinements
in space (left) and employing the hybrid algorithm (right).
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Figure 16: Adapted grid employing the proposed hybrid algorithm.

7. Conclusions

We propose a forward-in-time goal-oriented adaptive algorithm for the
linear advection-diffusion equation. We define a pseudo-dual problem that,
as the primal problem, runs forwards in time. Then, we derive an error
representation employing the error of the primal problem and the solution of
the pseudo-dual problem. The goal-oriented adaptive algorithm we present
performs local refinements in space for a fixed time grid. We compare the
proposed algorithm with the classical one for one-dimensional advection-
diffusion problems. We conclude that our algorithm only performs properly
for diffusion problems where the output functional has support in the whole
time interval. For advection-diffusion problems, other strategies need to
be considered. Herein, we propose to compute a first representation of the
adjoint on the whole problem and use this partial information to guide the
refinement process. We may pursue further refinements along these lines to
improve the robustness of the method in a future work.
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[11] J. Muñoz-Matute, E. Alberdi, D. Pardo, and V. M. Calo. Time-domain
goal-oriented adaptivity using pseudo-dual error representations. Com-
puter Methods in Applied Mechanics and Engineering, 325:395–415,
2017.
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