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aDepartment of Computer Science and Artificial Intelligence, University of the Basque Country UPV/EHU,
Paseo de Manuel Lardizabal 1, 20018, San Sebastián, Spain

bDepartment of Data Science, Basque Center for Applied Mathematics, Alameda Mazarredo 14, 48009,
Bilbao, Spain

Abstract

In many current problems, the actual class of the instances, the ground truth, is unavail-

able. Instead, with the intention of learning a model, the labels can be crowdsourced by

harvesting them from different annotators. In this work, among those problems we fo-

cus on those that are binary classification problems. Specifically, our main objective is

to explore the evaluation and selection of models through the quantitative assessment of

the goodness of evaluation methods capable of dealing with this kind of context. That

is a key task for the selection of evaluation methods capable of performing a sensible

model selection. Regarding the evaluation and selection of models in such contexts,

we identify three general approaches, each one based on a different interpretation of

the nature of the underlying ground truth: deterministic, subjectivist or probabilistic.

For the analysis of these three approaches, we propose how to estimate the Area Under

the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve within each

interpretation, thus deriving three evaluation methods. These methods are compared in

extensive experimentation whose empirical results show that the probabilistic method

generally overcomes the other two, as a result of which we conclude that it is advisable

to use that method when performing the evaluation in such contexts. In further studies,

it would be interesting to extend our research to multiclass classification problems.
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1. Introduction

The main target in supervised classification is to build models that accurately pre-

dict the class value for new, unseen instances. In order to do so, we need a set of

instances for which the ground truth, i.e., the true class value, is known. Those in-

stances allow the training of classifiers using learning algorithms and the assessment of5

trained classifiers. The assessment of the classifiers for the model selection is usually

performed through the estimation of a score (e.g., the accuracy or the AUC, among

others) based on the comparison of the true classes of the instances with the predicted

classes.

Nevertheless, there are problems for which the ground truth is not available. This10

unavailability can happen due to different reasons, like, for instance, excessive cost,

difficulty or risk of gathering the ground truth. Thus, in these problems, there is no set

of labeled instances to perform the learning, evaluation or selection of models. Alter-

natively, for some of these problems, the labels of multiple annotators per instance can

be gathered. These annotations, although probably noisy and biased, serve as an alter-15

native to the ground truth. Examples of this general situation can be found throughout

the literature [1–18]. With these annotations, tasks such as the learning, evaluation and

model selection may be attempted even if the ground truth is not available. Within this

strategy falls the concept of crowdsourced data, in which the data are collected from

groups of people.20

The task of learning from data with crowdsourced labels is a growing discipline

that has received much attention in the last decade [1–3, 6–9, 11–22]. This growth is

favored by the fact that the conditions for gathering crowdsourced labels for large unla-

beled datasets have improved lately, both technically and economically. Technologies,

such as the Internet and online platforms, which take advantage of it, have dramatically25

changed the conditions in which the crowdsourced data can be harvested, with Amazon

Mechanical Turk (https://www.mturk.com), MicroWorkers (https://microworkers.com)

and Figure Eight (https://www.figure-eight.com) being some examples of the current

online platforms available. Therefore, the gathering of labels by crowdsourcing is cur-

rently easy, cheap and fast [1–7, 14, 15, 18, 22–25], making this strategy very profitable30
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in comparison to the other alternatives such as, for instance, the use of expert annota-

tors.

As previously mentioned, crowdsourced labels are used in order to confront the lack

of a ground truth, which may be due to different reasons [26]. On the one hand, the

unavailability of the true values of the labels may be because of their non-deterministic35

nature. This is likely to happen in problems where some sort of subjectivity is in-

volved. For instance, this is the case of problems from the area of sentiment analysis

(e.g., feelings aroused by articles [19]) and problems such as the development of rec-

ommender systems of movies [27] or songs [28], among others. On the other hand,

the non-availability of the true values of the labels may be due to the cost or difficulty40

in gathering them. This happens, for example, in problems related with areas such as

computer vision (e.g., image segmentation [29], object detection [10]) or geometrical

reasoning [30].

In classification problems, as far as we know, the evaluation and the selection of

models from crowdsourced data have not been dealt with explicitly before. Instead,45

in papers covering the learning from multiple annotators, when evaluation and model

selection is performed, it is done through simulation or similar approaches [9, 11–

13]. Such occurrence implies a research gap, which supposes the rationale behind our

study, since performing an accurate ranking of models even when the ground truth is

not available is crucial in order to achieve a sensible model selection. In fact, in actual50

problems in which the ground truth is not available, and therefore in which the eval-

uation and selection of models can hardly be done even through simulation, at least

two questions arise. The first question consists of whether, for such contexts, a useful

evaluation method that takes advantage of the labels issued by the annotators can be

proposed. The second question is how well performs the evaluation method proposed55

for that context when assessing the models. Consequently, in this paper we tackle the

problem that can be defined as the evaluation and selection of models in binary classi-

fication problems in which the ground truth is unavailable and in which crowdsourced

labels are available instead. Briefly, the main objective of our research is to explore the

proposal, assessment and comparison of evaluation methods in such problems, focus-60

ing on the selection of models, so as to tackle the aforementioned research gap. In order

3



to carry out that exploration, we specifically seek to quantitatively assess the behavior

of different evaluation methods capable of dealing with this kind of contexts, in terms

of their ability to conduct a sensible model selection. Namely, an outline of which

evaluation method is more appropriate for model selection depending on the specific65

characteristics of the given problem is sought here.

The methodology we have followed to conduct our research is composed of differ-

ent sequential steps. The first one is the identification of the research gap, which has

already been exposed. The rest of them are explained in later sections in the same order

they were conducted. Briefly, those remaining steps are the definition of the problem,70

the proposal of a solution, the evaluation of the capability of the solution to tackle the

problem, the derivation of conclusions from the evaluation and the design of future

research lines based on those conclusions.

In order to pursue the aforementioned objective, we propose a taxonomy composed

of three approaches to tackle the evaluation and model selection in binary classification75

problems in which the ground truth is unavailable, based on three different views of

the underlying ground truth. Now we give a brief description of the essence of each

approach, while later in the text (Section 3) how each approach has been identified is

explained. First, the deterministic view assumes that every instance has a deterministic

label value. Secondly, the subjectivist view assumes that each annotator expresses an80

alternative deterministic ground truth through the subjectivity of their opinion. Finally,

the probabilistic view assumes that the ground truth has a probabilistic nature. These

different approaches can be used to adapt the estimators of evaluation measures in

different ways. Next, the supervised estimation of the AUC is adapted to the three

general approaches presented, since the AUC is used as the evaluation measure of85

reference. In order to adapt the estimation of the AUC to the probabilistic interpretation

of the ground truth, we use a generalization based on the Kendall-Tau distance [31–

34]. Finally, in the experimentation, we compare these evaluation methods through

simulation, measuring how similar they are to the evaluation performed with the ground

truth, in terms of rankings of classifiers.90

This paper is structured as follows. To begin with, in Section 2, the problem tackled

in this paper is defined and formalized. Next, in Section 3, our proposal consisting of
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three different general approaches to perform the evaluation and model selection in

the problem at hand and three specific evaluation methods, each one belonging to a

different approach, is explained. In Section 4, the experimentation is explained while,95

in Section 5, the results achieved are described. Next, in Section 6 the most important

aspects of this work are discussed and the main conclusions are given. Finally, in

Section 7 the recommendations derived from this work and the identified further studies

to carry out are given.

2. Problem100

In this section, we specify the problem that we deal with in this paper. Briefly,

in this work we tackle the problem of the selection of classifier learning algorithms in

binary classification problems in which the ground truth is unavailable and in which the

labels of multiple annotators are available instead. In addition, we limit the scope of the

problem by considering that there is no information available regarding the reliability of105

the annotators. In such a problem, our objective is to explore the proposal, assessment,

and comparison of different estimators of a given evaluation measure in their task of

performing the selection of classifier learning algorithms under those circumstances.

In order to illustrate the problem, letM+ andM− be two models learned from two

different classifier learning algorithms applied to a given binary classification problem.110

In such a context, let e+ and e− be the associated errors of M+ and M−, respectively,

in terms of a given evaluation measure (e.g., the accuracy or the AUC, among other

possibilities) that assesses the ability of M+ and M− as binary classifiers, verifying

that e+ < e−. Let S be an estimator of the evaluation measure of reference, S requiring

for its computation the availability of the ground truth for a given set of instances. Let115

S(M+) and S(M−) be the distributions of the estimations of the errors of M+ and

M− (e+ and e−) according to S. Let S′ be another estimator of the evaluation measure

of reference that, unlike S, does not require for its computation the availability of the

ground truth for a given set of instances, it being capable of using instead the labels

of multiple annotators for the given set of instances. Let S′(M+) and S′(M−) be the120

distributions of the estimations of the errors of M+ and M− (e+ and e−) according
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to S′. Since what is being sought is the selection of classifier learning algorithms, it is

sensible to assess the goodness of a given estimator (S, S′, ...) in terms of its probability

to issue the same ranking forM+ andM− that could be generated with the assessments

of M+ and M− that the evaluation measure of reference does. Namely, the goodness125

of S and of S′ can be quantified through the probabilities P (S(M+) < S(M−)) and

P (S′(M+) < S′(M−)), respectively.

Besides, when the problem is generalized in order to rank more than two models,

then there are no longer just two rankings, one correct (M+ better than M− ) and one

incorrect (M+ worse than M−). Instead, if there are k classifiers, there are k! different130

possible rankings, among which only one is a totally correct ranking and only one is a

totally incorrect ranking, while the rest of the rankings have some degree of correctness.

In this more complex case, the goodness of S and of S′ can be quantified through the

sum of the probabilities of all the different possible rankings weighted accordingly to

their similarities with the correct ranking.135

Once the general problem has been exposed, we dedicate the next two subsections

to giving further details of it. First, in Subsection 2.1 we narrow down the scope of the

problem addressed by selecting a specific evaluation measure of reference, the AUC.

Secondly, in Subsection 2.2 we narrow down the scope of the problem again, limiting it

to the context of crowdsourced data, which is a growing context that is receiving much140

attention lately due to its aforementioned advantages.

2.1. Evaluation measure of reference

In this subsection, we analyze some of the most popular evaluation measures used

in binary classification problems in which the ground truth is available, in order to

select one of them to be the evaluation measure of reference with which to carry out145

our research. In contexts where the ground truth is available, a direct estimation of

a given evaluation measure can usually be calculated comparing the outputs of the

classifiers with the true class. Among the measures used in these contexts when binary

classification is done, some of the most common ones are the accuracy (or, equivalently,

the error), the specificity, the sensitivity, different combinations of both and the AUC150

[9, 12, 13].
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The accuracy can be defined as the probability of a randomly chosen instance to be

correctly classified. Unfortunately, the accuracy has handicaps, such as its sensitivity

to imbalanced proportions between the real classes [35–37] and its dependency on the

decision threshold [38] that defines the trade-off between the reliability of the predicted155

positive and the predicted negative instances.

The sensitivity and specificity are two measures used in binary classification [39],[40]

whose meanings are the probability to classify as positive a positive instance and the

probability to classify as negative a negative instance, respectively. Those two mea-

sures can be combined into a single measure, such as, for instance, the g-means [41],160

which consists of a geometric average of both measures that has the advantage of being

insensitive to unbalanced datasets. Namely, unlike the accuracy, the g-means is invari-

ant regarding the a priori class probabilities. However, since each decision threshold

derives specific values for the sensitivity, specificity and g-means, it happens that these

metrics are also dependent on the decision threshold [38],[40].165

The Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC)

curve, which is frequently referred to simply as AUC, is a measure related with the

sensitivity and specificity. In fact, one of the axes of the ROC curve is the sensitivity

itself, while the other axis is one minus the specificity. The AUC can be interpreted

as the probability of a pair of instances chosen randomly, composed of a negative and170

a positive instance, to be correctly ordered by the classifier [38, 42]. Compared with

the sensitivity and the specificity, the AUC has the advantage of being independent of

the decision threshold, as it is based on the pairs of sensitivity and specificity obtained

with all the possible thresholds [38]. In addition, the AUC has the advantage of being

statistically more discriminative than the accuracy [43, 44].175

In conclusion, in this section several measures to perform the evaluation and se-

lection of models in supervised binary classification have been exposed. Considering

the relative advantages and disadvantages presented for the different evaluation mea-

sures, we choose to use the AUC. Therefore, the problem we deal with in this paper

is bounded to the AUC. Namely, in the problem of the selection of models in binary180

classification problems in which the ground truth is unavailable and in which crowd-

sourced labels are available instead, we focus on the use of the AUC as the evaluation
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measure of reference. This implies that the three different estimators proposed in this

paper, which are computable in problems in which the ground truth is unavailable, are

adaptations of an estimator of the AUC that needs the ground truth to be available for185

its computation. Specifically, we select the popular estimator of the AUC based on

the Wilcoxon or Mann-Whitney statistic [42] to be the estimator of the AUC when the

ground truth is available.

2.2. Crowdsourced data context

In crowdsourced contexts, where the ground truth is unavailable, the evaluation is190

no longer a straightforward task, because the classification cannot be compared with

the ground truth to compute a direct estimation of the evaluation measures. Since the

only knowledge held about the ground truth is the labels from the annotators, it is

worth mentioning some properties related to the crowdsourced data which may affect

and hinder the subsequent learning, evaluation and selection of models.195

To start with, when the labels are obtained through crowdsourcing, the amount

of annotators is usually large [2, 3, 11, 13, 20, 22, 25, 27] and they tend to be non-

experts [1–8, 11, 13–15, 19, 23, 24, 35]. Furthermore, it is reasonable to assume that

each annotator will label a different number of instances [6, 7, 9, 20, 27]. In addition,

the matrix of labels, in which one dimension represents the instances and the other200

dimension represents the annotators, tends to be sparse. This happens largely because

it is unfeasible for each annotator to label a large amount of instances, it being usual

for each one to label only a few instances [2, 9, 23, 27]. Finally, differences among the

qualities of the annotators are likely to appear [6, 7, 9, 12, 13, 22, 25, 29], it also being

possible that they label in an unbalanced way [3, 13, 22, 24].205

3. Proposal

In order to expose our proposal, it is convenient to recall that, in the problem at

hand, information of the unavailable ground truth is sought through the collection of

the labels of multiple annotators per instance in a crowdsourced data context. Since

such annotators aim to guess the ground truth through their labels [1–18], we seek to210
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use those labels to perform the evaluation and model selection in the problem tackled.

In this regard, we propose three different general strategies that match three interpreta-

tions about the underlying ground truth and that can be used to adapt the estimators of

different evaluation measures to contexts in which the ground truth is unavailable.

Within each general approach, we propose and describe a particular evaluation215

method that supposes an adaptation of the selected estimator of the AUC, an estimator

that requires the availability of the ground truth for its computation (an estimator like

S). As the problem at hand requires, those three adaptations share the particularity of

being computable in binary classification problems in which, instead of the unavailable

ground truth, crowdsourced labels are available (three estimators like S′). Specifically,220

the three evaluation methods proposed in this paper have been designed to be as simple

and aseptic as possible within each approach, so that the comparison of their perfor-

mances reflects, to some extent, the different approaches. Specifically, that design is

made taking into account that, in this work, the research is focused on problems for

which there is no information available regarding the reliabilities of the annotators. In225

consequence, that simplicity and that asepsis are sought through the attempt to give

the same relevance to each piece of information, which consists of a label issued by

an annotator. However, because during the experimentation sparse matrices have to be

handled and due to the need to deal with instances without any labels, that intention is

somewhat hampered.230

Therefore, in each of the next three subsections a different general approach is

exposed. Besides, within each approach a particular evaluation method is explained as

to how to adapt the selected estimator of the AUC to be used when the ground truth is

available.

3.1. Deterministic ground truth approach235

In this approach, the interpretation is that, for every instance, a deterministic label

value exists. This is the case of problems in which, although the ground truth exists in

a deterministic form, getting the ground truth is too expensive, risky or difficult. For

instance, this situation happens, among other areas, in remote-sensing [10, 45] (e.g.,

whether or not an object is present in a given picture) and medical diagnosis [9, 46]240
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(e.g., whether or not an individual has a given disease).

Taking into account the aforementioned interpretation, we propose a two-step ap-

proach to tackle the evaluation. The first step is to establish a unique estimation of the

deterministic ground truth for each instance through a function that uses the labels of

the annotators. Afterwards, once the estimation of the deterministic ground truth is es-245

tablished, the second step consists of the use of an ordinary estimator (one that requires

the availability of the ground truth) of the evaluation measure.

The first step can be completed, for example, through the majority voting technique,

which as mentioned in the literature [9, 12], is a simple and frequently used technique

to establish a unique estimation of the deterministic ground truth. Alternatively, when250

information on the reliability of the labelers is available, a weighted voting can be

applied in order to take into account that information.

3.1.1. Deterministic Ground Truth (DGT) method

Within the deterministic ground truth approach, we propose an evaluation method

based on the majority voting, i.e., each instance is assigned to the label that most of the255

labelers issue (solving the ties randomly). We propose the majority voting because it is

a straightforward way to estimate the deterministic ground truth while giving the same

relevance to each annotator, given that there is no information regarding their reliability.

Once the estimation of the deterministic ground truth is computed, the estimation of

the AUC is calculated by using the estimator of the AUC based on the Wilcoxon or260

Mann-Whitney statistic [42].

The essence of this method can be seen in the algorithm of Figure 1, where q

represents the outputs of a classifier for a set of m instances and L represents the

matrix with the labels of the n annotators for the m instances, in which each row

(represented as Li·) is related to an instance and each column is related to a labeler.265

Finally, in Figure 1, let i be the index that denotes the current instance in the loop of

the algorithm, let li be the outcome of the majority voting of the labelers for instance i,

let l be the outcomes of the majority voting of the labelers for all the instances and let

measure be the outcome of the method.
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Algorithm 1: DGT
Input: q and L

Output: measure

begin

for i← 1 to m do
li ← majority voting(Li·)

end

measure← auc(q, l)

return measure
end

Figure 1: Algorithm of the DGT method.

3.2. Subjectivist ground truth approach270

In this case, the interpretation is that each annotator has a different subjective view,

expressing an alternative deterministic ground truth. This profile is suitable for prob-

lems in which, simply, the ground truth does not exist in an objective way. For ex-

ample, among the problems in which the aforementioned circumstance is present, the

assessment of the relevance of books and documents regarding a topic [47], music rec-275

ommendation [28, 48], recommendation of movies [27], and sentiment analysis [19]

can be found.

Considering the exposed interpretation, we outline a two-step approach to deal with

the evaluation. The first step is to apply an ordinary estimator (one that requires the

availability of the ground truth) of the evaluation measure as many times as the amount280

of annotators, each time using the alternative deterministic ground truth of a different

annotator. In the second step, all the performances are combined somehow through a

function in one global value to express a synthesis of the performance.

The combination of the performances of the second step can be achieved, for in-

stance, through the mean or the median. Another option is the use of a weighted aver-285

age, with weights that take into account the amount of labels issued by each labeler or,

when available, the reliability of the labelers, or both.
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3.2.1. Subjectivist Ground Truth (SGT) method

In this case, we propose to estimate the AUC values for a given classifier regarding

each of the alternative deterministic ground truths defined by each labeler by using the290

estimator of the AUC based on the Wilcoxon or Mann-Whitney statistic [42]. Next, a

weighted average of them is performed to calculate the estimation of the global AUC.

Since no information regarding the reliabilities of the annotators is available, by default

this method assumes that the reliability of each annotator is the same and therefore their

reliabilities do not affect the weights. Specifically, each weight is set to be proportional295

to the amount of labels that the associated annotator issues. Namely, the weight of a

given AUC derived from a given annotator is set to be proportional to the amount of

labels issued by that annotator. The reason why this weighting is performed is to give

the same relevance to each piece of information, which consists of a label issued by an

annotator. The algorithm in Figure 2 summarizes how the method works. Specifically,300

in Figure 2, let j be the index that denotes the current annotator in the loop of the

algorithm, let L·j be the column of matrix L related to the labeler j, let aucj be the

AUC of the given classifier taking the labels of labeler j as the ground truth, and let auc

be the vector of the AUCs of the given classifier taking at each position of the vector

the labels of a different annotator as the ground truth.305

Algorithm 2: SGT
Input: q and L

Output: measure

begin

for j ← to n do
aucj ← auc(q, L·j)

end

measure← weighted average(auc)

return measure
end

Figure 2: Algorithm of the SGT method.
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3.3. Probabilistic ground truth approach

In this approach, the interpretation is that the ground truth takes a probabilistic

shape. This is the case of problems in which the underlying ground truth exists in a

probabilistic form or it is natural to express it in a probabilistic form. For instance, in

image processing, some pixels (or voxels, ...) may each show a mix of objects that be-310

long to different classes [49–51]. Therefore, a pixel can naturally have multiple classes,

each pixel having a proportion corresponding to the presence of the corresponding class

within the pixel. In the case of binary classification, a single continuous value within

the range [0, 1] is enough to describe the relative proportions of both classes.

Bearing in mind that interpretation, we pose a two-step approach to carry out the315

evaluation. The first step of this approach is to establish an estimation of the probabilis-

tic ground truth through a function that uses the labels of the crowd. Then, once this is

established, in the second step an ordinary estimator (one that requires the availability

of the ground truth) of the evaluation measure able to deal with the established estima-

tion of the probabilistic ground truth is used, since now the values associated to each320

instance are no longer bounded to the set {0, 1}, as they are within the range [0, 1].

The establishment of the estimation of the probabilistic ground truth of the first step

can be accomplished, for instance, through the maximum likelihood estimation of the

probability distribution. Alternatively, a Bayesian estimation can be used to introduce

a priori knowledge.325

3.3.1. Probabilistic Ground Truth (PGT) method

In this case, for each instance, we propose to use the labels to establish an estima-

tion of the probabilistic ground truth through the maximum likelihood estimation with

the Jeffreys-Perks correction [52, 53] of the probability distribution. The Jeffreys-Perks

correction has been selected so as to take into account the relative amount of informa-330

tion issued for each instance (in order to induce more uncertainty in the instances with

fewer labels). In this context, it simplifies to (where C is the class variable, i speci-

fies the current instance, xi is the vector of predictive variable values for the current

instance, n represents the amount of annotators, j is the current annotator and lij is the

label generated by the j-th annotator for the i-th instance):335
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P̂ (C = 1|xi) =

n∑
j=1

lij + 1
2

n+ 1
.

It seems advisable to remember that the AUC can be seen as a way of measuring the

distance between a specific ordering of binary elements and the perfect ordering of the

same binary elements [54]. But the AUC of a given classifier regarding the estimation

of the probabilistic ground truth cannot be measured directly since now an ordering

of values in the domain [0, 1] has to be dealt with. Consequently, it seems convenient340

to check if there exist generalizations or extensions of the AUC that can tackle that

kind of situation. One option is the extension consisting of the volume under the ROC

surface for multi-class problems [55]. Another option consists of the generalization

of the AUC for multiple class classification problems through the averaging of pair-

wise comparisons [54]. These two options are conceived for problems in which there345

is no ordinal relationship between classes, but in the problem at hand, the ordinal re-

lationship exists and matters. Fortunately, an assessment that takes into account the

ordinal relationship of the values in the domain [0, 1] can be made. Specifically, it can

be made thanks to the metric selected in this section, which is based on the normal-

ized Kendall-Tau distance for permutations [34] (specific orderings of the elements of350

a given set), generalized for multi-permutations [31, 32] (permutations of the elements

from a multi-set, which is a set with repeated elements), which in fact, supposes a gen-

eralization of the estimation of the AUC. Moreover, when the multi-permutations have

only two different values, the AUC is equal to one minus the normalized Kendall-Tau

distance between that multi-permutation and the multi-permutation of the same ele-355

ments that lets the elements be ordered decreasingly (which is the value computed by

the metric). This connection between them is already known [33]. Finally, in order to

better illustrate how this method works, its algorithm is shown in Figure 3 , in which li

represents the estimated probabilistic ground truth for instance i.
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Algorithm 3: PGT
Input: q and L

Output: measure

begin

for i← 1 to m do
li ← estim prob(Li·)

end

measure← 1 - norm kendall tau dist(q, l)

return measure
end

Figure 3: Algorithm of the PGT method.

4. Experimentation360

In the experimentation, our aim is to profile the capability of the three proposed

estimators to perform a sensible selection of models in different configurations of prob-

lems in which crowdsourced data are used. To do so, we have randomly generated a

ground truth and then we have simulated the crowdsourced labels and the outputs of a

set of models. In addition, the supervised case of the instances is simulated to use its365

performance as a reference. Next, the three evaluation methods proposed, which use

the labels of the annotators to perform the evaluation, and the true evaluation, which

uses the ground truth to perform the evaluation, are computed. Finally, the disagree-

ments of the three evaluation methods and of the supervised case regarding the ground

truth are measured. It is worth mentioning that we have used only simulated problems370

in order to compare the three methods with the evaluation in the presence of classified

instances.

Briefly, the process is as follows, the probabilistic ground truth of the m instances,

p = (p1, · · · , pm), where pi represents P (C = 1|xi), is randomly generated and then,

based on this, the labels of the annotators (represented with the matrix L, of m rows375

each one related to a different instance and of n columns each one related to a different

labeler) and the outputs of the classifiers (represented with the matrix Q, of m rows
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each one related to a different instance and of k columns each one related to a different

classifier) are simulated.

Next, the true evaluation of the classifiers is computed using p and Q, while the380

three proposed evaluation methods are computed using Q and L. The supervised case

that serves as a reference is achieved through a sample of the true distribution p, which

allows the labeling of the instances. Having the labels of the instances and the outputs

of the classifiers, the standard AUC is estimated. Finally, the evaluation of each evalu-

ation method (and, similarly, of the supervised case) is made in terms of the similarity385

between their rankings of classifiers and the ranking of classifiers according to the true

evaluation, in consonance with what was indicated in Section 2. The general process

we have designed for the experimentation is summarized in Figure 4. It is worth not-

ing that, although we use that general framework for binary classification, the process

summarized in Figure 4 is not bounded to binary classification and can be applied to390

multiclass classification problems, if the necessary changes to enable the calculations

carried out inside each box of Figure 4 for multiclass classification problems are made.

In the simulation conducted in this work, different configurations specified through

parameters are tested, running each of them 100 times. Namely, the general process

shown in Figure 4 is run 100 times per configuration.395

16



p

L

Q

True
evaluation

Estimated
evaluation

Swap error
measurement

Hidden
distribution

Crowdsourced
data

Classifiers

Evaluation of
classifiers

Evaluation of
methods

Figure 4: General process of the experimentation.

Until now, the general process of the experimentation has been exposed so as to

give a global view of it. Henceforth, we proceed to sequentially expose how each of

the 6 steps that appear in Figure 4 is computed.

1. p: Values for m = 1000 instances are generated per run with a non-informative

approach. This non-informative approach is achieved by generating the values400

pi = P (C = 1|xi) for the different instances through a Beta distribution with

parameter values α = 1 and β = 1.

2. L: This step is the one in which the crowdsourced data joins the experimentation

through the labels issued by the annotators. In order to test different configura-

tions, we have developed a set of parameters that enable the control of the ratio of405

annotators to instances, the distribution of the qualities of the annotators and the

degree of sparseness of the matrix L. Those parameters are the expected amount

of labels per annotator l̄j , the expected amount of labels per instance l̄i, the av-

erage true positive rate of the annotators µTPR and the average false positive rate

of the annotators µFPR.410

The parameters l̄j and l̄i, given a fixed m, allow the control of the ratio of anno-
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tators to instances and the degree of sparseness of the matrix L. This control can

be expressed through the equivalences l̄j = m · t and l̄i = n · t, with t being the

probability of a random annotator labeling a random instance, and n being the

amount of annotators. In the experimentation, the parameters l̄i and l̄j take the415

values 3, 5, 9, 15, 27, and 45.

The parameters µTPR and µFPR allow the control of the distribution of the qual-

ities of the annotators, which are expressed in terms of sensitivity or true pos-

itive rate (TPR, which is the proportion of positive instances that are labeled

correctly) and in terms of one minus the specificity or false positive rate (FPR,420

which is the proportion of negative instances that are labeled incorrectly). Specif-

ically, the TPR and the FPR of each annotator are sampled from the distributions

Beta(2, β) · 0.5 + 0.5 and Beta(α, 2) · 0.5 respectively, being β and α:

β =
4 · µTPR − 4

1− 2 · µTPR
, α =

4 · µFPR

1− 2 · µFPR
.

Consequently, in the experimentation, the TPR and the FPR of each annotator

are defined in the bounded intervals [0.5, 1] and [0, 0.5] respectively. It is worth425

noting that, for a given annotator, the further they are from 0.5, the better the

quality of the annotator. In Figure 5, the plane in which the qualities of the

annotators are represented in terms of their TPR and FPR is shown. In order to

give a brief notion of how skilled the annotators are depending on which region

of the plane shown in Figure 5 they are in, in that figure we have divided the430

domain of definition of the qualities of the annotators in this experimentation

into 9 equally sized regions. Each of those 9 regions has been labeled with a

representative description (‘very bad”, “bad”, “skewed”, “average”, “good” or

“very good’) of the qualities of the annotators belonging to the given region. For

instance, the best annotators will tend to have TPR values close to 1 and FPR435

values close to 0, while the worst of this experimentation will tend to have TPR

and FPR values close to 0.5. Besides, skewed annotators will tend to have either

TPR values close to 1 and FPR values close to 0.5, thus issuing a lot of ones, or

TPR values close to 0.5 and FPR values close to 0, thus issuing a lot of zeros.
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Specifically, in our experimentation, the parameters µTPR and µFPR that control440

the qualities of the annotators, jointly take the pairs of values (0.525, 0.475),

(0.6, 0.4), (0.7, 0.3), (0.8, 0.2), and (0.9, 0.1), drawing the cases to which we re-

fer to as “Extreme”, “Bad”, “Average”, “Good” and “Outstanding” respectively.

The theoretical distributions of the qualities of the annotators in terms of TPR

and FPR for those five cases can be calculated. In order to do so, first the α and445

β parameters of the distributions of the TPR and the FPR of the annotators are

computed, considering that, for each of the five cases, different µTPR and µFPR

values are used. Once the values of those parameters are computed, the proba-

bility density functions of the TPR and the FPR become available. Finally, for

each case, the joint probability density function of the TPR and the FPR, which450

describe the distribution of the qualities of the annotators, is computed as the

multiplication between the probability density functions of the TPR and the FPR

of that case. In order to give some hints regarding the shapes of the theoretical

distribution of each case, the Figures 6, 7, 8, 9 and 10 are displayed. In them,

in each region, the probability to sample a quality for an annotator whose TPR455

and FPR values can be represented as a point within that region is numerically

represented.

Very bad Bad Skewed

Bad Average Good

Skewed Good Very good

Figure 5: Names given to the annotators by their qualities.

19



> 1− 10−5 < 10−5 < 10−16

< 10−5 < 10−11 < 10−22

< 10−16 < 10−22 < 10−23

Figure 6: Theoretical distributions of the qualities of the annotators when µTPR = 0.525 and µFPR = 0.475

(“extreme” case).

= 0.734 = 0.112 < 10−3

= 0.112 = 0.002 < 10−3

< 10−3 < 10−3 < 10−6

Figure 7: Theoretical distributions of the qualities of the annotators when µTPR = 0.6 and µFPR = 0.4

(“bad” case).
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= 0.166 = 0.196 = 0.045

= 0.196 = 0.232 = 0.053

= 0.045 = 0.053 = 0.012

Figure 8: Theoretical distributions of the qualities of the annotators when µTPR = 0.7 and µFPR = 0.3

(“average” case).

= 0.025 = 0.064 = 0.069

= 0.064 = 0.164 = 0.177

= 0.069 = 0.177 = 0.191

Figure 9: Theoretical distributions of the qualities of the annotators when µTPR = 0.8 and µFPR = 0.2

(“good” case).
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= 0.002 = 0.009 = 0.037

= 0.009 = 0.033 = 0.141

= 0.037 = 0.141 = 0.593

Figure 10: Theoretical distributions of the qualities of the annotators when µTPR = 0.9 and µFPR = 0.1

(“outstanding” case).

Finally, the generation of L is completed the following way. For a given j-th

annotator, once the TPR and the FPR associated to the annotator are sampled

(denoted as TPRj and FPRj , respectively) the label value for the i-th instance,460

lij , can be randomly sampled given the distribution:

P (lij = 1) = pi · TPRj + (1− pi) · FPRj .

3. Q: Specifically, 100 different classifiers are simulated, therefore k = 100. Note

that these 100 classifiers may also represent the same kind of classifier, taking

100 different parameter settings. Each of those predictions is considered to be a

disturbed version of the (probabilistic) ground truth since the classifiers are sup-465

posed to learn to predict the ground truth. In particular, letting a given value of d

denote a specific classifier and its associated disturbance, with d ∈ {1, . . . , 100},
the output of the d-th classifier for the i-th instance is specified as:
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qid = pi · U(1− 0.45 · d− 1

99
, 1) +

(1− pi) · U(0, 0.45 · d− 1

99
).

The disturbance introduced in the outcome of the d-th classifier when it is dealing

with the i-th instance can be quantified in terms of the expected disagreement470

between pi and qid. Namely:

E(|pi − qid||pi, d) = |(2 · pi − 1) · 0.45 · (d− 1)

2 · 99
|.

As can be seen, for the classifiers 1 to 100, on average, the higher the value of

d, the stronger the expected disturbance of the outcomes of the associated clas-

sifier (except for pi = 0.5). Besides, as the disturbance increases, the similarity

between the ordering of the instances according to p and the ordering of the in-475

stances according to Q·d (Q·d being the outcomes of the d-th classifier) tends to

decrease, similarity which will be used as the assessment of the goodness of the

classifiers (see true evaluation step). Consequently, as d increases the goodness

of its associated classifier tends to decrease.

It is worth mentioning that the reason why 100 classifiers of different degrees480

of goodness are used is to make the problem of ranking them correctly a diffi-

cult one. In fact, the problem has been made a difficult one in order to ease the

observance of differences between the performances of the evaluation methods.

Namely, if the problem had been made too easy, the three evaluation methods

would have probably performed well and would have probably shown small dif-485

ferences between them. As an illustration of the difficulty (in addition to the

computation of the supervised case), the mean and the standard deviation through

the different runs of the maximum relative difference of the true evaluation (see

true evaluation step for details of its computation) between adjacent classifiers

(those where there is a difference between their d values is one) are only 1.4%490

and 0.3% respectively. Another possible illustration of the difficulty consists of

the boxplots corresponding to the true evaluations of the classifiers, boxplots in
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which can be clearly seen that ranking them correctly is a difficult task. For the

sake of simplicity, we leave such boxplots in the supplementary material.

4. The true evaluation: Using Q and p, the true evaluation is computed for ev-495

ery classifier. Specifically, the true evaluation for the d-th classifier is based

on the similarity between the rankings of instances derivable from p and Q·d.

In order to assess that similarity the aforementioned generalization of the AUC

is used. Namely, we compute the expression consisting of one minus the nor-

malized Kendall-Tau distance between two permutations (or multi-permutations)500

[31, 32, 34] of the elements of p, the first one being ordered by p and the second

one being ordered by Q·d. Briefly, what is computed is one minus the proportion

of pairs of instances that appear in different order among them (which one is

ranked before the other) when the ordering of the instances is according to p and

when the ordering of the instances is according to Q·d. The selection of such505

a measure to assess the similarity between pairs of rankings is motivated by its

interesting properties. On the one hand, it considers that each possible pair of

elements (instances in this case) of the rankings has the same relevance when

assessing its consistency or inconsistency in terms of how are they ordered in the

two different rankings, it being aseptic in that matter. On the other hand, it is510

shares the advantages of the AUC that were exposed in Section 2.

As a matter of a fact, since the hidden distribution is known, more information

is available than when the “true” labels are known. In other words, there is no

need to fix a threshold value to generate label values for p. Finally, once the true

evaluation of every classifier is available, a ranking of them according to their515

true evaluations is elaborated.

5. The estimated evaluation: Using Q and L, the three estimated evaluations are

computed for each classifier through the use of the three methods exposed in

this paper, DGT, SGT and PGT. This allows us to elaborate three rankings of

the classifiers, each of them being concordant with the performances that the520

classifiers obtain according to a different method of the three exposed ones.

6. The swap error measurement: As exposed in section 2, our aim is to perform

a proper model selection, which basically consists of identifying correctly, for
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every pair of classifiers, which one of the pair has achieved a better or worse

performance than the other. That is essentially to build a ranking of models525

that ranks every one of them correctly. Consequently, we focus on assessing the

three methods proposed in this work in terms of how similar their three associ-

ated rankings of classifiers are to the ranking of classifiers associated to the true

evaluation. For the assessment of how similar a pair of rankings are, this time,

instead of assessing it in terms of one minus the normalized Kendall-Tau distance530

for permutations (or multi-permutations), we choose to express it directly in

the normalized Kendall-Tau distance for permutations (or multi-permutations).

Namely, instead of expressing how similar two rankings are by assessing their

similarity (and therefore the goodness of the evaluation method), this time we

choose to express how similar two rankings are by assessing their dissimilarity535

(and therefore the error of the evaluation method). We refer to such error as swap

error, for which, by agreement, we consider rankings with swap error < 0.1,

0.1 ≤ swap error < 0.25 and 0.25 ≤ swap error as high, middle and low quality

solutions, respectively, given that the best possible swap error is 0, the worst pos-

sible swap error is 1 and the expected swap error between two rankings generated540

at random is 0.5.

5. Results

In this section, we present the results obtained for the three methods to perform the

evaluation presented in Section 3 (DGT, SGT and PGT). To compare the qualities of

the three methods in terms of the swap errors they made regarding the true evaluation545

in the different configurations, a boxplot and a scatter plot is generated per configura-

tion. In each boxplot there is one box per evaluation method that shows the swap error

that each evaluation method makes regarding the true evaluation. In addition, each

boxplot incorporates the horizontal line corresponding to the average performance of

the supervised approach (which has the quartile values Q1 = 0.0806, Q2 = 0.0873550

and Q3 = 0.0930) as a way to assess the performance of the evaluation methods. The

content shown and the distribution of the configurations in the scatter plots its analo-
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gous, replacing only the box and whiskers by the corresponding dots. For the sake of

simplicity, in this paper we present a representative subset of the boxplots, in which the

same general trends can be appreciated, thus leaving the full set of boxplots and scatter555

plots as supplementary material. The selected subset of boxplots is shown in Figures

11, 12, 13, 14 and 15. In each of these figures, a grid of 9 boxplots corresponding to

configurations that take the same µTPR and the same µFPR values are displayed. Each

of the columns in the grids of plots implies a different value of l̄j , while each of the

rows implies a different value of l̄i. Besides, as l̄j increases, the ratio of annotators to560

instances decreases, while as l̄i increases, the ratio increases.

To start with, it can be seen in Figures 11, 12, 13, 14 and 15 that for almost each

evaluation method in each configuration the average swap error achieved is less than

the expected swap error of an evaluation method which ranks the classifiers at random

(0.5). Moreover, in a large majority of the configurations the average swap error is565

far better than the expected swap error of a random evaluation method. In addition,

the very few configurations in which the obtained results are comparable to a random

behavior are those in which it both happens that the labelers are very unskilled and that

there are very few labels per instance. Consequently, the empirical results support the

usefulness of the proposed methods.570

In the figures of matrices of boxplots, all the evaluation methods improve (reduce)

their swap error as l̄i increases, decreasing both the mean and the variance of the swap

error values. This makes sense, since there is more information available per instance

as the l̄i axis is traveled.

It can be seen that varying only the parameter l̄j only affects the SGT method575

effectively, improving its swap error as l̄j increases. However, this effect is weaker

than the one caused by the variation of l̄i. Nonetheless, the effect is strong enough to

make the SGT vary from being similar to the worst method when there are few labels

per annotator to being similar to the best one when there are many labels per annotator.

The source of this effect is that, as l̄j increases, there are on average more labels issued580

by each individual annotator, i.e., more information, more points, available to perform

the AUC estimations. So, the SGT estimation improves as the estimated AUC values

for the annotators improve.
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Figure 11: Boxplots of the swap errors the different methods achieve regarding the true evaluation in terms

of rankings of classifiers, for the “extreme” case in which l̄j and l̄i are each either 5, 15 or 45.
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Figure 12: Boxplots of the swap errors the different methods achieve regarding the true evaluation in terms

of rankings of classifiers, for the “bad” case in which l̄j and l̄i are each either 5, 15 or 45.
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Figure 13: Boxplots of the swap errors the different methods achieve regarding the true evaluation in terms

of rankings of classifiers, for the “average” case in which l̄j and l̄i are each either 5, 15 or 45.
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Figure 14: Boxplots of the swap errors the different methods achieve regarding the true evaluation in terms

of rankings of classifiers, for the “good” case in which l̄j and l̄i are each either 5, 15 or 45.
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Figure 15: Boxplots of the swap errors the different methods achieve regarding the true evaluation in terms

of rankings of classifiers, for the “outstanding” case in which l̄j and l̄i are each either 5, 15 or 45.

31



PGT offers, on average, the best results, achieving in general the lowest mean swap

error. Additionally, PGT behaves especially well in comparison to the other two meth-585

ods in the synthetic problems that represent better crowdsourced data problems, in

which it is likely that each annotator labels only a few instances [9, 23, 27]. Contrarily,

DGT offers, on average, the worst results, being unable to match PGT in any config-

uration. Finally, SGT can issue, depending on the specific configuration, results that

match PGT, results that match DGT or results that lie in the interstice between PGT590

and DGT.

In terms of variability, it must be said that SGT stands out for being the most unsta-

ble one overall. This difference in variability is especially high in configurations where

there are 15 labels or fewer per annotator.

Finally, the cases are described in detail (for a fully in-depth detailed view see sup-595

plementary material) regarding the qualities of the annotators in terms of the average

swap error:

• “Extreme” case: All methods achieve low quality solutions for every configura-

tion.

• “Bad” case: DGT ranges between low and middle quality solutions, while SGT600

and PGT range between low and high quality solutions. With 45 labels per in-

stance, in mean terms, PGT beats the average performance of the approximation

through a supervised approach.

• “Average” case: DGT and SGT range between low and high quality solutions,

while PGT ranges between middle and high quality solutions. With 15 or more605

labels per instance, in mean terms, PGT always beats the supervised approach

and SGT beats it in 61.11% of those cases.

• “Good” case: All the methods range between middle and high quality solutions.

With five labels or more per instance, on average terms, PGT always beats the

supervised approach, while SGT does it in 70% of the configurations. With 45610

labels or more, all the methods beat the supervised approach in mean terms.
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• “Outstanding” case: Again, all the methods range between middle and high

quality solutions. This time PGT, in mean terms, always beats the supervised

approach, while SGT requires 15 labels or more to beat it always, and DGT

requires 27 or more to do the same.615

6. Conclusions

In this paper we have tackled the problem of the evaluation and model selection

in binary classification problems on crowdsourced data contexts in which the ground

truth is not available, which, as far as we know, we are the first to deal with it explicitly.

To start with, the problem at hand is defined and formalized. Secondly, three general620

approaches to undertake the task have been identified, allowing each one to outline the

ground truth according to a specific conception of its nature. In addition, a particular

evaluation method belonging to each approach and which is capable of ranking classi-

fiers in crowdsourced data contexts without the ground truth, through an estimation of

their AUCs, is specified and described in detail. Next, the three proposed estimators are625

tested in an extensive synthetic experimentation, which is composed of many configu-

rations in order to favor the profiling of their global performance in plausible scenarios

of the model selection problem in crowdsourced data contexts. In the experimenta-

tion, in order to achieve our main objective, which is the assessment and comparison

of evaluation methods capable of performing the model selection in such conditions630

(together with the proposal of the methods themselves), the framework summarized in

Figure 4 has been used. Specifically, in the experimentation, we have proposed the use

of normalized Kendall-Tau distance as a sensible measure with which to quantify how

well or badly the proposed estimators perform in order to enable their comparison.

Regarding the designed evaluation methods, the DGT method can be seen as a635

discretized version of the PGT method. That discretization implies a loss of detail

strong enough to increase its swap error, a loss that hinders discerning classifiers with

similar true evaluation values.

The SGT method highly depends on how many labels the annotators issue on av-

erage. Consequently, it seems more suited for problems in which, normally, the an-640
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notators are able to issue many labels, which is not usually the case of crowdsourced

labels. Rather, SGT seems more suited for problems in which a committee of experts

labels data, because in such problems the annotators tend to issue more labels. Besides,

although in the results a region of the space of problems in which SGT behaves con-

sistently better than PGT cannot be seen, the results hint that such a region may exist,645

given the tendency SGT shows when the labels per annotator tends to increase.

According to the results, PGT is the best evaluation method among the three pro-

posed, because, in general, in comparison with the other methods it reaches the lowest

mean swap error. In addition to the results it achieved, the PGT method presents a set

of advantages. To start with, PGT is insensitive (together with DGT) to the amount of650

labels issued per annotator. Besides, the process of the estimation of the probabilistic

ground truth allows great flexibility. On the one hand, the reliability of the labelers

can be assessed using weights or Bayesian a prioris. On the other hand, in order to

smooth the influence of each instance regarding the amount of information issued for

each one, i.e., the amount of labels per instance, corrections can be applied, such as,655

for instance, the Laplace correction or the Jeffreys-Perks correction. Lastly, although

it is not a situation tested here, compared with SGT, PGT has the advantage of being

applicable in scenarios where which annotator each label belongs to is unknown.

7. Recommendations and further studies

In the previous section, we have exposed the conclusions drawn from the work660

done. Taking these conclusions into account, our main recommendation is to use the

PGT method for model selection in problems with crowdsourced data, given the better

results it achieves and the several advantages it has. However, it should be taken into

account that the reliability of its outcomes depends directly on the distribution of the

quality of the annotators (as do the outcomes of DGT and SGT). Consequently, its665

outcomes should be considered reliable in proportion to the expected reliability of the

annotators.

Regarding further studies, we now identify several ideas that seem interesting to

carry out in the near future. To start with, one interesting task to be performed is
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to extend the experimentation to explore different regions of the space of problems.670

Specifically, extending the experimentation to test configurations that match scenarios

of committees of experts seems very interesting. The main reason is that the current re-

sults hint that, in such problems, SGT may behave better than PGT, although it remains

to be researched. Another interesting idea consists of not only comparing the different

methods exposed here in synthetic problems, but also in real problems (using the gen-675

eral process represented in Figure 4), seeking to consolidate the knowledge acquired

regarding the behaviors of DGT, SGT and PGT. To tackle that task, those real prob-

lems should have different predictive variables, an available ground truth, an available

matrix of labels issued by annotators and an available matrix of classifications made by

trained classifiers. Another area worth exploring consists of the development of alter-680

native evaluation methods, seeking to improve the results of the three methods exposed

in this paper, so as to achieve better estimations of the true evaluations of the classifiers.

Finally, another idea to carry out in the future consists of extending the work done here

to non-binary classification problems, so as to provide evaluation methods capable of

performing the selection of models in such a context.685
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