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The Mallows and Generalized Mallows Models are two of the most popular probability models
for distributions on permutations. In this paper we consider both models under the Hamming
distance. This models can be seen as models for matchings instead of models for rankings. These
models can not be factorized, which contrasts with the popular MM and GMM under Kendall’s-τ
and Cayley distances. In order to overcome the computational issues that the models involve, we
introduce a novel method for computing the partition function. By adapting this method we can
compute the expectation, joint and conditional probabilities. All these methods are the basis for
three sampling algorithms, which we propose and analyze. Moreover, we also propose a learning
algorithm. All the algorithms are analyzed both theoretically and empirically, using synthetic
and real data from the context of e-learning and Massive Open Online Courses (MOOC).
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1. Introduction

Permutations appear naturally in a wide variety of domains, from Social Sciences [47]
to Machine Learning [8]. Probability models over permutations are an active research
topic in areas such as preference elicitation [7], information retrieval [17], classification
[9], etc. Some prominent examples of these are models based on pairwise preferences [33],
Placket-Luce [34], [42], and Mallows Models [35]. One can find in the recent literature on
distributions on permutations both theoretical discussions and practical applications, as
well as extensions of all the aforementioned models.

In this paper we focus on the Mallows Model (MM), an exponential model which
depends on the definition of a distance for permutations. It is specified by the location
parameter, σ0, and a dispersion parameter, θ. There are multiple extensions of the MM.
Some of the most popular extensions are non-parametric models [37], infinite permuta-
tions [21], [38] and mixture models [14], [39], [41]. However, the Generalized Mallows
Model (GMM) [19] is the most popular among all these extensions. It is also an expo-
nential model, which instead of one single spread parameter, requires the definition of
k spread parameters θj , each affecting a particular position of the permutation. In this
way, it is possible to model a distribution with more emphasis on the consensus of certain
positions of the permutation while having more uncertainty in some others.
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2 E. Irurozki et al.

The original definition of the MM included two different distances for permutations
[35], namely Kendall’s-τ and Spearman’s-ρ. However, in [16] this definition was extended
to six different distances, giving rise to the family of the distance-based probability
models. The new distances considered were Hamming, Ulam, Cayley and Spearman’s-
footrule. Kendall’s-τ has become the most recurrent in both theoretical and applied
studies due to its nice theoretical properties. This attention of the community has led to
several estimating and sampling processes of the MM and GMM under the Kendall’s-τ
distance [36], [19].

Kendall’s-τ is a natural measure of discrepancy between permutations when they are
interpreted as rankings and therefore, MM and GMM under the Kendall’s-τ distance
are usually found in the preference domain. Nevertheless, Kendall’s-τ is not adequate
for measuring differences between matchings, despite being possible to represent both
matchings and rankings with permutations. Moreover, other application fields, such as
computer vision [29] or optimization [5], have also encouraged the search for new efficient
probabilistic models for non-ranking permutation data. Recently, efficient algorithms for
managing MM and GMM under the Cayley distance have been proposed [25]. The MM
and GMM under the Cayley distance have already shown their utility in application prob-
lems such as the quadratic assignment problem (QAP) and the Permutation Flowshop
Scheduling Problem (PFSP) [6]

The Hamming distance is one of the most popular metrics for permutations [15], [28],
[44]. Clearly, it is not a natural measure of disagreement between rankings, but in the
case when permutations represent matchings of bipartite graphs, Hamming is the most
reasonable choice.

In this paper we use for the first time the GMM under the Hamming distance. For
both MM and GMM under the Hamming distance we propose efficient sampling and
learning methods. In order to reasoning over permutations we derive expressions for the
computation of the partition function of the models, the expectation, the marginal and
conditional probabilities.

This paper tries to bring MM and GMM to other domains apart from ranking so they
can be as useful for non-ranking permutation data as they are in the ranking domain. In
particular, we have focused on matchings. The differences between rankings and match-
ings are discussed throughout the manuscript, including decomposition of the distance,
the sufficient statistics, the estimates, factorability, . . . In this way, the notation of per-
mutations and matchings will be used interchangeably. Special attention has been placed
in the computational tractability of the operations, which are also empirically tested.

A good example of the applicability of the considered models is the multi-object track-
ing, problem which considers (1) a set of objects moving around and (2) a vision system
consisting on some noisy sensors which are used to identify each of the objects and track
them along time. Typical domains are sport players, people in an airport or in the street
or animals in a controlled environment. In the particular context of a football match,
suppose that there is a set of cameras continuously monitoring the players. This imper-
fect system distinguishes the players and tries to follow the track which each player is
following along the match. In this context, a matching (represented by a permutation)
σ = σ(1), . . . , σ(n) means that track 1 follows player σ(1). When the players are not
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close to each others the system has no problem assigning a track to each player. How-
ever, when two players are close to each other, the noisy system can get confused. If
there are several tracking systems, it can happen that different systems have different
assignments. Under this context, it is reasonable to assume that the sample of matchings
of the different sensors follow a MM of GMM for matchings. In other words, the sample is
unimodal (there is one only assignment with maximum probability) and the probability
of any other assignment different from the mode decays with its distance to the true
assignment. Therefore, it is possible to aggregate the information of all the systems by
fitting a MM or GMM under the Hamming distance. Moreover, the dispersion parame-
ters of the model can be interpreted as a measure of confidence in the consensus, that is,
the higher the dispersion parameter, the less probable that the system has been confused
for two players.

The full-class set problem [31] is an example of classification problem where matchings
arise. In the motivating application, a teacher who wants to automatically register the
attendance at their lessons uses a set of photographs of the students to learn a classi-
fier. Then, for the faces detected in a photograph of the whole classroom, the classifier
individually predicts the identity of each face knowing that no identity can be predicted
twice. In other words, the classifier predicts a matching between faces and photographs.

Another well known example is the protein structure alignment problem [50]. For
aligning two proteins, one has to find a transformation of the features of the first protein
to the features of the second one. We can also think about it as a matching between the
atoms in one protein and atoms in the other. This problem can be posed as a weighted
bipartite matching problem and a distribution over the set of possible matchings is a way
of capturing the uncertainty inherent to the problem.

In this paper we consider the probability distributions for matchings as those describe
above. Moreover, every domain in which permutations arise and the Hamming distance is
the natural measure of discrepancies between them, MM and GMM under the Hamming
distance will be more likely suitable than distributions designed for rankings. Throughout
the paper we include discussion comparing the distance-based models under the Hamming
and the Kendall’s-τ distances. The goal of the discussion is to support one of the main
thesis of this paper, highlighting that the differences between models are bigger than their
similarities. It turns out that there is no general method for the efficient computation
of most expressions or factorization of general MM. This means that the derivation
of the computationally efficient expressions for sampling and learning must be carefully
carried out for each different distance. The algorithms to deal with MM and GMM under
Kendall’s-τ and Cayley distances are based on the possibility of factorizing such models.
Since MM and GMM can not be factorized, we make use of different machinery to obtain
efficient sampling and learning algorithms.

The rest of the paper is organized as follows. Section 2 introduces the Hamming dis-
tance and gives the necessary basic definitions and operations for permutations. Section 3
introduces the probabilistic models considered. Section 3.1 gives efficient expressions for
the normalization constants of both Mallows and Generalized Mallows models under
the Hamming distance, which are the base for the sampling and learning procedures
introduced in this paper. Section 4 introduces three sampling algorithms for the Mal-
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lows Model and two for the Generalized Mallows. Section 5 deals with the estimation
of the parameters of the distribution given a dataset of permutations. In Section 7 the
experimental evaluation is performed and Section 8 concludes the paper.

2. Permutations: basic definitions and preliminary

results

Permutations are bijections of the set of integers {1, . . . , n} onto itself. They are usu-
ally denoted with the Greek letters σ or π. From now on we will use a notation where
σ(i) = j means that item j is in position i and represents the permutation σ as
σ = σ(1)σ(2) . . . σ(n). A special permutation which is worth mentioning is the identity
permutation, e = 123 . . . n which maps each item j to position j.

By composing two permutations σ and π of n elements we obtain a new permutation
σ◦π such that σ◦π(i) = σ(π(i)), which will be denoted as σπ. In general, the composition
is not commutative. Some exceptions to this general rule include the composition of a
permutation σ and its inverse σ−1, which results in the identity, σσ−1 = σ−1σ = e, and
the composition with the identity, σe = eσ = σ.

The Hamming distance between two permutations d(σ, π) counts the number of point-
wise disagreements they have, d(σ, π) =

∑n

j=1 1σ(j) 6=π(j) where 1A denotes the indicator
function of a subset A. Its invariance property asserts that d(σ, π) = d(σγ, πγ) for every
permutation γ. Particularly taking γ = π−1 and since ππ−1 = e one can write, w.l.o.g.,
d(σ, π) = d(σπ−1, e). The distance from any permutation to the identity is denoted
as an univariate function d(σπ−1, e) = d(σπ−1) that will simplify the notation. The
implications of the invariance property are relevant since, as we will later explain, from
now on we can w.l.o.g. assume that the reference permutation is the identity.

A recurrent concept in the permutation literature is that of fixed point, namely a
position of the permutation in which σ(j) = j. In the same way, iff σ(j) 6= j then j is
an unfixed point. Therefore, the Hamming distance between a permutation σ and the
identity, d(σ), counts the number of unfixed points of σ, d(σ) =

∑n

j=1 1σ(j) 6=j .
Rather than the distance d(σ), we will sometimes be interested in the sets of fixed

and unfixed points of σ. This information is encoded on H(σ) = (H1(σ), . . . , Hn(σ)), a
binary vector in which Hj(σ) = 0 iff σ(j) = j.

The H(σ) vector is referred to as the distance decomposition since d(σ) =
∑n

j=1 Hj(σ).
We will use the expressions “σ has a fixed point at j", σ(j) = j and Hj(σ) = 0 inter-
changeably throughout the paper. The concept of derangement is also relevant for the
understanding of this manuscript. A derangement is a permutation in which there are
no fixed points.

Rankings and matchings It is usually the case that both concepts are represented
by permutations. However, the ranking involves the idea of an ordering among the items
while the matching is a sequence of assignments. Along this paper, we will notice the
differences between both concepts since the probability models for then behave very
differently.
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Let G = (V,E) be a bipartite graph with 2 × n vertices. A matching is a bijection
between the items of the first set to the items of the second. The Hamming distance
between the matching σ and the identity matching counts the number of edges which
differ in σ and e. Note that for the edge from node j there is one such “correct" assignment
and n− 1 “incorrect" assignments. This binary behaviour is captured by the terms of the
distance decomposition vector.

In order to compare the Hamming and the Kendall’s-τ distance decomposition vectors
let us introduce a classical process for ranking a set of n items. This method is carried
out as a sequence of n stages. Let wi be the probability of item i of being selected as
the favourite. The process begins by randomly (proportionally to wi) selecting the most
preferred item for rank 1 in a first stage, then randomly (proportionally to wi of the
items not already selected) selecting the best among the remaining items for rank 2 in
the second stage and so on. We can define a vector V(σ) = (V1(σ), . . . , Vn−1(σ)) where
Vj(σ) can be understood as a measure of how accurate the decision at stage j of the
ranking process was [11]. In this way, Vj(σ) ranges from 0 (correct decision, the most
preferred item among the remaining ones was selected) to n − j (the worst decision
possible). The vector V(σ) is also known as inversion vector.

It is worth highlighting the following property for both distance decomposition vectors.

Property 1. While the terms of Hj(σ) are not independent for a uniformly random
permutation σ, the terms of the inversion vector Vj(σ) are.

2.1. Results on enumerative combinatorics

Most results in this paper are based on combinatorial arguments. For example, it is
recurrent the case of counting the number of different derangements of n items, S(n).
This expression [46], [45] is

S(d) = (d− 1) ∗ S(d− 1) + (d− 1) ∗ S(d− 2)

with S(0) = 1 and S(1) = 0. It follows that the number of permutations of n items at
Hamming distance d (in which d items are deranged) is

S(n, d) =

(

n

d

)

S(d).

The sequence S(n, d) for every d can be computed in time O(n).
Some results of the paper rely on the random generation of permutations at a given

distance. The fact that recursive descriptions of combinatorial objects can be translated
into algorithms of random generation is classical [18]. Several generators can also be
found in the literature [26]. We refer the reader interested on more details to [25].

Note that the number of permutations that have fixed points at positions 1 ≤ i1 < i2 <
. . . < ik ≤ n is the same as the number of permutations that have fixed points at positions
1, 2, . . . , k. This count is denoted as f(n, k) and it is easy to see that f(n, k) = (n− k)!.
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The same situation happens when we are counting the permutations with unfixed
positions, i.e., the number of permutations such that have at least k unfixed points at
positions 1 ≤ i1 < i2 < . . . < ik ≤ n is the same as the number of permutations that
have unfixed points at positions 1, 2, . . . , k (being positions k + 1, . . . , n either fixed
or unfixed). This count is denoted as g(n, k) and can be computed using an inclusion-
exclusion approach [46].

g(n, k) = n! +

k
∑

i=1

(−1)i

(

k

i

)

f(n, i) = n! +

k
∑

i=1

(−1)i k!(n− i)!

i!(k − i)!
(2.1)

Equation (2.1) counts the number of permutations with at least k unfixed points in
time O(n). A detailed derivation of this expression can be found in [25].

2.2. Frequency matrix

The frequency matrix, F , is a summary of a sample of permutations {σ1, . . . , σm}. This
matrix is defined as an n× n-dimensional matrix where Fi,j counts the number of per-
mutations in the sample such that have item j at position i, i.e. Fi,j =

∑m

s=1 1σs(i)=j .
Matrix F contains the sufficient of the MM and GMM as we will show later. Moreover,
it can be used to compute d(σs, σ0) for every σs in the sample efficiently as follows.

Lemma 1. The sum of the distances from σ0 to each of the permutations in the sample
{σ1, . . . , σm} can be computed by means of the frequency matrix F as follows.

m
∑

s=1

d(σs, σ0) =

m
∑

s=1

n
∑

j=1

Hj(σsσ
−1
0 ) =

n
∑

j=1

(m− Fσ
−1

0
(j),j)

The proof of Lemma 1 is given in Appendix A.

2.3. Algebraic results

The efficient computation of several statistical quantities considered in this paper are
based on the calculation of the Elementary Symmetric Polynomials (ESP) on the pa-
rameters of the distribution, θ = (θ1, . . . , θn). In this section we introduce the notion of
ESP and show how to compute them efficiently. Moreover, we will give an expression for
their derivatives.

First of all, let us define the set Rk = {(i1, . . . , ik)|1 ≤ i1 < i2 < . . . < ik ≤ n} as the
set of all the different groups of k ordered indices out of the n total indices {1, . . . , n}.
The ESP of degree k on a set of n variables, γk(X1, . . . , Xn), is defined as follows:

γk(X1, . . . , Xn) =
∑

r∈Rk

∏

j∈r

Xj
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By abusing notation, γk will be used to denote the ESP of degree k, γk = γk(X1, . . . , Xn).
The ESP γk can be efficiently computed with the following recursion [2]:

γk(X1, . . . , Xn) =







1 if k = 0
∑n

j=1 Xj if k = 1

γk(X1, . . . , Xn−1) + γk−1(X1, . . . , Xn−1)Xn otherwise
(2.2)

By using the above formula, the computational complexity for computing the ESP
γk(X1, . . . , Xn) is O(n2). Note that a naive computation will require time O(2n).

Splitting the ESP. In both learning and sampling processes it is necessary to
compute the ESP on all the subgroups of n− 1 variables. The naive approach is to take
each of the n possible subgroups of n−1 variables and compute the ESP of every subgroup
as shown in Equation (2.2). This will require O(n3) time. We introduce a method for
computing the ESP on all the subgroups of n− 1 variables in O(n2).

In the following lines there is an example of the elementary symmetric polynomial on
4 variables. Each γk is computed by adding up every product inside the braces.

γ1 =























γ1
1 =

{

X1

γ̄1
1 =











X2

X3

X4

γ2 =







































γ1
2 =











X1X2

X1X3

X1X4

γ̄1
2 =











X2X3

X2X4

X3X4

γ3 =























γ1
3 =











X1X2X3

X1X2X4

X1X3X4

γ̄1
3 =

{

X2X3X4

γ4 =







γ1
4 =

{

X1X2X3X4

γ̄1
4 =

{

0

As we can see, the terms are divided into two groups. By γi
k we denote the subset of

the terms in γk that include the term Xi, and by γ̄i
k the terms in γk that do not include

Xi. Recall that Rk = {(i1, . . . , ik)|1 ≤ i1 < i2 < . . . < ik ≤ n}. We can now state that:

γi
k =

∑

r∈A

∏

j∈r

Xj where A = {R ⊆ Rk|i ∈ R}

γ̄i
k =

∑

r∈A

∏

j∈r

Xj where A = {R ⊆ Rk|i 6∈ R}

We introduce a recursion for computing γi
k and γ̄i

k for every 1 ≤ i, k ≤ n given γk in
time O(n2). It is based on the following two relations:

γi
k = γ̄i

k−1Xi ∀i ∈ {1, . . . , n} (2.3)

γ̄i
k = γk − γi

k ∀i ∈ {1, . . . , n} (2.4)

The recursive algorithm for computing γi
k and γ̄i

k for every 1 ≤ i, k ≤ n given γk is
as follows. Let the base cases be γi

0 = γ̄i
0 = 1 and let γk for 1 ≤ k ≤ n be computed

as shown in Equation (2.2). Equations (2.3) and (2.4) define a recursive procedure to
compute γi

k and γ̄i
k for all 1 ≤ i, k ≤ n in O(n2).
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Derivatives. In the case of our probabilistic models, the variables in the ESP are
exponential functions of the form Xi = (exp(θi)−1). Thus, the techniques for computing
the derivatives explained in [2] are not valid here. We give here an efficient expression
for the first derivatives with respect to θi which can be obtained by the chain rule:

∂γk

∂θi

=
∂γk

∂Xi

·
∂Xi

∂θi

= γ̄i
k−1exp(θi) (2.5)

3. Mallows and Generalized Mallows model

The Mallows Model (MM) is an exponential model for permutations based on distances.
The MM can be expressed as follows:

p(σ) =
exp(−θd(σ, σ0))

ψ(θ)
where ψ(θ) =

∑

σ

exp(−θd(σ, σ0)) (3.1)

Here θ ∈ R is a spread parameter, σ0 is the central permutation, d(σ, σ0) represents
a distance between σ and σ0 and ψ(θ) is the partition function. For a probability model
on matchings, the central permutation can be denoted as central matching. Note that
when the dispersion parameter θ is greater than 0, then σ0 is the mode, and the closer
a permutation σ is to σ0, the larger p(σ). On the other hand, with θ = 0, we obtain the
uniform distribution and when θ < 0, then σ0 is the anti-mode.

One can easily find situations in which the disagreement between permutations de-
pend, not only in the number of discrepancies, but also in the positions of those dis-
crepancies. Consider the example in the introduction in which the matchings provided
by several sensor systems is to be aggregated into a single, consensus matching. Suppose
that player 1 has not crossed with other player along the match and therefore, most
systems agree in the track associated to player 1. However, players 2 and 3 have been
very close to each other most of the time, so there is a larger uncertainty regarding their
tracks. Such situation can be modelled under the Generalized Mallows Model (GMM),
an extension of the MM. This is done by defining different spread parameter to the track
of each player. As far as the authors know, this is the first time that the GMM has been
considered under the Hamming distance.

In the same way as MM, the GMM is an exponential model and relies on a distance
for permutations. The main difference between both is that, while the MM uses a single
spread parameter, the GMM uses k spread parameters, each affecting a particular posi-
tion of the permutation. Moreover, in order to base the GMM on a particular distance,
this distance must be decomposed as a sum on k terms. In the case of the Hamming
distance, the distance decomposition vector, defined in Section 2.1, has dimension n.
It follows that we can use the GMM under the Hamming distance by defining an n-
dimensional dispersion parameter, θ = (θ1, . . . , θn). It is defines as follows:

p(σ) =
exp(−

∑n

j=1 θjHj(σσ−1
0 ))

ψ(θ)
where ψ(θ) =

∑

σ

exp(−

n
∑

j=1

θjHj(σ))
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The efficient management of the MM and GMM under Cayley and Kendall’s-τ dis-
tances rely in the factorization of the distributions. Unfortunately, neither MM nor GMM
under the Hamming distance can not be factorized since the Hamming distance can not
be posed as a sum of n independent terms, as shown in Property 1 (page 5) [19]. Moreover,
even the naive computation of the partitioning function of MM and GMM is intractable
for n > 10 in a reasonable time regardless of the distance considered. This means that,
in order to handle distributions of permutations of medium-big size, it is necessary to
rely in other alternatives.

Recall that the frequency matrix F defined in Section 2.2 contains the sufficient statis-
tics of the MM and GMM.

Rankings and matchings The GMM has been used so far under the Kendall’s-τ
and Cayley distances. In both cases, due to Property 1, the distributions are factorable
and have tractable expressions. Moreover, all the machinery employed for obtaining the
expressions of the former models are not valid for the MM and GMM under the Hamming
distance.

It is also worth noticing how each θj can be interpreted. If a matching σ comes from
a distribution with central matching σ0 where σ0(i) = j, the larger θj the more likely
that σ(i) = j. This contrasts with the intuition behind the GMM under the Kendall’s-τ
distance, with parameters θ and central ranking σ0, where σ0(j) = i. In this context,
the larger θj , the more likely that σ(j) ≤ i (or, in other words, the larger the probability
that item j is ranked in the first i positions in σ).

In the ranking domain, the matrix F is generally denoted as rank marginal matrix.
Curiously, for the MM under the Kendall’s-τ distance, the classical model for the ranking
domain, the rank marginal matrix does not contain the sufficient statistics. It turns out
that in that context it is the precedence matrix which contains the sufficient statistic,
i.e., a square matrix M such that Mij counts the number of permutations σ in which
σ(i) < σ(j) (meaning that item i is ranked before j).

3.1. Partition function for the Mallows model

The naive computation of the partition functions in the MM and GMM sums over n!
permutations. Clearly, this sum is an important bottle-neck. Fortunately, a closed form
for the partition function for the MM under the Hamming distance is given in [19] which
is as follows:

ψ(θ) = n!exp(−θn)

n
∑

k=0

(exp(θ) − 1)k

k!
(3.2)

The computational complexity of Equation (3.2) is O(n) which highly improves the
naive complexity of O(n!).
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10 E. Irurozki et al.

3.2. Normalization constant for the Generalized Mallows Model

An efficient expression for the normalization constant for the GMM can be found by
relating the normalization constant to the moment generating function of the distance
decomposition vector.

In particular, the process of finding the efficient expression for the normalization
starts by expressing it as a function of the moment generating function (MGF) of
H(σ) = (H1(σ), . . . , Hn(σ)) under the uniform distribution. Then, we will find an com-
putationally cheap expression for the probability generating function (PGF) by making
use of a Taylor expansion. Finally, we will relate both PGF and MGF.

The notation used is as follows. Let ε(σ) = (ε1(σ), . . . , εn(σ)) be a binary vector
such that εj(σ) = 1 − Hj(σ). Assuming that σ comes from the uniform distribution,
then both H(σ) and ε(σ) are binary random vectors. We denote by P0(ε(σ) = ε) the
probability under the uniform distribution of a permutation σ of having the distance
decomposition 1−ε. Being the multivariate (joint) MGF of the random vector X defined
as MX(t) = E[

∏n

j=1 exp(tjXj)], the normalization constant, ψ(θ), can be posed as a
function of the MGF of ε(σ) coming from the uniform distribution:

ψ(θ) = n!
∑

H∈{0,1}n

P0(H(σ) = H)exp(−
∑

j

θjHj(σ))

= n!
∑

ε∈{0,1}n

P0(ε(σ) = (ε1, . . . , εn))exp(−
∑

j

θj(1 − εj))

= n!
∑

ε∈{0,1}n

P0(ε(σ) = (ε1, . . . , εn))exp(−
∑

j

θj)exp(
∑

j

θjεj)

= n!exp(−
∑

j

θj)
∑

ε∈{0,1}n

P0(ε(σ) = (ε1, . . . , εn))exp(
∑

j

θjεj)

= n!exp(−
∑

j

θj)Mε(θ)

Note that there can not be any H(σ) such that
∑n

j=1 Hj(σ) = 1. Therefore, the
probability of such a vector is zero.

We consider the multivariate case of the PGF of ε(σ) under the uniform distribution,
which is defined as follows:

fε(t) = fε(t1, . . . , tn) = E[tε1

1 · · · tεn

n ] =
∑

(ε1,...,εn)

P0(ε(σ) = (ε1, . . . , εn))tε1

1 · · · tεn

n

The Taylor expansion of a multivariate function f(t) at t = 1 is:

fε(t) =

∞
∑

k=0

1

k!

∑

x1+···+xn=k

(

k

x1 · · ·xn

)

∂kfε

∂tx1

1 . . . ∂txn
n

∣

∣

∣

∣

t=1

(t1 − 1)x1 · · · (tn − 1)xn

imsart-bj ver. 2014/10/16 file: mallows_hamming_R2.tex date: September 30, 2016



MM and GMM for Matchings 11

In order to give the Taylor expansion for fε, we need to know its derivative for variable
ti:

∂fε

∂ti
=

∑

(ε1,...,εn)

P0(ε(σ) = (ε1, . . . , εn))tε1

1 · · · εit
εi−1
i · · · tεn

n

=
∑

(ε1,...,εn)|εi=0

P0(ε(σ) = (ε1, . . . , εn))tε1

1 · · · 0t0−1
i · · · tεn

n

+
∑

(ε1,...,εn)|εi=1

P0(ε(σ) = (ε1, . . . , εn))tε1

1 · · · 1t1−1
i · · · tεn

n

=0 +
∑

(ε1,...,εn)|εi=1

P0(ε(σ) = (ε1, . . . , εn))
∏

j 6=i

t
εj

j

Its evaluation around t = (1, . . . , 1) is :

∂fε

∂ti

∣

∣

∣

∣

t=1

=
∑

(ε1,...,εn)|εi=1

P0(ε(σ) = (ε1, . . . , εn))1ε1 · · · 1 · 11−1 · · · 1εn

=
∑

(ε1,...,εn)|εi=1

P0(ε(σ) = (ε1, . . . , εn))1

Note that this is equivalent to the probability under the uniform distribution of a
permutation with a fixed point at position i, i.e. the number of permutations of n − 1
items divided by n!, (n − 1)!/n!. The second order derivative with respect to ti equals
1. The second order cross partial derivatives equal the probability under the uniform
distribution of a permutation σ in which i1 and i2 are fixed points, i.e., the number of
permutations of n items with fixed points in i1 and i2 divided by n!

∂2fε

∂ti1
∂ti2

∣

∣

∣

∣

t=1

=
∑

(ε1,...,εn)|εi1
=1,εi2

=1

P0(ε(σ) = (ε1, . . . , εn))1ε1 · · · 1 · 11−1 · · · 1εn

Then, in general, the k-th order cross partial derivatives equal:

∂kfε

∂ti1
. . . ∂tik

∣

∣

∣

∣

t=1

=
(n− k)!

n!

Since (ε1, . . . , εn) ∈ {0, 1}n, then
(

k
ε1···εn

)

= k! and since ∂kfε/∂t
k
i = 0 for k > 1, the

Taylor series cannot be expanded more than n+1 terms. Therefore, the Taylor expansion
around 1 can be equivalently written as (recall that Rk = {(i1, . . . , ik)|1 ≤ i1 < i2 <
. . . < ik ≤ n}):
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12 E. Irurozki et al.

fε(t) =

n
∑

k=0

1

k!

∑

r∈Rk

(

k

εi1
· · · εin

)

∂kfε

∂ti1
. . . ∂tik

∣

∣

∣

∣

t=1

∏

i∈r

(ti − 1)

=

n
∑

k=0

1

k!

∑

r∈Rk

k!(n− k)!

n!

∏

i∈r

(ti − 1)

=
n

∑

k=0

(n− k)!

n!

∑

r∈Rk

∏

i∈r

(ti − 1)

If γk denotes the Elementary Symmetric Polynomial (ESP) of degree k, then γk((t1 −
1), . . . , (tn − 1)) =

∑

r∈Rk

∏

i∈r(ti − 1) and therefore:

fε(t) =

n
∑

k=0

(n− k)!

n!
γk((t1 − 1), . . . , (tn − 1))

An efficient formulation for the computation of ESP, γk((t1 − 1), . . . , (tn − 1)) is given
in Section 2.3. Note that Mε(t) = E[

∏n
j=1 exp(tjεj)] = E[

∏n
j=1 exp(tj)εj ] and fε(t) =

E[
∏n

j=1 tj
εj ]. It follows that Mε(t) = fε(exp(t)).

Thus, the probability generating function can be given as follows.

Mε(t) =

n
∑

k=0

(n− k)!

n!
γk((exp(t1) − 1), . . . , (exp(tn) − 1)) (3.3)

Finally, the normalization constant can thus be given as follows:

ψ(θ) = n!exp(−
∑

j

θj)Mε(θ)

= exp(−
∑

j

θj)

n
∑

k=0

(n− k)!γk((exp(θ1) − 1), . . . , (exp(θn) − 1)) (3.4)

The computational complexity of Equation (3.4) is O(n3), n times the complexity of
the computation of the ESP.

3.3. Expected value, marginal and conditional probabilities

In this section we deal with the expressions for the expected value of the distance in MM
and the expected value of the distance decomposition vector in GMM. We also consider
the marginal and conditional probabilities for the GMM under the Hamming distance
based on Equation (3.3). Since the MM is a particular case of the GMM in which every
θj has equal value, the results of the GMM model can be applied for both.

The following two theorems deal with the expected value of the distance and distance
decomposition vector.
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MM and GMM for Matchings 13

Theorem 1. The expected value of the distance under the MM with the Hamming
distance and dispersion parameter θ is as follows:

Eθ[d] =
n

∑n
k=0

(exp(θ)−1)k

k! − exp(θ)
∑n−1

k=0
(exp(θ)−1)k

k!
∑n

k=0
(exp(θ)−1)k

k!

Theorem 2. The expected value of the distance decomposition vector H(σ) under the
GMM with the Hamming distance and dispersion parameter θ is as follows:

Eθ[H] =

(

1 −

∑n

k=1(n− k)!exp(θ1)γ̄1
k−1

∑n

k=0(n− k)!γk

, . . . , 1 −

∑n

k=1(n− k)!exp(θn)γ̄n
k−1

∑n

k=0(n− k)!γk

)

where γk = γk((exp(θ1)−1), . . . , (exp(θn)−1)) and γ̄i
k = γ̄i

k((exp(θ1)−1), . . . , (exp(θn)−
1)) denotes the ESP of degree k of the previous set of variables except for (exp(θi) − 1).

Proof. The expected distance under the an exponential model can be derived from the
MGF in the following way [19].

Eθ[D] =
∂LnMD(t)

∂t

∣

∣

∣

∣

t=−θ

The expected distance decomposition vector is then as follows.

Eθ[H] =
∑

b

P (H = b)b = Eθ[1 − ε] = 1 − Eθ[ε]

= 1 −

(

∂LnMε(t)

∂t1

∣

∣

∣

∣

t=θ

, . . . ,
∂LnMε(t)

∂tn

∣

∣

∣

∣

t=θ

)

Due to the factorial size of permutation spaces, the naive computation of the marginal
distribution of a GMM under the Hamming distance is infeasible. We introduce a method
for computing such marginal distributions by adapting the reasoning used in Equa-
tion (3.4) to sum over the subset of permutations of interest.

We consider two disjoint sets of items, A and B, and two sets of permutations, fix(A)
and unfix(B). The set fix(A) includes every permutation in which j is a fixed point for
every j ∈ A. We define the set unfix(B) in the same way, as the set of permutations that
have an unfixed point at position j ∈ B. Recall that by g(n, k) we denote the number of
permutations of n items in which there are at least k unfixed points and a recursion to
compute it is given in Equation (2.1).

Theorem 3. Let a = |A| and b = |B|. The marginal distribution of the set of permu-
tations in which every i ∈ A is a fixed point and every j ∈ B is an unfixed point –the
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14 E. Irurozki et al.

permutations in the intersection fix(A) ∩ unfix(B)– is as follows:

∑

σ∈fix(A)∩unfix(B)

p(σ) =

∑

σ∈fix(A)∩unfix(B) exp(
∑n

j=1 −θjHj(σ))

ψ(θ)

=
exp(−

∑

j 6∈A θj)
∑n−a−b

k=0 g(n− a− k, b)γ̄AB
k (T1, . . . , Tn)

exp(−
∑

j θj)
∑n

k=0(n− k)!γk(T1, . . . , Tn)
(3.5)

where Ti = (exp(θi) − 1). Note that by γ̄AB
k ((exp(θ1) − 1), . . . , (exp(θn) − 1)) we denote

the ESP of degree k of the set of variables {(exp(θj) − 1)|j 6∈ A ∪B}.
Proof in Appendix B.
Regarding the computational complexity of this calculation, two different aspects must

be considered. On the one hand, the complexity of computing g(n− a, k+ b) is O(n− a).
On the other hand, the complexity of computing γ̄AB

k is O((n− a− b)2). Therefore, the
complexity of the calculation of the marginal

∑

σ∈fix(A)∩unfix(B) p(σ) is O(max{(n −

a), (n− a− b)2}).
It is well known that the conditional distribution can posed in terms of the joint

distribution as follows:

p(X |Y ) =
p(X ∩ Y )

p(Y )

This definition can be easily translated to the GMM under the Hamming distance as
stated in the following Lemma.

Corollary 1. Let A, A′, B and B′ be four disjoint sets of items. The probability of
the permutations having fixed points at positions j ∈ A′ and unfixed points at positions
j ∈ B′, given that the items j ∈ A are fixed points and the items j ∈ B are unfixed points,
is as follows.

p(fix(A′) ∩ unfix(B′)|fix(A) ∩ unfix(B)) =

∑

σ∈fix(A∪A′)∩unfix(B∪B′) p(σ)
∑

σ∈fix(A)∩unfix(B) p(σ)
(3.6)

The computational complexity in this case is thus the same as the complexity of the
marginal computation.

4. Sampling

In this section we show how to generate permutations from both MM and GMM. We
introduce here three sampling algorithms: The first one generates samples from an ap-
proximate distribution of MM and GMM, the second one generates samples from both
MM and GMM while the last one generates only from the MM.
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MM and GMM for Matchings 15

The three algorithms generate samples assuming that the mode is the identity, σ0 = e.
In case σ0 6= e one can move a sample centered around e to be centered around σ0 as
follows. Let {π1, . . . , πm} be a sample of permutations centered around the identity.
A sample {σ1, . . . , σm} centered around σ0 can be obtained from the previous one by
composing each permutation with σ0, i.e. σi = πiσ0 for every 1 ≤ i ≤ m.

4.1. Gibbs sampling algorithm

We have adapted the Gibbs sampler to generate samples from the MM and GMM. This
algorithms samples a distribution which gets closer to the original one at each step, so
in the limit the target distribution is sampled. The Gibbs algorithm proceeds as follows:

1. Generate a permutation σ u.a.r.
2. Build a new permutation σ′ equal to σ in all but two positions chosen u.a.r. These

two positions are swapped.
3. Let β = min{1, p(σ′)/p(σ)}. With probability β the algorithm accepts the can-

didate permutation moving the chain to σ′, σ = σ′, and goes back to step (2).
Otherwise, it discards σ′ and goes back to step (2).

The initial samples are discarded (burn-in period) until the Markov chain approaches
its stationary distribution and so samples from the chain are samples from the distribution
of interest. Then, the above process in repeated until the algorithm generates a given
number of permutations.

The computation of each permutation has complexity O(n). It is thus a quick algo-
rithm. However, we should remark that this is an approximate algorithm.

4.2. Chain sampling algorithm

We propose a method for generating permutations from a MM or a GMM based on the
chain rule. The process of generating each permutation can be divided in two stages.
In the first stage, it randomly generates a distance decomposition vector, H(σ). The
sampling finishes by uniformly at random generating a permutation σ consistent with
the given H(σ).

The generation of the random distance decomposition vector H(σ) is carried out with
the well known chain rule for probability distributions. The chain rule expresses the joint
distribution as a product of conditional distributions.

In this way, the Chain sampling algorithm uses the conditional probabilities of the
GMM given in Equation (3.6) to sample each of the terms in the decomposition vector
H(σ).

The complete process for the generation of H(σ) can be found in Algorithm 1. The
process of randomly generating a permutation finishes by generating uniformly at random
a permutation σ consistent with H(σ). Some discussion on the topic can be found in
Section 2.1. A careful implementation of the Chain algorithm leads to a computational
complexity of O(n2). Details can be found in Appendix C.

imsart-bj ver. 2014/10/16 file: mallows_hamming_R2.tex date: September 30, 2016



16 E. Irurozki et al.

Algorithm 1: Random generation of H(σ) from the MM or GMM

Input: θ (resp. θ) dispersion parameters in MM (resp. GMM)
Output: H(σ) random distance decomposition vector
A = B = ∅;
for i← 1 to n do

prob = p(fix(i)|fix(A) ∩ unfix(B)) as shown in Corollary 1;
with probability prob /* j is fixed */

hi(σ) = 0;
A = A ∪ {i}

otherwise /* i is unfixed */

hi(σ) = 1;
B = B ∪ {i};

end

end

4.3. Distances sampling algorithm

The Distances sampler can be used for generating from the MM under the Hamming
distance but not for generating from the GMM.

The probability under the MM of a permutation at distance d is as follows:

p(d) =
∑

σ|dh(σ,σ
−1

0
)=d

p(σ) = Sh(n, d)
exp(−θd)

ψ(θ)
(4.1)

where Sh(n, d) denotes the number of permutations at distance d. Note that the normal-
ization constant ψ(θ) =

∑

σ exp(−θdh(σ)) can be expressed as the sum of n terms in the
following way:

ψ(θ) =

n
∑

d=0

Sh(n, d)exp(−θd) (4.2)

Therefore, the Distances sampling process divides the process of generating a permu-
tation from a given MM in two different stages as follows:

1. Randomly select the distance d considering the probabilities of Equation (4.1).
2. Uniformly at random generate one permutation among those at distance d from the

identity. For a discussion on the random generation of permutations at a prescribed
Hamming distance see Section 2.1.

Therefore, the time complexity of the generation of each permutation using this
method is O(n) given the sequence Sh(n, d). Summarizing, this is a fast algorithm for
the generation of exact samples from the MM model. Unfortunately, this algorithm can
not generate samples from the GMM model.
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MM and GMM for Matchings 17

5. Learning

The parameters of a probability distribution are traditionally fitted via maximum like-
lihood estimation. In [13] it is stated that the maximum likelihood estimate of the pa-
rameters of a L-decomposable distribution, such as the MM, can be done by iterative
scaling. Unfortunately, this only includes the dispersion parameters.

For a sample of m i.i.d. permutations {σ1, . . . , σm} the MLE for the parameters of the
distribution are those which maximize the likelihood function. Even though the MM is a
particular case of the GMM, the MLE for the parameters of the distribution are different
for each model. Therefore, we focus on each model separately.

5.1. Mallows Model

The log-likelihood expression for the MM model is as follows:

Ln L({σ1, σ2, . . . , σm}|σ0, θ) = −mθd̄− mLnψ(θ) (5.1)

where d̄ =
∑m

i=1 d(σiσ
−1
0 )/m. By looking at Equation (5.1), we can see that calculating

the value of σ0 that maximizes the equation is independent of θ. Therefore the MLE
estimation problem can be posed as a two step process in which first the central matching
is obtained and then the dispersion parameter for the given σ̂0 is computed.

Central matching The MLE for the central matching is given by the permutation
that minimizes the sum of the Hamming distances to the sample. Let us pose the problem
in a different way. Let F be the frequency matrix of the sample -the sufficient statistics-
and consider the bipartite graph interpretation of the sample, both of which are defined
in Section 2.2.

The problem of finding the permutation that minimizes the Hamming distance to
the sample is equivalent to finding the maximum weighted bipartite matching. Finding
that matching is known as the linear assignment problem (LAP) [3], and it is solved by
selecting one entry of F per row and column in such a way that their sum is maximum.
We denote this MLE for the central matching as σLAP . The Hungarian algorithm [30]
solves this problem in O(n3).

Dispersion parameter Once the central matching is known, the MLE for the dis-
persion parameter is obtained by taking the derivative in Equation (5.1) respect θ and
equaling to zero.

d
(

−mθd̄−mLnψ(θ)
)

dθ
= 0 → −md̄−m

dψ(θ)/dθ

ψ(θ)
= 0

The MLE for θ is then given by the θ that satisfies the next equation:

exp(θ)
∑n−1

k=0
(exp(θ)−1)k

k! − n
∑n

k=0
(exp(θ)−1)k

k!
∑n

k=0
(exp(θ)−1)k

k!

+ d̄ = 0 (5.2)
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18 E. Irurozki et al.

Although no closed form for θ in Equation (5.2) exists, root finding algorithms such
as Newton-Raphson can efficiently recover θ.

To sum up, the maximum likelihood parameters of a MM model can be done in
polynomial time.

5.2. Generalized Mallows Model

In this section we describe the maximum likelihood estimation process of a given sample
coming from a GMM model. The log-likelihood can be expressed as follows:

Ln L({σ1, σ2, . . . , σm}|σ0,θ) =
m

∑

i=1

Ln p(σi|σ0,θ)

=

m
∑

i=1





n
∑

j=1

−θjHj(σiσ
−1
0 ) − Lnψ(θ)



 = m

n
∑

j=1

−θjH̄j −mLnψ(θ)

(5.3)

where H̄j =
∑m

i=1 Hj(σiσ
−1
0 )/m. Note that the permutation that maximizes the like-

lihood does need to be the same as the permutation that minimizes the sum of the
distances to the permutations in the sample, i.e., the central permutation for the MM
may not be the same for the GMM.

In contrast to the MM estimation process, learning the GMM can not be divided
into different stages for the estimation of the different parameters θj and σ0. Therefore,
an exact algorithm needs to search for every parameter at the same time. However, it
is interesting to show how to compute the dispersion parameters, θj , given the central
matching, σ0.

Let us bear in mind that the frequency matrix F is a sufficient statistic for σ0. More-
over, the vector (H̄1, . . . , H̄n) is the sufficient statistic for θ for a given σ0, whose expres-
sion is given by equaling to zero the derivative of the likelihood with respect to θi. In
other words, given a permutation σ0, the MLE for θ is that which satisfies the following
system of equations:

∑n
k=1(n− k)!exp(θi)γ̄

i
k−1

∑n

k=0(n− k)!γk

+ H̄i = 0 1 ≤ i ≤ n (5.4)

Recall that γk denotes the ESP γk((exp(θ1) − 1), . . . , (exp(θn) − 1)), and γ̄i
k−1 denotes

the ESP of all variables except for (exp(θi)−1), which is the ESP of degree k−1 of the set
of variables {(exp(θ1)−1), . . . , (exp(θn)−1)}\{(exp(θi)−1)}. The efficient computation
of γk and a fast algorithm for obtaining γ̄i

k given γi
k can be found in Section 2.3. Note that

there is no closed-form expression for the dispersion parameters in Equation (5.4), the
system of equations must be solved with numerical methods such as the multidimensional
Newton-Raphson.
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Summarizing, by expressing θ as a function of σ0 with Equation (5.4), we have posed
the learning of a GMM as a combinatorial problem of finding the permutation σ0 that
maximizes Equation (5.3).

Although the computational complexity of estimating the parameters of a GMM under
the Hamming distance is not known, the authors conjecture that it is NP-hard. We
propose an approximate algorithm for fitting a GMM which is based on its asymptotic
properties.

Rankings and matchings Opposite to the case of the GMM under Kendall’s-τ or
Cayley distances, there likelihood can not be factorized (as a consequence of Property 1),
page 5.

5.3. Approximate MLE for the GMM

We propose an approximate algorithm for obtaining the MLE for the parameters from a
sample of permutations generated from a GMM under the Hamming distance, {σ1, . . . , σm}.
This algorithm is based on the asymptotic properties of the model. The problem state-
ment is as follows. Let F be the frequency matrix on a sample {σ1, . . . , σm} and let
σm

LAP be the solution to the LAP in F . The rest of the section is based on the following
theorem.

Theorem 4. The permutation σm
LAP is an asymptotically unbiased estimator for the

central matching of {σ1, . . . , σm}.

The proof can be found in Appendix D.
Based on Theorem 4 we propose using σm

LAP as an approximate MLE for the consensus
permutation. As we have stated, LAP can be solved in polynomial time [30]. There also
exist several implementations for the LAP such as [27].

The MLE for the dispersion parameters are obtained by solving the system of equations
in (5.4). A multidimensional Newton-Raphson implementation is provided in [43].

Rankings and matchings Learning the central ranking is known as the Kemeny
problem [1], which happens to be NP-hard (in contrast to the polynomial complexity
of learning the maximum weighted bipartite matching). There exists an approximation
to the Kemeny ranking by the name of Borda which offers a factor 5 approximation
of the optimal ranking [10] and also an asymptotically optimal estimator of the real
central ranking [19]. It can be computed with the preference matrix and it is based on
averaging the rankings of each item and ordering the items according to those averages.
This contrasts with the idea behind the Hungarian algorithm, which iterates looking for
the largest entry in the columns and rows of F .

The fact that the MLE for the central matching is equivalent to the maximum weighted
bipartite matching (to a linear assignment) confirms the intuition that the MM and GMM
under the Hamming distance is indeed a model for matchings.
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20 E. Irurozki et al.

6. Conditional independence, partial permutations

and Bayesian interpretation

Independence for distributions on permutations has been stated in several ways [23],
[24], [13], [12]. We focus on the conditional independence that naturally arise from the L-
decomposability property which was shown in [12]. For any σ resulting from the ranking
process introduced in page 2, the L-decomposability [11] is satisfied iff the probability of
selecting an item at stage k depends solely on the items remaining at that stage, not on
the order of the already selected items.

p(σ) =

n−1
∏

k=1

p{ik,...,in}(σ(k))

The L-decomposability property induces the following conditional independence rela-
tion among items: For all k, given the set of items receiving the first k ranks, the ordering
of these items and the ordering of the remaining items are independent.

p(σ−1(k) = ik|σ−1(1) = i1, . . . , σ
−1
k−1(k − 1) = ik−1) = p{ik,...,in}(ik)

Let σ be a random permutation. The probability model p is TL-decomposability [12]
if the following holds:

p(σπ) is L-decomposable for every π.

Both MM and GMM under the Hamming distance are TL-decomposable.

Partial permutations are among the most referred extensions of general permutations,
particularly when n rockets. Among the sampling algorithms presented in this paper,
the Multistage sampler can generate partial permutations. Fitting a model consisting on
partial permutation is also possible with the algorithms presented in this paper.

The most natural way of introducing prior information about the parameters of the
model is the Bayesian framework. The MM and GMM under the Bayesian perspective
have already been considered [20], [22], [38], [40], [39]. In [49] the Bayesian approach is
analyzed in the case of the Kendall’s-τ distance, although most of their study is applicable
for any right invariant distance such as Hamming. They define two non-uniform prior
distributions, one for the central permutation and other for the dispersion parameter.
Then, assuming independence among both distributions, they calculate the posterior
joint distribution. They also propose computationally tractable methods for Bayesian
inference and their approach could be adapted for the Hamming distance.

7. Experiments

This section is devoted to show the efficiency of the proposed algorithms in terms of
computational time and accuracy. We will first deal with the sampling algorithms and
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then with the learning algorithms. The code used to run the experiments has been made
public in the CRAN repository by the name of PerMallows. A manuscript introducing
it can be found in [26]. Moreover, Appendix E shows how easy it is to fit and sample
distributions a GMM with it.

7.1. Sampling

In this paper we propose three different learning algorithms. The Distances algorithm
generates samples from the MM, the Chain algorithm from the MM and GMM while
the Gibbs algorithm, on the other hand, generates samples from approximations of both
MM and GMM. The sampling experiments are designed to compare the performance of
the algorithms with three different criteria.

1. The evolution of the error as the sample size, m, increases.
2. The evolution of the error as the computational time increases.

The error in the MM is measured as the sum of the differences between the expected
distance, E[D], and the actual distances of the permutations in the samples. In the GMM
the error is measured as the sum of the differences between the expected Hj , E[Hj ], and
the actual H̄j . The expression of the expectations are given in Theorems 1 and 2.

For each of the different evaluation criteria, the following procedure has been carried
out.

1. For each particular setting of n and θ (resp. θ) generate several samples of size
m = 200, 400, 600, . . . , 19800, 20000 with each of the sampling algorithms. Measure
the error of each sample and plot the results.

2. For each particular setting of n and θ (resp. θ) generate several samples for t =
1, 2, 3, . . . , 14, 15 seconds with each of the sampling algorithms. Measure the error
of each sample and plot the results.

The parameter setting is as follows. The number of items in the permutations con-
sidered are n ∈ {5, 50, 100, 150}. The dispersion parameters in the MM case are θ ∈
{0.1, 0.5, 1, 2, 3}. In the GMM case, the first of the dispersion parameters is θ1 ∈ {0.1, 0.5, 1, 2, 3}
while the rest are set such that θj = θ1 −(j−1)(θ1/2(n−1)) for j > 1, i.e. θ1 is the largest
parameter while the value of the rest decrease linearly to θn = θ1/2. For each parameter
configuration 10 experiments are run and the average results of them are given. The cen-
tral permutation is the identity. The Gibbs algorithm discards the first n2 permutations
as part of the burning-period.

Due to the lack of space we have only introduced in this paper a representative selection
of the experiments. However, the complete results can be found in https://github.com/isg-ehu/ekhine.irurozki/b

In particular, we include in this paper the results of the values of n ∈ {50, 150} and the
dispersion parameters θ ∈ {0.1, 2} in MM (θ1 ∈ {0.1, 2} in GMM).

Results for MM By looking at Figure 1, we can see the evolution of the error as
the size of the generated sample grows. Note that the error of the Distances and Chain
algorithms are similar and almost overlap. The error of the Gibbs is always larger than
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Figure 1: Error (as the sum of the differences between the expected distance, E[D], and
the actual distance of the sample, in the Y-axis) of each algorithm as the sample size
(X-axis) grows for different θ and n in MM. Average of 10 repetitions.

the error of the other two algorithms, and these differences between the errors increase
with θ. However, the Gibbs is a very fast algorithm. The computational time required
for the generation of the samples increases linearly with m, but the time required by the
Gibbs is insignificant with respect to the time required by the other two. Gibbs required
less than 50 milliseconds for each of the instances considered here, the Distances required
around 100 milliseconds and Multistage around 600 ms for the instances of n = 50 and
around 5 seconds for the instances of n = 150. Therefore, the question that naturally
arises is –what happens if all the algorithms are run for the same time?

By looking at Figure 2 we can see the evolution of the error as the computational
time given grows. The distances sampling algorithm has the best trade-off between error
and computational time. The Chain and Gibbs sampling algorithms have a similar per-
formance when the distribution to sample is almost uniform. However, as θ grows and
the sample becomes more peaked, the Chain algorithm is clearly more accurate than the
Gibbs.

Consequently, we can state that the method with the best trade-off between com-
putational time and accuracy is the Distances sampling algorithm. On the other hand,
the Chain is as accurate as the Distances method but slower. The reason to keep it in
consideration is that the Distances sampling algorithm can not generate samples from
the GMM, while the Chain can.

Results for GMM The results relative to the evolution of the error of the generated
sample (from a GMM) as m grows are given in Figure 3. Recall that for the GMM only
Chain and Gibbs algorithms can be applied. Similar conclusions can be drawn from the
results of the MM and GMM. As the sample size grows, the error slowly decreases for
the Gibbs while being stable and close to zero for the Chain sampler. Again, the Chain
sampling algorithm is much slower than the Gibbs but, at the same time, much more
accurate. The running times are similar to the MM distribution.

Figure 4 shows the result of running both algorithms for the same computational time.
Again, when the GMM is close to the uniform distribution the error results are similar,
but the Chain algorithm outperforms the Gibbs for non-uniform distributions. Moreover,
this difference increases as θ increases.

imsart-bj ver. 2014/10/16 file: mallows_hamming_R2.tex date: September 30, 2016



MM and GMM for Matchings 23

0 2 4 6 8 10 12 14 16

Time (sec)

0

1

2

3

4

E
r
r
o
r

×10
−3

Gibbs

Chain

Distances

(a) n = 50, θ = 0.1

0 2 4 6 8 10 12 14 16

Time (sec)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
r
r
o
r

×10
−2

Gibbs

Chain

Distances

(b) n = 50, θ = 2

0 2 4 6 8 10 12 14 16

Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

E
r
r
o
r

×10
−2

Gibbs

Chain

Distances

(c) n = 150, θ = 0.1
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Figure 2: Error (as the sum of the differences between the expected Hj , E[Hj ], and the
actual H̄j , in the Y-axis) of each algorithm as the computational time (X-axis) grows for
different θ and n in MM. Average of 10 repetitions.

0.0 0.5 1.0 1.5 2.0

Sample size ×10
4

0.0

0.5

1.0

1.5

E
rr

o
r

Chain

Gibbs

(a) n = 50, θ1 = 0.1

0.0 0.5 1.0 1.5 2.0

Sample size ×10
4

0

1

2

3

4

5

6

7

E
rr

o
r

Chain

Gibbs

(b) n = 50, θ1 = 2

0.0 0.5 1.0 1.5 2.0

Sample size ×10
4

0.0

0.5

1.0

1.5

2.0
E

rr
o
r

Chain

Gibbs

(c) n = 150, θ1 = 0.1

0.0 0.5 1.0 1.5 2.0

Sample size ×10
4

0.0

0.2

0.4

0.6

0.8

E
rr

o
r

×10
1

Chain

Gibbs

(d) n = 150, θ1 = 2

Figure 3: Error (as the sum of the differences between the expected distance, E[D], and
the actual distances, in the Y-axis) of each algorithm as the computational time (X-axis)
grows for different θ and n in GMM. Average of 10 repetitions.

7.2. Learning

Recall that the MLE for the central permutation of the MM can be obtained in polyno-
mial time with the well known Hungarian algorithm and the dispersion parameter, θ, for
a given σ0 can be computed with a Newton-Raphson algorithm. Therefore, we omit the
MM from the learning experiments and focus thus on the GMM.

We have previously shown that the σLAP is an asymptotically unbiased estimator
for the consensus permutation of a sample from a GMM. Therefore, this experimental
section is designed to show how the quality of the estimated parameters evolve as the
sample size, m, increases. Given that no efficient exact method for the MLE for the
central permutation is known, the evaluation process will consist of generating a sample
from the model centered around σ0, learning the parameters and evaluating them w.r.t.
σ0. W.l.o.g. the consensus permutation is the identity, σ0 = e. Among the proposed
sampling algorithms the Chain is the most accurate and thus the one we will use. The
evaluation criteria can be defined in different ways, we have chosen the following:

1. Compare the estimated central permutation and that which generated the sample

imsart-bj ver. 2014/10/16 file: mallows_hamming_R2.tex date: September 30, 2016



24 E. Irurozki et al.

0 2 4 6 8 10 12 14 16

Time (sec)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
r
r
o
r

×10
−2

Gibbs

Chain

(a) n = 50, θ1 = 0.1

0 2 4 6 8 10 12 14 16

Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
r
r
o
r

×10
−1

Gibbs

Chain

(b) n = 50, θ1 = 2

0 2 4 6 8 10 12 14 16

Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
r
r
o
r

×10
−1

Gibbs

Chain

(c) n = 150, θ1 = 0.1

0 2 4 6 8 10 12 14 16

Time (sec)

0

1

2

3

4

5

6

7

E
r
r
o
r

×10
−1

Gibbs

Chain

(d) n = 150, θ1 = 2

Figure 4: Error (as the sum of the differences between the expected distance, E[D], and
the actual distances, in the Y-axis) of each algorithm as the computational time (X-axis)
grows for different θ and n in GMM. Average of 10 repetitions.

2. Compare the likelihood of the sample given the parameters that generated the
sample with the likelihood of the sample with those estimated.

The evaluation procedure for each particular setting of n and θ is as follows: Generate
several samples of size m = 1000, 2000, 3000, . . . , 9000, 10000 with the Chain sampling
algorithm. Estimate σLAP and then:

1. Measure the Hamming distance between the actual and the estimated central per-
mutations, d(σLAP , σ0).

2. Obtain the associated dispersion parameters for σLAP and compute the likelihood
of the sample given σLAP , denoted as LLAP . Compute the likelihood of the sample
given the parameters that generated the distribution, L0. The relative error of
LLAP is given by

LLAP − L0

m LLAP

(7.1)

The sample size m in the denominator is aimed to put in the same scale the
likelihood for different samples sizes.

The parameter setting is as follows. The number of items in the permutations consid-
ered are n ∈ {5, 50, 100, 150}. The first of the dispersion parameters is θ1 ∈ {0.1, 0.5, 1, 2, 3}
while the rest are set such that θj = θ1 −(j−1)(θ1/2(n−1)) for j > 1, i.e. θ1 is the largest
parameter while the value of the rest decrease linearly to θn = θ1/2. For each parameter
configuration 10 experiments are run and the average results of them are given. W.l.o.g.
the central permutation is the identity.

Results for GMM Figure 5 shows the evolution of the likelihood as the sample size
grows, where the error is measured as shown in Equation (7.1). Each plot includes the
results of every dispersion parameter of a given n. The plots clearly show that as m
increases the error in the likelihood decreases. Even in the cases where the estimated
central permutation is correct, the estimated dispersion parameters are better estimated
with larger sample sizes, resulting in a better likelihood.

It is important to note that the results are only comparable for the instances of the
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Figure 5: Evolution of the error of the estimated parameters for GMM as m grows.

same n and θ. This means that even though the results of an instance of parameters n
and m have smaller error for small values of θ than for large values of θ, we can not state
that the former results are better than the latter.

7.3. Real data experiments

In order to demonstrate the applicability of the GMM under the Hamming distance,
we propose an example of the context of e-learning and Massive Open Online Courses
(MOOC), which have become very popular lately.

The evaluation of the student is part of every course, including those referred to. One
of the types of exercises that a student can be presented with is a matching question,
in which the student is given two columns of items and the objective is to match each
item in the left column with an item in the right columns. We illustrate the use of the
GMM with the results of a matching question in which a group of people is given a set of
six countries in South-East Asia and six cities (or provinces) of the same area and they
are asked to match each city with the country in which it is situated in less than one
minute. The question is detailed in Table 1. An answer for this test can be written as a
permutation σ where σ(i) = j means that city j is matched to country i. This question
has been answered by 37 people of similar age, geographic location and education level
and the results can be accessed in https://github.com/isg-ehu/ekhine.irurozki.

The analysis of the results starts by counting how many people match each country
with each city. This summary is given by the frequency matrix, Table 2, in which entry
Mi,j represents how many people matched country i with city j.

Let us now fit a GMM under Hamming to the given sample with the PerMallows pack-
age, which is freely available online, see Appendix E. The resulting model has parameters
σ0 = 365124 and θ = (1.3898382, 0.1666533, 2.6922244, 0.7526361, 0.3282186, 2.3546746).

Note that the consensus matching of the distribution, σ0, is also the most frequent
matching in the sample with 9 repetitions. Moreover, σ0 is also the correct answer. The
dispersion parameters can be interpreted as a measure of the agreement of the population
in matching each item. In particular, for a consensus permutation such that σ0(i) = j, the
higher θj , the more people situated city j in country i. Note that the largest dispersion
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Countries Cities and regions

A: Indonesia 1: Ho Chin Min
B: Thailand 2: Vientian
C: Cambodia 3: Bali
D: Vietnam 4: Penang
E: Laos 5: Phnom Penh
F: Malaysia 6: Phuket

Table 1. Matching question: assign every city in
the left column with the country of the right

column in which it is situated.

0.02 0.00 0.81 0.08 0.08 0.00
0.00 0.08 0.08 0.02 0.05 0.75

0.16 0.16 0.00 0.24 0.35 0.08
0.56 0.21 0.05 0.13 0.02 0.00
0.10 0.32 0.02 0.08 0.35 0.10
0.13 0.21 0.02 0.43 0.13 0.05

Table 2. Frequency matrix, Mi,j counts the
number of permutations in the sample σ in which

σ(i) = j.

parameter is θ3, meaning that the assignment of Indonesia-Bali (A-3) is the most frequent
in the sample among those assignments in the central matching.

A more detailed analysis of the dispersion parameters consists of checking whether
there is any relation between the amount the people in the population that correctly
matched the pair city-country with the importance of the country as a touristic desti-
nation. For this last measure we have considered the number of tourist arrivals in 2015.
This data is provided by the World Tourism Organization (UNWTO), the United Na-
tions agency responsible for tourism [48], in its yearly publication UNWTO Tourism
Highlights 2016 Edition.

The parameters θ3 and θ6 are the highest in θ, which means that there is a strong
belief in the population that Bali and Phuket belong to Indonesia and Thailand respec-
tively. This is supported by the fact that Indonesia and Thailand are the third and first
destinations among the six considered. On the other hand, θ5 and θ2 are the smallest
in θ, which means that the pairs Cambodia-Phnom Penh and Laos-Vientian are those
which a smallest fraction of people guessed. Again, this is supported by the fact that
Cambodia and Laos are also the two least visited countries among the six considered.

Having a distribution over the results of the matching question allows us to calcu-
late, for example, the probability that a respondent does not guess the matching of any
item. Also, we could be interested in knowing if a respondent has answered uniformly
at random, i.e., if the respondent’s matching is more likely to come from the uniform
distribution than from the distribution of the population.

We have stated that the population that answered this matching question is homo-
geneous in the sense that they have similar age, education level, etc. However, the dis-
tributions introduced in this paper could be the basis for developing methods to find
the different clusters in the population, similarly to [4], where a clustering method for
rank data –using the MM and GMM under the Kendall’s-τ distance– is proposed. Other
examples can be found in the literature, among which we highlight [32] and [41].

8. Conclusions

The MM under the Hamming distance can be thus thought as a probability model on
matchings. In this situation, there is a “correct” matching and any other matching is less
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probable as its similarities with the correct one decrease. The GMM models situations
in which the correct matching of certain items is more important than the matching of
others.

The computation of the partition function is usually the bottleneck of the MM and
GMM. The first result presented in this paper is an efficient expression of the partition
function for the GMM under the Hamming distance. This expression is the key to ef-
ficiently compute the expected distance, the expected number of fixed points and the
marginal and conditional probabilities.

We propose three different sampling algorithms. The Gibbs sampler is an adaptation
of the well known Monte Carlo algorithm. It is very fast but it generates samples from
approximations to the MM and GMM of interest. The Chain sampling algorithm, which
can generate samples from MM and GMM, makes use of the well known chain rule for
probability. The chain rule computes the joint distribution using conditional probabilities.
Therefore, our proposed method to compute conditional probabilities is crucial for this
sampling algorithm. The last proposed sampling algorithm is the Distances, which is
based on counting and u.a.r. generating permutations at a given distance. Thus, it has
a very strong combinatorial basis. It is a fast and accurate algorithm which can only
generate samples from a MM. Summarizing, the experimental evaluation we strongly
recommend the Distances sampler for the generation from the MM and the Chain sampler
for the generation from the GMM.

Regarding the learning process, we show how to estimate the parameters of a sample
from a MM in polynomial time. Despite the complexity of the estimation of GMM not
being known, we conjecture that it is NP-complete. We propose a very efficient learn-
ing algorithm and we show that the estimated parameters are asymptotically unbiased
estimators of the real ones.

Given that the popularity of the MM and GMM is due to its use in the ranking domain
-and under the Kendall’s-τ distance, we have discussed the similarities and differences of
rankings and matchings or Kendall’s-τ and Hamming throughout the paper.

We have tried to take a step towards the popularization of the Hamming distance-
based probability models for permutations by providing diverse, efficient and accurate
algorithms for the most critical operations for distributions: calculating the probability,
marginalizing, conditioning, computing the expectation and, probably most important,
sampling and learning.
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