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Abstract. We obtain generalised trace Hardy inequalities for fractional powers of general operators given

by sums of squares of vector fields. Such inequalities are derived by means of particular solutions of an
extended equation associated to the above-mentioned operators. As a consequence, Hardy inequalities are

also deduced. Particular cases include Laplacians on stratified groups, Euclidean motion groups and special

Hermite operators. Fairly explicit expressions for the constants are provided. Moreover, we show several
characterisations of the solutions of the extension problems associated to operators with discrete spectrum,

namely Laplacians on compact Lie groups, Hermite and special Hermite operators.

1. Introduction and main results. The aim of this paper is two-fold. On the one hand, we prove trace
Hardy and Hardy’s inequalities for fractional powers of operators that are given as sums of squares of vector
fields on a Lie group. In some particular cases, the results will be more precise, showing explicit constants.
On the other hand, we obtain several characterisations of solutions of the extension problem when the
operator involved has discrete spectrum.

Hardy’s inequality for fractional powers of the Laplacian ∆ on Rn has been investigated by many authors,
see [21, 40, 16, 4, 5] and there is a vast literature on this topic. There are several ways of proving such a
Hardy’s inequality, which reads as

((−∆)s/2f, f) ≥ 2s
Γ(n+s

4 )2

Γ(n−s4 )2

∫
Rn

|f(x)|2

|x|s
dx, (1.1)

valid for 0 < s < 2 and suitable functions. Though the constant is known to be sharp, it is never achieved.
On the other hand, there is another version of Hardy’s inequality where the homogeneous weight function
|x|−s is replaced by a non-homogeneous one:

((−∆)s/2f, f) ≥ 2s
Γ(n+s

2 )

Γ(n−s2 )
δs
∫
Rn

|f(x)|2

(δ2 + |x|2)s
dx, δ > 0, (1.2)

where again the constant is sharp and equality is achieved for the functions (δ2 + |x|2)−(n−s)/2 and their
translates. Though (1.2) is known to the experts in the field, we are not able to locate a reference where it
is actually proved (a proof will be given in Remark 2.6).
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Ramifications of Hardy’s inequality (1.1) have been investigated in the literature and in [38] Tzirakis has
improved (1.1) with sharp error terms. The main idea used in [38] is the use of trace Hardy inequality. For
suitable functions u(x, ρ) on Rn+1

+ := Rn × R+, where R+ := [0,∞), the trace Hardy inequality states that∫ ∞
0

∫
Rn
|∇u(x, ρ)|2ρ1−sdxdρ ≥ 2

Γ(1− s/2)

Γ(s/2)

(Γ((n+ s)/4)

Γ((n− s)/4)

)2
∫
Rn

|u(x, 0)|2

|x|s
dx. (1.3)

On the other hand, inequalities of the following form are also of interest:∫ ∞
0

∫
Rn
|∇u(x, ρ)|2ρ1−sdxdρ ≥ 2

Γ(1− s/2)

Γ(s/2)

Γ((n+ s)/2)

Γ((n− s)/2)
δs
∫
Rn

|u(x, 0)|2

(δ2 + |x|2)s
dx, δ > 0. (1.4)

Such inequalities are known as trace Hardy inequalities with non-homogeneous weights. As we see later,
trace Hardy inequalities lead to Hardy inequalities and such inequalities with non-homogenous weights lead
to uncertainty principles for fractional powers (see e.g. Garofalo-Lanconelli [18] and Roncal-Thangavelu
[27]). In this paper we will see that a more general version of the inequalities (1.3) and (1.4) can be proved
by means of the use of solutions of the initial value problem(

∆ + ∂2
ρ +

1− s
ρ

∂ρ
)
v(x, ρ) = 0, x ∈ Rn, ρ > 0; v(x, 0) = ϕ(x), x ∈ Rn. (1.5)

In the above initial value problem we take ϕ ∈ L2(Rn) and the limit is taken in the L2 sense. Let us explain
more. The problem (1.5) is known as the extension problem for the Laplacian in the literature and has been
studied e.g. by Caffarelli and Silvestre [7] (see also, for instance, [25, 9]). One of the most interesting facts
shown in [7] about solutions of the above problem is that when both ϕ and (−∆)s/2ϕ are in L2(Rn),

− lim
ρ→0

ρ1−s∂ρv(x, ρ) = 21−sΓ(1− s/2)

Γ(s/2)
(−∆)s/2ϕ(x),

for 0 < s < 2. Here (−∆)s/2 is the fractional power of the Laplacian and the limit is understood in the L2

sense. Indeed, it can be seen that, by taking into account the solutions of (1.5), we can obtain the generalised
trace Hardy inequality∫ ∞

0

∫
Rn
|∇u(x, ρ)|2ρ1−sdxdρ ≥ 21−sΓ(1− s/2)

Γ(s/2)

∫
Rn
|u(x, 0)|2 (−∆)s/2ϕ(x)

ϕ(x)
dx. (1.6)

One of our main goals in this paper is to prove an analogue of the trace Hardy inequality (1.6) for very
general operators of the form

L =

m∑
j=1

X2
j (1.7)

and deduce a version of Hardy’s inequality for fractional powers of L. Here we assume that Xj , j = 1, 2, ...,m
are left invariant vector fields on a Lie group G which satisfies Hörmander’s condition, that is, the vector
fields are smooth and their commutators up to certain order span the tangent space at each point. Then
it is known (see [23]) that the second order differential operator L is essentially selfadjoint and hypoelliptic
i.e., whenever Lf = g and g ∈ C∞, then f is in C∞. Some examples for these operators are the Euclidean
Laplacian, the sublaplacian on the Heisenberg group (or more generally the sublaplacian on stratified Lie
groups), Laplacian on motion groups, or Laplacian on compact Lie groups. In order to prove a trace Hardy
inequality for L we need to find solutions of the extension problem

(
L+ ∂2

ρ +
1− s
ρ

∂ρ
)
v(x, ρ) = 0, x ∈ G, ρ > 0; v(x, 0) = f(x), x ∈ G. (1.8)

The extension problem for general second order partial differential operators has been extensively studied
by Stinga-Torrea [31], Galé et al [17] and Banica et al [3]. Once we have a solution of the above extension
problem we will be able to obtain an analogue of the inequality (1.6), see Theorem 1.1. Let us introduce the
gradient

∇ =
(
X1, · · · , Xm,

∂

∂ρ

)
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on G × R+. We define |∇u(x, ρ)|2 = |X1u(x, ρ)|2 + . . . + |Xmu(x, ρ)|2 + | ∂∂ρu(x, ρ)|2. For 0 < s < 2, let

W s
0 (G× R+) be the completion of C1

0 ([0,∞), C1
0 (G)) with respect to the norm

‖u‖2(s) =

∫ ∞
0

∫
G

|∇u(x, ρ)|2ρ1−s dxdρ.

In the above C1
0 ([0,∞), C1

0 (G)) stands for the space of all compactly supported C1 functions on [0,∞)
taking values in C1

0 (G). The following theorem is our first main result: a trace Hardy inequality concerning
operators of the form (1.7) given by sums of Hörmander vector fields on general Lie groups G.

Theorem 1.1 (General trace Hardy inequality). Let 0 < s < 2 and let ϕ be a real valued function in the
domain of (−L)s/2. Assume also that ϕ−1(−L)s/2ϕ is locally integrable. Then for any real valued function
u ∈W s

0 (G× R+), we have the inequality∫ ∞
0

∫
G

∣∣∣∇u(x, ρ)
∣∣∣2ρ1−s dxdρ ≥ 21−sΓ(1− s/2)

Γ(s/2)

∫
G

u2(x, 0)
(−L)s/2ϕ(x)

ϕ(x)
dx.

It is enough to prove the inequality in Theorem 1.1 for functions from C1
0 ([0,∞), C1

0 (G)). Then standard
density arguments guarantee the validity for u ∈ W s

0 (G × R+). Equality is attained when u is a solution
of the extension problem, under an extra assumption on the heat kernel associated to the operator L, see
Proposition 2.5. We will consider several particular cases (Laplacians on stratified groups, Euclidean motion
groups and special Hermite operators) in which this extra assumption is easily seen to be satisfied.

In order to prove Theorem 1.1 we will strongly use the solutions of the extension problem (1.8) and
the characterisation of the fractional powers of the operators L by means of this extension problem due to
Stinga and Torrea, see [31]. This technique was recently developed in the Euclidean setting (by using the
characterisation for the Euclidean fractional Laplacian in [7]) to get improved trace Hardy inequalities on
bounded domains [38], or domains satisfying suitable geometric assumptions [12, 13], see also [26].

From Theorem 1.1, we can prove the following Hardy type inequality for (−L)s/2.

Corollary 1.2. Let 0 < s < 2. Let f ∈ L2(G) be such that (−L)s/2f ∈ L2(G). If u is a solution of the
extension problem (1.8) with initial condition f such that u ∈W s

0 (G× R+) then

((−L)s/2f, f) ≥
∫
G

f2(x)
(−L)s/2ϕ(x)

ϕ(x)
dx,

for any real valued function ϕ in the domain of (−L)s/2 such that the right hand side is finite.

We will study several particular settings throughout the paper to get more precise inequalities. In order
to obtain these inequalities, we will start from the general forms obtained in Theorem 1.1 and Corollary 1.2.
Then, the ideas to follow will be different from those used in [12, 13, 38, 26]. Instead, we will make use of
the solutions of the corresponding extensions problems.

First, we will consider the case of the sublaplacian L on stratified groups (see for instance [15, 6] for
definitions and facts on stratified Lie groups). In this case, good Gaussian bounds for the associated heat
kernel qt are known (see e.g. Theorem 3.4 in [10]) and we can obtain more explicit results. Indeed, by means
of Theorem 1.1, we can prove an analogue of (1.3), i.e., a trace Hardy inequality with a homogeneous weight
function for L. Let Q stand for the homogeneous dimension of the stratified group G. Using properties of
the kernels Rα of the Riesz potentials (−L)−α/2 (see Subsection 2.4) we will prove the following result.

Theorem 1.3 (Trace Hardy inequality for stratified groups). There exists a positive weight function ws(x)
which is homogenous of degree s such that∫ ∞

0

∫
G

|∇u(x, ρ)|2ρ1−sdxdρ ≥ 2
Γ(1− s/2)

Γ(s/2)

Γ((Q+ s)/4)2

Γ((Q− s)/4)2

∫
G

u2(x, 0)

ws(x)
dx (1.9)

is valid for real valued functions u ∈W s
0 (G× R) and 0 < s < 2.

As a corollary of Theorem 1.3, it can be proved (after an application of Corollary 1.2) that, when u
satisfies the extension problem with initial condition f , the left hand side of (1.9) reduces to ((−L)s/2f, f),
leading to the following Hardy inequality.
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Corollary 1.4. Let 0 < s < 2. Let f ∈ L2(G) be such that (−L)s/2f ∈ L2(G). Then, there exists a positive
weight function ws(x) which is homogenous of degree s such that

((−L)s/2f, f) ≥ 2s
(Γ((Q+ s)/4)

Γ((Q− s)/4)

)2
∫
G

f(x)2

ws(x)
dx.

Though the function ws has the right homogeneity we do not have any way of computing it explicitly.
However, it is possible to estimate ws in terms of a fixed homogeneous norm from above and below. It is
also possible to write ws as a ratio of two different homogeneous norms.

We point out that in [8] the authors already obtained Hardy-type inequalities on stratified Lie groups.
The results are slightly different and they estimate the constants arising.

We will also consider trace Hardy inequalities associated to the Euclidean motion group M(n), which is
the semidirect product of Rn with the special orthogonal group SO(n) with its natural action on Rn. In the
case of M(2) our results are more explicit. Identifying R2 with C and SO(2) with the circle group S1 we
write the coordinates on M(2) as (z, eiθ) and let ∆G = ∆ + ∂2

θ , where ∆ is the Laplacian on R2, and define
∇ = (∂x, ∂y, ∂θ), with z = x+ iy.

The trace Hardy inequality for the motion group M(2) can now be stated in the following form. It is also
possible to prove a similar inequality for M(n).

Theorem 1.5. Let 0 < s < 2. Let u ∈W s
0 (M(2)×R+) be a real valued function on M(2)×R+. Fix δ > 0.

Then∫ ∞
0

∫
C

∫ 2π

0

|∇u(z, eiθ, ρ)|2ρ1−s dθ dz dρ

≥ δs2 · 4s
Γ( 3+s

2 )

Γ( 3−s
2 )

Γ(1− s/2)

Γ(s/2)

∫
C

∫ ∞
−∞

u2(z, eiθ, 0)

(δ2 + |z|2 + |θ|2)(3+s)/2
ws(z, θ) dθ dz

where ws(z, θ)
−1 =

∑
k∈Z

(
δ2 + |z|2 + (θ + 2kπ)2

)− (3−s)
2 .

Another operator that we will consider is the special Hermite operator L1. We will exploit the relation
between L1 and the sublaplacian Lred on the reduced Heisenberg group Hnred, namely, the quotient group
Hn/Γ, where Hn is the Heisenberg group and the central subgroup Γ is given by Γ = {(0, 2kπ) : k ∈ Z}
(see [34, Chapter 4]). The reduced Heisenberg group can be identified with Cn × T, where T is the torus.
It happens that when considering functions independent of τ ∈ T, the sublaplacian in Hnred coincides with
the Euclidean Laplacian on R2n. Then, we can obtain a trace Hardy inequality in Hnred, and also Hardy’s
inequality for the special Hermite operator. The latter reads as follows.

Theorem 1.6. Let 0 < s < 2. Let f be a real valued function on Cn such that f and L
s/2
1 f are both in

L2(Cn). Then we have

Re(L
s/2
1 f, f) ≥ 2s

Γ( 2n+s
4 )2

Γ( 2n−s
4 )2

∫
Cn

f(z)2

|z|s
dz.

In [1] the authors proved a sharp Hardy–Sobolev inequality for the twisted Laplacian on Cn using the
fundamental solutions, see Corollary 1.2 therein. This technique was already used in [2] to obtain Hardy–
Sobolev inequalities for the Laplace–Beltrami operator on certain manifolds and for the sublaplacian on the
Heisenberg group. Observe that the weight function involved in [2, Corollary 1.2] is different from the one
obtained in Theorem 1.6.

Remark 1.7. We do not state the optimality of the constants obtained in Theorems 1.3, 1.6 and Corollary
1.4, since we do not know about that. Anyway, intuitively, the constants in Theorem 1.3 and Corollary 1.4
seem to be the right ones, because they match with the optimal constants in the Euclidean setting. Moreover,
in the statement we are taking general homogeneous weights, and new constants. However, the constant in
Theorem 1.5 is sharp. Actually, for general inequalities of the form∫ ∞

0

∫
G

∣∣∇u(x, ρ)
∣∣2ρ1−s dx dρ ≥ s δ−s

∫
G

u2(x, 0)
us,δ(x)

u−s,δ(x)
dx,

where us,δ are defined in (2.2), it can be easily checked that the function u−s,δ optimize the above inequality.
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We emphasize that, in the results above, a precise knowledge on the solution of the extension problem
is crucial. We will take the chance to further study several characterisations of solutions of the extension
problem (1.8) in the case of compact Lie groups, Hermite operator and special Hermite operator. This will
be the second important part of our paper. Characterisations of Lp solutions of the extension problem were
already carried out in [31]. We try to go beyond and, in the case of compact Lie groups and the Hermite
operator, we find all the solutions when the initial data is a tempered distribution and, in the case of special
Hermite operator, when the initial data belongs to a suitable Sobolev space. Moreover, we will characterise
all the solutions of the extension problem which are tempered distributions. Our characterisations concern
operators with discrete spectrum. Characterisations of solutions of the extension problem when the operator
involved has continuous spectrum are more involved and they will appear elsewhere. We do not state the
results on characterisations here, for the sake of easy reading. Instead, we defer all the related set-up, results
and the proofs to Section 3.

The structure of the paper is as follows. Trace Hardy and Hardy’s inequalities, and the proofs of the
theorems stated in the introduction are given in Section 2. In Section 3 we deal with the characterisations of
all solutions of the extension problem in the case in which the associated operators have discrete spectrum.

2. An extension problem, trace Hardy and Hardy’s inequalities for fractional Laplacians. In
this section we prove the results stated in the introduction related to trace Hardy and Hardy’s inequalities.

2.1. A basic lemma. The proof of the trace Hardy inequality in Theorem 1.1 depends on the following
result, which is well known to experts in Partial Differential Equations. We include it here for the convenience
of the readers. We introduce the gradient

∇ =
(
X1, · · · , Xm,

∂

∂ρ

)
on G×R+. Recall that we are dealing with left invariant vector fields satisfying Hörmander’s condition, and
they are skew-symmetric: ∫

G

Xjf(x)g(x)dx = −
∫
G

f(x)Xjg(x)dx (2.1)

where dx stands for the left Haar measure on G. Denote by Ls the operator

Ls := L+ ∂2
ρ +

1− s
ρ

∂ρ.

With these notations we have the following lemma. It is initially stated for C∞0 functions, but it remains
valid for functions u coming from a suitable Sobolev space.

Lemma 2.1. Let 0 < s < 2. Let u(x, ρ) be a real valued function from C1
0 ([0,∞), C1

0 (G)) and let v(x, ρ)
be another real valued function for which limρ→0 ρ

1−s∂ρv(x, ρ) exists and limρ→0 ρ
1−s∂ρv(x, ρ)v−1(x, 0) ∈

L1
loc(G). We have∫ ∞

0

∫
G

∣∣∣∇u(x, ρ)− u(x, ρ)

v(x, ρ)
∇v(x, ρ)

∣∣∣2ρ1−s dxdρ =

∫ ∞
0

∫
G

∣∣∣∇u(x, ρ)
∣∣∣2ρ1−s dxdρ

+

∫ ∞
0

∫
G

u(x, ρ)2

v(x, ρ)
(Lsv(x, ρ))ρ1−s dxdρ+

∫
G

u(x, 0)2

v(x, 0)
lim
ρ→0

ρ1−s∂ρv(x, ρ) dx.

Proof. Consider the following integral:∫
G

(
Xju−

u

v
Xjv

)2
dx =

∫
G

(
(Xju)2 − 2

u

v
XjuXjv +

(u
v
Xjv

)2)
dx.

Integrating by parts and using (2.1), we get∫
G

u

v
XjuXjv dx = −

∫
G

uXj

(u
v
Xjv

)
dx

= −
∫
G

u

v
XjuXjv dx−

∫
G

u2Xj

(1

v
Xjv

)
dx.
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Since
∫
G
u2Xj

(
1
vXjv

)
dx = −

∫
G
u2

v2

(
Xjv

)2
dx+

∫
G
u2

v X
2
j v dx, the above gives∫

G

(u2

v2
(Xjv)2 − 2

u

v
XjuXjv

)
dx =

∫
G

u2

v
X2
j v dx.

On the other hand, a similar calculation with the ρ-derivative gives∫ ∞
0

(u2

v2
(∂ρv)2 − 2

u

v
∂ρu∂ρv

)
ρ1−s dρ

=

∫ ∞
0

u2

v
∂ρ
(
ρ1−s∂ρv

)
dρ+

u(x, 0)2

v(x, 0)
lim
ρ→0

(
ρ1−s∂ρv

)
(x, ρ).

Adding and then taking all integrations into account we get our result, in view of (2.1).

Remark 2.2. The assumption in Lemma 2.1 that u is from C1
0 ([0,∞), C1

0 (G)), i.e. it is a compactly supported
C1 function on [0,∞) taking values in C1

0 (G) allows to guarantee that integrations by parts are justified
leaving no boundary terms.

In Lemma 2.1, if v satifies the extension problem (1.8), i.e., the equation Lsv = 0 on G×R+ with a given
initial condition v(x, 0) = ϕ(x), then we get the inequality∫ ∞

0

∫
G

∣∣∣∇u(x, ρ)
∣∣∣2ρ1−s dxdρ ≥ −

∫
G

u2(x, 0)

v(x, 0)
lim
ρ→0

ρ1−s∂ρv(x, ρ) dx.

In view of the above, we need to solve the extension problem for L with a given initial conditon ϕ. We also
need to compute limρ→0 ρ

1−s∂ρv(x, ρ) in terms of L and ϕ.

2.2. An extension problem for sum of squares of vector fields. We will look at the extension problem
(1.8) more carefully. A good reference for this subsection is the article by Stinga-Torrea [31].

Let Xj , j = 1, 2, ...,m, be left invariant vector fields on a Lie group G satisfying the Hörmander’s condition.
Let qt be the heat kernel associated to the Laplacian L =

∑m
j=1X

2
j . We assume that

∫
G
qt(x)dx = 1. For

−2 < s < 2 we define

us,ρ(x) =
ρs

2s|Γ(s/2)|

∫ ∞
0

e−
ρ2

4t qt(x)t−s/2−1dt. (2.2)

For s > 0 the integral defines an L1 function and
∫
G
us,ρ(x)dx = 1. But for −2 < s < 0 the function need

not be integrable. However, if we assume that ‖qt‖2 ≤ C t−γ , γ > 1, the integral defining us,ρ converges
even for −2 < s < 0 and defines an L2 function. Indeed,

‖us,ρ‖2 ≤ Csρs
∫ ∞

0

e−
ρ2

4t ‖qt‖2t−s/2−1dt ≤ Csρ−2γ . (2.3)

In Theorem 2.4 below a formula for the solution to the extension problem is given, see [31, Theorem 1.1]
(see also [17] and [11]). We sketch a proof of the theorem for the sake of completeness, and because some
parts of the proof will be referred later. First of all, we have the following lemma.

Lemma 2.3. For −2 < s < 2, the functions us,ρ and u−s,ρ are related via the equation

ρs(−L)s/2u−s,ρ =
2s|Γ(s/2)|
|Γ(−s/2)|

us,ρ. (2.4)

Proof. This can be proved, as in [31], by considering
(
(−L)s/2u−s,ρ, g

)
and using the spectral definition of

(−L)s/2. In fact, the proof depends on the numerical identity

ρs

2s

∫ ∞
0

e−
ρ2

4t e−tλt−s/2−1dt = λs/2
∫ ∞

0

e−
ρ2

4t e−tλts/2−1dt (2.5)

valid for λ > 0 (which is true by a simple change of variables).

Theorem 2.4 (Stinga-Torrea). For f ∈ Lp(G), 1 ≤ p ≤ ∞, the function u(x, ρ) = f ∗ us,ρ(x) solves the
extension problem (1.8). Moreover, for 0 < s < 2,

lim
ρ→0

ρ1−s∂ρ(f ∗ us,ρ) = −21−sΓ(1− s/2)

Γ(s/2)
(−L)s/2f
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where the convergence is understood in the Lp sense, under the extra assumption that (−L)s/2f ∈ Lp(G),
1 ≤ p <∞.

Proof. We first show that us,ρ solves the extension problem:(
L+ ∂2

ρ +
1− s
ρ

∂ρ
)
us,ρ = 0.

To see this, note that us,ρ = ρsvs,ρ, with vs,ρ = 1
2s|Γ(s/2)|

∫∞
0
e−

ρ2

4t qt(x)t−s/2−1dt. Hence by a simple

calculation we get (
∂2
ρ +

1− s
ρ

∂ρ
)
us,ρ = (1 + s)ρs−1∂ρvs,ρ + ρs∂2

ρvs,ρ. (2.6)

On the other hand, since Lqt(x) = ∂tqt(x) we see that

Lus,ρ(x) =
ρs

2s|Γ(s/2)|

∫ ∞
0

e−
ρ2

4t ∂tqt(x)t−s/2−1dt.

Writing

e−
ρ2

4t t−s/2−1 = (4πt)−1/2e−
ρ2

4t (4πt)1/2t−s/2−1

integrating by parts, using the fact that

∂t
(
(4πt)−1/2e−

ρ2

4t

)
= ∂2

ρ

(
(4πt)−1/2e−

ρ2

4t

)
and simplifying we get

Lus,ρ = −(1 + s)ρs−1∂ρvs,ρ − ρs∂2
ρvs,ρ. (2.7)

Combining (2.6) and (2.7) we finish the proof of the first claim.
On the other hand, by a simple change of variables, we have

us,ρ(x) =
1

2s|Γ(s/2)|

∫ ∞
0

e−
1
4t qρ2t(x)t−s/2−1dt.

As f ∗ qt converges to f in Lp as t tends to 0 it follows that

f ∗ us,ρ(x) =
1

2s|Γ(s/2)|

∫ ∞
0

e−
1
4t f ∗ qρ2t(x)t−s/2−1dt

converges to f in Lp, and therefore it solves the extension problem with initial condition f (in other words, us,ρ
is an approximate identity). With the relation (2.4) at hand, it is easy to calculate the limit of ρ1−s∂ρ(f ∗us,ρ)
as ρ goes to zero. Indeed, by the relation (2.5) we have

ρs(−L)s/2f ∗ u−s,ρ =
2s|Γ(s/2)|
|Γ(−s/2)|

f ∗ us,ρ.

Since

ρsu−s,ρ(g) =
2s

|Γ(−s/2)|

∫ ∞
0

e−
ρ2

4t qt(g)ts/2−1dt

it is easy to see that

ρ1−s∂ρ(f ∗ us,ρ) = 21−sΓ(1− s/2)

Γ(s/2)
(−L)s/2f ∗ u2−s,ρ.

Consequently, ρ1−s∂ρ(f ∗ us,ρ) converges to −21−s Γ(1−s/2)
Γ(s/2) (−L)s/2f as ρ→ 0.

2.3. Proofs of Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. As remarked earlier, it is enough to prove the result when u ∈ C1
0 ([0,∞), C1

0 (G)).
We take v = ϕ ∗ us,ρ and observe that, by Theorem 2.4, v solves the equation

(
L+ ∂2

ρ + 1−s
ρ ∂ρ

)
v = 0, with

v(x, 0) = ϕ(x). Then, by taking this v in Lemma 2.1 and taking into account Theorem 2.4, we obtain the
inequality ∫ ∞

0

∫
G

∣∣∣∇u(x, ρ)
∣∣∣2ρ1−s dxdρ ≥ 21−sΓ(1− s/2)

Γ(s/2)

∫
G

u2(x, 0)
(−L)s/2ϕ(x)

ϕ(x)
dx,

as desired.
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Moreover, we claim the equality in Theorem 1.1 under certain assumption on the heat kernel associated
to L.

Proposition 2.5. Under the same hypotheses as in Theorem 1.1, let qt be the heat kernel associated to the
Laplacian L =

∑m
j=1X

2
j and assume that ‖qt‖2 ≤ C t−γ , γ > 1. Let ϕ ∈ L2(G) be such that (−L)s/2ϕ ∈

L2(G) and let u = ϕ ∗ us,ρ be the solution of the extension problem (1.8) with initial condition ϕ. Then∫ ∞
0

∫
G

∣∣∣∇u(x, ρ)
∣∣∣2ρ1−s dxdρ = 21−sΓ(1− s/2)

Γ(s/2)

∫
G

ϕ(x)(−L)s/2ϕ(x) dx.

Proof. Note that if f and g are both from L2(G), then their convolution is uniformly continuous and vanishes
at infinity. This can be proved by approximating f and g by a sequence of compactly supported smooth
functions. Since ϕ and us,ρ are from L2(G), due to (2.3), it follows that the solution u of the extension problem
given by u = ϕ ∗ us,ρ vanishes at infinity as a function of x for any fixed ρ. Moreover, Xjus,ρ ∈ L2(G), and
the same is true for ∂ρ[ρ

−sus,ρ]. Integrating by parts and using the fact that u vanishes at infinity, we have∫
G

|Xju(x, ρ)|2 dx =

∫
G

u(x, ρ)X2
j u(x, ρ) dx.

Furthermore, by (2.3), |u(x, ρ)| ≤ C‖ϕ‖2‖us,ρ‖2 ≤ Csρ
−2γ‖ϕ‖2 which goes to 0 as ρ tends to infinity. The

same is true for ∂ρu(x, ρ). A similar computation with the ρ-derivative yields∫ ∞
0

(
∂ρu(x, ρ)

)2
ρ1−s dρ =

∫ ∞
0

u(x, ρ)∂ρ
(
ρ1−s∂ρu(x, ρ)

)
dρ− u(x, 0) lim

ρ→0
(ρ1−s∂u)(x, ρ).

Now, we sum up and use the fact that u solves the extension problem with initial condition ϕ. The result
follows.

Proof of Corollary 1.2. Let u(x, ρ) = f ∗ us,ρ(x, ρ). By Theorem 2.4, u solves the equation
(
L + ∂2

ρ +
1−s
ρ ∂ρ

)
u = 0, with u(x, 0) = f(x). By Lemma 2.1 with v(x, ρ) = u(x, ρ), and taking into account that

u = f ∗ us,ρ solves the differential equation, we have that∫ ∞
0

∫
G

∣∣∣∇u(x, ρ)
∣∣∣2ρ1−s dxdρ = −

∫
G

u(x, 0) lim
ρ→0

(ρ1−s∂u)(x, ρ) dx.

Then, by Theorem 2.4, the right hand side of the above identity reduces to

21−sΓ(1− s/2)

Γ(s/2)

∫
G

f(x)(−L)s/2f(x) dx.

On the other hand, by Theorem 1.1, we have that∫ ∞
0

∫
G

∣∣∣∇u(x, ρ)
∣∣∣2ρ1−s dxdρ ≥ 21−sΓ(1− s/2)

Γ(s/2)

∫
G

u2(x, 0)
(−L)s/2ϕ(x)

ϕ(x)
dx.

Combining all these facts, we conclude the result.

2.4. Sublaplacian on stratified groups and proof of Theorem 1.3. In this subsection we consider
L =

∑n
j=1X

2
j to be the hypoelliptic sublaplacian on a stratified Lie group G. A Lie group G is called stratified

if it is nilpotent and simply connected and its Lie algebra g admits a vector space direct sum decomposition
g = g1 ⊕ · · · ⊕ gm such that [g1, gk] = gk+1 for 1 ≤ k < m and [g1, gm] = {0}, where g1 = [g, g]. We refer to
Folland-Stein [15] for more about stratified groups and sublaplacians.

Theorem 1.1 says that∫
G

∫ ∞
0

|∇u(x, ρ)|2ρ1−sdρdx ≥ 21−sΓ(1− s/2)

Γ(s/2)

∫
G

u2(x, 0)
(−L)s/2ϕ(x)

ϕ(x)
dx. (2.8)

Let qt be the associated heat kernel of L. Using the functions us,ρ defined in the previous subsection in (2.2)
and Lemma 2.3 we could prove the following trace Hardy inequality:∫

G

∫ ∞
0

|∇u(x, ρ)|2ρ1−sdρdx ≥ sδ−s
∫
G

u2(x, 0)
us,δ(x)

u−s,δ(x)
dx.
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Remark 2.6. In the case of the Laplacian ∆ on Rn the heat kernel is explicitly given by

qt(x) = (4πt)−n/2e−
1
4t |x|

2

and hence the expression in (2.2) can be explicitly computed to be

us,δ(x) =
δsΓ((n+ s)/2)

πn/2|Γ(s/2)|
(δ2 + |x|2)−(n+s)/2

for −2 < s < 2. Then observe that inequality (1.2) follows from Corollary 1.2 (indeed, if f ∈ L2 and

(−∆)s/2 ∈ L2, the solution of the extension problem given by u(x, ρ) = f ∗ us,ρ(x) belongs to W̃ s,2
0 (Rn+1),

see [28, Proposition 3.13]), after choosing ϕ = u−s,δ as above, and taking into account Lemma 2.3 (with L
to be the Euclidean Laplacian ∆).

In the case of stratified Lie groups, we do not have an explicit expression for the heat kernel, so we are
not able to arrive at a sharp constant. The situation is the same even in the case of the Heisenberg group
Hn where the heat kernel is almost explicit.

Now, consider the following functions which are kernels of the Riesz potentials: for α < Q, where Q is
the homogeneous dimension of G,

Rα(x) =
1

Γ(α/2)

∫ ∞
0

qt(x)tα/2−1dt.

Then it is known ([14] or [8]) that they are the kernels associated to (−L)−α/2. They can be explicitly
calculated (e.g. in the case of ∆ on Rn) once we have a good expression for the heat kernel. Moreover, they
are homogeneous of degree α−Q and satisfy Rα ∗ Rβ = Rα+β .

Proof of Theorem 1.3. The proof is very similar to the one given in the context of H-type groups, in [28,
Proof of Theorem 1.5]. We sketch here the main ideas.

We fix a homogeneous norm | · | on G and choose a smooth function 0 ≤ ψε ≤ 1 which is supported
on 1

2ε ≤ |x| ≤ 2ε−1 and is identically one on ε ≤ |x| ≤ ε−1. We consider the inequality (2.8) with ϕ(x) =
ϕδ(x) := (ψεRα) ∗ u−s,δ(x). In view of the relation in Lemma 2.3 we obtain that

(−L)s/2ϕδ(x)

ϕδ(x)
= δ−s

2sΓ(s/2)

|Γ(−s/2)|
(ψεRα) ∗ us,δ(x)

(ψεRα) ∗ u−s,δ(x)
. (2.9)

Recalling the definition of u−s,δ in (2.2) we see that δsu−s,δ converges pointwise to 2s |Γ(s/2)|
|Γ(−s/2)|Rs as δ tends

to zero (it actually converges in the sense of distributions. Both convergences are easy to see from the
definition). Since (ψεRα) ∗ us,δ converges to ψεRα (because us,δ is an approximate identity, see the proof of
Theorem 2.4) we obtain the following inequality, from (2.8), by letting δ → 0 :∫

G

∫ ∞
0

|∇u(x, ρ)|2ρ1−sdρdx ≥ 21−sΓ(1− s/2)

Γ(s/2)

∫
G

u2(x, 0)
ψε(x)Rα(x)

ψεRα ∗ Rs(x)
dx.

As 0 ≤ ψε ≤ 1 and ψεRα ∗ Rs ≤ Rα ∗ Rs = Rα+s, the latter reads as∫
G

∫ ∞
0

|∇u(x, ρ)|2ρ1−sdρdx ≥ 21−sΓ(1− s/2)

Γ(s/2)

∫
G

u2(x, 0)ψε(x)
Rα(x)

Rα+s(x)
dx. (2.10)

By letting ε tend to 0 we obtain the inequality∫
G

∫ ∞
0

|∇u(x, ρ)|2ρ1−sdρdx ≥ 21−sΓ(1− s/2)

Γ(s/2)

∫
G

u2(x, 0)
Rα(x)

Rα+s(x)
dx.

Let us define

Fα(x) :=
1

Γ((Q− α)/2)

∫ ∞
0

qt(x)tα/2−1dt =
Γ(α/2)

Γ((Q− α)/2)
Rα(x).

The choice α = Q−s
2 leads to the inequality∫
G

∫ ∞
0

|∇u(x, ρ)|2ρ1−sdρdx ≥ 21−sΓ(1− s/2)

Γ(s/2)

Γ((Q+ s)/4)2

Γ((Q− s)/4)2

∫
G

u2(x, 0)

ws(x)
dx

where ws(x) =
F(Q+s)/2(x)

F(Q−s)/2)(x) is homogeneous of degree s.
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Remark 2.7. For each γ we define the function |x|(γ) by the equation∫ ∞
0

qt(x)t
Q+γ

4 −1dt = Γ((Q− γ)/4)|x|−(Q−γ)/2
(γ) .

Then it is clear that |x|(γ) is a homogeneous norm on G. With this definition, we see that

ws(x) = |x|−(Q−s)/2
(s) |x|(Q+s)/2

(−s)

and the trace Hardy inequality reads as∫
G

∫ ∞
0

|∇u(x, ρ)|2ρ1−sdρdx ≥ 21−sΓ(1− s/2)

Γ(s/2)

(Γ((Q+ s)/4)

Γ((Q− s)/4)

)2
∫
G

u2(x, 0)
|x|(Q−s)/2(s)

|x|(Q+s)/2
(−s)

dx.

Since all the homogeneous norms on G are equivalent we have C1|x|(−s) ≤ |x| ≤ C2|x|(s) for some constants

where |x| is a standard homogeneous norm. With this we can replace the weight ws(x) by C−1
s |x|s and get

the inequality

∫
G

∫ ∞
0

|∇u(x, ρ)|2ρ1−sdρdx ≥ Cs21−sΓ(1− s/2)

Γ(s/2)

(Γ((Q+ s)/4)

Γ((Q− s)/4)

)2
∫
G

u2(x, 0)

|x|s
dx.

The values of the constant depend on good estimates of the heat kernel in terms of Gaussian from above
and below.

Proof of Corollary 1.4. By Corollary 1.2 and the computations in the proof of Theorem 1.3, one immediately
obtains

((−L)s/2f, f) ≥
(Γ((Q+ s)/4)

Γ((Q− s)/4)

)2
∫
G

|f(x)|2

ws(x)
dx.

Remark 2.8. Observe that we could get also the following Hardy’s inequality for stratified Lie groups

((−L)s/2f, f) ≥ Cs
(Γ((Q+ s)/4)

Γ((Q− s)/4)

)2
∫
G

|f(x)|2

|x|s
dx.

In [8, Section 3], Ciatti et al obtain a family of Hardy-type inequalities on stratified Lie groups. Their result
is slightly different in the sense that they studied Lp boundedness of a Hardy operator associated to the
corresponding homogeneous norm. They provide estimates for the constants involved.

Remark 2.9. Consider the case G = Rn. It can be easily checked (see for instance [27, Lemma A.1]) that

Rα(x) =
Γ((n− α)/2)

Γ(α/2)2απn/2
|x|α−n.

Consequently, by choosing α = (n− s)/2 in (2.10), the trace Hardy inequality for Rn takes the form∫
Rn

∫ ∞
0

|∇u(x, ρ)|2ρ1−sdρdx ≥ 2
Γ(1− s/2)

Γ(s/2)

(Γ((n+ s)/4)

Γ((n− s)/4)

)2
∫
Rn

u2(x, 0)

|x|s
dx.

This inequality is known to be sharp, though equality is never attained (see [38]). Similarly, Hardy inequality
(1.1) on Rn follows from Corollary 1.2 and the computation starting from (2.9), choosing again α = (n−s)/2:

((−∆)s/2f, f) ≥ 2s
(Γ((n+ s)/4)

Γ((n− s)/4)

)2
∫
Rn

|f(x)|2

|x|s
dx,

which coincides with (1.1).
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2.5. Euclidean motion groups and proof of Theorem 1.5. In this subsection we consider the Euclidean
motion group M(n) which is the semidirect product of Rn with the orthogonal group SO(n) acting on Rn.
Then the Laplacian on G = M(n) is given by ∆G = ∆Rn + ∆K where ∆K is the Laplacian on K = SO(n).
By a suitable choice of the inner product on the Lie algebra of K we can assume that ∆K =

∑m
j=1X

2
j where

Xj are vector fields on K forming an orthonormal basis for its Lie algebra. Thus ∆G is a sum of squares of
vector fields and the results proved in Subsection 2.2 apply to the case of M(n). In particular, the solution
of the extension problem

(∆G + ∂2
ρ +

1− s
ρ

∂ρ)u(x, k, ρ) = 0, ρ > 0; u(x, k, 0) = f(x, k), x ∈ Rn, k ∈ K,

is explicitly given by f ∗ us,ρ(x, k), where

us,ρ(x, k) =
ρs

|Γ(s/2)|

∫ ∞
0

e−
1
4tρ

2

qt(x, k)t−s/2−1dt,

for −2 < s < 2. In the above formula, qt is the heat kernel associated to ∆G, which is just the product of
the Euclidean heat kernel pt(x) with the heat kernel ht(k) associated to ∆K . Thus we have

us,ρ(x, k) =
ρs

(4π)n/2|Γ(s/2)|

∫ ∞
0

e−
1
4t (ρ2+|x|2)ht(k)t−(n+s)/2−1dt.

The kernels us,ρ(x, k) can be expressed in terms of known functions as follows. We need to set up some
notation here; we refer the reader to Subsection 3.2 for more details.

Given a compact Lie group K we let K̂ stand for the unitary dual consisting of equivalence classes of

irreducible unitary representations of K. If π ∈ K̂ then χπ will stand for the character associated to π. Then
it is known that χπ are eigenfunctions of the Laplacian ∆K and the eigenvalues are denoted by −λ2

π. The
heat kernel ht is given by the expansion

ht(k) =
∑
π∈K̂

dπe
−tλ2

πχπ(k),

where dπ is the dimension of π. In view of this, the function us,ρ on the motion group is given by

us,ρ(x, k) =
∑
π∈K̂

dπus,ρ(x;π)χπ(k)

where the functions us,ρ(x;π) are

us,ρ(x;π) =
ρs

(4π)n/2|Γ(s/2)|

∫ ∞
0

e−
1
4t (ρ2+|x|2)e−tλ

2
π t−(n+s)/2−1dt.

We can easily see that us,ρ(x;π) = ρ−nϕ(n+s)/2(ρ−1x, ρλπ) where

ϕ(n+s)/2(x, λ) =
1

(4π)n/2|Γ(s/2)|

∫ ∞
0

e−
1
4t (1+|x|2)e−tλ

2

t−(n+s)/2−1dt.

By recalling the integral representation of the Macdonald functions K(n+s)/2 (see (3.8) for the definition) we
obtain

ϕ(n+s)/2(x, λ) =
2−

n−s
2 +1

πn/2|Γ(s/2)|
λ(n+s)/2(1 + |x|2)−(n+s)/4K(n+s)/2(λ(1 + |x|2)1/2).

Thus we have the following formula for the kernel us,ρ(x, k):

us,ρ(x, k) = ρ−n
∑
π∈K̂

dπϕ(n+s)/2(ρ−1x, ρλπ)χπ(k). (2.11)

Then, by choosing ϕ(x, k) = u−s,δ(x, k) in Theorem 1.1, we obtain the following.

Theorem 2.10. Let 0 < s < 2 and fix δ > 0. Then for any real valued function u(x, k, ρ), (x, k, ρ) ∈ G×R+,
we have the inequality∫ ∞

0

∫
G

∣∣∣∇u(x, k, ρ)
∣∣∣2ρ1−s dx dk dρ ≥ s δ−s

∫
G

u2(x, k, 0)
us,δ(x, k)

u−s,δ(x, k)
dx dk

where the functions u±s,δ are the ones in (2.11).
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In the case of M(2), we can get a more precise expression for the kernel us,ρ(x, k) using Poisson summation
formula for the heat kernel ht(k). We identify K = SO(2) with the circle group S1 and R2 with C so that
M(2) is the semidirect product of C with S1. The elements of G = M(2) will be written as (z, eiθ) rather
than (x, k).

Proposition 2.11. For −2 < s < 2, we have

us,ρ(z, e
iθ) =

2sΓ((3 + s)/2)ρs

π3/2|Γ(s/2)|
∑
k∈Z

(
ρ2 + |z|2 + (θ + 2kπ)2

)− (3+s)
2 .

Proof. In the case of M(2) the heat kernel is given by

ht(θ) =

∞∑
k=−∞

e−tk
2

eikθ.

In view of the Poisson summation formula (see [30, Chapter VII]) we also have the representation

ht(θ) = (4πt)−1/2
∞∑

k=−∞

e−
1
4t (θ+2πk)2 .

Thus, the integral representation for us,ρ(z, e
iθ) gives

us,ρ(z, e
iθ) =

ρs

(4π)3/2|Γ(s/2)|

∞∑
k=−∞

∫ ∞
0

e−
1
4t (ρ2+|z|2+(θ+2πk)2)t−(3+s)/2−1dt.

By evaluating the integral the proposition is proved.

Proof of Theorem 1.5. For functions f ∈ L1(R) we have∫ 2π

0

∑
k∈Z

f(θ + 2kπ) dθ =
∑
k∈Z

∫ 2(k+1)π

2kπ

f(θ) dθ =

∫ ∞
−∞

f(θ) dθ.

Therefore, taking into account of this with f(θ) =
(
δ2 + |z|2 + |θ|2

)− (3+s)
2 , by Theorem 2.10 and Proposition

2.11, we obtain

s δ−s
∫ 2π

0

u2(z, eiθ, 0)
us,δ(z, e

iθ)

u−s,δ(z, eiθ)
dθ

= δs2 · 4s
Γ( 3+s

2 )

Γ( 3−s
2 )

Γ(1− s/2)

Γ(s/2)

∫ ∞
−∞

u2(z, eiθ, 0)

(δ2 + |z|2 + |θ|2)
3+s
2

[∑
k∈Z

(
δ2 + |z|2 + (θ + 2kπ)2

)− (3−s)
2

]−1

dθ,

which completes the proof.

Remark 2.12. There is also Poisson summation formula available for SO(n) (see [39, Theorem 3]). Thus,
we could obtain analogous results as in Proposition 2.11 and Theorem 1.5 in higher dimensions. In order to
avoid additional notation, we leave the details to the reader.

2.6. The special Hermite operator and proof of Theorem 1.6. In this section we prove trace Hardy
and Hardy’s inequalities for fractional powers of the special Hermite operator (also known as twisted Lapla-
cian) on Cn. This operator is related to the sublaplacian on the Heisenberg group, and so we will define it
starting from the Heisenberg group setting. Let us set up the notation.

Let Hn = Cn×R denote the (2n+1)-dimensional Heisenberg group with the group operation (z, t)(w, s) =(
z + w, t+ s+ 1

2 Im(z · w̄)
)
. Its Lie algebra hn is generated by the (2n+ 1) left invariant vector fields

T =
∂

∂t
, Xj =

( ∂

∂xj
+

1

2
yj
∂

∂t

)
, Yj =

( ∂

∂yj
− 1

2
xj
∂

∂t

)
, j = 1, 2, . . . , n.

The operator L = −
∑n
j=1(X2

j + Y 2
j ) is called the sublaplacian on Hn. Written explicitly

L = −∆Cn −
1

4
|z|2 ∂

2

∂t2
+N

∂

∂t
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where ∆Cn is the ordinary Laplacian on Cn, z = x+ iy ∈ Cn and

N =

n∑
j=1

(
xj

∂

∂yj
− yj

∂

∂xj

)
.

We can also write L as

L = −2

n∑
j=1

(ZjZ̄j + Z̄jZj)

where Zj = 1
2 (Xj − iYj) and Z̄j = 1

2 (Xj + iYj). Observe that

Zj =
∂

∂zj
+
i

4
z̄j
∂

∂t
, Z̄j =

∂

∂z̄j
− i

4
zj
∂

∂t

where ∂
∂zj

= 1
2

(
∂
∂xj
− i ∂

∂yj

)
and ∂

∂z̄j
= 1

2

(
∂
∂xj

+ i ∂
∂yj

)
are the Cauchy-Riemann operators.

For each nonzero λ ∈ R, let the special Hermite operators Lλ (or twisted Laplacian) be defined by the
equation

L(f(z)eiλt) = eiλtLλf(z). (2.12)

Then it is clear from the definition that

Lλ = −∆Cn +
λ2

4
|z|2 + iλN

and we can also write Lλ as

Lλ = −2

n∑
j=1

(
Zj(λ)Z̄j(λ) + Z̄j(λ)Zj(λ)

)
where Zj(e

iλtf(z)) = eiλtZj(λ)f(z) and Z̄j(e
iλtf(z)) = eiλtZ̄j(λ)f(z). Each of these Lλ is an elliptic

differential operator on Cn whose spectral decomposition is known explicitly and is given by special Hermite
functions. We refer to [33] for the theory of special Hermite expansions. Though this operator is not a sum
of squares of real vector fields, it is related to the sublaplacian L on Hn (which is a sum of squares) via the
relation (2.12) and we make use of this connection.

There is an orthonormal basis for L2(Cn) consisting of the “special Hermite functions” Φα,β , α, β ∈ Nn,
which are eigenfuncions of L1, more precisely, L1Φα,β = (2|β| + n)Φα,β . Note that the spectrum of L1

consists of (2k+n), k ∈ N and each eigenspace is infinite dimensional. The projection onto the corresponding
eigenspace can be written in a compact form. If

ϕk(z) = Ln−1
k

(1

2
|z|2
)
e−

1
4 |z|

2

, k ∈ N,

stand for Laguerre functions of type (n− 1) then we have

(2π)−nϕ× ϕk(z) =
∑
|β|=k

∑
α∈N

(ϕ,Φα,β)Φα,β(z), ϕ ∈ L2(Cn)

where the twisted convolution ϕ× ψ of two functions on Cn is defined by

ϕ× ψ(z) =

∫
Cn
ϕ(z − w)ψ(w)e

i
2 Im(z·w̄).

More generally, the λ-twisted convolution is defined by

ϕ ∗λ ψ(z) =

∫
Cn
ϕ(z − w)ψ(w)e

i
2λ Im(z·w̄)

which is related to the convolution on the Heisenberg group via the identity (f ∗ g)λ(z) = fλ ∗λ gλ(z) where
f ∗ g is the convolution of f and g on the Heisenberg group Hn and

fλ(z) =

∫ ∞
−∞

f(z, t)eiλtdt.

Actually, it is convenient to work with the reduced Heisenberg group Hnred rather than the Heisenberg
group. This group is defined as the quotient group Hn/Γ where Hn is the Heisenberg group and the central
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subgroup Γ is given by Γ = {(0, 2kπ) : k ∈ Z} (see [34, Chapter 4]). The reduced Heisenberg group can be
identified with Cn × T where T is the torus with group law written as

(z, eit)(w, eiτ ) = (z + w, ei(t+τ+ 1
2 Im z·w̄)).

We let Lred stand for the sublaplacian as Hnred which is simply the sublaplacian on Hn acting on functions
f(z, w) which are 2π-periodic in the last variable.

We need also to relate the heat semigroups associated to the sublaplacian and to the special Hermite op-
erator. The sublaplacian is a self-adjoint, non-negative, hypoelliptic operator, and it generates a contraction
semigroup which we denote by e−tL. It is known (and it can be deduced from the facts shown above) that
(e−tLf)λ(z) = e−tLλfλ(z) = fλ ∗λ qλt (z), where

qλt (z) = (4π)−n
( λ

sinh tλ

)n
e−

1
4λ(coth tλ)|z|2

see [35, Theorem 2.8.1].
The operator Lred generates a diffusion semigroup e−tLred whose heat kernel q̃t is given by

q̃t(z, τ) =

∞∑
k=−∞

qt(z, τ + 2kπ)

where qt is the heat kernel on Hn. We then have, for k ∈ Z, k 6= 0∫ 2π

0

q̃t(z, τ)eikτ dτ = qkt (z)

and when k = 0 we also have ∫ 2π

0

q̃t(z, τ) dτ = (4πt)−ne−
1
4t |z|

2

which is just the Euclidean heat kernel on Cn.
Consider the extension problem(

∆Cn + ∂2
ρ +

1− s
ρ

∂ρ
)
v(z, ρ) = 0, z ∈ Cn, ρ > 0; v(z, 0) = ϕ(z), z ∈ Cn,

for the Laplacian ∆Cn . We can also think of this v as a solution of the extension problem(
− Lred + ∂2

ρ +
1− s
ρ

∂ρ
)
u(z, τ, ρ) = 0, z ∈ Cn, τ ∈ R, ρ > 0; u(z, τ, 0) = ϕ(z), z ∈ Cn (2.13)

on the reduced Heisenberg group. This is so simply because Lredv(z, ρ) = ∆Cnv(z, ρ) for functions indepen-
dent of τ . Theorem 1.1 reads in this context as follows.

Theorem 2.13. For real valued functions ϕ on Cn and u on Hnred with mild decay conditions we have the
inequality∫

Hnred

∫ ∞
0

|∇u(z, τ, ρ)|2ρ1−s dρ dz dτ ≥ 21−sΓ(1− s/2)

Γ(s/2)

∫
Hnred

u2(z, τ, 0)
(−∆Cn)s/2ϕ(z)

ϕ(z)
dz dτ.

From Theorem 2.13 we can also prove the following trace Hardy inequality for functions on Hnred:

Theorem 2.14. Let 0 < s < 2. Then, for real valued functions u on Hnred × R+∫
Hnred

∫ ∞
0

|∇u(z, τ, ρ)|2ρ1−sdρ dz dτ ≥ 2
Γ(1− s/2)

Γ(s/2)

Γ( 2n+s
4 )2

Γ( 2n−s
4 )2

∫
Hnred

u(z, τ, 0)2

|z|s
dz dτ.

Proof. The proof is analogous to that of Theorem 1.3 for stratified Lie groups or more precisely, as in the
Euclidean case as explained in Remark 2.9. Indeed, it is enough to observe that Cn = R2n.

We know that when u satisfies the extension problem (2.13) with the initial condition f the left hand

side of the above integral reduces to
(
Ls/2redf, f

)
(i.e., we have Corollary 1.2 in this context). By taking f in

the particular form g(z) cos(τ), where g is a real valued function we can obtain the Hardy’s inequality for
fractional powers of the special Hermite operator L1 stated in Theorem 1.6. Now we show the proof.
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Proof of Theorem 1.6. For the sublaplacian in the reduced Heisenberg group, Corollary 1.2 reads as

(Ls/2redf, f) ≥
∫
Hnred

f2(z, t)
(−∆Cn)s/2ϕ(z)

ϕ(z)
dz dτ. (2.14)

Take now f(z, τ) = g(z) cos(τ), where g is a real valued function. On one hand we have(
Ls/2redf, f

)
= πRe

(
L
s/2
1 g, g

)
.

Indeed, we have the integral representation (see [31])

Ls/2redf =
1

Γ(−s/2)

∫ ∞
0

(
e−rLredf − f

)
r−

s
2−1 dr.

Recalling that e−rLredf(z, τ) = f ∗ q̃r(z, τ) and f(z, t) = 1
2g(z)(eiτ + e−iτ ), we have

f ∗ q̃r(z, τ) = Re(e−iτe−rL1g(z)).

From this we get
e−rLredf(z, τ) = Re(e−iτe−rL1g(z))

and consequently,
(
Ls/2redf, f

)
= πRe

(
L
s/2
1 g, g

)
as claimed. On the other hand, by following the analogous

reasoning as for the Euclidean case in Remark 2.9, we obtain that the expression on the right hand side of
(2.14) is precisely

π2s
Γ( 2n+s

4 )2

Γ( 2n−s
4 )2

∫
Cn

g(z)2

|z|s
dz.

This completes the proof.

3. Operators with discrete spectrum: characterisations of solutions to the extension problem.
Our aim in this section is to characterise all the solutions of the extension problem when the associated
operator has discrete spectrum. We remark that the initial considerations in the present section have been
already presented in the literature (see [31, 3]). The starting point will be the most general framework, and
then we will study several particular cases.

Let us consider a Riemannian manifold (M, g), with or without boundary. On M we have a natural second-
order partial differential operator, namely the Laplace–Beltrami operator ∆g, defined by ∆gf = −div(∇f).
We assume that the spectrum of ∆g is discrete. This is the case e.g. when M is compact. Let {λ2

k} be the
spectrum. Let ϕk be the associated eigenfunctions

∆gϕk = −λ2
kϕk

normalised so that {ϕk} forms an orthonormal basis of L2(M).
We consider the associated extension problem(

∆g + ∂2
ρ +

1− s
ρ

∂ρ
)
u(x, ρ) = 0, x ∈M, ρ > 0; u(x, 0) = f(x), x ∈M. (3.1)

Let us initially impose mild conditions on the initial data, say, f be a distribution. Then we have the
equation

〈
(
∆g + ∂2

ρ +
1− s
ρ

∂ρ
)
u(·, ρ), ϕk〉M = 0

which shows that the Fourier coefficients uk(ρ) := 〈u(·, ρ), ϕk〉M =
∫
M
u(x, ρ)ϕk(x) dx satisfy the equation(

− λ2
k + ∂2

ρ +
1− s
ρ

∂ρ
)
uk(ρ) = 0. (3.2)

It is well known (see [24, Chapter 5, Section 5.7]) that the functions (ρλk)s/2Is/2(ρλk) and (ρλk)s/2Ks/2(ρλk),
where Iν is the modified Bessel function of first kind and Kν is the Macdonald’s function, cf. [24, Chapter
5, Section 5.7] (see (3.3) and (3.4) for the definitions), are two linearly independent solutions of the equation
(3.2), i.e.,

uk(ρ) = ck (ρλk)s/2Ks/2(ρλk) + dk (ρλk)s/2Is/2(ρλk).

Then, for the time being formally, we have

u(x, ρ) =
∑
k

uk(ρ)ϕk(x) =
∑
k

ck (ρλk)s/2Ks/2(ρλk)ϕk(x) +
∑
k

dk (ρλk)s/2Is/2(ρλk)ϕk(x).
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We also know that u(x, ρ) converges to the distribution f(x) as ρ goes to zero. Therefore, uk(ρ) converges
to 〈f, ϕk〉M as ρ goes to zero. This implies that (the constant in the first summand is justified by Remark
3.1)

uk(ρ) = 21−s/2Γ(s/2)−1〈f, ϕk〉M (ρλk)s/2Ks/2(ρλk) + dk(ρλk)s/2Is/2(ρλk).

Then, in view of the asymptotics (3.5), (3.6) of the function Is/2, the coefficient dk should be chosen suitably.
Thus, taking into account the above considerations, our aim will be to give characterisations for all possible
solutions of the extension problem (3.1) in several particular cases. Such characterisations will go beyond
[31, 3].

Before going through this issue, we will first collect several definitions and properties of Bessel functions.

3.1. Some facts on Bessel functions. Let Iν(z) be the modified Bessel function of first kind given by the
formula (see [24, Chapter 5, Section 5.7])

Iν(z) =

∞∑
k=0

(z/2)ν+2k

Γ(k + 1)Γ(k + ν + 1)
, |z| <∞, | arg z| < π (3.3)

and let Kν be the Macdonald’s function of order ν defined by (see also [24, Chapter 5, Section 5.7])

Kν(z) =
π

2

I−ν(z)− Iν(z)

sin νπ
, | arg z| < π, ν 6= 0,±1,±2, . . . (3.4)

and, for integral ν = n, Kn(z) = limν→nKν(z), n = 0,±1,±2, . . .. From (3.3) and (3.4) it is clear that there
exist constants C1, C2, c1, c2 > 0 such that

c1z
ν ≤ Iν(z) ≤ C1z

ν , cz−ν ≤ Kν(z) ≤ Cz−ν , for z → 0+. (3.5)

Moreover, it is well known (see [24, Chapter 5, Section 5.11]) that

Iν(z) = Cezz−1/2 +Rν(z), |Rν(z)| ≤ Cνezz−3/2, | arg z| ≤ π − δ (3.6)

and

Kν(z) = Ce−zz−1/2 + R̃ν(z), |R̃ν(z)| ≤ Cνe−zz−3/2, | arg z| ≤ π − δ. (3.7)

We have the integral representation for the Macdonald’s functions, see for instance [24, Chapter 5, (5.10.25)]

Kν(z) = 2−ν−1zν
∫ ∞

0

e−(t+ 1
4t z

2)t−ν−1 dt. (3.8)

From (3.8) it can be seen that zs/2Ks/2(z) is actually a function of z2 and hence it is even in the z variable.

Remark 3.1. Even more, observe that, after a change of variables,

zνKν(z) = 2−ν−1z2ν

∫ ∞
0

e−(t+ 1
4t z

2)t−ν−1 dt = 2ν−1

∫ ∞
0

e−
z2

4u e−uuν−1 du.

Then, letting z tend to 0 above, we have that zνKν(z) tends to the constant 2ν−1Γ(ν).

3.2. Compact Lie groups. We start with some definitions and notations. Some of them were already
introduced in Subsection 2.5, but we collect them also here for the sake of the reading. Let K be a connected,
simply connected compact Lie group. Let K̂ stand for its unitary dual, viz. the set of all equivalence classes
of irreducible unitary representations of K. For each π ∈ K we let dπ stand for the dimension of π and χπ
the character. For f ∈ L2(K), we define its (operator valued) Fourier transform as

π(f) =

∫
K

f(k)π(k)∗ dk,

and we have the Plancherel formula ∫
K

|f(k)|2 dk =
∑
k∈K̂

dπ‖π(f)‖2HS

where ‖π(f)‖2HS = tr(π(f)π(f)∗) is the Hilbert-Schmidt norm of π(f). We can write the inversion in two
different ways

f(k) =
∑
π∈K̂

dπ tr(π(f)π(k)), or f(k) =
∑
π∈K̂

dπf ∗ χπ(k),
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so that f ∗ χπ(k) = tr(π(f)π(k)). We have∫
K

|f ∗ χπ(k)|2 dk = dπ‖π(f)‖2HS,

and consequently the Plancherel theorem can also be written as∫
K

|f(k)|2 dk =
∑
π∈K̂

‖f ∗ χπ‖22.

For basic facts about representation theory of compact Lie groups we refer to Simon [29] and Hall [20].
Let ∆K be the Laplacian on K. In this case, we are interested in the extension problem(

∆K + ∂2
ρ +

1− s
ρ

∂ρ
)
u(k, ρ) = 0, k ∈ K, ρ > 0; u(k, 0) = f(k), k ∈ K

for the Laplacian ∆K . Let us start with some known facts. If f ∈ Lp(K), in view of Theorem 2.4, we can
write down a solution of the above problem as

u(k, ρ) =
ρs

2sΓ(s/2)

∫ ∞
0

e−
ρ2

4t et∆Kf(k)t−s/2−1 dt, (3.9)

where et∆K stands for the heat semigroup generated by ∆K . Indeed, it is known that to each π there
corresponds a real number λπ > 0 such that

∆Kχπ = −λ2
πχπ. (3.10)

By defining the heat kernel

ht(k) =
∑
π∈K̂

dπe
−tλ2

πχπ(k),

the solution of the heat equation associated to ∆K is given by

et∆Kf(k) = f ∗ ht(k).

It is well known that ht(k) > 0,
∫
K
ht(k) dk = 1 and for f ∈ Lp(K), 1 ≤ p < ∞, f ∗ ht → f in Lp(K) as

t→ 0. Then the solution u defined in (3.9) takes the form

u(k, ρ) =
ρs

2sΓ(s/2)

∫ ∞
0

e−
ρ2

4t f ∗ ht(k)t−s/2−1 dt,

which can be written as the convolution f ∗ us,ρ(k), where the kernel us,ρ is defined by

us,ρ(k) =
ρs

2sΓ(s/2)

∫ ∞
0

e−
ρ2

4t ht(k)t−s/2−1 dt.

Recalling the expansion of ht(k) in terms of the character χπ we see that

us,ρ(k) =
∑
π∈K̂

dπϕs(ρ, π)χπ(k)

where

ϕs(ρ, π) =
ρs

2sΓ(s/2)

∫ ∞
0

e−
ρ2

4t e−tλ
2
π t−s/2−1 dt.

The above is precisely the integral representation of the Macdonald function (ρλπ)s/2Ks/2(ρλπ), see (3.8).
Thus

us,ρ(k) =
∑
π∈K̂

dπ(ρλπ)s/2Ks/2(ρλπ)χπ(k)

and the function

u1(k, ρ) =
∑
π∈K̂

dπ(ρλπ)s/2Ks/2(ρλπ)f ∗ χπ(k) (3.11)

solves the extension problem.
In view of the asymptotic properties (3.5) and (3.7) of the Macdonald function Ks/2, the series (3.11)

converges uniformly as long as ‖f ∗χπ‖∞ has a polynomial growth in terms of λπ. This is certainly the case
when, say, f ∈ Lp(K), or even when f is a distribution.
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Nevertheless, if we do not care about the initial condition, the extension problem admits another solution
u2 (as explained at the beginning of the section) which can be represented as

u2(k, ρ) =
∑
π∈K̂

dπ(ρλπ)s/2Is/2(ρλπ)g ∗ χπ(k) (3.12)

where Is/2 is the Bessel function of second kind. To see this, let u satisfy the equation(
∆K + ∂2

ρ +
1− s
ρ

∂ρ
)
u(k, ρ) = 0.

Then, in view of (3.10), it follows that u(·, ρ) ∗ χπ(k) satisfies the equation(
− λ2

π + ∂2
ρ +

1− s
ρ

∂ρ
)
u(·, ρ) ∗ χπ(k) = 0.

As we already explained, for each fixed k, this equation admits two linearly independent solutions, viz.
(ρλπ)s/2Ks/2(ρλπ) and (ρλπ)s/2Is/2(ρλπ). The first choice leads to solutions of the form u1 whereas the
second choice leads to u2.

However, as the modified Bessel functions Is/2(t) have exponential growth as t → ∞, the series (3.12)
defining the function u2 will not converge unless g ∗ χπ has enough decay as λπ → ∞. It is certainly well
defined if g has only finitely many non zero components in its Peter–Weyl expansion: that is, g ∗ χπ = 0 for
all but finitely many π ∈ K̂. Note also that when u2(k, ρ) is well defined, it converges to 0 as ρ→ 0.

We are thus led to find conditions on the function g so that g ∗ χπ has enough decay as λπ → ∞. The
answer to this question lies in the holomorphic extendability of g to the complexification of the group K.

In order to explain this, we closely follow the notations used in [22, Section 9.2]. Let KC stand for the
universal complexification of K, which is a complex Lie group. Let T be a maximal torus in K with Lie
algebra t and let W stand for the Weyl group of K with respect to T . Then, we have the classical Cartan
decomposition KC = K · exp it ·K. In view of this decomposition, domains D ⊂ KC which are bi-invariant
under the action of K are given by W -invariant closed sets B ⊂ t. Thus, all such domains, called Reinhardt
domains, are of the form DB = K · exp iB ·K. As KC is a complex Lie group we can talk about holomorphic
functions on such Reinhardt domains.

Let π ∈ K̂ be an irreducible representation of K on a Hilbert space Hπ. Then it has a unique extension,
denoted by the same symbol, to the complex group KC. Thus the characters χπ of the representation π
extend to the whole of KC as holomorphic functions. Hardy spaces associated to Reinhardt domains DB in
KC have been studied by Lassalle in [22]. Assuming that B is convex, we introduce the norm

‖f‖2B = sup
H∈B

∫
K×K

|f(k1 · exp iH · k2)|2 dk1 dk2

for functions f ∈ O(DB), the space of all holomorphic functions on DB . The Hardy space H2(DB) is then
defined by

H2(DB) = {f ∈ O(DB) : ‖f‖B <∞}.
In [22, Theorem 2 bis], the following characterisation of H2(DB) has been proved.

Theorem 3.2 (Lassalle). Let B be any W -invariant closed convex subset of t. Then a function f belongs
to H2(DB) if and only if it has the expansion

f(g) =
∑
π∈K̂

dπ tr(π(f)π(g)), g ∈ DB

where the operators π(f), π ∈ K̂ satisfy the following condition:

sup
H∈B

∑
π∈K̂

‖π(f)‖2HSχπ(exp 2iH) <∞.

In fact the above expression is precisely ‖f‖2B as shown by Lassalle. It easily follows from the following
result known as Lassalle-Gutzmer formula.

Theorem 3.3 (Lassalle). Suppose f ∈ O(DB). Then for every H ∈ B one has∫
K×K

|f(k1 · exp iH · k2)|2 dk1 dk2 =
∑
π∈K̂

‖π(f)‖2HSχπ(exp 2iH).
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At this point we would like to know how χπ(exp 2iH) grows as a function of H and dπ. To see this we need
to recall some results from the representation theory of compact Lie groups, see [19, 20, 29]. Without getting

into details, let us recall that there is a parametrisation of K̂ in terms of the so called highest weight vectors
in the dual of a Cartan subalgebra. Thus there is a one to one correspondence between π ∈ K̂ and such
highest weight vectors λ. Let the representation π be associated to the weight vector λ. Then it is known
that the eigenvalue λπ corresponding to π grows as a constant multiple of |λ| and that the dimension dπ of
the representation grows polynomially in |λ|. Thus there are constants a, b and C such that: (i) λπ ≥ a|λ|;
(ii) dπ ≤ C(1 + |λ|)b, see [19, Lemma 6]. Moreover, there exists a constant γ > 0 such that

|χπ(exp iH)| ≤ dπeγλπ|H|, H ∈ t.

This can be easily proved using the Weyl character formula for χπ, (see [19, Lemma 7]).
From Theorem 3.2 and the above estimate for the characters χπ(exp iH), we infer that whenever f ∈

H2(DB), ‖π(f)‖2HS and hence ‖f ∗ χπ‖22 have certain exponential decay (depending on B). In particular,
when f ∈ H2(KC) it follows that ‖f ∗ χπ‖22 decays faster than e−δλπ for any δ > 0. With this information
at our disposal, we can prove a characterisation of the solutions of the extension problem.

We consider the extension problem (3.2) for ∆K with initial condition f , where f is a distribution on K.
Note that the initial condition is interpreted in the distribution sense: for every ϕ ∈ C∞(K) we have

lim
ρ→0

∫
K

u(k, ρ)ϕ(k) dk = (f, ϕ).

Given distributions f, g, let us define

Pρf(k) =
21−s/2

Γ(s/2)

∑
π∈K̂

dπ(λπρ)s/2Ks/2(λπρ)f ∗ χπ(k) (3.13)

and

Qρg(k) =
∑
π∈K̂

dπ(λπρ)s/2Is/2(λπρ)g ∗ χπ(k).

We call Pρf the generalised Poisson integral of f . For t > 0, let Bt := {H ∈ t : |H| < t}. We prove the
following.

Theorem 3.4. A smooth function u(k, ρ) is a solution of the extension problem (3.2) with initial condition
f being a distribution if and only if u(k, ρ) = Pρf(k) +Qρg(k) for some g ∈

⋂
t>0H

2(DBt).

Proof. For any distribution f on K, we note that ‖f ∗ χπ‖∞ ≤ c(1 + λπ)n for a fixed integer n. This follows
from the fact that every distribution on K is of finite order. Consequently the series (3.13) defining Pρf
converges uniformly and solves the extension problem. It is also clear that for ϕ ∈ C∞(K) we have

lim
ρ→0

∫
K

Pρf(k)ϕ(k) dk = (f, ϕ).

To see this observe that∫
K

Pρf(k)ϕ(k) dk =
21−s/2

Γ(s/2)

∑
π∈K̂

dπ(λπρ)s/2Ks/2(λπρ)(f ∗ χπ, ϕ)

which is the same as (f, Pρϕ). As Pρϕ→ ϕ in C∞(K) as ρ→ 0, it follows that (f, Pρϕ) converges to (f, ϕ)
as ρ→ 0.

On the other hand, since we take g from
⋂
t>0H

2(DBt), we know from the remarks previous to the

statement of the theorem, that Qρg is well defined as ‖g ∗ χπ‖2 ≤ Ce−δλπ for any δ > 0. Since each of the

components (λπρ)s/2Is/2(λπρ)g ∗ χπ satisfies the extension problem, so does their sum Qρg. Moreover, as

(λπρ)s/2Is/2(λπρ)→ 0 as ρ→ 0, it follows that Qρg → 0 as ρ→ 0, again in the sense of distributions. Thus
u = Pρf +Qρg solves the extension problem with initial condition f .

Conversely, if u(k, ρ) is a solution of the extension problem, then for any π ∈ K̂, u(·, ρ) ∗ χπ(k), k ∈ K
fixed, will be a solution of(

− λ2
π + ∂2

ρ +
1− s
ρ

∂ρ
)
v(k, ρ) = 0, v(k, 0) = f ∗ χπ(k).
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Solving this ordinary differential equation, in view of (3.5) and (3.1), we are led to

v(k, ρ) =
21−s/2

Γ(s/2)
(ρλπ)s/2Ks/2(ρλπ)f ∗ χπ(k) + cπ(k)(ρλπ)s/2Is/2(ρλπ).

As f is given to be a distribution, ‖f ∗χπ‖2 has a polynomial growth in λπ. Hence the first term goes to 0 as
λπ → ∞. Consequently, as ‖u(·, ρ) ∗ χπ‖2 has a polynomial growth, it follows that ‖cπ‖2(ρλπ)s/2Is/2(ρλπ)
remains bounded as λπ → ∞ for every ρ > 0. We also note that v(·, ρ) ∗ χπ = v(·, ρ) which leads to
cπ = cπ ∗ χπ. Therefore, the function

g(k) =
∑
π

cπ ∗ χπ(k)

satisfies ‖g ∗ χπ‖2 ≤ Ce−δλπ for every δ > 0. This means that g extends to KC as a holomorphic function
and g ∈

⋂
t>0H

2(DBt). And we have the representation

u(k, ρ) = Pρf(k) +Qρg(k).

In Theorem 3.4, if we assume that u(k, ρ) has tempered growth in both variables, then so does u(·, ρ)∗χπ
and hence from the equation

u(·, ρ) ∗ χπ =
21−s/2

Γ(s/2)
f ∗ χπ(ρλπ)s/2Ks/2(ρλπ) + g ∗ χπ(ρλπ)s/2Is/2(ρλπ)

we can conclude that g ∗ χπ = 0 for all π and u = Pρf . We can now characterise all such solutions of
tempered growth with f ∈ Lp(K).

Theorem 3.5. Let u(k, ρ) be a solution of the extension problem (3.2) which is of tempered growth (in both
variables). Then u = Pρf for some f ∈ Lp(K), 1 < p ≤ ∞ if and only if there exists a constant C > 0 such
that

sup
ρ>0

∫
K

|u(k, ρ)|p dk ≤ C. (3.14)

When p = 1, the same happens if and only if f is a complex Borel measure.

Proof. When f ∈ Lp(K), 1 ≤ p ≤ ∞, the estimate (3.14) is immediate from Theorem 2.4 since the heat
semigroup et∆K is a contraction on Lp spaces.

Conversely, if (3.14) is assumed, then there exists a subsequence ρj → 0 and f ∈ Lp(K) (f = µ, with µ a
complex Borel measure, when p = 1), such that u(k, ρj)→ f(k) weakly in Lp(K), 1 < p <∞ (u(·, ρj)→ µ,
for p = 1). But then, as we remarked earlier, u has to be of the form Pρf with the same f .

Remark 3.6. When f ∈ L2(K) we can say something more about the solution u(k, ρ) = Pρf(k). In view of
Lassalle-Gutzmer formula in Theorem 3.3 it follows that for each ρ the function u(·, ρ) belongs to H2(DBδρ),
where Bδρ denotes the ball of radius δρ, for any δ < γ where γ is the constant appearing in the estimate

|χπ(exp iH)| ≤ dπeγλπ|H|.

3.3. Hermite operator. Now we will characterise solutions of the extension problem for the Hermite
operator on Rn. For α ∈ Nn, let Φα be the normalised Hermite functions on Rn which are eigenfunctions of
the Hermite operator H := −∆ + |x|2 with eigenvalues (2|α|+ n). Here ∆ denotes the Euclidean Laplacian
and |α| = α1 + . . .+ αn. Thus,

HΦα = (2|α|+ n)Φα. (3.15)

Let us look at the corresponding extension problem(
−H + ∂2

ρ +
1− s
ρ

∂ρ
)
u(x, ρ) = 0, x ∈ Rn, ρ > 0; u(x, 0) = f(x), x ∈ Rn. (3.16)

In view of (3.15), the coefficient û(α, ρ) =
∫
Rn u(x, ρ)Φα(x) dx satisfies the equation(

− (2|α|+ n) + ∂2
ρ +

1− s
ρ

∂ρ
)
û(α, ρ) = 0, û(α, 0) = (f,Φα)

and the two linearly independent solutions are the functions

(ρ
√

2|α|+ n)s/2Ks/2(ρ
√

2|α|+ n)
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and
(ρ
√

2|α|+ n)s/2Is/2(ρ
√

2|α|+ n).

For each t > 0, let us define the tube domain

Ωt = {z = x+ iy ∈ Cn : |y| < t}.
Fixed t > 0, take O(Ωt) to be the space of all holomorphic functions on Ωt. For any F ∈ O(Ωt) let us
introduce the norm

‖F‖2Ht :=

∫
Rn

∫
|y|<t

|F (x+ iy)|2(t2 − |y|2)n/2
Jn/2−1(2i(t2 − |y|2)1/2|x|)

(2i(t2 − |y|2)|x|)n/2−1
dy dx,

where Jα(z) is the Bessel function of the first kind of type α, and define the Hardy space H2(Ωt) as

H2(Ωt) = {F ∈ O(Ωt) : ‖F‖Ht <∞}.
Let Pk be the spectral projections of the Hermite operator onto the kth eigenspace

Pkf =
∑
|α|=k

(f,Φα)Φα.

The Hermite functions Φα(x) have extensions to Cn as entire functions, and so Pkf has a holomorphic
extension. The following characterisation for these spaces is proved in [37].

Theorem 3.7 (Thangavelu). For any holomorphic function F in the tube domain Ωt, we have the identity

‖F‖2Ht = cn

∞∑
k=0

‖Pkf‖22
k!(n− 1)!

(k + n− 1)!
Ln−1
k (−2t2)et

2

,

where f is the restriction of F to Rn.

In Theorem 3.7, Ln−1
k (−2t2)et

2

stands for Laguerre functions of type (n−1). Given a tempered distribution
f , we define

PHρ f(x) =
21−s/2

Γ(s/2)

∞∑
k=0

(ρ
√

2k + n)s/2Ks/2(ρ
√

2k + n)Pkf(x) (3.17)

and if the function g is such that Pkg has enough decay we also define

QHρ g(x) =

∞∑
k=0

(ρ
√

2k + n)s/2Is/2(ρ
√

2k + n)Pkg(x). (3.18)

We will prove the following characterisation of solutions to the extension problem (3.16).

Theorem 3.8. A smooth function u(x, ρ) is a solution of the extension problem (3.16) with initial condition
a tempered distribution f if and only if u(x, ρ) = PHρ f(x) +QHρ g(x), for some g ∈ ∩t>0H

2(Ωt).

Proof. Let us suppose that the function u(x, ρ) can be written as PHρ f(x) +QHρ g(x), with the assumptions
on f, g as in the statement. If f is a tempered distribution on Rn, its Fourier–Hermite coefficients satisfy

|(f,Φα)| ≤ C(2|α|+ n)m,

for some integer m. As a consequence, the expression (3.17) is well defined and it solves the extension
problem. On the other hand, from Theorem 3.7, we infer that ‖Pkg‖22 has to decay as (Ln−1

k (−2t2))−1,

asymptotically in k. But it is known that Ln−1
k (−2t2) ≈ Cect(2k+n)1/2 as k →∞, for n and t fixed (see [32]),

thus ‖Pkg‖2 decays as Ce−ct(2k+n)1/2 , for k large enough. Then, the expression (3.18) is also well defined and
solves the extension problem. By following analogous reasoning as in the proof of Theorem 3.4, we conclude
that u = PHρ f +QHρ g solves the extension problem with initial condition f .

Conversely, suppose that u(x, ρ) is a solution of (3.16). Then for every α ∈ Nn, the function û(α, ρ) is
given by the following sum:

21−s/2

Γ(s/2)
(f,Φα)

(
ρ
√

2|α|+ n
)s/2

Ks/2

(
ρ
√

2|α|+ n
)

+ cα
(
ρ
√

2|α|+ n
)s/2

Is/2(ρ
√

2|α|+ n),

as explained at the beginning of the present section. As u(x, ρ) is tempered, û(α, ρ) has at most polynomial

growth in |α| and consequently cα will have exponential decay e−ρ
√

2|α|+n for every ρ > 0. But then
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the function g defined by g(x) =
∑
α∈Nn cαΦα(x) satisfies ‖Pkg‖2 ≤ Ce−t

√
2k+n for every t > 0. As a

consequence, it holomorphically extends and belongs to the space H2(Ωt) for every t > 0. This proves the
theorem.

As in the case of compact Lie groups, we have also the following characterisation. The proof is completely
analogous, since the heat semigroup e−tH is a contraction on Lp spaces (see [33]), so we omit it.

Theorem 3.9. Let u(x, ρ) be a solution of the extension problem (3.16) which is of tempered growth (in both
variables). Then u = PHρ f for some f ∈ Lp(Rn), 1 < p ≤ ∞ if and only if there exists a constant C > 0
such that

sup
ρ>0

∫
Rn
|u(x, ρ)|p dx ≤ C.

When p = 1, the same happens if and only if f is a complex Borel measure.

Remark 3.10. For the corresponding (generalised) Poisson integrals PHρ of L2 functions, an analogous remark
to the one for compact Lie groups in Remark 3.6 can be made. Indeed, there is Gutzmer’s formula for Hermite
expansions available (see [37, Theorem 6.2]). Actually, such Gutzmer’s formula is used to prove Theorem
3.7 in [37].

3.4. Special Hermite operator. In this section we study characterisations of solutions of the extension
problem for the special Hermite operator. We borrow the notations, facts and definitions from Subsection
2.6.

As in the case of the Hermite operator, we would like to study the most general solutions of the extension
problem with the initial condition f a tempered distribution. It is known that a distribution f on Rn is
tempered if and only if it belongs to the Hermite-Sobolev space Wm

H (Rn) for some integer m. These spaces
are defined by the condition Hmf ∈ L2(Rn) where Hm is defined via spectral theorem when m is negative.
The above result simply means that f is tempered if and only if its Hermite coefficients satisfy the estimate
|(f,Φα)| ≤ C(2|α|+ n)m for some non-negative integer m. As there is no such characterisation of tempered
distributions in terms of their special Hermite coefficients we start with initial conditions f coming from
certain analogues of the Sobolev spaces known as twisted Sobolev spaces. For any integer m the space
Wm
L1

(Cn) is defined by the requirement Lm1 f ∈ L2(Cn). Again, for m negative, the operator Lm1 is defined
via spectral theorem and the condition translates into∑

α,β∈Nn
(2|β|+m)2m|(f,Φα,β)|2 <∞.

Note that when f ∈Wm
L1

(Cn) we have the estimates∑
α∈Nn

|(f,Φα,β)|2 ≤ C(2|β|+ n)−2m (3.19)

for any β. Observe that when m is negative, the above is a growth restriction on the special Hermite
coefficients of the distribution f.

Again we consider the corresponding extension problem(
− L1 + ∂2

ρ +
1− s
ρ

∂ρ
)
u(z, ρ) = 0, z ∈ Cn, ρ > 0; u(z, 0) = f(z), z ∈ Cn. (3.20)

Let u(z, ρ) be a solution of the initial value problem (3.20). Assume that both f and u(·, ρ) belong to
Wm
L1

(Cn) for some m. Then for each pair α, β ∈ Nn the function ûα,β(ρ) = (u(·, ρ),Φα,β) satisfies the
equation (

− (2|β|+ n) + ∂2
ρ +

1− s
ρ

∂ρ
)
ûα,β(ρ) = 0, ûα,β(0) = (f,Φα,β).

Again, two linearly independent solutions are given by

(ρ
√

2|β|+ n)s/2Ks/2(ρ
√

2|β|+ n)

and

(ρ
√

2|β|+ n)s/2Is/2(ρ
√

2|β|+ n).
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For each t > 0, let us define the tube domain

Ωt = {(x, u) + i(y, v) ∈ C2n = R2n × R2n : |y|2 + |v|2 < t}.

We consider, for a fixed t > 0, the space of all holomorphic functions on Ωt, that we denote by O(Ωt). Given
F ∈ O(Ωt), we introduce the norm

‖F‖2Ht =

∫
Ωt

|F (z, w)|2eu·y−v·x dz dw

where z = x+ iy, w = u+ iv. We define the following Hardy space

H2(Ωt) = {F ∈ O(Ωt) : ‖F‖Ht <∞}

(observe that we are using the same notation as in the case of the Hermite operator). The special Hermite
functions Φα,β have extensions to C2n, and so the projections f × ϕk can be holomorphically extended.

Let us consider the generalised Poisson integral PL1
ρ f given by

PL1
ρ f(z) =

21−s/2

Γ(s/2)

∞∑
k=0

(ρ
√

2k + n)s/2Ks/2(ρ
√

2k + n) f × ϕk(z).

Note that the Poisson integral is also given by the sum

21−s/2

Γ(s/2)

∑
α,β∈Nn

(f,Φα,β)(ρ
√

2|β|+ n)s/2Ks/2(ρ
√

2|β|+ n)Φα,β(z).

Similarly, for functions g with enough decay, we define QL1
ρ g by

QL1
ρ g(z) =

∞∑
k=0

(ρ
√

2k + n)s/2Is/2(ρ
√

2k + n) g × ϕk(z).

Theorem 3.11. A function u(·, ρ) ∈ Wm
L1

(Cn), for some integer m, is a solution of the extension problem

(3.20) with initial condition f ∈ Wm
L1

(Cn) if and only if u(z, ρ) = PL1
ρ f(z) + QL1

ρ g(z), for some g ∈
∩t>0H

2(Ωt).

Proof. Again, let us suppose that the function u(z, ρ) can be written as PL1
ρ f(z) + QL1

ρ g(z), with the
assumptions on f, g as in the statement. By the explanations previous to the statement of the theorem, we
have that

∑
α∈Nn |(f,Φα,β)|2 ≤ C(2|β|+ n)−2m for any β. This implies that

‖f × ϕk‖22 =
∑
|β|=k

∑
α∈N
|(ϕ,Φα,β)|2 ≤ C

∑
|β|=k

(2|β|+ n)−2m = C(2k + n)−2m+n−1

since
∑
|β|=k 1 = (k+n−1)!

k!(n−1)! = O((2k + n)n−1). Consequently,

∞∑
k=0

‖f × ϕk‖22
(

(ρ
√

2k + n)s/2Ks/2(ρ
√

2k + n)
)2

<∞,

and the expression for PL1
ρ f(z) is well defined and it solves the extension problem. On the other hand, by

the Gutzmer’s formula for special Hermite expansions (see [36, Section 6]), we have∫
Cn
|g(x+ iy, u+ iv)|2e(u·y−v·x) dx du = cn

∞∑
k=0

‖g × ϕk‖22
k!(n− 1)!

(k + n− 1)!
ϕk(2iy, 2iv)

where ϕk(2iy, 2iv) = Ln−1
k (−2(|y|2 + |v|2))e(|y|2+|v|2). As g ∈ ∩t>0H

2(Ωt) we deduce that ‖g × ϕk‖2 has to

decay as e−t
√

2k+n for large k, by the same reasoning as in the proof of Theorem 3.8. Then, the expression
QL1
ρ g(z) is well defined and solves the extension problem. By following analogous reasoning as in the proof

of Theorem 3.4, we conclude that u = PL1
ρ f +QL1

ρ g solves the extension problem with initial condition f .
Conversely, suppose that u(z, ρ) is a solution of (3.20). Then for every α, β ∈ Nn

ûα,β(ρ) =
21−s/2

Γ(s/2)
(f,Φα,β)

(
ρ
√

2|β|+ n
)s/2

Ks/2

(
ρ
√

2|β|+ n
)

+ cα,β
(
ρ
√

2|β|+ n
)s/2

Is/2(ρ
√

2|β|+ n).
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Since u(·, ρ) ∈Wm
L1(Cn), we have the polynomial growth (3.19) in |β| for the infinite sum

∑
α∈Nn |ûα,β(ρ)|2.

Thus,
∑
α∈Nn |cα,β |2 has exponential decay e−ρ

√
2|β|+n for every ρ > 0. Then the function

g(z) =
∑

β,α∈Nn
cα,βΦα,β(z)

satisfies ‖g × ϕk‖2 ≤ Ce−t
√

2k+n for every t > 0. This implies that it belongs to the space H2(Ωt) for every
t > 0.

Remark 3.12. As in the case of compact Lie groups and the Hermite operator, we have also another charac-
terisation as in Theorem 3.5. The proof is completely analogous, and we will omit it. Moreover, an analogous
remark to Remark 3.6 also holds in this setting.
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