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Abstract. In the Onsager model of one-component hard-particle systems, the
entire phase behaviour is dictated by a function of relative orientation, which
represents the amount of space excluded to one particle by another at this relative
orientation. We term this function the excluded volume function. Within the
context of two-dimensional convex bodies, we investigate this excluded volume
function for one-component systems addressing two related questions. Firstly,
given a body can we find the excluded volume function?, Secondly, can we
reconstruct a body from its excluded volume function? The former is readily
answered via an explicit Fourier series representation, in terms of the support
function. However we show the latter question is ill-posed in the sense that
solutions are not unique for a large class of bodies. This degeneracy is well
characterised however, with two bodies admitting the same excluded volume
function if and only if the Fourier coefficients of their support functions differ
only in phase. Despite the non-uniqueness issue, we then propose and analyse
a method for reconstructing a convex body given its excluded volume function,
by means of a discretisation procedure where convex bodies are approximated by
zonotopes with a fixed number of sides. It is shown that the algorithm will always
asymptotically produce a best least-squares approximation of the trial function,
within the space of excluded volume functions of centrally symmetric bodies.
In particular, if a solution exists, it can be found. Results from a numerical
implementation are presented, showing that with only desktop computing power,
good approximations to solutions can be readily found.
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1. Introduction

1.1. Motivation

In many particle systems, particles are viewed to interact through long-range,
attractive interaction, and short-range, repulsive interaction [10, 14]. The short-range
repulsive effects are often idealised in the hard particle limit, whereby particles only
interact insofar as they are not permitted to overlap, but do not interact otherwise
[13]. These kinds of interactions are geometric in nature, with particle shape driving
the phase behaviour of such systems. It is now well known that hard particle
systems of aspherical bodies such as ellipsoids [5, 9], spherocylinders [30, 32] and
more exotic shapes [8] can form liquid crystalline mesophases. One of the earliest,
and most successful, attempts to capture the interplay between particle shape and
phase behaviour was by Onsager [23], describing the phase transition of elongated
rods from a disordered (isotropic) phase, to an ordered (nematic) phase with increasing
concentration. The mean-field nature of the model simplifies the complex behaviours
into a far more elegant and tractable problem. The Onsager model is intimately related
to the virial expansion of hard particles, and describes the leading order behaviour
of dilute systems [17]. The model’s key tool is to quantify the notion of the amount
of volume made inaccessible to a probe particle by a typical particle in the system,
the so-called excluded volume. For a one-component system, this information can
be encoded via a function of the relative orientation of two particles, outputting the
volume excluded to one particle by the other. Symbolically, if SO(n) is the space of
proper rotations in Rn, for a rigid body idealised as a subset of Rn, we may define a
function Ex(·,M) : SO(n) → R so that Ex(R,M) denotes the volume inaccessible
to translates of RM given the presence of M. As this quantity is of fundamental
importance to hard-particle systems, much work has been devoted to calculating
and analysing excluded volumes of shapes at given orientations, through studies on
axially symmetric convex bodies [25, 26], spherozonotopes [21, 22], and studies into
more general and complex shapes, including non-convex bodies [2, 24, 34]. Convex
rigid bodies provide a vastly simpler testing ground for the hard-particle theory, and
for a contemporary review on existing results see [29] and references therein. The
excluded volume theory for dilute systems can be contrasted with the free volume
theory typically used for dense systems [4, 16, 27, 33]. Although as remarked by
Speedy, in dilute uncorrelated systems these two approaches are equivalent [31].

Within this work, we aim to address an inverse-type problem related to the
excluded volume, asking if it is possible to recover particle shape knowing only the
function which outputs the excluded volume at a given orientation. This question is
inspired by recent interest in the design of materials.

1.2. Preliminaries and notation

1.2.1. Excluded volumes and Onsager Given two arbitrary bodies, M1,M2,
represented as compact subsets of Rn, their excluded volume is given by
V(M1,M2) = |M1 −M2| [22]. This should be interpreted as the volume made
unavailable to translates of the bodyM1, due to the presence of the bodyM2. When
the two bodies are rotations of an identical particleM, we define the excluded volume
function Ex(·,M) : SO(n)→ R by Ex(R,M) = |M−RM|. Here R ∈ SO(n) should
be interpreted as their relative orientation. The Onsager functional aims to describe
phase transitions in particle systems by means of purely steric, repulsive interactions.
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For a spatially homogeneous system of rigid particles, described by a single particle
orientation distribution function ρ : SO(n) → R, the Onsager free energy functional
is given by [23]

F(ρ,M) (1)

=

∫
SO(n)

ρ(R) ln ρ(R) dR (2)

+
1

2

∫
SO(n)

∫
SO(n)

Ex(STR,M)ρ(R)ρ(S) dRdS. (3)

The density constraint
∫
SO(n)

ρ(R) dR = ρ0 is imposed. The left-hand Shannon

entropy term of the energy favours a disordered configuration, ρ0
|SO(n)|

= ρ(R),

while the right-hand term generally favours alignment. In the prototypical case of
convex, axially and head-to-tail symmetric bodies in three dimensions the right hand
term favours parallel alignment of particles [24]. The competition is mediated by
concentration, favouring ordered configurations in dense regimes. Even for particles
in three dimensions lacking rotational symmetry, the excluded volume function can
prove elusive, so for much of our analysis we constrain ourselves to only consider convex
bodies in two dimensions, in which case SO(2) ≈ S1, and we represent R ∈ SO(2)
simply by a scalar angle θ.

By accounting only for two-particle interactions, and using a translationally
invariant notion of volume, it is implicit that the excluded volume considered here
is generally only applicable to systems dominated by only two-particle interactions,
and to systems with full translational symmetry. The former point is strongly related
to a dilute assumption on our systems, as higher-order interactions are less likely.
The latter point is generally a crude approximation, as both translational correlations
are expected to exist either alongside orientational correlation (such as smectic liquid
crystals [18]) or independently of orientational correlation (such as in plastic crystals,
or even the “simple” hard-sphere crystal [1, 8, 15]) between particles.

There are three significant reasons why a two dimensional system is a
mathematically simpler scenario. Firstly, SO(2) is a one-dimensional manifold, and
can easily be represented by a single non-degenerate chart as [0, 2π] (the angle of
rotation) for many purposes. Secondly, SO(2) is an abelian group, which does not
hold in higher dimensions, simplifying the algebraic aspects of the problem. Thirdly,
area is a quadratic-type quantity in two dimensions, making Fourier approaches
particularly elegant and appropriate. Despite these many simplifying properties, the
two-dimensional testing ground provides a rich behaviour that will hopefully motivate
future work in higher dimensions. The validity of Onsager in two dimensions is suspect
due to the Mermin-Wagner theorem, stating that long-range order is unstable against
low frequency fluctuations in systems with the symmetries we consider [19], however
we expect the excluded area function to be relevant in the local ordering of hard
particle systems nonetheless, of mathematical interest, and an important stepping
stone in developing techniques applicable higher dimensional scenarios.

1.2.2. Convex geometry preliminaries In this introduction we freely quote results
from [28].

Let Kn denote the convex compact bodies in Rn. Given a body M ∈ Kn, we
define its support function h(·,M) : Sn−1 → R by

h(u,M) = max
x∈M

u · M. (4)
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Geometrically, h(u,M) denotes the distance from the origin to a tangent plane ofM
orthogonal to u, and provides a parameterisation of a convex body. The definition
readily extends to u ∈ Rn, but this merely defines a 1-homogeneous extension of h.
In 2D, we will often abuse notation and denote the argument of h(·,M) simply by
a scalar angle θ, so h(θ,M) = h(uθ,M) with uθ = cos θe1 + sin θe2. The support
function of a convex body is the Legendre transform of the indicator function of the
body χM, given by χM(x) = 0 if x ∈ M and χM(x) = +∞ otherwise. A closed
convex body can be reconstructed from the support function as an intersection of
half-spaces as

M =
⋂

u∈Sn−1

{x ∈ Rn : x · u ≤ h(u,M)} . (5)

Given two bodies M1,M2, their Minkowski sum is defined as
M1 +M2 = {x+ y : x ∈M1, y ∈M2}. A Minkowski sum of convex bodies is
itself convex. An advantage of using the support function to describe convex bodies
that it respects Minkowski addition, in the sense that if M1,M2 are convex bodies,
then

h(u,M1 +M2) = h(u,M1) + h(u,M2). (6)

Furthermore support functions respect rotations in the sense that for any R ∈ O(n),

h(u,RM) = h(RTu,M). (7)

We will need a notion of convergence of convex bodies, for which the Hausdorff
metric is ideally suited. The Hausdorff metric is defined as

dH(M1,M2) (8)

= max

(
max
x∈M1

min
y∈M2

|x− y|, max
y∈M2

min
x∈M1

|x− y|
)

(9)

Equivalently, dH(M1,M2) < ε if and only if M1 ⊂ M2 + εB and M2 ⊂ M1 + εB
where B is the ball of radius 1 and ε >). The space Kn is closed with respect to
the Hausdorff metric, and compact when restricted to uniformly bounded subsets.
Furthermore, the Hausdorff distance can be calculated from the support function as
||h(·,M1)− h(·,M2)||∞ = dH(M1,M2).

For the sake of this work, unless stated otherwise we will take all convex bodies
to be centred at the origin for simplicity, and without loss of generality.

1.2.3. C2
+ bodies A particular class of useful convex bodies will be the C2

+ bodies,
defined to be the strictly convex bounded sets that have a C2 boundary and non-
vanishing curvature. These bodies are important because they are in many senses
well behaved, and significantly they are dense in Kn with respect to Hausdorff metric.
Equivalently, their support functions are dense in the set of all possible support
functions, with respect to L∞ convergence. In R2, the main focus of this work, C2

+

bodies are characterised in a simple way by their support functions, in thatM∈ C2
+ if

and only if h(·,M) is C2 and satisfies the differential inequality h(·,M)+h′′(·,M) > 0.
One of the advantages of C2

+ bodies is that they are “stable”, in the sense that if h is
the support function of a C2

+ body and φ is in C2, then for sufficiently small ε, h+ εφ
is a support function for a C2

+ body [12].
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1.2.4. Zonotopes A zonotope is defined to be a Minkowski sum of line segments, and
can be interpreted as generalisations of parallelograms (and their higher dimensional
analogues), providing a subclass of convex polygonal shapes. Explicitly, if V = (vi)

k
i=1

is a list of vectors in Rn, then we define a zonotope

Z(V ) (10)

=

{
k∑
i=1

aivi : ai ∈
[
−1

2
,

1

2

]}
(11)

=

k∑
i=1

{
aivi : ai ∈

[
−1

2
,

1

2

]}
. (12)

For a zonotope in R2, its volume can be readily computed as |Z(V )| =
∑

1≤i<j≤k
|vi×vj |,

where vi × vj = |vi||vj | sin(θ), and θ is their relative angle. The perimeter is given

by Per(Z(V )) = 2
k∑
i=1

|vi|. Furthermore, if V1, V2 are lists of vectors, and V is their

concatenation, then Z(V1)+Z(V2) = Z(V ). Zonotopes are of particular interest in the
study of excluded volumes, as they admit simpler and explicit methods of computation
[22].

The closure of the set of zonotopes with respect to the Hausdorff metric is called
the set of zonoids. In two dimensions this simply reduces to the set of convex bodies
centred at 0 such that −M = M. This translates to the requirement that their
support functions are π-periodic, i.e. h(θ,M) = h(θ + π,M). We denote by Z the
set of zonoids.

1.3. Outline of the paper

In Section 2, the main result is to show that ifM is a C2
+ body which admits a support

function with more than two non-zero Fourier coefficients, there exists perturbations of
the body, not equivalent modulo rigid motions, with the same excluded area function
(Theorem 2.1). Simply put, for a large class of bodies we cannot uniquely reconstruct
a body given its excluded area function. The proof strategy is to obtain a relatively
simple expression for the excluded area function in terms of the Fourier coefficients of
the support function (Lemma 2.1), which gives an ad-hoc method of finding the Fourier
coefficients of the excluded area function, from which the results can be drawn. The
proof strategy also proves that if two shapes admit the same excluded area function,
then the Fourier coefficients of their support functions may differ only in phase, but
not magnitude.

In spite of this rather general non-uniqueness result, in Section 3 we turn to
the problem of reconstructing a convex body given only its excluded area function.
The results are asymptotic, in that we consider a discretised scenario of investigating
zonotopes with a fixed number of spanning vectors, and derive an algebraic least-
squares-type minimisation problem on the spanning vectors. Explicitly, the finite
dimensional minimisation problem is equivalent to minimising

||PM (f − Ex(·, Z(V )))||22, (13)

where PM is the projection onto the first M Fourier coefficients, f is the trial excluded
area function, and the minimisation takes place over all lists of vectors V of at most
k vectors. This gives k and M as our discretisation parameters.
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It is shown that, at least up to subsequences, solutions converge in the Hausdorff
sense to some zonoid, and the excluded area functions corresponding to solutions
converge in a sense stronger than strong-W 1,p convergence (p <∞) (Theorem 3.2). It
is not necessary that f actually be an excluded area function. If f is an excluded area
function for a zonoid, then we establish a convergence rate of solutions Ex(·, Z(Vk,M ))
(Theorem 3.3). In the case where f is not an excluded area function for a zonoid, it
is shown that the solutions Ex(·, Z(Vk,M )) converge in a sense stronger than strong-
W 1,p (p <∞) to a best L2 approximation of f in the space of excluded area functions
of zonoids. The nature of the discretisation used is that the reconstruction algorithm
is only able to reconstruct zonoids.

In Section 3.4, examples of solutions obtained from the reconstruction algorithm
are shown. The implementation was done in Wolfram Mathematica using standard
in-built numerical minimisation procedures. These examples show qualitatively what
is expected from the analysis, and the implementation was able to provide satisfactory
results on roughly 10 minute runs on a desktop at the most refined discretisation, with
nearly zero code optimisation.

In Section 4, we return to the motivating case of the Onsager free energy.
Throughout the previous analysis we consider convergence of convex bodies in
Hausdorff metric as the “natural” method of convergence, and this section is devoted
to verifying that Hausdorff convergence, is in a sense, compatible with Onsager. To
this end, for arbitrary convex bodies in Rn, we show that convergence of bodies in
Hausdorff metric leads to convergence of the corresponding minimisers of Onsager’s
model by techniques of Γ-convergence, with the precise statements in Theorem 4.2.

2. The excluded area and (non)-uniqueness

In this section we will prove that for a rather large class of convex bodies in R2, we
cannot expect M to be uniquely constructed given Ex(·,M). For the most part we
show non-uniqueness by using appropriate C2 perturbations of the support function,
and for this reason our exact non-uniqueness result is restricted to C2

+ bodies, as
they are stable under such perturbations. Before proceeding, we need some general
results on the excluded area function and its relationship to the support function,
for which the Fourier decomposition provides great insight. Throughout, when M is
unambiguous we will write h(θ) = h(θ,M).

Proposition 2.1 ([11]). If the support function of a convex body M is given as

h(θ) =
∞∑

n=−∞
cne

inθ, where cn = 1
2π

∫ π
−π h(θ)e−inθ dθ, then

|M| = π
∑

(1− n2)|cn|2. (14)

We note that there is no contribution from c1, c−1 as these amount only to
translations of the body and thus do not alter the volume. Furthermore, the fact
that the phase of the Fourier coefficients does not alter the volume is evocative to the
fact that volume is rotation invariant.

It will be useful to reference the real-space analogue of this formula, which for C2

support functions is given as

|M| = 1

2

∫ 2π

0

h(θ)
(
h(θ) + h′′(θ)

)
dθ (15)
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This representation allows us to provide an expression for the excluded area
function relatively quickly

Lemma 2.1. If h is the support function of a convex body M, and has a Fourier

decomposition h(θ,M) =
∞∑

n=−∞
cne

inθ, then

Ex(θ,M) = (16)

2π

∞∑
n=−∞

(1− n2)
(
1 + (−1)n cos(nθ)

)
|cn|2 (17)

Proof. First, we recall that h(θ,−M) = h(θ + π,M). Furthermore, Minkowski sums
distribute over support functions, in the sense that h(·,M1 +M2) = h(·,M1) +
h(·,M2). This means we can find the Fourier coefficients of h(·,M−RωM) as

1

2π

∫ π

−π
h(ω,M−RωM)e−inω dω (18)

=
1

2π

∫ π

−π
e−inωh(ω,M) (19)

+ e−inωh(ω + π,RθM) dω (20)

=
1

2π

∫ π

−π
e−inωh(ω,M) (21)

+ e−inω−inπh(ω − θ,M) dω (22)

=
1

2π

∫ π

−π
e−inωh(ω,M) dω (23)

+
1

2π

∫ π

−π
e−inω−inπh(ω − θ,M) dω (24)

= cn + einθ−inπcn = (1 + einθ−inπ)cn. (25)

Using the area formula using Fourier coefficients in Proposition 2.1, we then have

Ex(θ,M) (26)

= π

∞∑
n=−∞

(1− n2)
∣∣(1 + einθ−inπ)cn

∣∣2 (27)

= π

∞∑
n=−∞

(1− n2)
∣∣1 + einθ−inπ

∣∣2 |cn|2 (28)

= 2π

∞∑
n=−∞

(1− n2)
(
1 + (−1)n cos(nθ)

)
|cn|2 (29)

Using the real-space representation we can obtain a further expression for the
excluded volume function.

Proposition 2.2. Let M be a convex body with C2 support function. Then

Ex(θ,M) (30)

= 2|M|+ 1

2

∫ 2π

0

(
h(ω + θ + π) + h(ω − θ + π)

)
(31)
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×
(
h(ω) + h′′(ω)

)
dω. (32)

Proof. Recall that

|M| = 1

2

∫ 2π

0

h(ω,M)
(
h(ω,M) + h′′(ω,M)

)
dω. (33)

For brevity let h = h(·,M). This then gives that

Ex(θ,M)

= |M−RθM|

=
1

2

∫ 2π

0

(
h(ω,M−RθM)

)(
h(ω,M−RθM) + h′′(ω,M−RθM)

)
dω

=
1

2

∫ 2π

0

(
h(ω) + h(ω − θ + π)

)(
h(ω) + h(ω + π − θ) + h′′(ω) + h′′(ω + π − θ)

)
dω

= 2|M|+ 1

2

∫ 2π

0

h(ω)
(
h(ω + π − θ) + h′′(ω + π − θ)

)
dω

+
1

2

∫ 2π

0

h(ω − θ + π)
(
h(ω) + h′′(ω)

)
dω

= 2|M|+ 1

2

∫ 2π

0

(
h(ω + θ − π) + h(ω − θ + π)

)(
h(ω) + h′′(ω)

)
dω

= 2|M|+ 1

2

∫ 2π

0

(
h(ω + θ + π) + h(ω − θ + π)

)(
h(ω) + h′′(ω)

)
dω

where the fact that h is 2π-periodic is used in the last line.

This gives an immediate corollary, analogous to results in three dimensions about
the minimum excluded volume of achiral, axially symmetric convex bodies [24].

Corollary 2.1. For all convex bodies in R2, the excluded area function is minimised
at an anti-parallel configuration.

Proof. First rewrite 16 as

Ex(θ,M) = 2π

∞∑
n=−∞

(1− n2)
(
1 + cos(n(θ + π))

)
|cn|2 . (34)

The θ dependent terms appear as cos(n(θ + π)) multiplied by negative constants.
Thus if θ = π, corresponding to an anti-parallel configuration, the excluded volume is
minimised.

Remark 2.1. The formula gives us a relationship between the Fourier decay rates,
and subsequently the regularity (in an Hs fractional Sobolev sense), of the support
function h(·,M) and the excluded area function Ex(·,M). We see that if cn ∼ n−s,
then the Fourier coefficients of Ex(·,M) decay as n2(1−s), and vice versa.

Remark 2.2. We see that the expression for Ex(·,M) has no contribution from the
first order Fourier coefficients of the support function. This is due to the fact that
altering the first order Fourier coefficients amounts to translating the body. This lack
of dependence is evocative to work of Piastra and Virga, which in three dimensions
demonstrates a lack of dipolar component in the excluded volume of axially symmetric
convex bodies [26].
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While the majority of this work will be devoted to single-component systems,
the result Lemma 2.1 can readily be extended to two-component pairwise excluded
volumes.

Proposition 2.3. Let M1,M2 be convex bodies. Their pairwise excluded volume,
at relative angle θ, is given by

Ex(θ;M1,M2) (35)

= |M1|+ |M2| (36)

+ 2π

∞∑
n=−∞

(1− n2)
(
<
(
c∗1,nc2,n

)
cosn(θ + π) + =

(
c∗1,nc2,n

)
sinn(θ + π)

)
(37)

Proof. By [22], the excluded volume is given by Ex(θ;M1,M2) = |M1−RθM2|. By
the same means, we employ the support functions hj(θ) = h(θ,Mj) with respective

Fourier decompositions hj(θ) =
∞∑

n=−∞
cj,ne

inθ. Then, following the same methodology

as Lemma 2.1,

Ex(θ;M1,M2) (38)

= π

∞∑
n=−∞

(1− n2)
∣∣c1,n + ein(θ+π)c2,n

∣∣2 (39)

= π

∞∑
n=−∞

(1− n2)
(∣∣c1,n∣∣2 +

∣∣c2,n|2 + 2<
(
c∗1,ne

in(θ+π)c2,n

))
(40)

= |M1|+ |M2| (41)

+ 2π

∞∑
n=−∞

(1− n2)
(
<
(
c∗1,nc2,n

)
cosn(θ + π) + =

(
c∗1,nc2,n

)
sinn(θ + π)

)
(42)

Remark 2.3. A remarkable consequence is that the equation given by Proposition 2.3
may be independent of θ for non-trivial shapes. Provided at least one of c1,n, c2,n is
zero for all n 6= 0, 1,−1, we have that Ex(θ;M1,M2) is a constant. If we consider an
Onsager model for such a two component system, the free energy density is

F =

∫
S1
ρ1f1(θ) ln f1(θ) + ρ2f2(θ) ln f2(θ) dθ (43)

+
ρ2

1

2

∫
S1

∫
S1
f1(θ)f1(θ′)Ex(θ − θ′,M1) dθ dθ′ (44)

+ ρ1ρ2

∫
S1

∫
S1
f1(θ)f2(θ′)Ex(θ − θ′,M1,M2) dθ dθ′ (45)

+
ρ2

2

2

∫
S1

∫
S1
f2(θ)f2(θ′)Ex(θ − θ′,M2) dθ dθ′, (46)

(47)

where ρj , fj are the number densities and one-particle distribution function for the
species described by convex bodyMj . If Ex(·;M1,M2) = C, a constant, this means
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that the Onsager free energy fully decouples the orientation distribution function, and
the energy reduces to

F − Cρ1ρ2 (48)

=

∫
S1
ρ1f1(θ) ln f1(θ) +

ρ2
1

2

∫
S1

∫
S1
f1(θ)f1(θ′)Ex(θ − θ′,M1) dθ dθ′ (49)

+

∫
S1
ρ2f2(θ) ln f2(θ) dθ +

ρ2
2

2

∫
S1

∫
S1
f2(θ)f2(θ′)Ex(θ − θ′,M2) dθ dθ′. (50)

This would seem to imply a decoupling in the second order virial coefficient of the
system, and it may be possible this degeneracy gives rise to interesting behaviour in
real systems, analogous to the degeneracy in the second virial coefficient at the Boyle
temperature, though we leave such an investigation open as an avenue for future work.

Now we turn to proving the non-uniqueness of the excluded area function for C2
+

bodies. The heuristic is that the expression Lemma 2.1 essentially gives the Fourier
decomposition of Ex(·,M), which shows the expression depends only on the norm
of the Fourier coefficients of h(·,M). Thus if two bodies have the same excluded
area function they must have Fourier coefficients equal in absolute value, but my
vary in phase. If h(·,M) has two non-zero Fourier coefficients (excluding zero and
first order coefficients), changing their relative phase by a small amount gives a C2

perturbation of the support function, and thus defines a new C2
+ body for sufficiently

small perturbations which can be shown is not a rigid motion of M.

Theorem 2.1. Let M,M̃ be C2
+ bodies with support functions h, h̃ respectively,

with Fourier coefficients cn, c̃n respectively. Then Ex(·,M) = Ex(·,M̃) if and only if
|cn| = |c̃n| for all n 6= ±1. In particular, given M ∈ C2

+, there exists a convex body

M̃, which is not a rigid motion of M, so that Ex(·,M) = Ex(·,M̃) if and only if
the support function ofM, h(·,M), has at least two non-zero Fourier coefficients, not
including the constant or first order coefficients.

Proof. First assume Ex(θ,M) = Ex(θ,M̃), and the Fourier coefficients of h(·,M)
and h(·,M̃) are given by cn, c̃n respectively. Then by integrating 16 against cos(nθ),
we obtain that |cn| = |c̃n| for all n 6= 1, 0,−1. We note that changing c1 merely
reduces to translating M. As |cn| = |c̃n|,

0 (51)

= Ex(π,M)− Ex(π,M̃) (52)

= 2π

∞∑
n=−∞

(1− n2)
(
1 + (−1)n cos(nπ)

) (
|cn|2 − |c̃n|2

)
(53)

= 2π

∞∑
n=−∞

(1− n2)
(
1 + 1

) (
|cn|2 − |c̃n|2

)
(54)

= 4π
(
|c0|2 − |c̃0|2

)
(55)

As c0, c̃0 are positive and real, this implies they are equal. So this implies that
cn = einξn c̃n for all n ≥ 2 and some real constants ξn, and for n ≤ −2 the Fourier
coefficients can be found by cn = c∗−n. If ξn = ξ, independently of n (modulo 2π) for

all cn 6= 0, then this implies h(θ,M̃) = h(θ − ξ,M), i.e. M̃ is just a rotation of M.
Thus for M̃ to be distinct from M, modulo rotations, this means that we must have
some n1, n2, where n1 > n2 ≥ 2 with ξn1

6= ξn2
modulo 2π, and cn1

6= 0 6= cn2
.
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Now, assume that the Fourier coefficients of h(·,M) have two non-zero

coefficients, cn1
, cn2

with n1 > n2 > 1. Then let h̃(θ) =
∞∑

n=−∞
c̃ne

inθ where c̃n = cn

for n 6= ±n2, and c̃±n2
= e±iεc±n2

. This means that

h̃(θ) (56)

= h(θ,M) + (−1)n2
(
(eiε − 1)cn2

ein2θ (57)

+(e−iε − 1)cn2e
in2θ

)
(58)

= h(θ,M) + φε(θ). (59)

Here

φε(θ) (60)

= (−1)n2
(
(eiε − 1)cn2

ein2θ + (e−iε − 1)cn2
ein2θ

)
. (61)

We can estimate ||φε||∞ ≤ 2|cn2 | |eiε − 1|, and ||∇2φε||∞ ≤ n2
2|cn2 | |eiε − 1|, both of

which tend to zero as ε→ 0, so by [12], we have that h̃(θ) defines a support function for
sufficiently small ε > 0 for some convex body M̃, and by taking ε irrational, we must
have thatM′ is not simply a rotation ofM. Furthermore, from the representation in
Lemma 2.1, this means that Ex(·,M) = Ex(·,M̃)

Corollary 2.2. In two dimensions, the only convex body M so that Ex(·,M) is
constant is a disc.

Proof. The Fourier decomposition of h(θ,B) is simply c0 = r, and cn = 0 otherwise,
and a ball is a C2

+ body

2.1. Chirality

We now proceed to make some comments about chirality and its relationship with
the excluded area function. It should be noted that the different nature of chirality
in odd and even dimensions mean that analogues of these results in three dimensions
would have a rather different flavour. In particular, head-to-tail symmetry in R2 is
more of the flavour of achirality in R3, as both are represented by similar symmetries
of the support function, h(θ) = h(θ + π) and h(θ, φ) = h(π − θ, φ + π) in two and
three dimensions respectively, in an appropriate coordinate system. Achiral bodies in
two dimensions however are, in a sense, more analogous to axially symmetric bodies
in three dimensions, as axially symmetric bodies are precisely those obtained from
rotating a 2D achiral body about its symmetry line. If we are to consider the 2D
scenario as a testing ground for 3D, to this end it should be expected that the following
results are more analogous to those we expect for axially symmetric bodies in 3D.

Corollary 2.3. If M is an achiral C2
+ body, and admits two non-zero Fourier

coefficients (not including the constant or first order term) then there exists a chiral
convex body M′ so that Ex(·,M) = Ex(·,M′).

Proof. First we note that ifM is achiral, then there exists some φ so that cn = c̃ne
inφ,

with c̃n being real valued. In particular,
(cn1

)n2

(cn2
)n1

is real valued for all n1, n2. This

corresponds to h(φ+ θ,M) = h(φ− θ,M) symmetry. Without loss of generality, take
φ = 0, so that h(·,M) admits only real Fourier coefficients. Recalling the construction
in Theorem 2.1, if ε is sufficiently small, we have that all but one non-zero Fourier
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(a) ω = π
4
, d(M,M′) ≈

0.019
(b) ω = π

3
, d(M,M′) ≈

0.023

(c) ω = 5π
6
, d(M,M′) ≈

0.013

Figure 1: Convex bodies, described as perturbations of an ellipse, that all have the
same excluded area function. Note that all are chiral.

coefficient is real. This in particular means that
(cn1 )n2

(cn2
)n1

must have an imaginary

component, as it is the ratio between a real and a fully complex number. Thus M′ is
chiral.

Remark 2.4. The constructed examples showing non-uniqueness are typically chiral
configurations, caused by small perturbations. However it is not necessarily the case,
we can show examples of non-uniqueness of the excluded area function within only
the class of achiral bodies. A simple example would be to take the convex bodiesM±
with support functions h±(θ) = 20 + cos(2θ) ± cos(4θ). It is immediate to see that
these are support functions, as h± + (h±)′′ > 2, each choice ± gives bodies not equal
modulo symmetry, and both choices give achiral bodies with the same excluded area
function.

2.2. Examples

Example 2.1. Let M be an ellipse with minor and major axes 1 and
√

3. This
has the support function h(θ,M) =

√
1 + 2 cos2 θ. As the support function contains

only cosine terms in its trigonometric Fourier expansion, we can write such a
perturbation of a single coefficient as h̃(θ) = h(θ) + a2n (cos(2nθ + ω)− cos(2nθ)).
We perturb the c2 coefficient as this gives a more noticeable difference. We have
that a2 = 1

π

∫
S1 h(θ) cos(2θ) dθ ≈ 0.1816 numerically. In trigonometric notation, the

corresponding perturbation of phase in the c2 coefficient corresponds to producing
a new support function h̃(θ) = h(θ) + a2(cos(2θ − ω) − cos(2θ)). We check the
support function condition, that h̃ + h̃′′ ≥ 0, and numerically we see that this holds
at least for ω ∈

[
0, 21π

50

]
, and ω ∈

[
18π
25 , π

]
, while failing for some interval between

them. These are not exact values, but loose upper bounds. In this case we can
produce several chiral, convex bodies which have the same excluded area function as an
ellipse. Constructions from the support function are given in Figure 1. The difference
is not significant by eye-norm, to be expected for perturbations of a single body.
We compare the difference quantitatively by defining a metric modulo symmetry, of
d(M,M′) = min

R∈SO(2)
dH(M, RM′) = min

ω
max
θ
|h(θ,M) − h(ω,M′)|, for which we

include the numerically approximated values.

Example 2.2. Consider the family of support functions, indexed by parameter ω ∈ R,
defined by hω(θ) = 1 + 1

10 cos(2θ) + 1
25 cos 4(θ − ω). These are support functions for

convex bodies as hω + h′′ω ≥ 1
10 . Let Mω be the convex body so hω = h(·,Mω).



The excluded volume of two-dimensional convex bodies: Shape reconstruction and non-uniqueness13

(a) ω = 0 (b) ω = π
4

(c) ω = π
2

(d) ω = 3π
4

(e) ω = π

Figure 2: Mω for representative values of ω

(a)M1 (b)M2

1 2 3 4 5 6

5.6

5.8

6.0

6.2

6.4

(c) Ex(·,Mω)

Figure 3: The two “basis” shapes M1,M2 so that Mω = M1 + Rω
4
M2 in our

constructions, shown to scale. The bodies are shown with the excluded area function
of their Minkowski sums Mω

In exponential form, the Fourier coefficients of hω are given by c2 = c−2 = 1
20 ,

c4 = c−4 = 1
50e

4iω. In particular this means all of the convex bodies admit the same
excluded area function, given by

Ex(θ,Mω) = π

(
1919

1000
− 3

20
cos 2θ − 3

250
cos 4θ

)
(62)

We show several representative constructions of Mω within our continuous family in
Figure 2

Remark 2.5. This example highlights one interpretation of how these different
functions with same excluded area function can be related. In the case here, we
can write hω(θ) =

(
7
20 −

1
10 cos 2θ

)
+
(

13
20 −

1
25 cos 4(θ − ω)

)
= h1(θ) + h2(θ − ω). It

is readily seen that h1 and h2, given by the left and right bracketed terms, both
satisfy the condition to be support functions for a convex body,M1,M2 respectively.
By the properties of support functions this implies that we can “decompose” Mω =
M1 + RωM2. In words, the shapes we constructed with the same excluded area
function correspond to rotating each element of a “basis expansion” (in a loosely
defined sense) of M separately. This is why the family of convex bodies Mω, by eye-
norm, have a rotation-like appearance. We show the “basis” bodies, and the excluded
area function shared by all of them, in Figure 3

3. Reconstruction algorithm

The question can be asked, given the excluded area function Ex(·,M), is it possible
to reconstruct M? As we have seen in Section 2, we can not expect this as non-
uniqueness makes the question ill-posed. In this section we obtain perhaps the best
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possible result given that the question is ill-posed. The key result is that given a trial
excluded area function f , we can generate a sequence of converging zonotopes Z(Vk)
and some zonoid M with Z(Vk) → M and Ex(·, Z(Vk)) converges in weak-* W 1,∞

and strongly in W 1,p for p < ∞ to a best L2 approximation of f within the space of
all excluded area functions of zonoids. In particular, if f = Ex(·,M′) for some zonoid
M′, then Ex(·,M′) = Ex(·,M). In light of our non-uniqueness result, we cannot
however expect M′ =M, outside of some very limited cases.

3.1. Derivation

Proposition 3.1. LetM = Z(V ) be a zonotope, where V = (vi)
k
i=1, and vi = liRθie1

for lengths li ≥ 0 and angles θi. Then Ex(θ,M) = b0(V )−
∞∑
m=0

bm(V ) cos(2mθ), where

the coefficients bm(V ) satisfy

b0(V ) (63)

=
1

2π

∫ 2π

0

Ex(θ,M(V )) dθ (64)

= 2
∑

1≤i<j≤k

lilj | sin(θi − θj)|+
2

π

(
k∑
i=1

li

)2

, (65)

bm(V ) (66)

=

k∑
i,j=1

4lilj cos(2m(θi − θj))
π(4m2 − 1)

(67)

=
1

π

∫ 2π

0

cos(2mθ)Ex(θ,M(V )) dθ. (68)

Proof. First we note that for any zonotope, we have that

Ex(θ,M(V )) (69)

= |M(V ) +RθM(V )| (70)

=
∑

1≤i<j≤k

|vi × vj |+
∑

1≤i<j≤k

|Rθvi ×Rθvj |+
k∑
i=1

k∑
j=1

|vi ×Rθvj | (71)

= 2|M(V )|+
k∑

i,j=1

|vi ×Rθvj |. (72)

Using the Fourier representation of

| sin(x)| = 2

π
− 4

π

∞∑
m=1

cos(2mx)

4m2 − 1
, (73)

we can write this as

Ex(θ,M) (74)

= 2|M|+
∑
ij

|vi ×Rθvj | (75)
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= 2|M|+
k∑

i,j=1

lilj | sin(θi − θj − θ)| (76)

= 2|M|+
k∑

i,j=1

lilj

(
2

π
− 4

π

∞∑
m=1

cos(2m(θi − θj − θ)
4m2 − 1

)
(77)

= 2|M|+ 2

π

(
k∑
i=1

li

)2

−
k∑

i,j=1

∞∑
m=1

4lilj
π

cos(2mθ) cos(2m(θi − θj))
4m2 − 1

(78)

= 2|M|+ 2

π

(
1

2
Per(M)

)2

−
∞∑
m=1

bm(V ) cos(2mθ). (79)

From this we see the result holds.

Inspired by this formula, we propose the algorithm for reconstructing shapes from
their excluded volumes. First we define a least-squares objective function to minimise.

Definition 3.1. Let M,k be input parameters. Let L = (li)
k
i=1, Θ = (θi)

k
i=1, without

loss of generality taking θ1 = 0. Let f̂(m) = 1
2π

∫ 2π

0
f(θ) cos(mθ) dθ. Define the

objective function

F(L,Θ;M,k) (80)

= (b0(V )− 〈f〉)2 +

k∑
m=1

(bm(V )− f̂(2m))2, (81)

with bm(V ) defined as before in Proposition 3.1 in terms of L,Θ, using V =
(liRθie1)ki=1.

This objective function truly is a least-squares objective function in the L2 sense
too, as

F(L,Θ;M,k) = ||PM (Ex(·,M(V ))− f)||22, (82)

where PM is the projection operator from L2 onto the subspace spanned by the first
M Fourier nodes.

Then we have an algorithm as an algebraic minimisation problem. While the
system is highly nonlinear, it will be shown later that this is readily implementable.

Algorithm 3.1. Given input parameters M,k ∈ N, f ∈ L2, perform the following.

(i) Find the first M even Fourier coefficients of f .

(ii) Minimise F with respect to L,Θ.

(iii) Reclaim V from L,Θ, and construct M = Z(V ).

3.2. Estimates and convergence

We have set up a least-squares optimisation problem for the reconstruction problem,
the next step is to ensure that it produces meaningful solutions. Before obtaining
results on the convergence of the scheme itself, some preliminary compactness and
continuity type results are required.
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3.2.1. Continuity of Ex with respect toM
Proposition 3.2. AssumeMi are convex bodies andMi →M in Hausdorff metric.
Then Ex(·,Mi)→ Ex(·,M) pointwise.

Proof. As volume is continuous with respect to Hausdorff metric, it suffices to show
that if Mi →M, then Mi −RMi →M−RM for each R ∈ SO(3), however this is
immediate as Minkowski addition and rotation are both continuous operations.

Proposition 3.3. For any convex body M, Lip(Ex(·,M)) ≤ 1
2Per(M)2.

Proof. First consider the case thatM∈ C2
+. Let h = h(·,M) and Ex = Ex(·,M) for

brevity. Recall we can write the excluded area function as a convolution-type object,

Ex(θ − π) (83)

= 2|M|+ 1

2

∫ 2π

0

(
h(ω − θ) + h(ω + θ)

)
(84)

×
(
h(ω) + h′′(ω)

)
dω. (85)

This then implies, recalling h+ h′′ > 0,

|∇Ex(θ − π,M)| (86)

=
1

2

∣∣∣∣∫ 2π

0

(
− h′(ω − θ) + h′(ω + θ)

)(
h(ω) + h′′(ω)

)
dω

∣∣∣∣ (87)

≤
∫ 2π

0

||h′||∞
∣∣h(ω) + h′′(ω)

∣∣ dω (88)

= ||h′||∞
∫ 2π

0

h(ω) + h′′(ω) dω (89)

= ||h′||∞
∫ 2π

0

h(ω) dω (90)

= Lip(h)Per(M) ≤ 1

2
Per(M)2. (91)

Note in the last line we used that Lip(h) ≤ Diam(M) ≤ 1
2Per(M).

Now by density we prove this holds for all convex bodies. If Mi → M,
and Mi ∈ C2

+ then the Lipschitz constants of Ex(·,Mi) must be bounded as
Per(Mi) → Per(M). Furthermore as Ex(·,Mi) converges pointwise, by Arzelà-
Ascoli, Ex(·,M) must be Lipschitz with the corresponding bound.

Proposition 3.4. Let h be the support function for a bodyM∈ C2
+ with h+h′′ ≥ γ

for some γ > 0. Then Ex satisfies the differential inequality,

Ex(θ,M) +
d2

dθ2
Ex(θ,M) ≥ 2|M|+ 2γPerM (92)

in the classical sense.
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Proof. Differentiating the excluded area function twice with respect to θ and adding
Ex(θ,M) we obtain

Ex(θ,M) +
d2

dθ2
Ex(θ,M)− 2|M| (93)

=

∫ 2π

0

(h′′(ω + π − θ) + h(ω + π − θ) (94)

+ h(ω + π + θ) + h′′(ω + π + θ)) (h(ω) + h′′(ω)) dω (95)

≥
∫ 2π

0

(2γ) (h(θ) + h′′(θ)) dθ (96)

= 2γ

∫ 2π

0

h(θ) dθ = 2γPerM. (97)

Proposition 3.5. For any M∈ C2
+,∫

S1

∣∣∣∣ d2

dθ2
Ex(θ,M)

∣∣∣∣ dθ (98)

≤ 2π〈Ex(·,M)〉+ 4π|M|+ 2Per(M)2. (99)

Proof. Recall that

Ex(θ,M) +
d2

dθ2
Ex(θ,M)− 2|M| (100)

=

∫ 2π

0

(
h′′(ω + π − θ) + h(ω + π − θ) + h(ω + π + θ) + h′′(ω + π + θ)

)
(101)

×
(
h(ω) + h′′(ω)

)
dω. (102)

This gives∣∣∣∣ d2

dθ2
Ex(θ,M)

∣∣∣∣ (103)

≤ Ex(θ,M) + 2|M| (104)

+

∫ 2π

0

(h′′(ω + π − θ) + h(ω + π − θ) + h(ω + π + θ) + h′′(ω + π + θ)) (105)

× (h(ω) + h′′(ω)) dω (106)

In obtaining this inequality, the non-negativity of h+ h′′ was essential. Now we note
that as h is C2 and 2π-periodic,∫ 2π

0

h′′(ω) + h(ω) dω =

∫ 2π

0

h(ω) dω = Per(M). (107)

Thus integrating 103 with respect to θ, we have∫ 2π

0

∣∣∣∣ d2

dθ2
Ex(θ,M)

∣∣∣∣ dθ (108)

≤
∫ 2π

0

Ex(θ,M) dθ + 4π|M| (109)
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+ 2Per(M)

∫ 2π

0

h(ω) dω (110)

= 2π〈Ex(·,M)〉+ 4π|M|+ 2Per(M)2. (111)

Now by density, using that volume and perimeter are continuous with respect
to Hausdorff metric and that Ex is continuous in L∞ with respect to Hausdorff
convergence, and ∂

∂θEx(·,M) can be controlled in L∞ norm as in Proposition 3.3,

this implies that for any M∈ K2, d2

dθ2Ex(·,M) defines a Radon measure so that∣∣∣∣ d2

dθ2
Ex(·,M)

∣∣∣∣ (S1) (112)

≤ 2π〈Ex(·,M)〉+ 4π|M|+ 2Per(M)2. (113)

Theorem 3.1. Assume that M is a convex body. Then Ex(·,M) is Lipschitz with
||∇Ex(·,M)||∞ < 2Per(M)2, and ∇2Ex is a Radon measure with∣∣∣∣ d2

dθ2
Ex(θ,M)

∣∣∣∣ (S1) (114)

≤ 2π〈Ex(·,M)〉+ 4π|M|+ 2Per(M)2. (115)

Furthermore, if Mi →M in Hausdorff metric, then

• Ex(·,Mi)→ Ex(·,M) in W 1,p for p <∞.

• Ex(·,Mi)
∗
⇀ Ex(·,M) in W 1,∞.

• ∇Ex(·,Mi) ⇀ ∇Ex(·,M) in BV .

Proof. If M is in C2
+ the estimate has been shown previously. To extend to general

convex bodies, we proceed by a density argument. LetM be a convex body andMi →
M in Hausdorff metric and Mi ∈ C2

+ for each i. As Mi →M, Per(Mi)→ Per(M),
|Mi| → |M| and Ex(·,Mi)→ Ex(·,M) pointwise. Since the Lipschitz norms of Ex
are bounded uniformly, and we have a unique pointwise limit for all subsequences, this
implies that Ex(·,Mi)

∗
⇀ Ex(·,M) in W 1,∞. Furthermore, an application of Helly’s

selection theorem to ∇Ex(·,Mi) we have that Ex(·,Mi) → Ex(·,M) in W 1,p for
p <∞, and ∇2Ex(·,M) is a Radon measure with the appropriate bound.

To show the convergence result, the same reasoning as the density result is applied,
except now Mi needn’t be C2

+ bodies, as we know they satisfy the same bounds.

Corollary 3.1. Let M be a zonoid. Then

1

2π

∫ 2π

0

Ex(θ,M) dθ = 2|M|+ 1

2π
Per(M)2. (116)

Proof. If M is a zonotope, this follows from integrating the result of Proposition 3.1.
By density, as Ex(·,M) using the previous result we can then extend this to all
zonoids.
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3.2.2. Convergence of solutions

Definition 3.2. Let f ∈ L2(0, 2π). Then let C(k) = inf
|V |=k

||Ex(·, Z(V )) − f ||22, and

C(∞) = inf
M
||Ex(·,M)− f ||22 where the infimum is taken over all zonoids M.

Proposition 3.6. For all k ∈ N and k =∞, the minimisation problem defining C(k)
admits a minimiser.

Proof. For finite k, we use that the average of Ex(·, Z(Vi)) must be bounded by
Corollary 3.1 if ||Ex(·, Z(Vi)) − f ||22 is bounded. This implies that the perimeters
and thus diameters of Z(Vi) must be bounded, and thus as each zonotope contains
the origin, this implies that the zonotopes admit a Hausdorff metric converging
subsequence. Furthermore, we can also take each vi,j = li,jRθi,j for Vi = (vi,j)

k
j=1

to have a converging subsequence as the perimeter is controlled by the sum of their
norms. Then, as this implies uniform convergence of Ex(·, Z(Vi)) → Ex(·, Z(V )),
we have that ||Ex(·, Z(Vi)) − f ||22 → ||Ex(·, Z(V )) − f ||22. Thus by a direct method
argument a minimiser exists [7].

For the case where k = ∞ the proof is nearly identical, except now we consider
only Mi and not its basis Vi. We control the perimeter, and thus diameter, by the
average of Ex, and thus obtain Hausdorff compactness by the same argument, at
which point the result follows by the same reasoning.

Proposition 3.7. C(k) is a decreasing in k, and lim
k→∞

C(k) = C(∞).

Proof. To see it is decreasing in k it suffices to observe that if V is a list of k vectors,
then V ′ = (v1, v2, ..., vk, 0) is a list of k + 1 vectors, and Z(V ) = Z(V ′), so in essence
V is a candidate minimiser for min

|U |=k+1
||Ex(·, Z(U)) − f ||22. As C(k) is a decreasing

sequence with a lower bound (zero), this means it attains a limit. To see that the limit
is C(∞), letM be a minimiser of the minimisation problem defining C(∞). AsM is
a zonoid, by definition there exists a sequence of zonotopes Z(Vk) with Z(Vk)→M,
|Vk| = k. Then Ex(·, Z(Vk)) → Ex(·,M) uniformly, so C(k) ≤ ||Ex(·, Z(Vk)) − f ||22.
Taking the limit as k →∞ of both sides gives

lim
k→∞

C(k) ≤ ||Ex(·,M)− f ||22 = C(∞) ≤ lim
k→∞

C(k). (117)

Lemma 3.1. Let M ∈ N be greater than 1, and M be a zonoid. Then there exists a
constant C > 0, independent of M and M, so that

||(I − PM )Ex(·,M)||22 ≤
C

M3
Per(M)4. (118)

Proof. First we prove the result when M is a zonotope. Let M = Z(V ) for a set of
spanning vectors V = (vi)

k
i=1. Define li, θi to be the norm and angles of vi respectively.

We can then recall the Fourier decomposition of the excluded area function, and obtain
a bound on the L2 norm of the projection as

||(I − PM )Ex(·, Z(U))||22 (119)

=

∞∑
m=M+1

|bm(V )|2 (120)
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=

∞∑
m=M+1

∣∣∣∣∣∣
∑
ij

4lilj cos(2m(θi − θj))
π(4m2 − 1)

∣∣∣∣∣∣
2

(121)

≤
∞∑

m=M+1

∑
ij

4lilj
π(4m2 − 1)

2

(122)

=

∞∑
m=M+1

16

π(4m2 − 1)2

(∑
i

li

)4

(123)

=

∞∑
m=M+1

16

π(4m2 − 1)2

(
1

2
Per(Z(U))

)4

(124)

≤ C1

∞∑
m=M+1

Per(Z(U))4

m4
(125)

≤ CPer(Z(U))4

M3
(126)

for appropriate positive constants C1, C which are independent of M and Z(U). Then
by density of zonotopes in the zonoids with respect to Hausdorff metric, we obtain
the result for zonoids using the continuity properties of the excluded area map and
perimeter.

Theorem 3.2. Let VM,k denote any solutions to to the minimisation problem
min
L,Θ
F(L,Θ;M,k). Then for any choice of Mi, ki so that Mi → ∞, ki → ∞, we

have that there exists a subsequence Mij , kij and zonoid M so that

Ex(·, Z(VMij ,kij ))
∗
⇀ Ex(·,M) (W 1,∞), (127)

Ex(·, Z(VMij ,kij ))→ Ex(·,M) (W 1,p) (p <∞), (128)

d2

dθ2
Ex(·, Z(VMij ,kij ))

∗
⇀

d2

dθ2
Ex(·,M) C(S1)∗, (129)

Z(VMij ,kij )→ M (Hausdorff), (130)

||Ex(·,M)− f ||22 = inf
M̃
||Ex(·,M̃)− f ||22 = C(∞). (131)

In particular, if f can be written as an excluded area function, then f = Ex(·,M)
also.

Proof. Let Vi denote the minimisers, and Li,Θi denote the lengths and angles
(respectively) of the vectors of Vi. Then

C(ki) = min
|U |=ki

||Ex(·, Z(U))− f ||22 (132)

≥ min
|U |=ki

||PMi
(Ex(·, Z(U))− f)||22 (133)

= F(L,Θ;Mi, ki) (134)

≥ A1

(
Ex(·, Z(Vi))

2
− 1
)

(135)

for an appropriate positive constant A1 > 0, which is independent of k. This means
that for our sequence of minimisers, the average of Ex(·, Z(Vi)) is bounded, and thus
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the perimeters of Z(Vi) admit uniform control. This implies immediately that we can

take a subsequence Vij so that Z(Vij) → M for some zonoid M and Ex(·,Mi)
∗
⇀

Ex(·,M). It suffices to show that M is a minimiser of min
M̃
||Ex(·,M̃))− f ||22. To see

this, we note that

||PM (Ex(·, Z(U))− f)||22 (136)

= ||Ex(·, Z(U))− f ||22 − ||(I − PM )(Ex(·, Z(U))− f)||22 (137)

≥ C(k)− 2
(
||(I − PM )Ex(·, Z(U))||22 + ||(I − PM )f ||22

)
. (138)

Therefore if U = Vij , which has bounded perimeter, by Lemma 3.1 this means that

||PMij
(Ex(·, Z(Vij))− f)||22 (139)

≥ C(kij)−
A2

M3
ij

− 2||(I − PMij
)f ||22, (140)

where A2 is a positive constant controlled by the perimeter of Vij , and hence uniformly
controlled for all i, j. As f ∈ L2, we have that ||(I − PMij )f ||22 → 0 as j → ∞, and
therefore

lim inf
j→∞

||PMij (Ex(·, Z(Vij))− f)||22 (141)

≥ lim
j→∞

C(kij) = C(∞). (142)

However we have also seen we have an estimate from above, that

||PMij
(Ex(·, Z(Vij))− f)||22 ≤ C(kij) (143)

which similarly implies lim sup
j→∞

||PMij
(Ex(·, Z(Vij))− f)||22 ≤ C(∞). This means that

lim
j→∞

||PMij (Ex(·, Z(Vij)) − f)||22 = C(∞), but since ||PMij (Ex(·, Z(Vij)) − f)||22 =

||(Ex(·, Z(Vij))− f)||22 + o(1), this implies that ||Ex(·, Z(Vij))− f ||22 → C(∞). Since
Ex(·, Z(Vij)) converges weak-* in W 1,∞ to Ex(·,M), this implies that Ex(·, Z(Vij))
converges weak-* inW 1,∞ to a best L2 approximation of f in the space of excluded area
functions of zonotopes. Furthermore, if C(∞) = 0, this implies that Ex(·, Z(Vij)→ f
in L2, so that Ex(·,M) = f .

3.3. Convergence rate

We now turn to obtaining a convergence rate, assuming that a solution exists. In this
case we will first need some estimates on approximations of zonoids in the Hausdorff
sense.

Definition 3.3. Let M be a zonoid with support function h. let uθ denote the unit
vector at angle θ. Define the k-th canonical approximation to M to be given by

4k⋂
i=1

{
x ∈ R2 : u iπ

2k
· x < h

(
iπ

2k

)}
(144)

Remark 3.1. If Mk is the k-th canonical approximation to M, and hk denotes its
support function, then we have immediately that hk

(
iπ
2k

)
= h

(
iπ
2k

)
for i = 1, ..., 4k,

and that M⊂Mk. Furthermore, we see that Mk is a centrally symmetric polygon
with at most 4k edges, and thus is a zonotope with at most 2k spanning vectors.
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Lemma 3.2. Let M be a zonoid and its k-th canonical approximation be Mk. Let
d denote the diameter of M, and dk be the diameter of Mk. Then for k > 1,

dk ≤ d
√

2, (145)

Per(Mk) ≤ 4d. (146)

Proof. Mk ⊂M1 for all k ≥ 1. This means thatM2k is contained inside the rectangle
[−h(π), h(0)] ×

[
−h
(

3π
2

)
, h
(
π
2

)]
. Therefore it is contained inside a square with side

lengths less than 2||h||∞. We then recall that d = 2||h||∞, so that the diameter of this
box is

√
2d. Therefore, as diameter is monotone, this implies that d2k ≤

√
2d.

We use a similar heuristic for the perimeter. Since perimeter is monotone for
convex bodies, this means that dk is less than the perimeter of a square with side
lengths d, which is 4d.

Lemma 3.3. Let M be a zonoid and Mk its k-th canonical approximation. Let
h denote the support function of M, hk the support function of Mk, and d be the
diameter of M. Then

|hk(θ)− h(θ)| ≤ π(1 +
√

2)

2k
d (147)

Proof. First we recall that for a convex body centred at 0, the Lipschitz constant
of the support function is bounded by half the diameter. Thus ||h′||∞ < d,
||h′k||∞ ≤ dk ≤ d

√
2. Let θi = iπ

2k . Then we have that

||hk − h||∞ (148)

= max
0≤θ≤2π

|hk(θ)− h(θ)| (149)

= max
1≤i≤4k

max
θi≤θ≤θi+1

|hk(θ)− h(θ)| (150)

= max
1≤i≤4k

max
θi≤θ≤θi+1

∣∣∣∣∣hk (θi)− h(θi) +

∫ θ

θi

h′k(t)− h′(t) dt

∣∣∣∣∣ (151)

= max
1≤i≤4k

max
θi≤θ≤θi+1

∣∣∣∣∣
∫ θ

θi

h′k(t)− h′(t) dt

∣∣∣∣∣ (152)

≤ max
1≤i≤4k

max
θi≤θ≤θi+1

|θi − θi+1|
(
||h′||∞ + ||h′k||∞

)
(153)

≤ π(1 +
√

2)

2k
d (154)

Proposition 3.8. Let M be a zonoid with diameter d, and Mk denote its k-th
canonical approximation. Then there is a constant C depending only on d so that

||Ex(·,M)− Ex(·,M2k)||∞ ≤
C

k
. (155)

Proof. Let ε = dH(M,Mk) = ||hk − h||∞, and R ∈ SO(2). Let Bε denote the ball of
radius ε in R2. Then using results from [28, Section 4.1] we may write

|M−RM| (156)

≤ |(M2k +Bε)−R(M2k +Bε)| (157)

= |M2k −RM2k + 2Bε| (158)
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= |M2k −RM2k|+ 2εPer(M2k −RM2k) + 4πε2 (159)

= Ex(R,M2k) + 4εPer(M2k) + 4πε2. (160)

Applying the same inequality with M,Mk interchanged gives

||Ex(·,M)− Ex(·,M2k)||∞ (161)

≤ 4εmax(Per(M),Per(M2k)) + 4πε2 (162)

≤ 4εmax(4d, 4d) + 4πε2 (163)

≤ 4εmax(Per(M), 2Per(M)) + 4πε2 (164)

= 16εd+ 4πε2. (165)

Recalling Lemma 3.3 gives the result.

Theorem 3.3. Assume that f = Ex(·,M) for some zonoid M. Let MM,k denote a
corresponding minimiser of F . Then

||Ex(·,MM,k)− f ||22 (166)

≤ C1

k2
+
C2

M3
+ 2

∑
|n|≥M

|f̂(n)|2. (167)

Proof. LetMj denote the j-th canonical approximation ofM. We recall the estimate
||(I − PM )Ex(·,MM,k)||22 ≤ C2

M3 obtained in Lemma 3.1. Then

||Ex(·,MM,k)− f ||22 (168)

= ||PM (Ex(·,MM,k)− f)||22 (169)

+ ||(I − PM )(Ex(·,MM,k)− f)||22 (170)

≤ ||PM (Ex(·,Mj)− f)||22 (171)

+ 2||(I − PM )Ex(·,MM,k)||22 (172)

+ 2||(I − PM )f ||22 (173)

≤ ||Ex(·,Mj)− f ||22 +
C2

M3
+ 2

∑
|n|≥M

|f̂(n)|2 (174)

≤ 2π||Ex(·,Mj)− f ||2∞ +
C2

M3
+ 2

∑
|n|≥M

|f̂(n)|2 (175)

≤ C1

k2
+
C2

M3
+ 2

∑
|n|≥M

|f̂(n)|2. (176)

The decay rate given has significant consequences. It implies that i) Both k and
M need to be large, and ii) that if f has many high frequency contributions in Fourier
space, the decay rate will suffer. In particular, if f is less regular we expect a slower
convergence.
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3.4. Examples

For some representative candidate functions f and values k,M , we present
constructed solutions to the minimisation problem, with an implementation in
Wolfram Mathematica. For each case we include the zonotope produced and the
excluded area graph for comparison with the candidate function. The candidate
function f is graphed in dashed orange, and the reconstructed excluded area function
is given in blue. We also give the L2 error of the result, ε, to two significant digits.

It should be noted with regards to implementation that the minimisation problem
on the basis vectors is highly non-linear, with generally non-unique solutions, either by
symmetry or otherwise. Even more so, it is near impossible to rule out the possibility
that the numerical schemes settle towards local minima of our objective function,
rather than global minima. However, in these implementations these issues did not
seem to be problematic.

The implementation however can be tackled using standard software, and in
the following examples the results were obtained by an application of Wolfram
Mathematica’s inbuilt NMinimize command, with the zonotope given in (li, θi)
coordinates. To enforce the constraint li ≥ 0, a variable r2

i = li is used which is
unconstrained, and θ1 = 0 without loss of generality to remove the degeneracy of
rotational symmetry. Otherwise it is is a very straightforward implementation, and
the longest run time for the following applications was around 10 minutes on a desktop
computer.

Example 3.1. First we consider a well behaved candidate excluded volume function,

that appears to be “well posed”, of f(θ) = 2 + sin(x)2

2 . In fact we can prove this is
the excluded area function of a shape with support function h(θ) = 1 + 1

2
√

3
cos(2θ),

which results from a quick application of Lemma 2.1. We note that as the support
function has only one non-zero Fourier node, it is the unique shape, modulo symmetry,
that produces the given excluded area function. The reconstructed zonotopes and
excluded area functions are given in Figure 4. Generally we see what we expect, the
error is smaller with increasing k,M , and the solutions should be converging. As the
support function has only one non-zero Fourier node after first order, we have that the
reconstructed shapes must, modulo symmetry, converge to the correct convex domain.
We can explicitly construct the body with support function h, which is included for
comparison.

Example 3.2. Next we consider the function f(θ) = 2 + 1
2 | sin(θ)| − 1

2 cos(2θ). This
is chosen as the function has infinitely many Fourier nodes and has no obvious convex
body of which it is the support function. The reconstructed zonotopes and excluded
area functions are included in Figure 5. In this case we appear to have convergence, but
it seems apparent that increasing the number of Fourier nodes M is more important
than increasing the number of spanning vectors for the zonotope k. This is likely due
to the high order Fourier nodes of f causing errors for small M .

Example 3.3. Consider f(θ) = 1 + sin(θ)30. This is chosen as it is not the
excluded area function for any zonoid, which can be seen as follows. For this function
numerically evaluate that its average is given by f̄ ≈ 1.14, its Lipschitz constant is
given by Lip(f) ≈ 3.35, and f(0) = 1. So we have that f̄ − 1

2f(0) ≈ 0.64. If f were
an excluded area function for a zonoid, it would have to satisfy f̄ − 1

2f(0) ≥ 1
πLip(f).
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(a) k = 5,M = 5, ε = 0.027
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(b) k = 5,M = 20, ε = 0.013
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(c) k = 20,M = 5, ε = 0.0065
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(d) k = 20,M = 20, ε = 0.0014

(e) The true bodyM so that Ex(·,M) = f

Figure 4: Reconstructed bodies from f(θ) = 2 + sin(θ)2

2

0.5 1.0 1.5 2.0 2.5 3.0

2.0

2.5

3.0

(a) k = 5,M = 5, ε = 0.029
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(b) k = 20,M = 5, ε = 0.028
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(c) k = 5,M = 20, ε = 0.010
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(d) k = 20,M = 20, ε = 0.0097

Figure 5: Reconstructed figures for f(θ) = 2 + | sin(θ)|−cos(2θ)
2

This can be seen by integrating Proposition 3.1, which shows

1

2π

∫ 2π

0

Ex(θ,M) dθ (177)

= 2|M|+ 1

2π
Per(M)2 (178)

=
1

2
Ex(0) +

1

2π
Per(M)2, (179)

and comparing this to the estimate in Proposition 3.3 for the perimeter. However,
numerically we evaluate 0.64 ≈ f̄ − 1

2f(0) and 1
πLip(f) ≈ 1.1, Thus we see this is not

an excluded area function, but perform the analysis to see how the solutions to the
algorithm appear. The reconstructed zonotopes and excluded area functions are in
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(d) k = 20,M = 20, ε = 0.53

Figure 6: Reconstructed bodies for f(θ) = 1 + sin(θ)30

Figure 6. As expected, we do not appear to have any convergence of our solutions to
f . In this case we see that for k = 5, 20 and M = 5, 20, there is very little difference
in behaviour of solutions, certainly nothing to the naked eye. However, it is expected
that the reconstructed shape is a best approximation in L2 to f within all possible
excluded area functions.

4. Relationship to Onsager

Let M be a compact convex body in Rn. Then we define the Onsager free energy,
F(·,M) : L1(SO(n))→ R by

F(ρ,M) =

∫
SO(n)

ρ(R) ln ρ(R) dR (180)

+
1

2

∫
SO(n)

∫
SO(n)

ρ(R)ρ(S)Ex(RST ,M) dRdS. (181)

We minimise the free energy subject to the density constraint, that∫
SO(n)

ρ(R) dR = ρ0. The value of ρ0 is a parameter that mediates the compe-

tition between order and disorder in our system, which we will take to be fixed for
this section.

The aim of this section is to demonstrate that, at the level of the Onsager model,
the metric of Hausdorff convergence is appropriate in the sense that ifMi →M, then
the functionals F(·,Mi) Γ-converge to F(·,M) (see Definition 4.1).

While the previous results were for bodies in R2, the following discussion is
readily performed in arbitrary dimension. However before proceeding, we will need an
important result on the regularity of Ex(·,M). We proved in Proposition 3.3 that if
M is a zonoid in R2, then Ex(·,M) is Lipschitz. We now prove the result for general
convex bodies in Rn.

Proposition 4.1. Let M be a convex body in Rn. Then Ex(·,M) : SO(n) → R
is Lipschitz. Furthermore, if K is a set of convex bodies, precompact in Hausdorff
metric, then sup

M∈K
LipEx(·,M) < +∞.

Proof. Within this proof we will have to consider bodies MR = M− RM. From
the compactness of SO(n) and continuity of operations with Hausdorff metric,
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{MR : R ∈ SO(n)} is compact with respect to Hausdorff metric for fixedM, and the
set {MR :M∈ K, R ∈ SO(n)} is precompact with respect to Hausdorff metric. In
particular, this means that the intrinsic volumes of such MR are uniformly bounded.
Thus, by the Steiner formula, we have that if the Hausdorff metric dH(MR,MR′) < δ,
then we can find constants so that

|MR| − C1δ (182)

≤ |MR| − δP (δ,MR′) (183)

≤ |MR′ | (184)

≤ |MR|+ δP (δ,MR) (185)

≤ |MR|+ C1δ. (186)

In this case, P (·,MR) is an n − 1 degree polynomial in δ, with P (0,M) = Per(M),
and generally the coefficients are given by intrinsic volumes of the body. In particular,
C1 is a constant depending smoothly only on the intrinsic volumes of M, and more
so the constant is uniformly bounded for M∈ K, as intrinsic volumes are continuous
with the Hausdorff metric. Then

|Ex(R,M)− Ex(R′,M)| (187)

= ||MR| − |MR′ || (188)

≤ C1dH(MR,MR′) (189)

= C1 sup
η∈Sn−1

|h(η,MR)− h(η,MR′)| (190)

= C1 sup
η∈Sn−1

∣∣h(η,M) + h(−RT η,M) (191)

−h(η,M)− h(−R′T η,M)
∣∣ (192)

= C1 sup
η∈Sn−1

∣∣h(−RT η,M)− h(−R′T η,M)
∣∣ (193)

≤ C1Lip(h(·,M))||R−R′||. (194)

We remark that the Lipschitz constant of the support functions must be uniformly
bounded if they correspond to a precompact set of convex bodies. This is because
precompact sets in Hausdorff metric are necessarily uniformly bounded, and the
Lipschitz constant of the support function can be bounded by the diameters as

h(p,M)− h(q,M) (195)

= sup
x∈M

p · x− sup
x∈M

q · x (196)

= sup
x∈M

((p− q) · x+ q · x)− sup
x∈M

q · x (197)

≤ sup
x∈M

(p− q) · x+ sup
x∈M

q · x− sup
x∈M

q · x (198)

= sup
x∈M

(p− q) · x ≤ |p− q| sup
x∈M

|x|. (199)

Corollary 4.1. IfMi →M in Hausdorff metric, then Ex(·,Mi)→ Ex(·,M) weak-*
in W 1,∞.
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Proof. It suffices to prove pointwise convergence, as we have uniform control on the
Lipschitz constant. However, this is immediate as M 7→ M − RM is a continuous
function in Hausdorff metric for fixed R ∈ SO(n).

We recall the definition of Γ-convergence [3].

Definition 4.1. Let X be a topological space, and Fi : X → R∪{+∞} be functionals.
We say that Fi Γ-converge to F : X → R ∪ {+∞}, with respect to the topology on
X, if

(i) (Liminf inequality) For every x ∈ X and every sequence xi → x, lim inf
i→∞

Fi(xi) ≥
F (x).

(ii) (Limsup inequality) For every x ∈ X, there exists a sequence xi → x with
lim sup
i→∞

Fi(xi) = F (x).

Furthermore, we have the fundamental theorem of Γ-convergence.

Theorem 4.1. Let Fi Γ-converge to F . Furthermore, assume the sequence Fi is
equicoercive, so that if xi is a sequence in X and Fi(xi) is uniformly bounded,
then there exists a subsequence xij and some x ∈ X with xij → x. Then we
have that minimisers of F exist, lim

i→∞
(inf Fi) → minF , and if xi is a sequence with

lim
i→∞

Fi(xi) − inf Fi → 0, then there exists a subsequence xij and minimiser x of F

with xij → x.

Loosely speaking, this theorem states that Γ-convergence is a “natural” mode of
convergence for minimisation problems, in the sense that minimisers of Fi will converge
to minimisers of F if Fi Γ-converges to F .

Theorem 4.2. Let Mi → M in Hausdorff metric. Then F(·,Mi) Γ-converges to
F(·,M) with respect to weak-L1 convergence. Furthermore F(·,Mi) are equicoercive
with respect to the weak-L1 topology.

Proof. First we must show that if F(ρi,Mi) is bounded, then ρi admits a weakly
converging subsequence. Furthermore, we must show that minF(·,Mi) is bounded.
For the latter, we simply test the uniform distribution, as

minF(·,Mi) (200)

≤ F
(

ρ0

|SO(n)|
,Mi

)
(201)

≤ − ρ0 ln
ρ0

|SO(n)|
+
ρ2

0

2
||Ex(·,Mi)||∞, (202)

where the Hausdorff convergence ensures the latter is uniformly bounded. Then, we
see that as Ex is always non-negative, that∫

SO(n)

ρ(R) ln ρ(R) dR ≤ F(ρ,Mi). (203)

This implies that the Shannon entropy is bounded if F(ρi,Mi) is bounded, which
implies a weak L1-converging subsequence by the theorem of de la Vallée Poussin [20,
Theorem 22].
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Next we must show that if ρi
L1

⇀ ρ, then lim inf
ı→∞

F(ρi,Mi) ≥ F(ρ,M). For brevity,

define the operators TM′ : L1(SO(n))→ L∞(SO(n)) by

TM′ρ(R) =

∫
SO(n)

ρ(S)Ex(RST ,M′) dS. (204)

As Ex is Lipschitz, these are compact operators from L1 to L∞, which follows by the
Arzelà-Ascoli theorem.

Now we note the energy has two components. The bilinear term in F(·,Mi) is
of the form 〈ρ, TMi

ρ〉, where TMi
are compact operators converging to TM. This

means that if ρi ⇀ ρ in L1, TMi
ρi → TMρ in L∞, so 〈ρ, TMi

ρi〉 → 〈ρ, TMρ〉. The
Shannon entropy term is convex, hence lower semicontinuous with respect to weak-L1

convergence, and independent of i, so that

lim inf
i→∞

∫
SO(n)

ρi(R) ln ρi(R) dR (205)

≥ lim inf
i→∞

∫
SO(n)

ρ(R) ln ρ(R) dR. (206)

Combining these, we have the liminf inequality,

lim inf
ı→∞

F(ρi,Mi) ≥ F(ρ,M). (207)

Finally, we show the so-called limsup inequality. For the sake of this work, it
suffices to show that F(ρ,Mi)→ F(ρ,M) for all ρ with finite Shannon entropy. This
is however straightforward, as F(ρ,Mi) − F(ρ,M) = 〈ρ, TMi

ρ〉 − 〈ρ, TMρ〉, which
converges to zero by the same argument as given in proving the liminf inequality.

Remark 4.1. The equilibrium equations for the Onsager model are given by

ln ρ(R) = λ−
∫

SO(n)

Ex(RST )ρ(S) dS, (208)

where λ is a Lagrange multiplier corresponding to the constraint
∫
SO(n)

ρ(R) dR = ρ0

[6]. As Ex is Lipschitz, bootstrapping type arguments could provide much stronger
modes of convergence for minimisers of F(·,Mi) than weak L1, though these
arguments are tedious and will be omitted for future work.

5. Conclusions

Within this work we have derived expressions for the excluded area function for 2D
convex bodies, in terms of the Fourier coefficients of the body’s support function.
Using this formula, it is shown that for well behaved shapes there are are typically
uncountably many such bodies with the same excluded volume functions, with some
exceptions, notably a disk. The formula also permitted the derivation and analysis of
an algorithm that can construct a body from a candidate excluded volume function f ,
whose excluded volume function is the best L2-approximation over all excluded volume
functions in an appropriate space. Finally, a comparison with Onsager demonstrates
that Hausdorff convergence, used throughout the work, is indeed a “natural” mode of
convergence for convex bodies with regards to expected equilibria.
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