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Abstract. We prove that any complex analytic set in Cn which is Lipschitz

normally embedded at infinity and has tangent cone at infinity that is a linear

subspace of Cn must be an affine linear subspace of Cn itself. No restrictions

on the singular set, dimension nor codimension are required. In particular, any

complex algebraic set in Cn which is Lipschitz regular at infinity is an affine linear

subspace.

1. Introduction

Local Lipschitz geometry of complex algebraic sets has been intensively studied

in the last years. In the recent works on this subject [1] and [11], it was showed

an important rigidity result of such a local geometric structure of algebraic sets.

Indeed, it was proved that Lipschitz regular complex algebraic germs of sets in Cn,

that is, germs of complex algebraic sets in Cn which are bi-Lipschitz homeomorphic

to the germ of Rd at some point, are analytically smooth (see Theorem 3.1 in [1]

and Theorem 4.2 in [11]). From another way, looking to scrutinize global Lipschitz

geometry of such sets in some sense, we arrived on subsets of Cn that, outside a

compact subset, are bi-Lipschitz homeomorphic to the complement of a Euclidean

ball in some Rd; they are called Lipschitz regular at infinity (see Definition 2.3).

A path connected subset X of Cn is called Lipschitz normally embedded if there

exists a positive real number λ such that

dX(x, y) ≤ λ‖x− y‖

for all x, y ∈ X, where dX(x, y) (inner distance on X between x and y) is the infimum

of the length(γ); γ varies on the set of paths on X connecting x to y. We say that

X is Lipschitz normally embedded at infinity if there exists a compact subset K ⊂ X

such that X \K is Lipschitz normally embedded.

The main result of this paper is the following.
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Theorem 1.1. Let X ⊂ Cn be a closed and pure d-dimensional analytic subset.

Suppose X has a unique tangent cone at infinity and this cone is a d-dimensional

complex linear subspace of Cn. If X is Lipschitz normally embedded at infinity, then

X is an affine linear subspace of Cn.

We are going to address the notion of tangent cone at infinity and Lipschitz

normal embedding in the subsections 2.2 and 2.1 respectively. As a consequence

of the above theorem, we also prove that complex algebraic subsets of Cn which

are Lipschitz regular at infinity are affine linear subspaces of Cn. Finally, as a

consequence of the above theorem as well, we prove that pure dimension complex

algebraic subsets of Cn which are Lipschitz regular at infinity must be affine linear

subspaces of Cn. Let us compare this last result with a celebrated theorem due to

Bombieri, De Giorgi and Miranda which says that entire positive minimal graph of

functions in Euclidean spaces must be horizontal affine hyperplane; notice that, in

our result, we deal with complex analytic sets in Cn which are not necessarily graph

of smooth functions, a priori, they are not supposed even smooth.

We organized the paper in the following way. In Section 2 we present definitions

and basic properties on Lipschitz geometry at infinity, more precisely, in Subsection

2.1 we repeat the definition Lipschitz normal embedding at infinity with some ex-

amples and we set some basic results; in Subsection 2.2 we present the notion of

tangent cones at infinity and prove some basic results as well. Finally, Section 3 is

devoted to prove Theorem 1.1.

2. Preliminaries

Let us start this section by reminding the definition of Lipschitz functions, where

all the subsets of Rn (or Cn) are considered equipped with the induced Euclidean

metric.

Definition 2.1. Let X ⊂ Rn and Y ⊂ Rm. A mapping f : X → Y is called

Lipschitz if there exists λ > 0 such that is

‖f(x1)− f(x2)‖ ≤ λ‖x1 − x2‖

for all x1, x2 ∈ X. A Lipschitz mapping f : X → Y is called bi-Lipschitz if its

inverse mapping exists and is Lipschitz.

Next, we are going to establish the notion of bi-Lipschitz homeomorphims at

infinity.

Definition 2.2. Let X ⊂ Rn and Y ⊂ Rm be two subsets. We say that X and Y are

bi-Lipschitz homeomorphic at infinity, if there exist compact subsets K ⊂ Rn

and K̃ ⊂ Rm and a bi-Lipschitz homeomorphism φ : X \K → Y \ K̃.
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Definition 2.3. A subset X ⊂ Rn is called Lipschitz regular at infinity if X

and Rk are bi-Lipschitz homeomorphic at infinity, for some k ∈ N.

Example 2.4. Let X ⊂ R3 be defined by X = {(x, y, z) ∈ R3 : x2 + y2 = z3}.
We see that X is an algebraic subset of R3 with an isolated singularity at 0 ∈ R3.

By using the mapping π : X → R2; π(x, y, z) = (x, y), it is easy to see that X is

Lipschitz regular at infinity.

Example 2.5. Let Y ⊂ R3 be defined by Y = {(x, y, z) ∈ R3 : x2 + y2 = z}. We

see that Y is a smooth algebraic subset of R3. From another way, Y is not Lipschitz

regular at infinity (this can be seen using e.g. Theorem 2.19).

2.1. Lipschitz normal embedding at infinity. Let us remind the definition of

Inner Distance already presented in Section 1. Given a path connected subset X ⊂
Rm the inner distance on X is defined as follows: given two points x1, x2 ∈ X,

dX(x1, x2) is the infimum of the lengths of paths on X connecting x1 to x2. As we

said in the beginning of Section 2 all the sets considered in this paper are supposed

to be equipped with the Euclidean induced metric. Whenever we consider the inner

distance, we emphasize it clearly.

Definition 2.6 (See [2]). A subset X ⊂ Rn is called Lipschitz normally embed-

ded if there exists λ > 0 such that

dX(x1, x2) ≤ λ‖x1 − x2‖

for all x1, x2 ∈ X.

Proposition 2.7. If a closed unbounded subset X ⊂ Rn is Lipschitz regular at

infinity, then there exists a compact K ⊂ Rn such that each connected component of

X \K is Lipschitz normally embedded.

Proof. Let X ⊂ Rn be a closed and unbounded subset. Let us suppose that X

is Lipschitz regular at infinity, that is, there exist compact subsets K1 ⊂ Rk and

K2 ⊂ Rn and a bi-Lipschitz homeomorphism ψ : Rk \K1 → X \K2. Without loss

of generality, one can suppose that K1 is a Euclidean closed ball. Let us denote

Y = Rk \K1, Z = X \K2.

First, let us suppose that k > 1. Since there are positive constant λ1 < λ2 such

that:

λ1‖p− q‖ ≤ ‖ψ(p)− ψ(q)‖ ≤ λ2‖p− q‖, ∀p, q ∈ Y,

it follows that

λ1dY (p, q) ≤ dZ(ψ(p), ψ(q)) ≤ λ2dY (p, q), ∀p, q ∈ Y.
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On the other hand, dY (p, q) ≤ π‖p − q‖, for all p, q ∈ Y and, by those inequalities

above, it follows that

dZ(ψ(p), ψ(q)) ≤ λ2π

λ1
‖ψ(p)− ψ(q)‖, ∀ p, q ∈ Y.

Therefore,

dZ(x, y) ≤ λ2π

λ1
‖x− y‖, ∀ x, y ∈ Z.

In other words, Z is Lipschitz normally embedded.

In the case where k = 1, R \K1 has two connected components which we denote

by Y1 and Y2. Actually, Y1 and Y2 are half-lines and, therefore, for each i = 1, 2,

dYi(p, q) ≤ |p− q|, for all p, q ∈ Yi. Likewise as it was done above, we have

dZi
(x, y) ≤ λ2

λ1
‖x− y‖, ∀ x, y ∈ Zi,

where Z1 = ψ(Y1) and Z2 = ψ(Y2) are the connected components of Z. Hence, the

proposition is proved. �

Definition 2.8. A subset X ⊂ Rn is Lipschitz normally embedded at infinity

if there exists a compact subset K ⊂ Rn such that X \ K is Lipschitz normally

embedded.

Let us finish this section pointing out the following result which we are going to

use in the proof of Theorem 1.1

Corollary 2.9. Let X ⊂ Cn be a complex algebraic subset. If X is Lipschitz regular

at infinity, then X is Lipschitz normally embedded at infinity.

2.2. Tangent cone at infinity. Let us start this section recalling two well known

results about semialgebraic sets, namely, the Monotonicity Theorem and the Curve

Selection Lemma.

Lemma 2.10 (Theorem 1.8 in [5]). Let f : (a, b) → R be a semialgebraic function.

Then, there are a = a0 < a1 < ... < ak = b such that, for each i = 0, ..., k − 1, the

restriction f |(ai,ai+1) is analytic and either constant, strictly increasing or strictly

decreasing.

Lemma 2.11 (Theorem 2.5.5 in [3]). Let X be a semialgebraic subset of Rn and x ∈
Rn being a non-isolated point of X. Then, there exists a continuous semialgebraic

mapping γ : [0, 1]→ Rn such that γ(0) = x and γ((0, 1]) ⊂ X.

Definition 2.12. Let X ⊂ Rm be an unbounded subset. Given a sequence of real

positive numbers {tj}j∈N such that tj → +∞, we say that v ∈ Rm is tangent to X

at infinity with respect to {tj}j∈N if there is a sequence of points {xj}j∈N ⊂ X

such that lim
j→+∞

1
tj
xj = v.
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Definition 2.13. Let X ⊂ Rm be a unbounded subset and let T = {tj}j∈N be a

sequence of real positive numbers such that tj → +∞. Denote by ET (X) the set

of v ∈ Rm which are tangent to X at infinity with respect to T . We call ET (X) a

tangent cone of X at infinity. When X has a unique tangent cone at infinity,

we denote it by C∞(X) and we call C∞(X) the tangent cone of X at infinity.

Let us remark that a tangent cone of a set X at infinity can be non-unique as we

can see in the following example..

Example 2.14. Let X = {(x, y) ∈ R2; y · sin(log(x2 + y2 + 1)) = 0}. For each

j ∈ N, we define tj = (ejπ− 1)
1
2 and sj = (ejπ+π/2− 1)

1
2 . Thus, for T = {tj}j∈N and

S = {sj}j∈N, we have ET (X) = R2 and ES(X) ⊂ {(x, y) ∈ R2; y 6= 0} ∪ {(0, 0)}.
However, ET (X) 6= ES(X). In fact, it is clear that ET (X) and ES(X) are not even

homeomorphic.

In general, it is not an easy task to verify whether unbounded subsets have a

unique tangent cone at infinity, even in the case of some classes of analytic subsets,

for instance, concerning to such a problem, there is a still unsettled conjecture by

Meeks III ([8], Conjecture 3.15) stating that: any properly immersed minimal surface

in R3 of quadratic area growth has a unique tangent cone at infinity.

Proposition 2.15. Let Z ⊂ Rn be an unbounded semialgebraic set. A vector w ∈ Rn

is a tangent vector of Z at infinity if and only if there exists a continuous semial-

gebraic curve γ : (ε,+∞)→ Z such that lim
t→+∞

|γ(t)| = +∞ and γ(t) = tw + o∞(t),

where g(t) = o∞(t) means lim
t→+∞

g(t)
t

= 0.

Proof. Suppose that w ∈ Rn is a tangent vector of Z at infinity. Let us consider the

semialgebraic mapping φ : Rn \ {0} → Rn \ {0} given by φ(x) = x
‖x‖2 and denote

X = φ(Z \ {0}). Since Z is an unbounded set, the origin is a non-isolated point of

X. Let ρ : Sn−1× [0,+∞)→ Rn \ {0} be the mapping given by ρ(x, t) = tx. We see

that ρ|Sn−1×(0,+∞) : Sn−1 × (0,+∞) → Rn \ {0} is a semialgebraic homeomorphism

with inverse mapping ρ−1 : Rn \{0} → Sn−1× (0,+∞) given by ρ−1(x) = ( x
‖x‖ , ‖x‖).

Therefore, the set Y = ρ−1(X) ⊂ Sn−1 × [0,+∞) and Y are semialgebraic sets. We

are going to consider two cases:

1) Case w 6= 0. Since w is a tangent vector of Z at infinity, there are a se-

quence {sk}k∈N of positive real numbers and a sequence {zk}k∈N ⊂ Z such that

lim
k→+∞

‖zk‖ = +∞ and lim
k→+∞

1
sk
zk = w. Thus, for each k ∈ N, let us define

xk = φ(zk). In this case, v := lim
k→∞

sk ·xk = w
‖w‖2 . In particular, lim

k→∞
xk
‖xk‖

= w
‖w‖ = v

‖v‖

and u = ( v
‖v‖ , 0) ∈ Y . Then by Curve Selection Lemma (Lemma 2.11), there exists a

continuous semialgebraic curve β : [0, δ)→ Y such that β(0) = u and β((0, δ)) ⊂ Y .
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By writing β(t) = (x(t), s(t)), we get s : [0, δ) → R is a semialgebraic and non-

constant function such that s(0) = 0 and s(t) > 0 if t ∈ (0, δ). By Lemma 2.10, one

can suppose that s is analytic in the domain (0, δ) and strictly increasing. Hence,

s : [0, δ/2] → [0, δ′] is a semialgebraic homeomorphism, where δ′ = s( δ
2
). Let us

define α : [0, r)→ X by

α(t) = ρ ◦ β ◦ s−1(t‖v‖) = ρ(x(s−1(t‖v‖)), s(s−1(t‖v‖))) = t‖v‖x(s−1(t‖v‖)),

where r = min{ δ′

‖v‖ , δ
′}. Therefore,

lim
t→0+

α(t)

t
= lim

t→0+

t‖v‖x(s−1(t))

t
= lim

t→0+
‖v‖x(s−1(t)) = ‖v‖x(0) = v,

and, thus, α(t) = tv + o(t). Finally, by defining γ : (1
r
,+∞) → Z in this way

γ(t) = φ−1(α(1
t
)), we get

γ(t) =
1
t
v + o(1

t
)

‖1
t
v + o(1

t
)‖2

= t v
‖v‖2 + o∞(t)

= tw + o∞(t).

Since γ is a composition of continuous semialgebraic mappings, γ is a continuous

semialgebraic mapping as well.

2) Case w = 0. In this case, let {xk}k∈N ⊂ Z be a sequence such that lim
k→+∞

‖xk‖ =

+∞ (this sequence exists, because Z is unbounded). Thus, { xk
‖xk‖
}k∈N is, up to take

subsequence, a convergent sequence. Let v ∈ Rn be the limit of this sequence, i.e.,

lim
k→∞

xk
‖xk‖

= v. Likewise as it was done in the Case 1, one can show that there exists a

continuous semialgebraic curve γ : (ε,+∞)→ Z such that γ(t) = tv+ o∞(t). Let us

define γ̃ : (ε2,+∞)→ Z by γ̃(t) = γ(t
1
2 ). Thus, we have γ̃(t) = o∞(t) = tw+ o∞(t).

Reciprocally, if there exists a continuous semialgebraic curve γ : (ε,+∞) → Z

such that lim
t→+∞

|γ(t)| = +∞ and γ(t) = tw + o∞(t)}, then for each k ∈ N we define

sk = ε + k + 1 and zk = γ(sk). Thus, it is clear that w is a tangent vector of Z at

infinity, since lim
k→+∞

‖zk‖ = +∞ and lim
k→+∞

1
sk
zk = w. �

In particular, Proposition 2.15 give us the following consequence

Corollary 2.16. Let Z ⊂ Rn be an unbounded semialgebraic set. Then Z has a

unique tangent cone at infinity and, moreover, C∞(Z) = {v ∈ Rn; ∃γ : (ε,+∞)→ Z

C0 semialgebraic such that lim
t→+∞

|γ(t)| = +∞ and γ(t) = tv + o∞(t)}.

Let us remind the definition of tangent cone of a semialgebraic set.

Definition 2.17. Let X ⊂ Rm be a semialgebraic set such that 0 is a non-isolated

point of X. We define the tangent cone of X at 0 to be the set C0(X) = {v ∈



ON LIPSCHITZ RIGIDITY OF COMPLEX ANALYTIC SETS 7

Rn; ∃γ : [0, ε) → X continuous and semialgebraic such that γ((0, ε)) ⊂ X and

lim
t→0+

γ(t)
t

= v}.

Thus, we obtain also the following

Corollary 2.18. Let Z ⊂ Rn be an unbounded semialgebraic set. Let φ : Rn \
{0} → Rn \ {0} be the semialgebraic mapping given by φ(x) = x

‖x‖2 and denote

X = φ(Z \{0}). Then C∞(Z) is a semialgebraic set satisfying C∞(Z) = C0(X) and

dimRC∞(Z) ≤ dimR Z.

Proof. Since φ : Rn \ {0} → Rn \ {0} is a semialgebraic homeomorphism, we have

that X is a semialgebraic set and dimRX = dimR Z. Therefore, by Lemme 1.2 in [6],

we get that C0(X) is a semialgebraic set and dimRC0(X) ≤ dimRX. Moreover, it

follows of the proof of Proposition 2.15 that C∞(Z) = C0(X). Thus, dimRC∞(Z) ≤
dimR Z, which finish the proof. �

The next result is a version at infinity of Theorem 3.2 in [11], where the second

named author of this paper proved that bi-Lipschitz homeomorphic subanalytic

subsets have bi-Lipschitz homeomorphic tangent cones.

Theorem 2.19. Let A ⊂ Rm and B ⊂ Rn be closed unbounded semialgebraic sub-

sets. If A and B are bi-Lipschitz homeomorphic at infinity, then their tangent cones

at infinity C∞(A) and C∞(B) are bi-Lipschitz homeomorphic.

Proof. Let K̃1 ⊂ Rm and K̃2 ⊂ Rn be compact subsets such that there exists a

bi-Lipschitz homeomorphism φ : A \ K̃1 → B \ K̃2. Let us denote X = A \ K̃1 and

Y = B \ K̃2. By taking RN = Rm × Rn and doing the following identifications:

X ↔ X × {0} and Y ↔ {0} × Y

one can suppose that X, Y ⊂ RN and there exists a bi-Lipschitz map ϕ : RN → RN

such that ϕ(X) = Y (see Lemma 3.1 in [11]). Let K > 0 be a constant such that

(1)
1

K
‖x− y‖ ≤ ‖ϕ(x)− ϕ(y)‖ ≤ K‖x− y‖, ∀x, y ∈ RN .

For each k ∈ N, let us define the mappings ϕk, ψk : RN → RN given by ϕk(v) =
1
k
ϕ(kv) and ψk(v) = 1

k
ϕ−1(kv). For each integer m ≥ 1, let us define ϕk,m := ϕk|Bm

:

Bm → RN and ψk,m := ψk|BmK
: BmK → RN , where Br denotes the Euclidean closed

ball of radius r and with center at the origin in RN . Since

1

K
‖x− y‖ ≤ ‖ϕk,1(x)− ϕk,1(y)‖ ≤ K‖x− y‖, ∀x, y ∈ B1, ∀k ∈ N

and

1

K
‖u− v‖ ≤ ‖ψk,1(u)− ψk,1(v)‖ ≤ K‖u− v‖, u, v ∈ BK , ∀k ∈ N,
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there exist a subsequence {kj,1}j∈N ⊂ N and Lipschitz mappings dϕ1 : B1 → RN

and dψ1 : BK → RN such that ϕkj,1,1 → dϕ1 uniformly on B1 and ψkj,1,1 → dψ1

uniformly on BK (notice that {ϕk,1}k∈N and {ψk,1}k∈N have uniform Lipschitz con-

stants). Furthermore, it is clear that

1

K
‖u− v‖ ≤ ‖dϕ1(u)− dϕ1(v)‖ ≤ K‖u− v‖, ∀u, v ∈ B1

and
1

K
‖z − w‖ ≤ ‖dψ1(z)− dψ1(w)‖ ≤ K‖z − w‖, ∀z, w ∈ BK .

Likewise as above, for each m > 1, we have

1

K
‖x− y‖ ≤ ‖ϕk,m(x)− ϕk,m(y)‖ ≤ K‖x− y‖, x, y ∈ Bm, ∀k ∈ N

and

1

K
‖u− v‖ ≤ ‖ψk,m(u)− ψk,m(v)‖ ≤ K‖u− v‖, u, v ∈ BmK , ∀k ∈ N.

Therefore, for each m > 1, there exist a subsequence {kj,m}j∈N ⊂ {kj,m−1}j∈N and

Lipschitz mappings dϕm : Bm → RN and dψm : BmK → RN such that ϕkj,m,m → dϕm

uniformly on Bm and ψkj,m,m → dψm uniformly on BmK with dϕm|Bm−1
= dϕm−1

and dψm|B(m−1)K
= dψm−1. Furthermore,

(2)
1

K
‖u− v‖ ≤ ‖dϕm(u)− dϕm(v)‖ ≤ K‖u− v‖, ∀u, v ∈ Bm

and

(3)
1

K
‖z − w‖ ≤ ‖dψm(z)− dψm(w)‖ ≤ K‖z − w‖, ∀z, w ∈ BmK .

Let us define dϕ, dψ : RN → RN by dϕ(x) = dϕm(x), if x ∈ Bm and dψ(x) =

dψm(x), if x ∈ BmK and, for each j ∈ N, let tj = nj = kj,j.

Claim 1. ϕnj
→ dϕ and ψnj

→ dψ uniformly on compact subsets of RN .

Let F ⊂ RN be a compact subset. Let us take m ∈ N such that F ⊂ Bm ⊂ BmK .

Thus, {nj}j>m is a subsequence of {kj,m}j∈N and, since ϕkj,m,m → dϕm uniformly on

Bm and ψkj,m,m → dψm uniformly on BmK , it follows that ϕnj
→ dϕ and ψnj

→ dψ

uniformly on F .

Claim 2. dϕ : RN → RN bi-Lipschitz homeomorphism and dψ = (dϕ)−1.

It follows from inequalities (2) and (3) that dϕ, dψ : RN → RN are Lipschitz

mappings. Therefore, it is enough to show that dψ = (dϕ)−1. In order to do that,
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let v ∈ RN and w = dϕ(v) = lim
j→∞

ϕ(tjv)

tj
. Thus,

‖dψ(w)− v‖ =

∥∥∥∥ lim
j→∞

ψ(tjw)

tj
− v
∥∥∥∥ = lim

j→∞

∥∥∥∥ψ(tjw)tj
− tjv

tj

∥∥∥∥
= lim

j→∞
1
tj

∥∥∥∥ψ(tjw)− tjv
∥∥∥∥ = lim

j→∞
1
tj

∥∥∥∥ψ(tjw)− ψ(ϕ(tjv))

∥∥∥∥
≤ lim

j→∞
K
tj

∥∥∥∥tjw − ϕ(tjv)

∥∥∥∥ = lim
j→∞

K

∥∥∥∥w − ϕ(tjv)

tj

∥∥∥∥
= 0.

Then, dψ(w) = dψ(dϕ(v)) = v, for all v ∈ RN , i.e., dψ ◦ dϕ = idRN . Analogously,

one can show that dϕ ◦ dψ = idRN .

Claim 3. dϕ(C∞(X)) = C∞(Y ).

By Claim 2, it is enough to verify that dϕ(C∞(X)) ⊂ C∞(Y ). In order to do

that, let v ∈ C∞(X). Then, there is α : (ε,∞) → X such that α(t) = tv + o∞(t).

Thus, ϕ(α(t)) = ϕ(tv) + o∞(t), since ϕ is a Lipschitz mapping. However, ϕ(tjv) =

tjdϕ(v) + o∞(tj) and then

dϕ(v) = lim
j→∞

ϕnj
(v) = lim

j→∞

ϕ(tjv)

tj
= lim

j→∞

ϕ(α(tj))

tj
∈ C∞(Y ).

Therefore, dϕ : C∞(X) → C∞(Y ) is a bi-Lipschitz homeomorphism. We finish

the proof by remarking that C∞(A) = C∞(X) and C∞(B) = C∞(Y ).

�

Corollary 2.20. Let X ⊂ Cn be a complex algebraic subset. If X is Lipschitz regular

at infinity, then the tangent cone of X at infinity is Lipschitz regular at infinity.

Let X ⊂ Cn be a complex algebraic subset. Let I(X) be the ideal of C[x1, ..., xn]

given by the polynomials which vanishes on X. For each f ∈ C[x1, ..., xn], let

us denote by f ∗ the homogeneous polynomial composed of the monomials in f of

maximum degree.

Proposition 2.21 (Theorem 1.1 in [7]). Let X ⊂ Cn be a complex algebraic subset.

Then, C∞(X) is the affine variety V (〈f ∗; f ∈ I(X)〉).

3. Proof of Theorem 1.1

Let us begin this section by recalling some basic facts about degree of complex

algebraic sets. More precisely, we are going to see that affine linear subspaces of Cn

are characterized among algebraic subsets of Cn by being those of degree 1. In such

a direction, let ι : Cn ↪→ Pn be the embedding given by ι(x1, ..., xn) = [1 : x1 : ... : xn]

and let p : Cn+1 \ {0} → Pn be the projection mapping given by p(x0, x1, . . . , xn) =

[x0 : x1 : ... : xn].
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Remark 3.1. Let A be an algebraic set in Pn and X be an algebraic set in Cn.

Then Ã = p−1(A) ∪ {0} is a homogeneous complex algebraic set in Cn+1 and the

closure ι(X) of ι(X) in Pn is an algebraic set in Pn.

Definition 3.2. Let Y ⊂ Cn be a pure p-dimensional analytic set such that 0 ∈
Y and let L ∈ G(n − p, n) such that L ∩ C(Y, 0) = {0}. Let π : Cn → Cp be

the orthogonal projection such that L = π−1(0). Therefore, there exist an open

neighborhood U of 0 and a proper analytic subset σ ⊂ Cp such that m = #(π−1(t)∩
(Y ∩ U)) does not depend of t ∈ π(U) \ σ (see subsection 10.1 in [4]). Moreover, by

Proposition 2 in ([4], page 122), m does not depend also of L. Thus, we define the

multiplicity of Y at 0 to be m(Y, 0) = m. If A is a pure dimensional algebraic set

in Pn and X is a pure dimensional algebraic set in Cn, we define the degree of A

by deg(A) = m(Ã, 0) and the degree of X by deg(X) = deg(ι(X)).

Proposition 3.3. Let X ⊂ Cn be a pure dimensional algebraic subset. Then,

deg(X) = 1 if and only if X is an affine linear subspace of Cn.

Proof. Let A = ι(X) be the closure of ι(X) in Pn. By definition, deg(X) = deg(A)

and deg(A) = m(Ã, 0), where Ã = p−1(A) ∪ {0}. Thus, deg(X) = 1 if and only

if m(Ã, 0) = 1. However, as Ã is a homogeneous complex algebraic set in Cn+1,

m(Ã, 0) = 1 if and only if Ã is a complex linear subspace. In order to finish the

proof, we remark that Ã is a complex linear subspace in Cn+1 if and only if A is a

complex projective plane in Pn. �

At this moment, we are ready to give a proof of Theorem 1.1.

Proof of Theorem 1.1. Since C∞(X) is a linear subspace of Cn, one can consider the

orthogonal projection π : Cn → C∞(X). Let us choose linear coordinates (x, y) in

Cn such that

C∞(X) = {(x, y) ∈ Cn; y = 0}.

Claim 1. There exist positive constants C and ρ such that X ⊂ {(x, y); ‖y‖ <
C‖x‖} ∪Bρ.

Indeed, if Claim 1 is not true, there exists a sequence {(xk, yk)}k∈N ⊂ X such

that lim
k→+∞

‖(xk, yk)‖ = +∞ and ‖yk‖ ≥ k‖xk‖. Thus, up to a subsequence, one

can suppose that lim
k→+∞

yk
‖yk‖

= y0. Since ‖xk‖
‖yk‖

≤ 1
k
, (0, y0) ∈ C∞(X), which is a

contradiction, because y0 6= 0. Therefore, Claim 1 is true.

Now, by Theorem 2 in ([4], page 77), X is an algebraic set.

Claim 2. If γ : (ε,∞)→ X is an arc such that lim
t→+∞

‖γ(t)‖ = +∞ and π ◦ γ(t) =

tv + o∞(t), then γ(t) = tv + o∞(t).

In order to prove Claim 2, let us write γ(t) = (x(t), y(t)). By Claim 1, there exists

t0 > 0 such that ‖y(t)‖ ≤ C‖x(t)‖ for all t ≥ t0, since lim
t→+∞

‖γ(t)‖ = +∞. Thus,
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since x(t)
t

is bounded, y(t)
t

is bounded. Let us suppose that y(t) 6= o∞(t). Then, there

exist a sequence {tk}k∈N and r > 0 such that tk → +∞ and ‖y(tk)‖
tk
≥ r for all k. Since{

y(tk)
tk

}
k∈N

is bounded, up to a subsequence, one can suppose that lim
k→+∞

y(tk)
tk

= y0.

Therefore, lim
k→+∞

γ(tk)
tk

= (v′, y0) ∈ C∞(X), where v = (v′, 0). However, this is a

contradiction, since ‖y0‖ ≥ r > 0 and this implies that y0 6= 0. Then, y(t) = o∞(t)

and, therefore, γ(t) = tv + o∞(t).

Let L = π−1(0). By Claim 1, one can see that ι(X) ∩ ι(L) ∩ (Pn \ ι(Cn)) = ∅.
Therefore, π|X : X → C∞(X) is a ramified cover with degree equal to deg(X) (see

[4], Corollary 1 in the page 126). Moreover, the ramification locus of π|X is a

codimension ≥ 1 complex algebraic subset Σ of the linear space C∞(X).

Let us suppose that the degree deg(X) is strictly greater than 1. Since Σ is a

codimension ≥ 1 complex algebraic subset of the space C∞(X), then by Corollary

2.18, dimRC∞(Σ) ≤ dimR Σ < dimRC∞(X) and, thus, there exists a unit tangent

vector v0 ∈ C∞(X) \ C∞(Σ).

Since v0 is not tangent to Σ at infinity, there exist positive real numbers λ and R

such that

Cλ,R = {v ∈ C∞(X); ‖v − tv0‖ < λt, for some t > R}

does not intersect the set Σ. Since we have assumed that the degree deg(X) ≥ 2,

we have at least two different liftings γ1(t) and γ2(t) of the half-line r(t) = tv0,

i.e. π(γ1(t)) = π(γ2(t)) = tv0. Since π is the orthogonal projection on C∞(X) and

the vector v0 is the unit tangent vector at infinity to the images π ◦ γ1 and π ◦ γ2,
then v0 is the tangent vector at infinity to the arcs γ1 and γ2. By construction, we

have dist(γi(t), π|X−1(Σ)) ≥ λt for i = 1, 2, where by dist we mean the Euclidean

distance.

On the other hand, any path in X connecting γ1(t) to γ2(t) is the lifting of a loop,

based at the point tv0 which is not contractible in C∞(X) \ Σ. Thus, the length of

such a path must be at least 2λt. It implies that the inner distance, dX(γ1(t), γ2(t)),

in X, between γ1(t) and γ2(t), is at least 2λt. But, by Claim 2, γ1(t) and γ2(t) are

tangent at infinity, that is,

‖γ1(t)− γ2(t)‖
t

→ 0 as t→ +∞,

and λ > 0, we obtain that X is not Lipschitz normally embedded at infinity. Oth-

erwise there will be C̃ > 0 and a compact subset K ⊂ Cn such that:

dX(x1, x2) ≤ C̃‖x1 − x2‖ for all x1, x2 ∈ X \K,
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hence:

2λ ≤ dX(γ1(t), γ2(t))

t

≤ C̃
‖γ1(t)− γ2(t)‖

t
→ 0 as t→ +∞,

which is a contradiction. We have concluded that deg(X) = 1 and, by Proposition

3.3, it follows that X is an affine linear subspace. �

Let us remark that the real version of Theorem 1.1 does not hold true in general,

as it is shown bellow.

Example 3.4. The set X = {(x, y, z) ∈ R3; z = sin (x+ y)} is Lipschitz normally

embedded, since it is bi-Lipschitz homeomorphic to R2 and, moreover, X has a

unique tangent cone at infinity with C∞X = {(x, y, z) ∈ R3; z = 0}. However, X is

not an algebraic set and, in particular, it is not a linear subspace of R3.

As a direct consequence of Theorem 1.1 we obtain the following

Corollary 3.5. Let X ⊂ Cn be a pure d-dimensional algebraic subset such that

C∞(X) is a complex linear subspace of Cn. If X is Lipschitz normally embedded at

infinity, then X is an affine linear subspace of Cn.

Notice that the assumptions in Corollary 3.5 are sharp in the sense that, in order

to get the same conclusion, none of those assumptions can be removed, as we can

see bellow.

Example 3.6. The complex plane curve X = {(x, y) ∈ C2; y = x2} has linear

tangent cone at infinity and is not Lipschitz normally embedded at infinity; X is not

an affine linear subset of C2. As another example, Z = {(x, y, z) ∈ C3; x2+y2+z2 =

0}. We see that Z is Lipschitz normally embedded and C∞(Z) is Z itself, which is

not a linear subspace; Z is not an affine linear subset of C3.

It follows from Proposition 2.21 that the tangent cone at infinity of a complex

algebraic subset of Cn is a homogeneous complex algebraic subset and, therefore,

it is a complex cone in the following sense: an algebraic subset of Cn is called a

complex cone if it is a union of one-dimensional complex linear subspaces of Cn.

The next result was proved by David Prill in [10]:

Lemma 3.7 (Theorem in [10]). Let V ⊂ Cn be a complex cone. If 0 ∈ V has a

neighborhood homeomorphic to a Euclidean ball, then V is a linear subspace of Cn

Theorem 3.8. Let X ⊂ Cn be a pure dimensional complex algebraic subset. If X

is Lipschitz regular at infinity, then X is an affine linear subspace of Cn.
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Proof. Let us suppose that the complex algebraic subset X ⊂ Cn is Lipschitz regular

at infinity. Thus, let h : U → RN \B be a bi-Lipschitz homeomorphism, where U is

an open neighborhood of the infinity in X (i.e. a complement of a compact subset

in X) and B ⊂ RN is a closed Euclidean ball centered at the origin 0 ∈ RN . Let

C∞(X) be the tangent cone at infinity of X. It comes from Theorem 2.19 that

there exists a bi-Lipschitz homeomorphism dh : C∞(X) → C∞(RN \ B) = RN . In

particular, C∞(X) is a topological manifold. By Prill’s Theorem (Lemma 3.7), it

follows that C∞(X) is a complex linear subspace of Cn. By Corollary 2.9, X is

Lipschitz normally embedded at infinity and, by Corollary 3.5, it follows that X is

an affine linear subspace of Cn. �

We would like to remark that if we remove the assumption that X ⊂ Cn is pure

dimensional in Theorem 3.8, we obtain that X is a union of an affine linear subspace

of Cn with a 0-dimensional complex algebraic subset, since by Geometric form of

Noether’s normalization lemma in ([9], page 42), any non-zero dimensional complex

algebraic set is an unbounded set. Finally, we would like to mention that Theorem

3.8 does not hold true (with same assumptions) for real algebraic sets (cf. Example

2.4).
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