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Abstract. A mathematical model, based on a mesoscopic approach, describ-
ing the competition between tumor cells and immune system in terms of ki-
netic integro-differential equations is presented. Four interacting populations
are considered, representing, respectively, tumors cells, cells of the host en-
vironment, cells of the immune system, and interleukins, which are capable
to modify the tumor-immune system interaction and to contribute to destroy
tumor cells. The internal state variable (activity) measures the capability of a
cell of prevailing in a binary interaction. Under suitable assumptions, a closed
set of autonomous ordinary differential equations is then derived by a moment
procedure and two three-dimensional reduced systems are obtained in some
partial quasi-steady state approximations. Their qualitative analysis is finally
performed, with particular attention to equilibria and their stability, bifurca-
tions, and their meaning. Results are obtained on asymptotically autonomous
dynamical systems, and also on the occurrence of a particular backward bifur-
cation.

1. Introduction. In the last several years many papers have dealt with the prob-3

lem of devising reliable dynamical models of tumor development [1, 3, 11, 12, 13,4

14, 16, 17, 27]. A large number of such papers make use of systems of ODEs with5

Lotka–Volterra or Verhulst (logistic) terms for describing the interactions between6

malignant and immune cells. In spite of their simplicity, these models of tumor7

growth and possible remission can reasonably describe the different dynamics of8

cancer development [26]. The most assessed tools in the literature for modeling9

tumor dynamics are analysis of the equilibrium points, bifurcation diagrams, in-10

spection of the phase plane, or of the phase space, when the competition process is11

mediated by the presence of additional participating populations [13]. This allows12

to identify conditions which are critical for tumor growth. Often it can be shown13

that by changing the values of some control parameter the domain of attraction of14

the tumor–free equilibrium can be enlarged, and such domain represents a safety15

region, since, for any initial condition in that region, tumor is annihilated by the16

immune response. Indeed, when dealing with this kind of problems, it is of primary17

interest to determine what happens when a (voluntary or undesired) perturbation18
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is injected into the system, moving the trajectory away from the equilibrium point.1

Interaction terms are typically quadratic, to mimic simple binary interactions be-2

tween cells of the various populations.3

Nonlinear models of quadratic type for tumor dynamics are also obtained within4

the frame of more detailed and sophisticated theories, and, among them, kinetic5

approaches have become quite popular, and have proved to be significantly effec-6

tive and reliable in their predictions. Just to quote few additional more recent7

contributions we can mention, without pretending to be exhaustive, the papers8

[3, 5, 11, 20, 22, 23]. This research line follows the stream of evolution of domi-9

nance in population dynamics, where dominance represents any possible internal10

state, attribute, activity, or performance capability possessed by single individuals.11

Here binary individual encounters at microscopic level are described by stochastic12

models leading to Chapman–Kolmogoroff equations in the frame of the theory of13

Markov processes [21]. The approach is essentially the same as for the derivation of14

the nonlinear Boltzmann equation of gas kinetic theory [10]. The dependent vari-15

ables to be investigated are the “dominance” distribution functions, whose first few16

state moments provide the macroscopic observables. As typical of kinetic theory,17

exact evolution equations at macroscopic level may be derived for the above phys-18

ical quantities by taking moments of the microscopic nonlinear integro–differential19

equations, but the resulting set of differential equations turns out not to be closed.20

A kinetic approach to immunology problems is motivated not only by the better21

insight allowed by a deeper description, but also by the fact that the stage of the22

early growth of a tumor belongs to the so–called free cells regime, in which tumor23

cells are not yet condensed in a macroscopically observable spatial structure, and24

interactions between tumor and immune system occur at a cellular level. This stage25

is particularly important since the competition between tumor cells and immune26

system can still lead to the depletion of the tumor. At the same time, spatial effects27

are of minor importance, to leading order, in the balance equations, which implies28

considerable simplifications in the analytical investigation.29

In the present paper a four populations model proposed and validated already30

in the literature will be considered [1], in which the competition tumor–immune31

system is mediated by the presence of the host environment (other cells of the32

body) and by an additional population of interleukins [4], capable to enhance the33

immune response without destroying tumor themselves. Possible different types of34

immune cells are here represented, as typical in the pertinent literature [3, 4, 11],35

by a single population, aiming at a simple description capable to qualitatively re-36

produce the overall basic behaviour of the immune defense. They could be included37

at the price of additional technical, but not essential, difficulties. For a numerical38

solution of the resulting integro–differential system with quadratic nonlinearities,39

a suitable discretization technique is needed anyhow. In this way, the description40

of the evolution of the various cellular populations involves a finite number of key41

macroscopic parameters, deduced appropriately from the actual collision frequen-42

cies and probability distributions characterizing the microscopic interactions, which43

are instead functions of a continuous kinetic variable, and would be quite hard to44

determine by comparison with experiments. All those microscopic functions will45

be kept arbitrary in the general presentation of the model, and will try to cover46

all binary interactions of any type that might occur among different cells, without47

having in mind any specific biological problem. In this work a discretization is48



MODELLING TUMOR-IMMUNE SYSTEM INTERACTION 3

achieved by integration over partial ranges with respect to the kinetic (state) vari-1

able, and grouping together all individual cells with the value of state in the same2

range to form single separated populations. Such achievement is made possible by3

technical simplifying assumptions on the microscopic interaction parameters, taken4

to be constant or piecewise constant with respect to their state variables, which are5

certainly crude, but account for the interaction mechanisms at least in an average6

way, and allow a much deeper analytical investigation. In this way, in fact, a closed7

set of autonomous ODEs is derived, representing a sort of macroscopic continuity8

equations in the sense of kinetic theory. The qualitative analysis of the evolution9

problem can then be performed in the well established framework of the theory10

of dynamical systems [18]. Extensive numerical simulations (very partially shown)11

have been performed in order to test and improve analytical predictions, by using12

random selected values of the dimensionless parameters, aiming mainly at analyzing13

in depth the essential features of the model rather than at focusing on the numerical14

ranges of major immunological interest.15

The paper is organized as follows. In the next Section, after discussing, at a16

formal level, kinetic equations for a population of different cells with conservative,17

destructive, and proliferative events, we proceed next to their specialization to the18

considered four population model of tumor–immune system competition. In the19

same Section 3 we reduce the problem to a four dimensional dynamical system and20

single out the dimensionless physical parameters that are crucial in the evolution.21

In the following two Sections we further specialize such a dynamical system to22

two limiting situations of most practical interest, in which the dimension of the23

phase space reduces to three. Section 4 is concerned with the case where the host24

environment is a sort of infinite background whose state is not affected by the process25

going on. The resulting reduced three-dimensional system of ODEs for tumor cells,26

immune system and interleukins can be investigated in the framework of the theory27

of the asymptotically autonomous differential systems [28], and we will show that its28

asymptotic behaviours can be deduced from an easier two dimensional limit system.29

In Section 5 the role of background is played by interleukins, that have reached a30

quasi-steady state condition. A remarkable feature of this latter reduced system31

for the interactions between tumor, immune system and host environment is the32

presence of a backward bifurcation, usually related to epidemic models [19], with33

reversed stability of the colliding equilibria.34

2. Balance equations at cellular level. As anticipated in the Introduction, we35

consider a system of N = 4 different populations, labeled by an index i, each in-36

dividual (cell) being endowed with an internal state variable (activity) u, ranging37

in the real interval (−1, 1), which denotes its competing capability with other cells.38

We assume that only binary interactions are effective in the evolution, and restrict39

ourselves to space homogeneous conditions. A detailed knowledge of the state of40

the whole system is provided by the four distribution functions (densities in phase41

space) fi(u, t), smooth non–negative functions, from which one can deduce the cel-42

lular densities ni (the actual observable macroscopic quantities of practical interest)43

simply by44

ni(t) =

∫ 1

−1

fi(u, t) du. (1)

Balance equations in phase space may be derived by equating the rate of change45

at time t of the i–th populations in the elementary activity interval du to the46
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corresponding net production rate (gain minus loss) due to all events of any na-1

ture taking place in the system, including any effect coming from external sources,2

treatments, spontaneous mortality, and so on. An important contribution to the3

exchange rates comes of course from the mutual interactions among cells, and these4

can be described by suitable pairwise “collision” operators Qij , representing the5

effects on cells of type i of binary encounters with those of type j, in a way that6

closely resembles models and methods of gas kinetic theory [10], where individu-7

als are molecules, state variable is velocity, and interactions are actual mechanical8

collisions. We may write the kinetic equations in the form9

dfi
dt

(u, t) =
4

∑

j=1

Qij [fi, fj ](u, t) + Ji(u, t) i = 1, . . . , 4, . (2)

where Ji collects all contributions of events different from cellular interactions.10

As a first step, we build up the interactive operators Qij . A significant difference11

with respect to gas dynamics is that encounters are not conservative, but, as typical12

of other disciplines, like transport theory [15], they may lead to disappearance13

or proliferation of a participating populations. We shall obtain however integral14

operators of Boltzmann type by resorting to an equivalent probabilistic formulation15

[6] in terms of suitable interaction probabilities per unit time (collision frequencies)16

and creation kernels. More precisely, let ηij(u, v) = ηji(v, u) ≥ 0 denote the collision17

frequency for a conservative encounter between an i–th cell with activity u and a j–18

th cell in state v, and let ψij(u, v;w) ≥ 0 represent the probability density that, after19

this interaction, the i–th cell ends up in the state w, with the obvious normalization20

∫ 1

−1

ψij(u, v;w) dw = 1 ∀u, v ∈ (−1, 1) ∀i, j = 1, . . . , 4.

Similarly, we shall denote by dij(u, v) the collision frequency of an (i, u) cell with21

a (j, v) cell in an encounter which is not conservative for the population i, and by22

µij(u, v) ≤ dij(u, v) the reduced collision frequency which is relevant to proliferative23

interactions only. For the latter events, the expected density of i cells which end up24

in the state w will be labeled by εij(u, v;w), and the integral25

mij(u, v) =

∫ 1

−1

εij(u, v;w) dw

provides the average number of i cells generated in the proliferative encounter (i, u)–26

(j, v). Such a number is in general greater than unity.27

At this point, the count of the number of gains and losses leads to the explicit28

expression for the kinetic “collision” operator29

Qi(u, t) =

4
∑

j=1

Qij(u, t) =

=

4
∑

j=1

∫ 1

−1

∫ 1

−1

[ηij(v, w)ψij(v, w;u) + µij(v, w)εij(v, w;u)] fi(v, t)fj(w, t) dvdw−

− fi(u, t)

4
∑

j=1

∫ 1

−1

[ηij(u, v) + dij(u, v)] fj(v, t) dv i = 1, . . . , 4,

(3)
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in its usual nonlocal form of integral type. Kinetic equations (2) are explicit once1

all previous probabilities, as well as all physical specific parameters making up the2

non–interactive operators Ji, are known or appropriately modeled.3

For practical purposes, one is mainly interested in the evolution of the macro-4

scopic quantities ni, and hopefully a set of ordinary differential equations could be5

obtained from the integro–differential equations (2) by integration with respect to6

the state variable u. The result, however, is not closed in general, since cell densities7

do not factor out directly from the integrals. For instance, integration of (3) over8

u ∈ (−1, 1) yields, for i = 1, . . . , 4,9

Si(t) =

∫ 1

−1

Qi(u, t) du =

=

4
∑

j=1

∫ 1

−1

∫ 1

−1

[mij(v, w)µij(v, w) − dij(v, w)]fi(v, t)fj(w, t) dvdw,

(4)

where of course conservative interactions are not influential, and the positive or10

negative contribution to ni of the general cells of type j depends on the sign of11

µijmij − dij . If such parameters were constant, the collision contribution (4) would12

reduce to a quadratic form in the densities ni.13

We proceed now to the formulation of a kinetic model for the considered prob-14

lem by specifying, in a very simple but yet realistic manner, inspired by their own15

physical meaning, the probabilistic quantities in (3), as well as the additional oper-16

ator Ji in (2). The present biological model is in the frame of a research strategy17

established several years ago [4] and further developed by many authors, and repre-18

sents a significant generalization to a much more complicated scenario of a similar19

approach proposed in [20].20

3. A kinetic model for tumor–immune system competition. The four popu-21

lations making up the physical system are assumed to represent, respectively, tumor22

cells, cells of the host environment, cells of the immune system, and interleukins, la-23

beled by an index i increasing from 1 to 4. As per the pertinent literature, the latter24

population plays a role in the overall interaction and contributes to the destruction25

of tumor by strengthening the action of the immune system. The value of the state26

u of each cell is a measure of its capability of prevailing in binary interaction, and27

we will call active all cells with positive state, and passive those with a negative one.28

Collision frequencies and transition probabilities are specialized as follows, where29

for simplicity the former will be also taken as positive constant in the domain where30

they do not vanish (resulting thus piecewise constant), which resembles the popular31

Maxwell molecule assumption of rarefied gas dynamics [10].32

A tumor cell is destroyed by interaction with an active cell of the immune system,33

but proliferates in interactions with passive immune cells. These interactions are34

conservative for the immune system, whose activity however always decreases, and35

is changed from positive to negative in the former event. This is quantified by36

d13(u, v)=η31(v, u)= d̄13, µ13(u, v)= d̄13U(−v), ψ31(v, w;u)=0 ∀u > 0, (5)

where U denotes Heaviside function.37

An interaction between a tumor cell and a cell of the host environment always38

ends up with tumor proliferation, namely39

d12(u, v)=d21(v, u)=µ12(u, v)= d̄12. (6)
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In addition, the host environment is supposed to be endowed with a self-consistent1

control mechanism which tends to establish, for an optimal functioning, a given2

distribution f∗
2 (u) of the host cells, with a strength depending linearly on the in-3

stantaneous deviation through a rate parameter ν2(u). In other words,4

J2(u, t) = −ν2(u)[f2(u, t)− f∗

2 (u)]. (7)

An encounter between a cell of the immune system and an interleukine is conser-5

vative for both populations, and increases the state of the immune system in such a6

way that a passive cell always undergoes a transition to a positive state. Explicitly7

η34(u, v)=η43(v, u)= η̄34, ψ34(v, w;u)=0 ∀u < 0. (8)

In addition, interleukins are subject to decay in time at a given rate α4(u), but, as8

well known, there are possible mechanisms by which they can be replaced. Here we9

shall model that in the simplest possible way, assuming that a positive source γ4(u)10

acts on the body, as a result, for example, of a medical treatment. In other words11

J4(u, t) = γ4(u)− α4(u)f4(u, t). (9)

This completes the list of possible processes that are considered significant for12

the evolution of our four populations system. All other interaction parameters13

appearing in (3) are then equal to zero, as well as the remaining non–interactive14

operators J1 and J3 in (2). Balance equations for our simple kinetic model read15

then as16



































































































∂f1
∂t

(u, t) = d̄12

(∫ 1

−1

∫ 1

−1

ε12(v, w;u)f1(v, t)f2(w, t) dvdw − n2(t)f1(u, t)

)

+

+ d̄13

(∫ 1

−1

∫ 0

−1

ε13(v, w;u)f1(v, t)f3(w, t) dvdw − n3(t)f1(u, t)

)

∂f2
∂t

(u, t) = −d̄12n1(t)f2(u, t)− ν2(u) [f2(u, t)− f∗
2 (u)]

∂f3
∂t

(u, t) = d̄13

(∫ 1

−1

∫ 1

−1

ψ31(v, w;u)f3(v, t)f1(w, t) dvdw − n1(t)f3(u, t)

)

+

+ η̄34

(
∫ 1

−1

∫ 1

−1

ψ34(v, w;u)f3(v, t)f4(w, t) dvdw − n4(t)f3(u, t)

)

∂f4
∂t

(u, t) = γ4(u)− α4(u) f4(u, t).

(10)
An expected feature of the model is that integration over u of the third equation17

leads to the conclusion that the immune system population n3 is constant in time,18

since these cells undergo only conservative interactions, and simply change their19

state without any birth nor death.20

Equations (10) belong, apart from the addition of stabilizing damping terms, to a21

class of kinetic equations for which mathematical well posedness is well established22

(see for instance [2, 20]) on the basis of the theory of approximate solutions in the23

sense of [25]. However, we are mainly interested here, as a first preliminary approach24

to the kinetic description of the microscopic process, in the derivation and analysis25

of reliable macroscopic equations for the observable moments ni. In this respect we26

notice that equations (10) lend themselves to an integration over the state variable27

that would single out only macroscopic quantities (moments of the distribution28
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functions), provided all mij , νi and αi were taken to be constant. Therefore, we1

shall stick in the sequel to this strong, but still reasonable simplifying assumption,2

and leave investigation of other experience-based shapes for those parameters to3

a future work. However, we realize that one of the cutoffs present in the collision4

frequencies introduces a further hindrance towards the derivation of a self-consistent5

set of ODEs for macroscopic densities, namely the appearance in the first equation6

of a further unknown, the partial density of passive immune cells, say n−

3 , with7

n±

3 (t) = ±

∫ ±1

0

f3(u, t)du (11)

and n3 = n+
3 + n−

3 . Since n3 is determined by the initial conditions, only one8

between active and passive cells density may be considered as an effective time–9

varying unknown, and an equation for it is simply obtained by integration of the10

third equation in (10) over the relevant partial interval. Upon defining11

n∗

2 =

∫ 1

−1

f∗

2 (u)du, Γ4 =

∫ 1

−1

γ4(u)du, (12)

we end up with the four dimensional dynamical system in the four non–negative12

unknowns n1, n2, n
+
3 , n413



















ṅ1 = [d̄12(m12 − 1)n2 + d̄13(m13 − 1)n3]n1 − d̄13m13n1n
+
3

ṅ2 = −d̄12n1n2 − ν2(n2 − n∗
2)

ṅ+
3 = η̄34n3n4 − η̄34n4n

+
3 − d̄13n1n

+
3

ṅ4 = Γ4 − α4n4,

(13)

which, in spite of its drastic simplifications, incorporates the expected essential fea-14

tures that may affect tumor evolution in the body. The set (13), along with its own15

interest, carries a non negligible meaning also at kinetic level, since knowledge of16

the densities and estimates on the u-dependence of the ψ and ε functions allows, un-17

der the present assumptions, also the calculation via (10) of the actual distribution18

functions. In any case, it is convenient, as usual, to cast the set (13) in dimensionless19

form, by measuring all densities in units of a typical density, such as n∗
2, and time20

in units of a characteristic time, for which a proper choice seems to be the inverse21

tumor proliferation rate in the absence of immune system, τ = (d̄12(m12− 1)n∗
2)

−1.22

If X3 = n+
3 /n

∗
2, and Xi = ni/n

∗
2 for all other populations, denote dimensionless23

densities, and the same symbol as before is kept for the new time variable, this24

procedure yields25



















Ẋ1 = (X2 +BX)X1 − (A+B)X1X3

Ẋ2 = −FX1X2 −G(X2 − 1)

Ẋ3 = CX4(X −X3)−AX1X3

Ẋ4 = D − EX4

(14)

where all dimensionless parameters are positive, and X = n3/n
∗
2 represents the26

(constant) size of the overall immune system. The physical meaning of the other27

seven parameters can be sketched as follows:28

• A =
d̄13

d̄12(m12 − 1)
is the rate at which active immune cells become passive by29

interaction with tumor;30
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• B =
d̄13(m13 − 1)

d̄12(m12 − 1)
is the proliferation rate of tumor due to interaction with1

passive immune system;2

• C =
η̄34

d̄12(m12 − 1)
represents the activation rate of the passive immune cells3

by interaction with interleukins;4

• D =
Γ4

n∗
2
2d̄12(m12 − 1)

represents the rate at which interleukins are injected5

into the system by external sources;6

• E =
α4

n∗
2d̄12(m12 − 1)

is the spontaneous death rate of interleukins;7

• F =
1

m12 − 1
measures the destruction rate of host environment due to the8

action of tumor;9

• G =
ν2

n∗
2d̄12(m12 − 1)

represents the spontaneous convergence rate of the host10

environment towards its saturation (equilibrium) value.11

Of course, in our scaling, the proliferation rate of tumor by interaction with the12

host environment is unity. All unknowns are non–negative, and X3 can not exceed13

the upper bound X .14

As it can be seen from (14), cells of type 2 and 4 are little affected by binary15

interactions, especially if one considers that host environment is typically much16

denser than all other populations, and very often is well approximated by a given17

background in equilibrium [15], with negligible effects of binary encounters on its18

population. In addition, the last equation, relevant to interleukins, could be solved19

independently from the others to yield a non autonomous three dimensional dynam-20

ical system. For these reasons, we shall investigate in detail in the next sections,21

analytically as far as possible, two important subcases of the evolution problem22

(14), in order to emphasize the role played by either of these two auxiliary (but23

essential) populations in the process, where the actual competing cells are indeed24

tumor and immune system. Analysis in four dimensions will be hopefully resumed25

in future work.26

4. Qualitative analysis of the reduced model: tumor–immune system–27

interleukins. In this section we shall be concerned with the physical situation28

in which the host environment has a very prompt and effective reaction to any29

perturbation of its natural equilibrium state, and is able to re-establish it in an30

exceedingly small time. This fact can be quantified in a limiting procedure by letting31

the parameter ν2 (and then G) tend to ∞, in a sort of zero-order Chapman Enskog32

expansion, leading, in the language of kinetic theory, to Euler macroscopic equations33

in the asymptotic limit [10]. In practice, the second equation in (14) is replaced34

by X2 − 1 = 0, and the host environment becomes a sort of huge background,35

essentially unaffected by the interactive process going on, as conceivable in an initial36

stage of tumor development. In this partial quasi-steady state approximation, it is37

convenient to rename variables X1, X3, and X4 as Y1, Y2, and Y3, respectively, and38

to rewrite the set of ODEs as39











Ẏ1 = (1 +BX)Y1 − (A+B)Y1Y2

Ẏ2 = CY3(X − Y2)−AY1Y2

Ẏ3 = D − EY3,

(15)
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a three-dimensional dynamical system depending on 6 scalar parameters.1

It can be easily proved that the first octant is a positively invariant set, thus2

the positivity of solutions, starting from positive initial conditions, is guaranteed.3

Moreover, the planes Y1 = 0 and Y3 = D/E are invariant sets for the trajectories,4

and then cannot be crossed. The system (15) admits the equilibrium points5

E1 =
(

0, X,
D

E

)

and E2 =
(C

A

D

E

AX − 1

BX + 1
,
1 +BX

A+B
,
D

E

)

,

where the first represents the optimal working conditions of the organism (no tu-6

moral cells and immune system fully active) whereas the second, which makes sense7

only when it belongs to the phase space, i.e. A ≥ 1/X , represents a scenario of8

coexistence of tumor and immune system.9

The local stability properties of equilibrium states E1 and E2 can be easily de-10

termined by the analysis of the eigenvalues of the Jacobian matrix associated to11

the system (15). The Jacobian J(E1) is a lower triangular matrix with diagonal12

elements λ1 = 1−AX, λ2 = −C D
E and λ3 = −E. Therefore, E1 is locally asymp-13

totically stable if and only if A > 1/X , namely only in presence of the coexistence14

equilibrium state E2. As regards the stability of E2, the Jacobian matrix J(E2) is15

given by16

J(E2) =





















0 −(A+B)
C

A

D

E

AX − 1

BX + 1
0

−A
1 +BX

A+B
−C

D

E
X

(

A+B

BX + 1

)

C
AX − 1

A+B

0 0 −E





















with eigenvalue λ3 = −E < 0 and real eigenvalues λ1 and λ2 of opposite sign since17

the first minor J33 has trace and determinant both negative in the admissibility18

domain of E2 (A > 1/X). Therefore, E2 is a saddle point when it exists, with a19

two-dimensional stable and a one-dimensional unstable manifolds, respectively.20

The phase portrait of (15) for A > 1/X is presented in Fig. 1 (parameter values21

A = 5, B = 2, C = 1, D = 1.5, E = 1, X = 1/3). Only initial conditions with22

Y3(0) < D/E have been chosen, since an initial level of interleukins above the23

saturation value D/E is not realistic.24

Remark 1. The optimal working condition AX > 1, that allows tumor depletion,25

links a measure of the intensity of the immune system reaction to tumor (AX) to26

the tumor proliferation rate by interaction with the host environment, which is 1 in27

the present scaling; thus, such condition quantifies how the reaction of the immune28

system should be stronger than the proliferation rate of the tumor in order to be29

able to deplete it.30

System (15) and its dynamics can be investigated in the framework of the theory31

of asymptotically autonomous differential systems (see [28, 9] and the references32

therein). Given the differential equations33

ẋ = f(t, x) (16)

ẏ = g(y) (17)
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Figure 1. Phase portrait for A > 1/X

with f, g continuous functions, locally Lipschitz in x, y ∈ R
n, respectively, equation1

(16) is called asymptotically autonomous - with limit equation (17) - if2

f(t, x) → g(x), t→ ∞, locally uniformly in x ∈ R
n.

The autonomous system (15) can be rewritten as an asymptotically autonomous3

planar system: by integrating the last equation in (15) we get4

Y3(t) = Y30e
−Et +

D

E
(1− e−Et)

and substituting it into the second equations in (15) we obtain the following equiv-5

alent 2D non-autonomous differential system6







Ẏ1 = (1 +BX)Y1 − (A+B)Y1Y2

Ẏ2 = CY30e
−Et(X − Y2) +

CD

E
(1− e−Et)(X − Y2)−AY1Y2 ,

(18)

having the planar limit system7







Ẏ1 = (1 +BX)Y1 − (A+B)Y1Y2

Ẏ2 =
CD

E
(X − Y2)−AY1Y2

(19)

The limit system has been already investigated in [20]; it admits the equilibria8

(0, X) and
(C

A

D

E

AX − 1

BX + 1
,
1 +BX

A+B

)

,



MODELLING TUMOR-IMMUNE SYSTEM INTERACTION 11

the latter being admissible if and only if A ≥ 1/X , with second coordinate ranging1

from X (when A = 1/X) to 0 (when A → +∞). The border equilibrium state2

(0, X) turned out to be a stable node for A > 1/X and a saddle for A < 1/X ; the3

other stationary point is a saddle when it exists. A transcritical bifurcation occurs4

between the two equilibria when A = 1/X . Moreover, it has been shown in [20]5

that, for A > 1/X , the basin of attraction of the “optimal” equilibrium (0, X) is6

given by the domain bounded by the lines Y1 = 0, Y2 = 0, Y2 = X and by the stable7

manifold of the coexistence saddle point. Such results allow to prove the following8

theorem9

Theorem 4.1. Let A > 1/X; there exists a bounded invariant region R in the10

phase plane [0,+∞)× [0, X ] such that every forward solution of (18) starting in R11

converges towards the equilibrium (0, X) of (19) as t→ ∞.12

Proof. We will apply Corollary 2.2 of [9] (see Appendix). First, let us recall that13

equilibrium E2 of system (15) is a saddle with a two-dimensional stable manifold;14

such a manifold has a trace γ on the invariant plane Y3 = D/E given by the15

stable manifold of the coexistence equilibrium of the limit system (19). Let us16

consider the closed and bounded two-dimensional region R delimited by the lines17

Y1 = 0, Y2 = 0, Y2 = X and by the curve obtained by the intersection of the stable18

manifold of equilibrium E2 with the plane Y3 = 0. Such a curve must necessary lie19

on the left of γ, in accordance with the nullclines (surfaces) of the 3D autonomous20

system (15) and the resulting sign of the components of its vector field (illustrated21

in fig. 2, same parameter values as in fig. 1); therefore, the region R is strictly22

contained in the basin of attraction of equilibrium (0, X) of system (19), and then23

the first two hypotheses are satisfied, taking as D the interior of R. Moreover, if we24

choose ρ(Y1, Y 2) = 1/(Y1Y2)25

div(ρg) =div
[ 1

Y1Y2

(

(1 +BX)Y1 − (A+B)Y1Y2,
CD

E
(X − Y2)−AY1Y2

)T ]

=−
CDX

EY1Y 2
2

< 0,

(20)

everywhere in D, and then the thesis.26

The situation is illustrated in Fig. 3: trajectories of the equivalent non-autonomous27

system (18) have been compared with those of the limit system (19), with the same28

initial points; the dotted line represents the intersection on Y3 = 0 of the tangent29

plane at E2 (in the phase space) to its stable manifold, and it is taken as an ap-30

proximation of the right boundary of the domain R, that is the intersection of the31

stable manifold of E2 with Y3 = 0. Parameter values are A = 5, B = 2, C = 1, D =32

2, E = 1, X = 1/3 and it has been chosen Y30 = 1 for all trajectories. It can be33

noticed that trajectories of both systems originated inside the region R converge34

towards E1 in different ways. In the region between the border of R and the curve35

γ, trajectories from the same initial point have different destiny, in agreement with36

the fact that for the non-autonomous system the interleukine population is below37

its saturation value, which will be reached only asymptotically in time.38

For a given initial state, tumor depletion and recovery could be obtained by39

suitably strengthening the interleukine population. This possibility can be quali-40

tatively examined by choosing an initial point outside of the basin of attraction of41

the ”safety” equilibrium E1 of system (15) for A > 1/X , which is delimited by the42

planes Y3 = 0, Y3 = D/E, Y2 = 0, Y2 = X,Y1 = 0 and by the two-dimentional stable43
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Figure 2. Nullcline surfaces of system (15)

manifold of E2. Then, by varying the parameter D representing the supply rate1

of interleukins, we try to find a positive threshold value that may lead to tumor2

depletion even in this case. An example is provided in fig. 4, where we represent3

the trajectories of the equivalent non-autonomous system (18) in the (Y1, Y2) plane,4

originating from the initial state (Y10, Y20) = (1/5, 1/3), for varying D and fixed5

values for A = 5, B = 2, C = 1, Y30 = 1, X = 1/3, E = 0.5 . When D overcomes6

the threshold D∗ ≃ 1.43, the trajectories that escaped to infinity for smaller D7

get reversed and tends asymptotically to the point (0, X), giving tumor depletion.8

Of course the threshold D∗ is a function of parameters, and in particular of the9

initial data. In Table 1 we show the values of D∗ versus Y10, obtained by simulating10

trajectories starting from (Y10, X).11

Y10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 2.0

D∗ 1.43 2.7 4.08 5.52 7.02 8.54 10.1 13.26 29.67

Table 1. Threshold values D∗ versus initial data Y10.

It is worth noticing that, as expected, D∗ is increasing with Y10, and moreover12

the possibility of interleukins degradation (E 6= 0) implies greater values of D∗ with13

respect to the case considered in [20], in which the same example has been presented14

in absence of degradation.15
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Figure 3. Comparison between the trajectories of the nonautonomous
system (18) (solid curves) and of the limit system (19) (dashed curves)
respectively; the dotted line represents the intersection of the tangent
plane to the stable manifold in E2 with the plane Y3 = 0, that can be
considered an approximation of the right boundary of R; the curve γ is
dash-dotted.

5. Bifurcation analysis of the reduced model: tumor–immune system–1

host environment. This section is dealing with another physical situation, in2

which the role of a fixed constant background is played by interleukins, that are3

supposed to have reached, after a short transient, the equilibrium saturation density4

determined by their supply and decay rates. Again, from a mathematical point of5

view, this can be justified in an asymptotic procedure in which Γ4 and α4 (thus6

D and E) are of comparable magnitude and large enough. The fourth equation in7

(14) is replaced by X4 = D/E, so that density of this population remains constant8

in the evolution, and for the other three we have the set of ODEs9











Ẋ1 = (X2 +BX)X1 − (A+B)X1X3

Ẋ2 = −FX1X2 −G(X2 − 1)

Ẋ3 = C∗(X −X3)−AX1X3,

(21)

where we have set C∗ = CD/E, and again we are left with a three–dimensional10

dynamical system depending on 6 scalar parameters.11

It can be easily proved that the first octant turns out to be a positive invariant12

set, implying positivity of solutions starting from positive initial data; moreover, the13

plane X1 = 0 is invariant for trajectories. The system (21) admits, for all positive14
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Figure 4. Solutions for increasing values of D.

values of parameters, the equilibrium1

E1 = (0, 1, X) (22)

representing the optimal condition for the organism, with extinction of tumor2

cells and immune system fully active. Other possible equilibrium points E =3

(X1, X2, X3) are characterized by4

X2 =
G

FX1 +G
, X3 =

C∗X

AX1 + C∗
(23)

and X1 positive solutions to the quadratic algebraic equation5

αX2
1 + βX1 + γ = 0 (24)

where α = ABFX > 0, β = A[G(1 + BX) − C∗FX ], γ = GC∗(1 − AX). The6

discriminant is non negative if and only if A ≥ A∗, where A∗ is a positive quantity7

depending on the parameters values and always less than 1/X , given by8

A∗ =
4BFGC∗X

[G(1 +BX)− C∗FX ]2 + 4BFGC∗X2
.

From the Descartes’ rule of signs, when A ≥ A∗, it follows that:9

- if C∗ ≤ G(1 +BX)/(FX) (namely β ≥ 0) then equation (24) has no positive10

root for A ≤ 1/X (when γ ≥ 0) and 1 positive root for A > 1/X ;11

- if C∗ > G(1 + BX)/(FX) (namely β < 0) then equation (24) has 2 positive12

roots for A∗ ≤ A < 1/X (when γ > 0) and 1 positive root for A > 1/X ; the13
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two positive roots coincide when A = A∗, and when A = 1/X then a positive1

root becomes zero.2

Once a positive root X1 of eq. (24) is found, it always yields a positive equilibrium3

state for system (21), which components X2 and X3 are given in (23). The above4

discussion emphasizes the critical value A = 1/X as a transcritical bifurcation value.5

It is remarkable that system (21) can admit three equilibrium states for suitable6

parameters values, contrary to the scenario occurring for the interaction between7

tumor cells, immune system and interleukins investigated in the previous section.8

The linear stability of the ’optimal’ equilibrium state E1 is determined by the9

Jacobian matrix10

J(E1) =





1−AX 0 0
−F −G 0
−AX 0 −C∗



 (25)

and then E1 is locally asymptotically stable when A > 1/X , otherwise is unstable,11

as for the model (15).12

The equilibrium state is then a nonhyperbolic point for A = 1/X . To determine13

its local stability for such a critical value and to settle the question of the existence14

and stability of another equilibrium bifurcated by the nonhyperbolic point, as found15

above, we will make use of Theorem 4.1 of [8] (summarized in the Appendix), which16

is based on the use of the center manifold theory [18]. That theorem prescribes the17

role of the coefficients a and b of the normal form representing the system dynamics18

on the central manifold, in deciding the direction of the transcritical bifurcation19

occurring at φ = 0 (see Appendix and the notation defined therein). In particular,20

if a > 0 and b < 0, then the bifurcation is forward; if a < 0 and b < 0 then the21

bifurcation is backward (see also [7]).22

Theorem 5.1. If C∗ > G(1 +BX)/(FX), the direction of the transcritical bifur-23

cation of system (21) at A = 1/X is backward, otherwise is forward.24

Proof. We apply Theorem 4.1 of [8] to system (21) to investigate the bifurcation25

occurring when A = 1/X . Assumption A1 follows from the Jacobian J(E1) given26

in (25) evaluated at A = 1/X , as discussed above. Let w = (w1, w2, w3)
T be a right27

eigenvector of J(E1)|A=1/X associated to λ1 = 0; it follows w =
(

1,−
F

G
,−

1

C∗

)T
,28

having negative components in correspondence of positive components of the equi-29

librium E0, as allowed by the Remark in Appendix. Furthermore, the left eigenvec-30

tor v = (v1, v2, v3) satisfying v · w = 1 is given by v = (1, 0, 0)T . The coefficient a31

and b defined in Theorem 4.1 of [8] can be now explicitly computed; it follows that:32

a =2v1w1w2
∂2f1

∂X1∂X2
(E1, A = 1/X) + 2v1w1w3

∂2f1
∂X1∂X3

(E1, A = 1/X)

=− 2
F

G
+

2

C∗

(

B +
1

X

)

=
2

XGC∗
[G(1 +BX)− C∗FX ]

(26)

33

b = v1w1
∂2f1
∂X1∂A

(E1, A = 1/X) + v1w3
∂2f1
∂X3∂A

(E1, A = 1/X) = −X < 0 (27)

where f1 denotes the first component of the vector field associated to system (21).34

The coefficient b is always negative so that, according to Theorem 4.1 of [8], it is the35

sign of the coefficient a which decides the local dynamics around the equilibrium36

E1 for A = 1/X . The coefficient a has the same sign of β in the quadratic equation37

(24) and thus38
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- if C∗ < G(1+BX)/(FX) (namely β > 0) then a > 0 and, according to point1

3 of Theorem 4.1 of [8], the positive equilibrium (E2) appearing for A > 1/X2

is unstable and coexists with E1 which is locally asymptotically stable; then3

a transcritical bifurcation of forward type occurs at A = 1/X ;4

- if C∗ > G(1 + BX)/(FX) (namely β < 0) then a < 0 and, according to5

point 2 of Theorem 4.1 of [8], in a left neighborhood of A = 1/X there exists6

a positive and locally asymptotically stable equilibrium (E3) coexisting with7

E1 which is unstable, and coincides with it when A = 1/X ; therefore, in this8

case a transcritical bifurcation of backward type occurs at A = 1/X .9

10

In presence of a backward bifurcation (namely, when C∗ > G(1 + BX)/(FX))11

the critical value A = A∗, where the discriminant of equation (24) vanishes, plays12

the role of a saddle-node bifurcation value. In fact, the two positive equilibrium13

states E2 and E3, which are admissible for A ≥ A∗, coincide when A = A∗; by14

some algebra we find that J(E2)|A=A∗ has a simple zero eigenvalue and there15

are no other eigenvalues on the imaginary axis, thus rank
(

J(E2)
)

|A=A∗=2, while16

rank
(

J(E2) |∂f/∂A
)

|A=A∗ = 3. Then the stability properties of the equilibrium17

state E2 (relevant to the maximum root X1 of equation (24)) follow from the re-18

sults in ([24], p. 253): the bifurcation can be only of saddle-nodes type, since E3 is19

stable as proved in Theorem 5.1, and then E2 is unstable.20

The situations about equilibria and their stability are summarized in the bifur-21

cation diagrams reported in Figs. 5 (forward bifurcation) and 6 (backward bifurca-22

tion). The phase portrait illustrating the case of a stable positive equilibria E3 for23

C∗ > G(1 + BX)/(FX) and A∗ ≤ A < 1/X (backward bifurcation) is reported in24

Fig. 7.25

The most important feature of this reduced system describing the interactions26

between tumor, immune system and host environment is the occurrence, for suit-27

able parameter values, of a backward bifurcation [8]; such a bifurcation, which is28

usually related to epidemic models [19] but with reversed stability properties, can29

be then found also in this context. However, it is not present in the reduced system30

investigated in the previous section, describing interactions between tumor cells,31

immune system and interleukins.32

In case of backward bifurcation, it is worth noticing that the system, for proper33

initial states and parameter values, can evolve towards a scenario characterized by34

the presence of tumor cells coexisting at equilibrium with immune system and host35

environment; even if this situation is not the optimal one, it can represent the tumor36

latency observed in many clinical cases. However, it is remarkable that the level37

of the adimensionalized cellular density of the tumor at the stable equilibrium E338

prescribed by this mathematical model is relatively low (for all values of A) with39

respect to the corresponding value of the other positive unstable steady state E240

(see fig. 6). Under such conditions, a locally attractive steady state thus exists even41

below the threshold 1/X for the crucial parameter A, when the optimal equilibrium42

(22) is unstable.43
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Figure 5. Qualitative bifurcation diagram versus A for C∗ < BG/F +
G/(FX): forward bifurcation of equilibria (parameter values used: B =
1, C∗ = 4.5, F = 1, G = 1, X = 1/5).

Appendix.1

Theorem. ([9], Corollary 2.2). Let R be a subset of R2 such that any equilibrium2

of the limit system (17) in R is the only equilibrium in a sufficiently small neigh-3

borhood. Further assume that exist a subset Y of R2 and an open simply connected4

subset D of R2 whit the following properties:5

• Every bounded forward orbit of the differential system (16) in R has its ω-limit6

set in Y .7

• All possible periodic orbits of the limit system (17) in Y and the closures of all8

possible orbits of (17) that chain equilibria of (17) cyclically in Y are contained9

in D.10

• g is continuously differentiable on D and there is a real-valued continuously11

differentiable function ρ on D such that div(ρg) is either strictly positive12

almost everywhere on D or strictly negative almost everywhere on D.13

Then every bounded forward solution of the limit system (17) in R and every14

bounded forward solution of the system (16) in R converges towards an equilibrium15

of the limit system (17) as time tends to infinity.16

Theorem. ([8], Theorem 4.1). Let us consider the system of ODEs with parameter17

φ18

dx

dt
= f(x, φ), f : Rn × R → R

n and f ∈ C 2(Rn × R); (28)

Let x = 0 be an equilibrium of (28). Assume:19
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Figure 6. Qualitative bifurcation diagram versus A for C∗ > BG/F +
G/(FX): backward bifurcation of equilibria (parameter values used:
B = 1, C∗ = 9, F = 1, G = 1, X = 1/5).

A1. A = Dxf(0, 0) is the linearization matrix of system (28) around the equilib-1

rium x = 0 with φ evaluated at 0. Zero is a simple eigenvalue of A and all2

other eigenvalues of A have negative real parts;3

A2. Matrix A has a (nonnegative) right eigenvector w and a left eigenvector v4

corresponding to zero eigenvalue.5

Let fk denotes the kth component of f , and6

a =

n
∑

k,i,j=1

vkwjwi
∂2fk
∂xj∂xi

(0, 0) b =

n
∑

k,i=1

vkwi
∂2fk
∂xi∂φ

(0, 0)

Then the local dynamics of system (28) around x = 0 are totally determined by a7

and b.8

1. a > 0, b > 0. When φ < 0, with |φ| ≪ 1, 0 is locally asymptotically stable,9

and there exists a positive unstable equilibrium; when 0 < φ≪ 1, 0 is unstable10

and there exists a negative and locally asymptotically stable equilibrium;11

2. a < 0, b < 0. When φ < 0 with |φ| ≪ 1, 0 is unstable and there exists a12

positive and locally asymptotically stable equilibrium; when 0 < φ ≪ 1, 0 is13

locally asymptotically stable, and there exists a negative unstable equilibrium;14

3. a > 0, b < 0. When φ < 0 with |φ| ≪ 1, 0 is unstable, and there exists a15

locally asymptotically stable negative equilibrium; when 0 < φ≪ 1, 0 is stable,16

and a positive unstable equilibrium appears;17
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Figure 7. Phase portrait, representative of the case C∗ > BG/F +
G/(FX) and A∗ < A < 1/X: the positive equilibrium state E3 is locally
asymptotically stable, and coexists with the ‘optimal’ equilibrium E1 and
the positive equilibrium E2, which are both unstable (parameter values
used: A = 0.9, B = 1, C∗ = 6.1, F = 1, G = 1, X = 1).

4. a < 0, b > 0. When φ changes from negative to positive, 0 changes its sta-1

bility from stable to unstable. Correspondingly a negative unstable equilibrium2

becomes positive and locally asymptotically stable.3

(The proof can be found in [8], and in the same paper Table 3 well illustrates4

these results).5

Remark. Taking into account Remark 1 in [8], if the equilibrium of interest in6

the above theorem is a non negative equilibrium x0, then the requirement that w7

is non negative is not necessary. When some components in w are negative, one8

can still apply the theorem provided that w(j) > 0 whenever x0(j) = 0; instead, if9

x0(j) > 0, then w(j) need not to be positive. Here w(j) and x0(j) denote the j-th10

component of w and x0, respectively.11
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