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Abstract

We supplement the determinantal and Pfaffian bounds of [4] for many-body localization of
quasi-free fermions, by considering the high dimensional case and complex-time correlations.
Our proof uses the analyticity of correlation functions via the Hadamard three-line theorem. We
show that the dynamical localization for the one-particle system yields the dynamical localization
for the many-point fermionic correlation functions, with respect to the Hausdorff distance in the
determinantal case. In [4], a stronger notion of decay for many-particle configurations was used
but only at dimension one and for real times. Considering determinantal and pfaffian correlation
functionals for complex times is important in the study of weakly interacting fermions.
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1 Introduction
Since a few years, the problem of (Anderson) localization in many-body systems is garnering at-
tention. The mathematical understanding of this phenomenon for interacting quantum particles, as
adressed in 2006 by [1] for weakly interacting fermions at small densities, is a long-term goal. In
2009, [2,3] contributed first rigorous results. In 2016, an exponential decay of many-particle correla-
tions was proven for quasi-free fermions in one-dimensional lattices with disorder [4]. Via the Jordan-
Wigner transformation, this includes the disordered XY spin chains. This last paper has attracted
much attention and it has already been cited many times in one and a half year. See, e.g., [5–13].

As pointed out in [4], it is an interesting open question (a) whether [4, Theorems 1.1 and 1.2] can
be generalized to higher dimensions. Another open question (b) is their generalization for complex-
time correlation functions. This last point is relevant because such correlation functions (of quasi-free
fermions) can be useful to study localization of weakly interacting fermion systems on lattices. In
fact, (quasi-free) complex-time correlation functions appear in the perturbative expansion of (full)
correlations for weakly interacting systems. See, for instance, [14, Section 5.4.1].

By considering the many-body localization in the sense of the Hausdorff distance, like in [3], we
propose an answer to both questions (a) and (b), using the Hadamard three-line theorem (Section 4).
See Corollary 2.3, which, together with Theorem 2.2, is our main result on determinantal correlation
functionals. In a similar way, we also prove the decay of complex-time Pfaffian correlation functionals
with respect to a splitting width (like [3, Equation (5.9)]) of particle configurations. This is a version
of [4, Theorem 1.4] which holds true at any dimension d ∈ N. See Theorem 3.1.
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2 Decay of Determinantal Correlation Functionals

2.1 Setup of the Problem and Main Results
(i): Let d ∈ N. For a fixed parameter ε ∈ (0, 1], we define

dε(X1,X2)
.
= max

{
max
x1∈X1

min
x2∈X2

|x1 − x2|ε , max
x2∈X2

min
x1∈X1

|x1 − x2|ε
}
, X1,X2 ⊂ Zd, (1)

which is the well-known Hausdorff distance between the two sets, associated with the metric (x1, x2) 7→
|x1 − x2|ε on Zd.
(ii): We consider (non-relativistic) fermions in the lattice Zd with arbitrary finite spin set S. Thus,
we define the one-particle Hilbert space to be h

.
= `2

(
Zd;CS

)
, the canonical orthonormal basis

{ex,σ}(x,σ)∈Zd×S of which is

ex0,σ0(x, σ)
.
= δx,x0δσ,σ0 , x, x0 ∈ Zd, σ, σ0 ∈ S. (2)

(iii): Let (Ω,F, a) be a standard1 probability space. As is usual, E[ · ] denotes the expectation value
associated with the probability measure a. We consider F-measurable families {Hω}ω∈Ω ⊂ B (h) of
bounded one-particle Hamiltonians satisfying the following (one-body localization) assumption, at
fixed β ∈ R+:

Condition 2.1
There is a Borel set I ⊂ R as well as constants ε ∈ (0, 1], D and µ ∈ R+ such that, for all x1 ∈ Zd
and R > 0, ∑

x2∈Zd:|x1−x2|ε≥R

E

[
sup
z∈Sβ

max
σ1,σ2∈S

∣∣∣∣∣
〈
ex1,σ1 ,

eizHωχI (Hω)

1 + eβHω
ex2,σ2

〉
h

∣∣∣∣∣
]
≤ D e−µR, (3)

where
Sβ

.
= R− i [0, β] , β ∈ R+, (4)

χI is the characteristic function of the set I , and |x1 − x2| the euclidean distance between the lattice
points x1, x2 ∈ Zd.

This assumption is similar to the so-called strong exponential dynamical localization in I , see,
e.g., [15, Definition 7.1]. Note that, for ε ∈ (0, 1], (x1, x2) 7→ |x1 − x2|ε defines a translation
invariant metric on the lattice Zd. Observe also that, for all β ∈ R+ and z ∈ Sβ , the function
λ 7→ |ezλ

(
1 + eβλ

)−1 | on R is bounded by 1. In particular, the left-hand side of (3) is bounded by
the eigenfunction correlator [15, Eq. (7.1)]. Condition 2.1 replaces [4, Eq. (1.19)], noting that

ρ (s, t) =
ei(t−s)Hω

1 + eβHω
, s, t ∈ R, (5)

is the main example they have in mind [4, Eq. (2.37)].

(iv): Let CAR(h) be the CAR C∗–algebra generated by the unit 1 and {a(ϕ)}ϕ∈h. For any A1, A2 ∈
CAR(h) and any z1, z2 ∈ C, we define

Oz1,z2 (A1, A2)
.
=

{
A1A2 if Im (z1) ≤ Im (z2) ,
−A2A1 if Im (z1) > Im (z2) .

(6)

1I.e., F is the Borel σ-algebra of a Polish space Ω.
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(v): For any β ∈ R+ and ω ∈ Ω, we define the (gauge invariant) quasi-free state ρω ≡ ρβ,ω by the
condition

ρω (a(ϕ1)∗a(ϕ2)) =

〈
ϕ2,

1

1 + eβHω
ϕ1

〉
h

, ϕ1, ϕ2 ∈ h. (7)

This state is the unique KMS state at inverse temperature β ∈ R+ associated with the unique strongly
continuous group {τ (ω)

t }t∈R of (Bogoliubov) automorphisms of CAR(h) satisfying

τ
(ω)
t (a (ϕ)) = a(eitHωϕ) , t ∈ R, ϕ ∈ h. (8)

Note that, for all ϕ ∈ h, the maps

t 7→ τ
(ω)
t (a (ϕ)) and t 7→ τ

(ω)
t (a (ϕ)∗)

on R uniquely extend to entire functions: For any z ∈ C and ϕ ∈ h,

τ (ω)
z (a (ϕ)∗)

.
= a(eizHωϕ)∗ and τ (ω)

z (a (ϕ))
.
= a(eizHωϕ). (9)

Observe additionally that, for any z1, z2 ∈ C and ϕ1, ϕ2 ∈ h,

ρω
(
Oz1,z2

(
τ (ω)
z1

(a(ϕ1)∗), τ (ω)
z2

(a(ϕ2))
))

(10)

=


〈
ϕ2,

ei(z1−z2)Hω

1+eβHω
ϕ1

〉
h

if Im (z1) ≤ Im (z2) ,

−
〈
ϕ2,

e(β+i(z1−z2))Hω

1+eβHω
ϕ1

〉
h

if Im (z1) > Im (z2) .

Below, we show that strong one-body localization, in the sense of Condition 2.1, yields the cor-
responding many-body localization for the quasi-free state ρω, in the sense of the Hausdorff distance,
as stated in Corollary 2.3. This is achieved by estimating, in Theorem 4.1, determinants of the form

det
[
Gω

(
(ϕk, zk) ,

(
ϕN+l, zN+l

))]N
k,l=1

(11)

in terms of the entries of one single row or column. In (11), β ∈ R+, N ∈ N, ϕ1, . . . , ϕ2N ∈ h are
normalized vectors, z1, . . . , z2N ∈ Sβ and

Gω

(
(ϕk, zk) ,

(
ϕN+l, zN+l

)) .
= ρω

(
Ozk,zN+l

(
τ (ω)
zk

(a(ϕk)
∗), τ (ω)

zN+l
(a(ϕN+l))

))
is the two-point, complex-time-ordered correlation function associated with the quasi-free state ρω.

Theorem 2.2
Let {Hω}ω∈Ω ⊂ B (h) be a family of bounded Hamiltonians. For all ω ∈ Ω, β ∈ R+, N ∈ N,
norm-one vectors ϕ1, . . . , ϕ2N ∈ h, and z1, . . . , z2N ∈ Sβ (see (4))∣∣∣det

[
Gω

(
(ϕk, zk) ,

(
ϕN+l, zN+l

))]N
k,l=1

∣∣∣
≤ min

{
min

k∈{1,...,N}

N∑
l=1

∣∣Gω

(
(ϕk, zk) ,

(
ϕN+l, zN+l

))∣∣ , min
l∈{1,...,N}

N∑
k=1

∣∣Gω

(
(ϕk, zk) ,

(
ϕN+l, zN+l

))∣∣} .
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Proof. Fix all parameters of the theorem. By expanding the determinant along a fixed row or column,
for any m ∈ {1, . . . , N},

det
[
Gω

(
(ϕk, zk) ,

(
ϕN+l, zN+l

))]N
k,l=1

(12)

=
N∑
n=1

(−1)m+nGω

(
(ϕm, zm) ,

(
ϕN+n, zN+n

))
× det

[
Gω

(
(ϕk, zk) ,

(
ϕN+l, zN+l

))]
k∈{1,...,N}\{m}
l∈{1,...,N}\{n}

=
N∑
n=1

(−1)m+nGω

(
(ϕn, zn) ,

(
ϕN+m, zN+m

))
× det

[
Gω

(
(ϕk, zk) ,

(
ϕN+l, zN+l

))]
k∈{1,...,N}\{n}
l∈{1,...,N}\{m}

.

Then, the assertion directly follows from Lemma 2.5.

Corollary 2.3
If Condition 2.1 holds true then, for all β ∈ R+,N ∈ N,X1 = {x1, . . . , xN},X2 = {xN+1, . . . , x2N} ⊂
Zd such that |X1| = |X2| = N , and z1, . . . , z2N ∈ Sβ ,

E
[

max
σ1,...,σ2N

∣∣∣det
[
Gω

(
(χI(Hω)exk,σk , zk), (χI(Hω)exN+l,σN+l

, zN+l)
)]N
k,l=1

∣∣∣] ≤ D e−µdε(X1,X2),

where dε(X1,X2) is the Hausdorff distance (1) between the N -particle configurations X1 and X2.
Recall that χI is the characteristic function of the Borel set I and note that the constants ε, D and µ
are exactly the same as in Condition 2.1.

Proof. Combine Condition 2.1 and Theorem 2.2 with Equations (9) and (10).
The analogue of [4, Theorem 1.1], i.e., an estimate like Corollary 2.3 for the many-point corre-

lation functions at fixed ω ∈ Ω, instead of an estimate for their expectation values, easily follows by
replacing Condition 2.1 with a similar bound for a fixed ω ∈ Ω. We omit the details.

The bound of Corollary 2.3 is a version of [4, Theorem 1.2] which holds at any dimension d ∈ N
and for any complex times within the strip Sβ . However, two observations in relation with [4] are
important to mention:

• Since, for any X1,X2,Y1,Y2 ⊂ Zd,

dε(X1 ∪ X2,Y1 ∪ Y2) ≤ max {dε(X1,Y1), dε(X2,Y2)} ,

we have
dε(X ,Y) ≤ d(S)

ε (X ,Y)
.
= min

π∈SN
max

j∈{1,...,N}

∣∣xj − yπ(j)

∣∣ε (13)

for any set X = {x1, . . . , xN} ⊂ Zd and Y = {y1, . . . , yN} ⊂ Zd of N ∈ N (different)
lattice points. Here, SN is the set of all permutations π of N elements. The distance we
use, i.e., the Hausdorff distance (1), is therefore weaker than the symmetrized configuration
distance d

(S)
ε [4, Equation (1.13) and remarks below]. Nevertheless, Corollary 2.3 yields the

main features of localization. Whether Corollary 2.3 holds true, at any dimension, when dε is
replaced with d

(S)
ε is an open question. See also discussions of [3, Section 1.3].
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• The proofs of [4, Theorems 1.1 and 1.2] use that, for allN ∈ N, x1, . . . , x2N ∈ Zd, σ1, . . . , σ2N ∈
S, and t1, . . . , t2N ∈ R, the N ×N matrix

M
.
=
[〈
exN+l,σN+l

, ρ (tN+l, tk) exk,σk
〉
h

]N
k,l=1

defines an operator on CN of norm at most 1. This is true even for complex times, provided that

z1 = · · · = zN ∈ Sβ, zN+1 = · · · = z2N ∈ Sβ, Im (zN) ≤ Im (zN+1) . (14)

(cf. [4, Erratum]). However, this is generally not true when z1, . . . , z2N ∈ Sβ are different from
each other. For this reason, instead of a bound on the norm of M, our proof uses (in an essential
way) the analyticity of correlation functions with respect to complex times.

The results of this section are also reminiscent of [3, Theorem 1.1] where a bound like Corollary
2.3, with the Hausdorff distance but for complex times satisfying (14), can be found for n-particle
correlation functions. Note, additionally, that in [3] a particle interaction is included, but no particle
statistics is taken into account: The n-particle Hilbert space is the full space `2

(
Znd
)
. By contrast, we

consider many-fermion systems, which would correspond in [3, Theorem 1.1] to restrict `2
(
Znd
)

to
its subspace of antisymmetric functions. In this situation, the one-particle localization theory cannot
be directly used, even in the quasi-free fermion case. Moreover, we do not fix the particle number, by
using the grand-canonical setting.

Finally, observe that quasi-free, complex-time-ordered, many-point correlations appear in the per-
turbative expansion of interacting correlation functions. See, e.g., [14, Section 5.4.1]. Therefore, as
a first step towards the proof of localization in fully interacting fermion systems, it is important to
establish localization for these correlations, as stated in Corollary 2.3. For instance, by combining
Corollary 2.3 with [14, Theorem 5.4.4], one can show that a local, weak interaction cannot destroy
the (static) localization of the thermal, many-point correlation functions of quasi-free fermions in
lattices.

2.2 Universal Bounds on Determinants from the Hadamard Three-line Theo-
rem

For any permutation π ∈ Sn of n ∈ N elements with sign (−1)π, we define the monomial Oπ(A1, . . . , An) ∈
CAR(h) in A1, . . . , An ∈ CAR(h) by the product

Oπ (A1, . . . , An)
.
= (−1)π Aπ−1(1) · · ·Aπ−1(n). (15)

In other words, Oπ places the operatorAk at the π(k)th position in the monomial (−1)πAπ−1(1) · · ·Aπ−1(n).
Further, for all k, l ∈ {1, . . . , n}, k 6= l,

πk,l : {1, 2} → {1, 2} (16)

is the identity function if π(k) < π(l), otherwise πk,l interchanges 1 and 2. (Remark that Ozk,zl (6) is
equal to Oπk,l for a conveniently chosen permutation π.) Then, the following identities holds true for
quasi–free states:

Lemma 2.4
Let ρ be a quasi–free state on CAR(h). For anyN ∈ N, all permutations π ∈ S2N and ϕ1, . . . , ϕ2N ∈
h,

det
[
ρ
(
Oπk,N+l

(
a(ϕk)

∗, a(ϕN+l)
) )]N

k,l=1

= ρ
(
Oπ

(
a(ϕ1)∗, . . . , a(ϕN)∗, a(ϕ2N), . . . , a(ϕN+1)

) )
. (17)
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Proof. See [18, Lemma 3.1]. Compare with (28).
Using Lemma 2.4 and the Hadamard three-line theorem (via Corollary 4.2), we obtain a universal

bound on determinants of the form (11):

Lemma 2.5
Fix H = H∗ ∈ B (h). Let the quasi–free state ρ on CAR(h) be the unique KMS state at inverse
temperature β ∈ R+ associated with the unique strongly continuous group {τ t}t∈R of automorphisms
of CAR(h) satisfying (8)-(9) for Hω = H . Then, for any N ∈ N, ϕ1, . . . , ϕ2N ∈ h and z1, . . . , z2N ∈
Sβ (see (4)), ∣∣∣∣det

[
ρ
(
Ozk,zN+l

(
τ zk(a(ϕk)

∗), τ zN+l
(a(ϕN+l))

) )]N
k,l=1

∣∣∣∣ ≤ 2N∏
k=1

‖ϕk‖h .

Proof. Fix all parameters of the lemma and choose any permutation π ∈ S2N such that, for all
k, l ∈ {1, . . . , N},

Im(zk) ≤ Im(zN+l)⇔ π (k) < π (N + l) . (18)

Then, by Lemma 2.4,

det
[
ρ
(
Ozk,zN+l

(
τ zk(a(ϕk)

∗), τ zN+l
(a(ϕN+l))

) )]N
k,l=1

(19)

= ρ
(
Oπ

(
τ z1(a(ϕ1)∗), . . . , τ zN (a(ϕN)∗), τ z2N (a(ϕ2N)), . . . , τ zN+1

(a(ϕN+1))
) )
.

Define the entire analytic map Υ from C2N to C by

Υ(ξ1, . . . , ξ2N)
.
= ρ
(
Oπ

(
τ ξ1+···+ξ2N−π(1)+1

(a(ϕ1)∗), . . . , τ ξ1+···+ξ2N−π(N)+1
(a(ϕN)∗),

τ ξ1+···+ξ2N−π(2N)+1
(a(ϕ2N)), . . . , τ ξ1+···+ξ2N−π(N+1)+1

(a(ϕN+1))
))
. (20)

Now, impose additionally that the permutation π of 2N elements used in (19)-(20) satisfies, for any
k, l ∈ {1, . . . , N}, k 6= l, the conditions

Im(zk) < Im(zl)⇔ π (k) < π (l) ; Im(z2N−k) < Im(z2N−l)⇔ π (2N − k) < π (2N − l) .

Ergo, by (18),

Im(zπ−1(1)) ≤ · · · ≤ Im(zπ−1(N)) ≤ Im(zπ−1(2N)) ≤ · · · ≤ Im(zπ−1(N+1)) (21)

and, by (19)-(20), the assertion follows if we can bound the function Υ on the tube T2N defined below
by (33) for n = 2N . Since Υ is uniformally bounded on T2N , it suffices to bound the function Υ on
the boundary

∂T2N
.
=

{
(ξ1, . . . , ξ2N) ∈ C2N : ∀j ∈ {1, . . . , 2N}, Im(ξj) ∈ {−β, 0} ,

2N∑
j=1

Im(ξj) ∈ {−β, 0}

}
,

by Corollary 4.2. By the KMS property [14, Section 5.3.1], note that, for all t1, . . . , t2N ∈ R and
k ∈ {1, . . . , 2N},

Υ(t1, . . . , tk−1, tk − iβ, tk+1, . . . , t2N) = Υ(tk+1, . . . , t2N , t1, . . . , tk)

while

sup
(ξ1,...,ξ2N )∈R2N

|Υ(ξ1, . . . , ξ2N)| ≤
2N∏
k=1

‖ϕk‖h .
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As a consequence,

sup
(ξ1,...,ξ2N )∈T2N

|Υ(ξ1, . . . , ξ2N)| = sup
(ξ1,...,ξ2N )∈∂T2N

|Υ(ξ1, . . . , ξ2N)| ≤
2N∏
k=1

‖ϕk‖h (22)

and the assertion follows from (19), (20) and (33).
Observe that estimates like (22) are related to the generalization of the Hölder inequality to non–

commutative Lp–spaces. See, e.g., [19].

3 Decay of Pfaffian Correlation Functionals
An estimate similar to Corollary 2.3 can be obtained for Pfaffians of the two-point correlation func-
tions on the d-dimensional square lattice Zd, by the same methods, because they also can be seen, like
in the proof of Lemma 2.5, as many-point correlation functions of quasi-free fermions.

(i): For a fixed parameter ε ∈ (0, 1] and any subset X ⊂ Zd we define the quantity

`ε(X )
.
= max

x∈X
min

y∈X\{x}
|x− y|ε . (23)

It is a kind of splitting width of the configuration X with respect to the metric (x, y) 7→ |x− y|ε: This
quantity is large whenever isolated points of X are spread in space, but it stays small if the points are
packed in clusters containing at least two points. It is used here to quantify the localization of Pfaffian
correlation functionals. Observe that `ε is similar to the splitting width of a configuration defined
by [3, Equation (5.9)].

(ii): For any N ∈ N, the Pfaffian of a 2N × 2N skew-symmetric complex matrix M is defined by

Pf [Mk,l]
2N
k,l=1

.
=

1

2NN !

∑
π∈S2N

(−1)π
N∏
j=1

Mπ(2j−1),π(2j), (24)

where we recall that S2N is the set of all permutations of 2N elements.

(iii): Let the field operators be defined by

B (ϕ)
.
= a (ϕ)∗ + a (ϕ) , ϕ ∈ h.

For (x, σ) ∈ Zd×S and ϕ = ex,σ or ϕ = iex,σ, we obtain the on-site Majorana fermions of [4, Equation
(1.22)].

Below, we show that strong one-body localization, in the sense of Condition 2.1, yields the local-
ization of many-point correlations of field operators with respect to the quantity (23). This is achieved
by estimating, in Theorem 3.1, Pfaffians of the form

Pf [Gω ((ϕk, zk) , (ϕl, zl))]
2N
k,l=1 (25)

in terms of the entries of one single row. In (25), β ∈ R+, N ∈ N, ϕ1, . . . , ϕ2N ∈ h are normalized
vectors, z1, . . . , z2N ∈ Sβ and

Gω ((ϕk, zk) , (ϕl, zl))
.
= ρω

(
Ozk,zl

(
τ (ω)
zk

(B(ϕk)), τ
(ω)
zl

(B(ϕl))
))

is the two-point, complex-time-ordered correlation function of field operators associated with the
quasi-free state ρω. See Section 2.1. Observe that the matrix in the Pfaffian of (25) is skew-symmetric,
by construction.
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Theorem 3.1
Let {Hω}ω∈Ω ⊂ B (h) be a F-measurable family {Hω}ω∈Ω ⊂ B (h) of bounded (one-particle) Hamil-
tonians satisfying Condition 2.1. Then, for all ω ∈ Ω, β ∈ R+, N ∈ N, X = {x1, . . . , x2N} ⊂ Zd
such that |X | = 2N , and z1, . . . , z2N ∈ Sβ (see (4)),

E

 max
p1,...,p2N∈{0,1}
σ1,...,σ2N∈S

Pf [Gω ((ipkχI(Hω)exk,σk , zk) , (i
plχI(Hω)exl,σl , zl))]

2N
k,l=1

 ≤ 2D e−µ`ε(X ).

The constants ε, D and µ are exactly the same as in Condition 2.1.

Proof. The proof uses similar arguments as for determinantal correlation functionals. We present
them in four steps:

Step 1: Similar to determinants, Pfaffians have a Laplace expansion with respect to any row of its
matrix:

Pf [Gω ((ϕk, zk) , (ϕl, zl))]
2N
k,l=1 =

2N∑
n=1,n6=m

(−1)m+n+1+θ(m−n) Gω ((ϕm, zm) , (ϕn, zn)) (26)

×Pf [Gω ((ϕk, zk) , (ϕl, zl))]k∈{1,...,2N}\{m}
l∈{1,...,2N}\{n}

for any β ∈ R+, N ∈ N, m ∈ {1, . . . , 2N}, ϕ1, . . . , ϕ2N ∈ h and z1, . . . , z2N ∈ Sβ , where θ is the
Heaviside step function. Compare (26) with (12).

Step 2: Since ρω is, by definition, a quasi-free state, observe that

ρω (B (ϕ1) · · ·B (ϕ2N)) = Pf
[
ρω
(
Oidk,l (B(ϕk),B(ϕl))

)]2N
k,l=1

, (27)

for all N ∈ N and ϕ1, . . . , ϕ2N ∈ h, where idk,l is defined by (16), π being the neutral element id
of the permutation group S2N . See, e.g., [16, Equations (6.6.9) and (6.6.10)]. For any permutation
π ∈ S2N (N ∈ N), Equation (27) can be written as

ρω

(
Oπ (B (ϕ1) , . . . ,B (ϕ2N))

)
= Pf

[
ρω
(
Oπk,l (B(ϕk),B(ϕl))

)]2N
k,l=1

, (28)

where Oπ and the permutation πk,l are defined by (15) and (16), respectively. See, e.g., [17, Proposi-
tion B.2]. Compare (28) with Lemma 2.4.

Step 3: Then, given 2N ∈ N complex numbers z1, . . . , z2N ∈ Sβ (β ∈ R+), similar to (21), we choose
a permutation π ∈ S2N such that, for any k, l ∈ {1, . . . , 2N}, k 6= l,

π (k) < π (l)⇔ [Im(zk) < Im(zl)] ∨ [(Im(zk) = Im(zl)) ∧ (k < l)] .

Using the Hadamard three-line theorem (via Corollary 4.2), we thus obtain a universal bound on
Pfaffians of the form∣∣∣∣Pf

[
ρω (Ozk,zl (τ zk (B(ϕk)) , τ zl (B(ϕl))))

2N
k,l=1

]N
k,l=1

∣∣∣∣ ≤ 2N∏
k=1

‖ϕk‖h (29)

for any N ∈ N, ϕ1, . . . , ϕ2N ∈ h and z1, . . . , z2N ∈ Sβ . To get this inequality, we have used that

‖B(ϕ)‖CAR(h) = ‖ϕ‖h , ϕ ∈ h.

Compare (29) with Lemma 2.5.
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Step 4: We infer from (26) and (29) that

∣∣∣Pf [Gω ((ϕk, zk) , (ϕl, zl))]
2N
k,l=1

∣∣∣ ≤ 2N∑
n=1,n 6=m

|Gω ((ϕm, zm) , (ϕn, zn))| (30)

for any β ∈ R+, N ∈ N, m ∈ {1, . . . , 2N}, ϕ1, . . . , ϕ2N ∈ h and z1, . . . , z2N ∈ Sβ . By gauge
invariance, Condition 2.1 yield the inequality

∑
x2∈Zd:|x1−x2|ε≥R

E

 sup
z1z2∈Sβ

max
p1,p2∈{0,1}
σ1,σ2∈S

|Gω ((ip1ex1,σ1 , z1) , (ip2ex2,σ2 , z2))|

 ≤ 2D e−µR. (31)

Therefore, the assertion is a direct consequence of Inequalities (30) and (31).
Theorem 3.1 is a version of [4, Theorem 1.4] which holds true at any dimension d ∈ N and for any

complex times within the strip Sβ . A result similar to [4, Theorem 1.3] for the many-point correlation
functions of field operators at fixed ω ∈ Ω, instead of an estimate for their expectation values, easily
follows by replacing Condition 2.1 with a similar bound for a fixed ω ∈ Ω. We again omit the details.

One observation in relation with [4, Theorems 1.3 and 1.4] is important to mention: For any
disjoint partition X1,X2 of X ⊂ Zd, we deduce from (1) and (23) that

`ε(X ) ≤ dε(X1,X2) . (32)

By (13) it follows that, for any disjoint partition X1,X2 of X ⊂ Zd such that |X1| = |X2|,

`ε(X ) ≤ d(S)
ε (X1,X2) .

Note that the right hand side of the above inequality corresponds to [4, Equation (1.27)] when X1 =
{x1, x3, . . . , x2N−1} ⊂ Zd=1 and X2 = {x2, x4, . . . , x2N} ⊂ Zd=1 for 2N ∈ N (different) lattice
points. Therefore, our notion of localization for Pfaffian correlation functionals is weaker than the
one used in [4, Theorems 1.3 and 1.4]. Note, however, that, like `ε(X ), the quantity [4, Equation
(1.27)] stays small if the points of X are packed in clusters containing exactly two points {xk, xk+1},
k = 1, 3, . . . , 2N , independently of how far-apart from each other the clusters are. Therefore, our
notion of localization captures qualitatively the behavior of the one used in [4, Theorems 1.3 and 1.4].

4 Appendix: Log convexity of Multivariable Analytic Functions
on Tubes

Fix β ∈ R+. Let
T1

.
= {ξ ∈ C : Im {ξ} ∈ [−β, 0]} = Sβ,

(see (4)) and f : T1 → C be a bounded continuous function. Define the map B(1)
f : [−β, 0] →

[−∞,∞) by

B
(1)
f (s)

.
= ln

(
sup
t∈R
|f (t+ is)|

)
.

We use the convention ln 0
.
= −∞ and 0 · (−∞)

.
= −∞. Then, the Hadamard three-line theorem [20,

Theorem 12.3] states:

Theorem 4.1
Let β ∈ R+ and f : T1 → C be a bounded continuous function. If f is holomorphic in the interior of
T1 then B(1)

f is a convex function.
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This theorem has the following generalization to holomorphic functions in several variables: For
all n ∈ N, let Kn ⊂ Rn be the simplex

Kn
.
= {(s1, . . . , sn) : s1, . . . , sn ∈ [−β, 0] , s1 + · · ·+ sn ≥ −β}

and define, for all n ∈ N, the “tube”

Tn
.
= {(ξ1, . . . , ξn) ∈ Cn : (Im {ξ1} , . . . , Im {ξn}) ∈ Kn} . (33)

Define further the map B(n)
f : Kn → [−∞,∞) by

B
(n)
f (s1, . . . , sn)

.
= ln

(
sup

(t1,...,tn)∈Rn
|f (t1 + is1, . . . , tn + isn)|

)
with f : Tn → C being a bounded continuous function. Then, we obtain the following corollary:

Corollary 4.2
Let β ∈ R+, n ∈ N and f : Tn → C be a bounded continuous function. If f is holomorphic in the
interior of Tn then B(n)

f is a convex function.

Proof. Fix all parameters of the corollary and assume that f is holomorphic in the interior of Tn.
Take (s1, . . . , sn) ∈ Kn and (s′1, . . . , s

′
n) ∈ Kn. For all (t1, . . . , tn) ∈ Rn, define the function

F(t1,...,tn) : T1 → C by

F(t1,...,tn) (ξ)
.
= f

(
t1 + i(s1(1 + ξβ−1)− s′1ξβ−1), . . . , tn + i(sn(1 + ξβ−1)− s′nξβ−1)

)
.

For all ξ ∈ T1, note that(
t1 + i(s1(1 + ξβ−1)− s′1ξβ−1), . . . , tn + i(sn(1 + ξβ−1)− s′nξβ−1)

)
∈ Tn ,

by convexity of Kn. This function is bounded and continuous on T1, and holomorphic in the interior
of T1. Hence, by Theorem 4.1, for all α ∈ [0, 1],

ln

(
sup
t∈R

∣∣F(t1,...,tn) (t− iαβ)
∣∣) ≤ α ln

(
sup
t∈R

∣∣F(t1,...,tn) (t− iβ)
∣∣) (34)

+(1− α) ln

(
sup
t∈R

∣∣F(t1,...,tn) (t)
∣∣) .

Since ln is a monotonically increasing, continuous function, for all α ∈ [0, 1],

B
(n)
f (αs′1 + (1− α)s1, . . . , αs

′
n + (1− α)sn) = ln

(
sup

(t1,...,tn)∈Rn
sup
t∈R

∣∣F(t1,...,tn) (t− iαβ)
∣∣)

= sup
(t1,...,tn)∈Rn

ln

(
sup
t∈R

∣∣F(t1,...,tn) (t− iαβ)
∣∣) ,

which, by (34), in turn implies that

B
(n)
f (αs′1 + (1− α)s1, . . . , αs

′
n + (1− α)sn) ≤ (1− α)B

(n)
f (s1, . . . , sn) + αB

(n)
f (s′1, . . . , s

′
n)

for all α ∈ [0, 1].
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