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In this Paper we study a Bloch-Torrey regularization of the
Rosensweig system for ferrofluids. The scope of this paper is
twofold. First of all, we investigate the existence and uniqueness
of Leray-Hopf solutions of this model in the whole space R2.
In the second part of this paper we investigate both the long-
time behavior of weak solutions and the propagation of Sobolev
regularities in dimension two
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1. Introduction

The purpose of the present work is the mathematical study of a model describing the hydrodynamics
of ferrofluids, under the action of an applied magnetic field. Ferrofluids are complex liquids
presenting a strong magnetization under the action of a magnetic field. The motion of these fluids
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is complicated by the existence of mesoscale or sub-domain structures: a carrier fluids (water, oil
or other organic solvent) surround a composed of nanoscale particles, such as of magnetite and
hermatite, or some other compounds of iron.

Ferrofluids are purely artificial, and they were invented by the NASA program in 1963 [55]. The
drive to create such a magnetic liquid was to control and direct rocket fuel in outer space. Indeed,
the absence of gravity leaded the fuel to float in the holding tank and it was therefore a challenge
to pump the fuel efficiently into the rocket engine. The pioneristic work of Papell allowed to
convert the nonmagnetic rocket fuel into a fuel having magnetic properties so that it could be
controlled under zero gravity by powerful magnets.

Unlike solids and Newtonian liquids, the model equations for ferrofluids continue to evolve as
new experimental evidence become available. New mathematical descriptions and self-consistent
theories resolve the ensemble of micro-elements, their intermolecular and distortional elastic
interactions, the coupling between the hydrodynamics and the applied electric and magnetic
fields. Thus, there exist several models describing the hydrodynamics of homogeneous micropolar
fluids [39, 51], and we investigate a regularization of Bloch-Torrey type [56] for the Rosensweig
model [36, 45, 46]. For the sake of unified presentation, it is convenient to introduce some
terminology. The local magnetizing field (i.e. the dipole moment per unit volume) is described
through a time-dependent function M taking values from a domain of R3 into the three dimensional
vector space R3 . The description of the ferrohydrodynamic interaction is driven by the equation
governing the magnetic field B and the demagnetizing field H, the Gauss law and the Ampére’s
law

div B(t, x) = F and curl H(t, x) = 0

with H and B vector functions of (t, x) ∈ R+ × Ω and F = F(t, x) the external magnetic field
applied to the system. We consider here nonconduting ferrofluids for which the current density is
null. Furthermore the relation connecting B and H is

B = µ(M + H )
where µ is the permeability of vacuum. For monodispersion of spherical particles, the spin can
be expressed in terms of the inertia k > 0 per unit volume and the the average angular velocity
Ω = Ω(t, x) ∈ R3 of particles about their own center.

The velocity u = u(t, x) of centres of masses of particles obeys a forced incompressible Navier-
Stokes system, with an additional stress tensor, a forcing term modelling the effect that the
magnetic field interacts on the dynamics of the centres of masses of the particles. The final
system is then a combination of the Navier-Stokes equation, the magnetization equation and the
magnetostatic equation. Explicitly the equations, in non-dimensional form, are [6, 43]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0(∂tu + u ⋅ ∇u ) − (η + ζ)∆u + ∇p = µ M ⋅ ∇H + 2ζ curl Ω,

ρk(∂tΩ + u ⋅ ∇Ω ) − η
′∆Ω − λ

′∇div Ω = µM ×H + 2ζ( curl u − 2Ω ),
∂tM + u ⋅ ∇M − σ∆M = Ω ×M − 1

τ
(M − χH ),

div (M +H ) = F,

div u = curl H = 0,

(1)

supported by the initial condition:

(u, Ω, M, H)∣t=0 = (u0, Ω0, M0, H0),
where u0 is free-divergent, H0 has null curl and the couple (M0, H0) also satisfies the Ampére’s
law div (H0(x) + M0(x) ) = F(0, x). The equations are defined in the whole three-dimensional
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space R3 ×R+, and we assume that

F = F(x1, x2, t),
which corresponds to the case of a magnetic field independent of the vertical variable. Under this
hypothesis we introduce the specific family of solutions of the form

u = (u(x1, x2, t), u2(x1, x2, t), 0),
Ω = (0, 0, ω( x1, x2, t) ),
M = (M1(x1, x2, t), M2(x1, x2, t), 0).

Under these hypotheses, we recast the system (1) in the bidimensional form (cf. [45])

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(∂tu + u ⋅ ∇u ) − (η + ζ)∆u + ∇p = µ M ⋅ ∇H + 2ζ
⎛
⎝

∂2ω

−∂1ω

⎞
⎠
,

ρk(∂tω + u ⋅ ∇ω ) − η
′∆ω = µ M ×H + 2ζ( curl u − 2ω ),

∂tM + u ⋅ ∇M − σ∆M =
⎛
⎝

M2

−M1

⎞
⎠

ω − 1

τ
(M − χH ),

div (M +H ) = F,

div u = curl H = 0.

(2)

Here, by an abuse of notation, we identify vector products and the curl operator by means of

M ×H = M1 H2 − H1 M2 and curl u = ∂1u2 − ∂2 u1,

respectively.

The mathematical analysis of ferromagnetic fluid systems is fairly recent, we refer the reader
to [1–10, 46] for several well-posedness results in different domain configurations. In [49] the
second author proved that it is possible to construct infinite-energy solutions for the Shliomis
model (see [51]) uniformly in the entropic relaxation time τ > 0, and studying hence the limit as
τ → 0 recovering hence a singular perturbation problem (c.f. [14–18,21,22,24,33,37,38,45,47,48]
only to mention a handful of works on singular perturbation problems in fluid dynamics).
Our analysis relies basically on energy estimates, so that we will look for weak solutions, which are
defined in a rather standard manner:

Definition 1.1. We say that (u, ω, M, H) is a weak solution of problem (2) if the conditions
below are satisfied

(i) The quad (u, ω, M, H) belongs to L∞(0,T ; L2(R2)) ∩ L2(0,T ; Ḣ1(R2));
(ii) The momentum equation of system (2) holds in the distributional sense: for any compactly

supported ϕ1, in C∞( [0, +∞) ×R2, R2) with div ϕ1 = 0,

ρ ∫
R2

u(t, x) ⋅ ϕ1(t, x)dx + (η + ζ)∫
t

0
∫
R2
∇u(s, x) ∶ ∇ϕ1(s, x)dxds =

= ρ ∫
R2

u0(x) ⋅ ϕ1(0, x)dx + ∫
t

0
ρ ∫

R2
u(s, x) ⋅ ∂tϕ1(s, x)dxds+

+ρ ∫
t

0
∫
R2

u(s, x)⊗ u(s, x) ∶ ∇ϕ1(t, x)dx+

+µ ∫
t

0
∫
R2

(M(s, x) ⋅ ∇H(t, x)) ⋅ ϕ1(s, x)dxds − 2ζ ∫
t

0
∫
R2

ω(s, x) curl ϕ1(s, x)dxds,

for almost any t ∈ (0,T).



4

(iii) The angular momentum equation of system (2) holds in the distributional sense: for any
compactly supported ϕ2 ∈ C∞( [0, +∞) ×R2)

ρk∫
R2

ω(t, x)ϕ2(t, x)dx + (η
′ + ζ)∫

R2
∇ω(t, x) ⋅ ∇ϕ2(t, x)dx =

= ∫
t

0
ρk∫

R2
ω(s, x)∂tϕ2(s, x)dxds + ρk∫

R2
ω0(x)ϕ2(0, x)dx+

+4ζ ρ ∫
t

0
∫
R2

ω(s, x)ϕ2(s, x)dxds = ρkρ ∫
t

0
∫
R2

ω(s, x)u(s, x) ⋅ ∇ϕ2(t, x)dxds+

+ µρ ∫
t

0
∫
R2

M(s, x) ×H(t, x)ϕ2(s, x)dxds + 2ζ ∫
R2

u(s, x) ×∇ϕ2(s, x)dxds,

for almost any t ∈ (0,T).
(iv) The magnetizing equation and the magnetostatic equations hold in the distributional

sense: for any compactly supported ϕ3 ∈ C∞( [0, +∞)×R2,R2) and compactly supported
ϕ4 in C∞(R2,R2)

∫
R2

M(t, x) ⋅ ϕ3(t, x)dx + (η + ζ)∫
t

0
∫
R2
∇M(s, x) ∶ ∇ϕ3(s, x)dxds =

= ∫
t

0
∫
R2

M(s, x) ⋅ ϕ3(s, x)dxds + ∫
R2

M0(x) ⋅ ϕ3(0, x)dx+

+ ∫
t

0
∫
R2

u(s, x)⊗M(s, x) ∶ ∇ϕ3(s, x)dxds + ∫
t

0
∫
R2

ω(s, x)M(s, x) × ϕ3(s, x)dxds−

− 1

τ
∫

t

0
∫
R2

(M(s, x) −H(s, x)) ⋅ ϕ3(s, x)dxds,

for almost any time t ∈ (0,T).

The solution is said to be global if the previous properties are satisfied for all fixed time T > 0.

We state our first main result. It asserts the existence and uniqueness of weak solutions to our
system, for any initial datum and external force.

Theorem 1.2. For any initial datum (u0, ω0, M0, H0) in L2(R2) and any external force

F ∈ L2
loc(R+; L2(R2)) ∩W 1,2

loc (R+, Ḣ−1(R2)),
there exists a unique global in time weak solution (u, ω, M, H) to system (2) in the sense of
Definition 1.1. Moreover for any T > 0, such a solution satisfies the following energy inequality, for
all time t ∈ [0,T ]:

E(t) + ∫
t

0
D(s)ds ≤ C (E(0) + ∫

t

0
[∥ (F(s) ∥2

L2(R2) + ∥ (F(s), ∂tF(s) ) ∥2
Ḣ−1(R2)]ds) (3)

where the energy E(t) and its dissipation D(t) are determined by

E(t) = ρ ∥u ∥L2
x
+ ρk∥ω ∥2

L2
x
+ µ ∥H(t) ∥2

L2
x
+ ∥M ∥2

L2
x
,

D(t) = ∥∇u ∥L2
x
+ ∥∇ω ∥2

L2
x
+ ∥∇M ∥2

L2
x
+ ∥div M ∥2

L2
x
+ ∥M ∥2

L2
x
+ ∥H ∥2

L2 .

The existence part of weak solutions will be studied in Section 2; the methodology adopted
is a rather classical use of Faedo-Galerkin approximation scheme, with an interesting technical
challenge. The approximated system reads in fact as

∂tVn = gn,

where Vn ∈ L2
loc (R+; H1) (we refer to the uniform energy bounds provided in [46]) while we can

say that gn ∈ L1
loc (R+; H1) only. Such low time-regularity does not allows us to use compactess
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theorems such as Aubin-Lions lemma [11] in order to deduce that the sequence (Vn)n is strongly
compact in some suitable topology. In this setting hence we use an approach similar to the one
adopted in [32, pp. 69–71] (we refer as well to [10]); such approach consists in providing a uniform
bound for the sequence

((1 + ∣∂t ∣γ)Vn)n , γ ∈ (0,
1

4
) ,

which is indeed less restrictive than providing a uniform bound for the sequence (∂tVn)n. We
prove (and we refer to Section 2 and Appendix A for details) that, given any 0 < T < ∞, if
the sequence ((1 + ∣∂t ∣γ)Vn)n is uniformly bounded in L2 ([0,T ] ; H−N) , N ≫ 1 and (Vn)n is

uniformly bounded in Vn ∈ L2 ([0,T ] ; H1) then the sequence (Vn)n is compact in the space

L2 ([0,T ] ; Hs
loc) , s ∈ (−N,1). Our approach is strictly based on suitable bounds of the time

fractional derivative of the flow u in certain Lebesgue spaces Lp, with p > 1. This is mainly due
to our interest in using a classical Aubin-Lions lemma, whose result does not hold in the critical
case p = 1. We are aware nevertheless about some extension of such a Lemma (cf. [52]) where
the case p = 1 is considered. We claim that under suitable modifications to our approach, the
extension of the Lemma allows to prove existence of global-in-time weak solutions. For the sake of
a clear presentation, we do not pursue this approach and we proceed with the fractional derivative
technique which eventually will lead to the classical Aubin-Lions lemma.
The main difficulties associated with treating the uniqueness of weak solutions for system (2) are
related in first place to the presence of the Navier-Stokes part, in particular to the conservative
contribution of the Lorentz force. We should essentially think of the system (2) as an highly
non-trivial perturbation of a Navier-Stokes system. It is known that for Navier–Stokes alone the
uniqueness of weak solutions in 2D can be achieved through rather standard arguments, while in
3D it is a major problem.
The extended system that we deal with has an intermediary position. Indeed, the non-linear
perturbation produced by the presence of the Lorentz force generates a significant technical
challenge, which should first be attributed to the low regularities available both for the magnetizing
and demagnetizing field, M and H. To deal with this issue and estimate the difference between
two solutions with same initial data, a rather common way is to introduce a weak norm being
below the natural spaces in which the weak solutions are defined. This approach is not new in
literature, and it was used before in the context of the hydrodynamics of liquid cyrstals [29] as well
as for the usual Navier-Stokes system in [20] and [34]. We mention that evaluating the difference
of two solutions at the same regularity level of the standard energy is not enough for our purpose.
Indeed it would only allow to prove a weak-strong uniqueness result, along the same lines of [46].

In our case, for technical convenience we use a homogeneous Sobolev space, namely Ḣ−1/2(R2).
In particular, we are allowed to proceed with a negative regularity since the difference between two
weak solution (with same initial data) is null at initial time t = 0, [43]. One of the main reasons
for choosing the homogeneous setting is a specific product law, reflecting the continuity of the
product within the functional spaces

Ḣs (Rd) × Ḣt (Rd) → Ḣs+t−d
2 (Rd)

under suitable conditions for s and t.
Our main work is then to determine a standard Gronwall inequality of the form

Φ′(t) ≤ f (t)Φ(t),
f (t) being a locally integrable function and Φ(t) being a norm between the difference of two
solutions. To this end, we need to overcome certain difficulties that are specific to this system.
These are mainly of two different types, being related to:
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● Controlling the “extraneous” maximal derivatives, such as the highest derivatives of M
and H in the u-equation.

● Control any nonlinear terms that easily cancel at an L2(R2) energy level, but persist in

Ḣ−1/2(R2), because of the negative regularity.

The first issue is dealt with a specific cancellation property of the coupling system, that allows
to simplify the worst terms, when considering certain physically meaningful combinations. The
second one is dealt with by the mentioned product law in Sobolev space: introducing suitable
indexes of regularity, we gather a standard Gronwall inequality, being careful to make use only of
the norms provided by weak solutions.

Section 4 is instead dedicated to the qualitative analysis of the long-time dynamic of the global
weak solutions constructed in Theorem 1.2. The system being dissipative, we address the rate of
convergence of solutions towards equilibrium. In particular we prove the following result:

Theorem 1.3. Let (u0, ω0, M0, H0) be in L2(R2) and F in W 1,2
loc (R+, Ḣ−1(R2)). Denote by

(u, ω, M, H) the unique weak solution to (2) given by Theorem 1.2. Suppose that there exists a
positive constants K and an exponent η ∈]0,1[ such that, for almost every t > 0 one has

∥F(t) ∥2
L2(R2) + ∥F(t) ∥2

Ḣ−1(R2) + ∥∂tF(t) ∥2
H−1(R2) ≤ K

(1 + t)1+η
(4)

Then, for any α < η there exists a constant Cα such that the following decay property is satisfied

∥ (u(t), ω(t), M(t), H(t)) ∥L2(R2) ≤
C

(1 + t)α
. (5)

Remark 1.4. Theorem 1.3 requires different regularities of the forcing term F to decay with the
same time rate, as in (4). This condition can be seen as a reminder of the L2-energy bound of
system (2) which is stated in (3). As we will see in Section 2 and Section 4, the three distinct
regularities of F in L2 and H−1 with ∂tF in L2 allow to bound from above the L2-norm of the
considered state variables, as in (5).

We would like to point out that, under the integrability hypothesis (26), Theorem 1.3 asserts that
the weak solutions constructed in Theorem 1.2 belong to the space L2 (R+; L2 (R2)). The approach
we use in order to prove Theorem 1.3 is reminiscent to the one developed by M. Schonbek in [44]
in order to deduce decay bounds for Leray-Hopf solutions of the incompressible Navier-Stokes
equations. The main strategy is the one of the Fourier splitting method, which express how the
low frequencies of solutions determine the entire behavior, when considering a sufficient large time.
The energy of solutions decays at the rate expected from the linear part: this fact is achieved by
means of a Fourier localization within certain neighborhoods of the origin, whose sizes are time
dependent, being first related to the decays of the forcing term F .

At last we study the propagation of higher order Sobolev regularity for the system (2). As already
mentioned system (2) can be thought as a highly-nontrivial perturbation of the incompressible
Navier-Stokes equations, in such setting we expect hence that the Leray-Hopf solutions constructed
in Theorem 1.2 are solutions with minimal regularity for the parabolic system (2), in the sense
that the regularity required in order to construct weak solutions is the same required in order to
construct solutions for the 2D incompressible Navier-Stokes equations, below such threshold we
cannot in fact expect to construct solutions to (1). The main point is to establish a priori estimates,
since both existence and uniqueness of solutions at this level of regularity are a straightforward



7

adaptation of the analysis previously carried out. We first introduce the the following quantities

Es(t) ∶= ρ∥u(t) ∥2
Ḣs(R2) + ρk ∥ω(t) ∥2

Ḣs(R2) + ∥M(t) ∥2
Ḣs(R2)

Es(0) ∶= ρ∥ u0 ∥2
Ḣs(R2) + ρk ∥ ω0 ∥2

Ḣs(R2) + ∥ M0 ∥2
Ḣs(R2) ,

together with the dissipation

Ds(t) ∶= ∥∇u(t) ∥2
Ḣs(R2) + ∥∇ω(t) ∥2

Ḣs(R2) + ∥∇M(t) ∥2
Ḣs(R2).

We then aim at proving the following statement:

Theorem 1.5. Let us assume the initial data U0 ∶= (u0, ω0, M0, H0) is in the non-homogeneous
space Hs(R2), for a positive real s > 0. Assuming the source term F in L2

loc(R+,Hs(R2)) ∩
W 1,2

loc (R+,Hs−1(R2)). Let (u, ω, M, H) be the unique solution of system (2) given by Theorem
1.2. Then

(u, ω, M, H) ∈ L∞loc(R+,Hs(R2)) ∩ L2
loc(R+,Hs+1(R2))

and the following dissipation formula holds true:

1

2
Es(t) + ∫

t

0
Ds (t′)dt′ ≤ Ψs(U0, F, t),

where

Ψs(U0, F, t) = (1

2
Es(0) + C∫

t

0
[∥F (t′) ∥2

Ḣs + ∥F (t′) ∥2
Ḣs−1 + ∥∂tF (t′) ∥2

Ḣs−1 ]dt′),

with C, a suitable positive constant which depends on.

Compared to the main result proved in [46] we can immediately remark that Theorem 1.5
improves the hi-regularity bounds in two ways;

● At first Theorem 1.5 provides uniform bounds for any fractional Sobolev regularity Hs, s >
0. On the contrary in [46] the propagation of hi-order regularity is proved for any
Hk, k ∈ N, k ≥ 1 only. Such generalization of the result is possible thanks to the tools of
paradifferential calculus which will be used in the proof of Theorem 1.5.

● Secondly we remark that, reading in detail the proof provided in [46], that the bound
provided in [46] are of the form

∥U (t)∥Hk + c∫
t

0
∥∇U (t′)∥Hk dt′ ≲ ẽk (t) ,

where ẽk is defined inductively as

⎧⎪⎪⎨⎪⎪⎩

ẽ0 (t) =C et ,

ẽn+1 (t) =C exp{ C ẽn (t) } ,
while Theorem 1.5 asserts that we can bound uniformly any Sobolev norm with a uniform
bound, improving the bounds provided in [46].

The present paper is hence so structured

● In Section 2 we prove by compactness methods that there exist Leray-Hopf solutions for
the system 2. As already mentioned above such result is attained proving that the sequence
(Vn)n of approximated solutions (in the sense of a Galerkin scheme, see system (10))

of system (2) are bounded in the space L2 ([0,T ] ; H1), and proving that the sequence

(∣∂t ∣γ Vn)n , 0 < γ < 1/4 is uniformly bounded in L2 ([0,T ] ; H−N) , N ≫ 1, whence Vn ⇀ V
in Hγ ([0,T ] ; H1,H−N) (see (7)) and thanks to Theorem 2.1 Vn → V in L2

loc (R2 ×R+).
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● Section 3 is dedicated to prove that the solutions constructed in Section 2 are unique in
Ḣ−1/2, concluding the proof of Theorem 1.2 initiated in Section 2. The proof consists in a
careful and rather technical energy estimate performed in the lower regularity norm Ḣ−1/2.

● Section 4 is devoted to the proof of Theorem 1.3, under suitable assumption of decay
on the external magnetic fields (see (26)) we prove that the (unique) weak solution
constructed in Theorem 1.2 decay as ⟨t⟩−α for some α > 0. This entails a decay result for
the solutions constructed in Theorem 1.2, improving the integrability results of Theorem
1.2.

● Finally in Section 5 we prove that the solutions constructed in Theorem 1.2 are critical
and allow the propagation of any (nonhomogeneous) Sobolev regularity Hs, s > 0. Such
result is attained via some energy estimated performed using some paradifferential calculus
techniques, such as the Littlewood-Paley dyadic decomposition and Bony paraproduct
rules (see Appendix C and [12, Chapter 2]).

2. Existence of weak solutions

This section is devoted to prove Theorem 1.2, we begin with mentioning that the energy
estimate provided in the statement of Theorem 1.2 has already been proven in [46, Lemma 3.2].
For this reason this section deals directly with a sequence of regularized solutions for the main
system (2) (see as well Lemma 2.3).

We construct global Leray-Hopf solutions for the system (2) in a rather classical fashion using
an approximation scheme. A similar result was proved in [46], we stress out though that in [46]
the solutions constructed belonged to the space

(u,ω,M,H) ∈ C (R+; H
1
2 (R2)) ∩ L∞loc (R+; H

1
2 (R2)) ,

(∇u,∇ω,∇M,∇H) ∈ L2
loc (R+; H

1
2 (R2)) ,

whence [46] dealt with construction of global weak solutions with hi-regularity.

Let us fix some notation. Let us consider a generic Banach space X and let us consider three
function f ∈ L2 (R; X) , g ∈ L2 (Rd) and h ∈ L2 (Rd+1). Let us define respectively

Ft f (τ, x) = ∫
+∞

−∞
f (x, t) e−2πi τtdt

Fxg (ξ) = ∫
Rd

g (x) e−2πi ξ ⋅xdx = ĝ (ξ) ,

Fx,th (ξ , τ) = ∫
+∞

−∞
∫
Rd

h (x, t) e−2πi(ξ ⋅x+τt)dx dt.

Indeed FtFxh = Fx,th.

Given two topological spaces A,B we say that A ⊂ B if A is topologically included in B, and if
the inclusion is compact we denote it as A ⋐ B. Let us consider now three Banach spaces X0,X1

and X so that
X0 ⋐ X ⊂ X1, Xi, i = 0,1 is reflexive. (6)

Given any T, γ > 0 let us define the spaces

Hγ (R; X0,X1) = {v ∈ L2 (R; X0) ∣ ∣τ ∣γ Ftv ∈ L2 (R; X1) } ,

Hγ ([0,T ] ; X0,X1) = restriction of Hγ (R; X0,X1) onto [0,T ] .
(7)
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In the proof of the existence result we will use the following result, for a proof of which we refer
the reader to Appendix A;

Theorem 2.1. Let us suppose X0,X1,X are Hilbert spaces which satisfy the condition (6), then
the space Hγ ([0,T ] ; X0,X1) is compactly embedded in L2 ([0,T ] ; X).

We have now all the ingredients required in order to construct global weak solutions for the
system (2), the procedure is rather similar to [46, Section 4]. Let us define the following truncation
operator

Jnv = F−1 (1{ 1
n ⩽∣ξ ∣⩽n}v̂ (ξ)) ,

which localize a tempered distribution v away from low and high frequencies. With such we can
define the following sequence of approximating systems of (2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ (∂tun +Jn (un ⋅ ∇un)) − (η + ζ)∆un +∇pn = µ Jn (Mn ⋅ ∇Hn) + 2ζ ( ∂2ωn
−∂1ωn

) ,

ρk (∂tωn +Jn (un ⋅ ∇ωn)) − η
′∆ωn = µJn (Mn ×Hn) + 2ζ (curl un − 2ωn) ,

∂tMn +Jn (un ⋅ ∇Mn) − σ∆Mn = Jn ((
−M2,n
M1,n

)ωn) −
1

τ
(Mn − χHn) ,

div (Hn +Mn) = JnF,
div un = curl Hn = 0,

(un,ωn,Mn,Hn)∣t=0 = (Jnu0,Jnω0,JnM0,JnH0) .

(8)

Using the approximate magnetostatic equation div (Hn +Mn) = JnF we can define Hn as a
function of Mn and the external magnetic field as

Hn = −QMn + Gn, (9)

where Q = ∆−1∇div and Gn = ∇∆−1JnF. Whence, denoting as P the Leray projector onto
divergence-free vector fields, explicitly defined as

Pv = (1 −Q) v,

= (1 −∆−1∇div) v,

we can write the approximated system (8) in an evolutionary form:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ (∂tun +PJn (Pun ⋅ ∇Pun)) − (η + ζ)∆un

= µ PJn (Mn ⋅ ∇ (−QMn + Gn)) + 2ζP ( ∂2ωn
−∂1ωn

) ,

ρk (∂tωn +Jn (Pun ⋅ ∇ωn)) − η
′∆ωn

= µJn (Mn × (−QMn + Gn)) + 2ζ (curl Pun − 2ωn) ,

∂tMn +Jn (Pun ⋅ ∇Mn) − σ∆Mn

= Jn ((
−M2,n
M1,n

)ωn) −
1

τ
(Mn − χ (−QMn + Gn)) ,

(un,ωn,Mn)∣t=0 = (Jnu0,Jnω0,JnM0) .

(10)

Let us define the space

L2
n = {v ∈ L2 (R2) ∣ Supp f̂ ⊂ Bn (0) ∖ B1/n (0)} ,

which endowed with the L2 (R2) scalar product is an Hilbert space. Denoting Vn = (un,ωn,Mn)
we can say that (10) can be written in the generic form

⎧⎪⎪⎪⎨⎪⎪⎪⎩

d

dt
Vn = gn (Vn) ,

Vn∣t=0 = V0,
(11)

where (gn)n is a sequence of nonlinear applications continuous onto L2
n, i.e.

∥gn (Vn)∥L2
n
⩽CnN (∥Vn∥2

L2
n
+ ∥Vn∥L2

n
) . (12)

The value N in (12) has to understood as ”large” and uniform in n. In such setting we can apply
the following version of the Cauchy-Lipschitz theorem on the system (11), for a proof of which we
refer the reader to [12, Theorem 3.2, p. 124];

Lemma 2.2. Let us consider the ordinary differential equation

{
u̇ = F (u, t)
u∣t=0 = u0 ∈ ω

, (ODE)

where ω is an open subset of a Banach space X . Let

F ∶ ω ×R+ → X

(u, t) ↦ F (u, t),

be such that, for each u1,u2 ∈ ω there exists a function L ∈ L1
loc (R+) such that

∥F (u1, t) − F (u2, t)∥X ⩽ L (t) ∥u1 − u2∥X .

Let us suppose moreover that

∥F (u, t)∥X ⩽ β (t)M (∥u∥X) ,
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where M ∈ L∞loc (R+) ,β ∈ L1
loc (R+). Then there exists a unique maximal solution u in the space

C1 ([0, t⋆); X) of (ODE), such that, if t⋆ <∞,

lim sup
t↗t⋆

∥u (t)∥X =∞. (13)

Lemma 2.2 implies that for each n there exists a unique maximal Tn > 0 such that Vn is solution
of (11) and belongs to the space

Vn ∈ C1 ([0,Tn) ; L2
n ∩H∞) .

Indeed in such setting it could happen that Tn
n→∞ÐÐÐ→ 0. In order to avoid such situation we state

the following result, whose proof can be found in [46, Lemma 3.5 and 4.2]

Lemma 2.3. Let V0 ∈ L2, F ∈ L2
loc (R+; L2) , GF ∈ W 1,∞

loc (R+; H
3
2 ) and let Vn = (un,ωn,Mn) be

the unique smooth solution of (11) identified by Lemma 2.2. Fixed any T > 0 there exists a
positive, finite, constant c̃ = c̃ (T,ρ,η ,ζ ,µ,κ,η ′,σ , τ) independent of n and t ∈ [0,T ], such

∥Vn∥L∞([0,t];L2) ⩽ c̃,

∥Mn∥L2([0,t];L2) ⩽ c̃,

∥∇Vn∥L2([0,t];L2) ⩽
c̃
c
,

where c is defined as

c = min{η + ζ

2
,

η
′

2
,4ζ ,

σ

2
,
1

τ
,

χ

2τ
} .

We can combine the uniform bounds stated in Lemma 2.3 with the blow-up criterion (13) in
order to deduce that Tn =∞ for any n, hence

Vn ∈ C1 (R+; L2
n) ,

moreover the uniform bounds provided in Lemma 2.3 allow us to deduce that, for each T > 0

(Vn)n is uniformly bounded in L2 ([0,T ] ; H1 (R2)) .
Let us now consider gn = gn (Vn) appearing in (11) and explicitly defined as the right hand side

of (10). Let us consider in particular the term

Jn (Mn ⋅ ∇QMn) ,
some simple computations using the uniform bounds provided by Lemma 2.3 show us that, for
any T > 0 and n ∈ N;

∥Jn (Mn ⋅ ∇QMn)∥L1([0,T ];Ḣ−1/2) ≤C <∞.

In particular this consideration implies that the sequence (gn)n has only L1
loc uniform regularity

in-time, hence (gn)n can be uniformly bounded only in some space with very low regularity such

as L1
loc (R; H−N) for N large.1

Let us now denote2

Ṽn (ξ , τ) = Fx,t (1[0,T ] (t) Vn (x, t)) (ξ , τ) ,

1Let us remark that for the incompressible Navier-Stokes equations it is possible to prove that (∂tun)n is uniformly

bounded in L2
loc (R+;H−N

), making hence possible to apply Aubin-Lions lemma [11].
2Here we must cutoff the functions Vn, gn in the interval [0,T ] in order to assure their L2-in-time integrability,

and hence the fact that their space-time Fourier transform is well defined.
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g̃n (ξ , τ) = Fx,t (1[0,T ] (t) gn (x, t)) (ξ , τ) ,
with such notation equation (11) becomes

2πiτ Ṽn (ξ , τ) = g̃n (ξ , τ) . (14)

Let us denote as Ṽ n (ξ , τ) the complex conjugate of Ṽn (ξ , τ), and let us multiply (14) for

1

(1 + ∣ξ ∣2)N Ṽ n (ξ , τ) ,

N > 0 large, integrate in ξ and take the imaginary part of the resulting equation and using
Plancherel theorem in the space variables, we deduce

2π ∣τ ∣ ∥Ṽn (τ)∥2

H−N
2
≤ ∥g̃n (τ)∥H−N ∥Ṽn (τ)∥L2 ,

whence multiplying the above equation for (1 + ∣τ ∣)−β , β ∈ [1
2 , 1) and integrating in τ we deduce

that

2π ∫
∞

−∞

∣τ ∣
(1 + ∣τ ∣)β

∥Ṽn (τ)∥2

H−N
2

dτ ≤
⎛
⎝∫

∞

−∞

dτ

(1 + ∣τ ∣)2β

⎞
⎠

1
2

∥g̃n∥L∞(R;H−N) ∥Ṽn∥L2(R;L2) .

Indeed if β ∈ [1
2 , 1) we have that

⎛
⎝∫

∞

−∞

dτ

(1 + ∣τ ∣)2β

⎞
⎠

1
2

≤C <∞,

moreover thanks to standard considerations on the Fourier transform we can argue that

∥g̃n∥L∞τ (R;H−N) ≤ ∥1[0,T ] gn∥L1
t (R;H−N) = ∥gn∥L1

t ([0,T ];H−N) ≤C <∞,

moreover the bounds provided in Lemma 2.3 allow us to deduce that

∥Ṽn∥L2
τ (R;L2) = ∥Vn∥L2

t ([0,T ];L2) ≤ T 1/2 ∥Vn∥L∞t ([0,T ];L2) ≤C <∞,

which in turn implies that

2π ∫
∞

−∞

∣τ ∣
(1 + ∣τ ∣)β

∥Ṽn (τ)∥2

H−N
2

dτ ≤C <∞.

As already explained (Ṽn)n is uniformly bounded in L2
τ (R; L2), whence since L2 ↪ H−N

2 , N > 0
continuously we deduce that

∫
∞

−∞

⎛
⎝

1 + ∣τ ∣
(1 + ∣τ ∣)β

⎞
⎠
∥Ṽn (τ)∥2

H−N
2

dτ ≤C <∞,

moreover

1 + ∣τ ∣
(1 + ∣τ ∣)β

≥ ∣τ ∣2γ , ∀ τ ∈ R, γ ∈ (0,
1 − β

2
) .

Considering hence the definition provided in (7) we deduce that

(1[0,T ] Vn)n is uniformly bounded in Hγ (R; H1 (R2) ,H− N
2 (R2)) for γ ∈ (0,

1

4
) .

Using now the result stated in Theorem 2.1 we can state that

Hγ ([0,T ] ; H1
loc (R2) ,H− N

2

loc (R2)) ⋐ L2
t ([0,T ] ; H1−ε

loc (R2)) , ∀ ε ∈ (0,1 + N
2
)
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from which we deduce that there exists3 a V = (u,ω,M) ∈ L2
t ([0,T ] ; L2

loc,x (R2)) such that

Vn
n→∞ÐÐÐ→ V in L2 ([0,T ] ; H1−ε

loc (R2)) , ∀ ε ∈ (0,1 + N
2
) . (15)

Considering the uniform bounds provided by Lemma 2.3 for the sequence (Vn)n we can say that

V ∈ L∞ ([0,T ] ; L2 (R2)) ∩ L2 ([0,T ] ; Ḣ1 (R2)) ,
M ∈ L2 ([0,T ] ; L2 (R2)) .

At last we must hence to prove that each limit point V = (u,ω,M) solves the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ (∂tu +P (Pu ⋅ ∇Pu)) − (η + ζ)∆u

= µ P (M ⋅ ∇ (−QM + GF)) + 2ζP ( ∂2ω

−∂1ω
) ,

ρk (∂tω + (Pu ⋅ ∇ω)) − η
′∆ω

= µ (M × (−QM + GF)) + 2ζ (curl Pu − 2ω) ,

∂tM + (Pu ⋅ ∇M) − σ∆M

= ( −M2

M1
)ω − 1

τ
(M − χ (−QM + GF)) ,

(u,ω,M)∣t=0 = (u0,ω0,M0) ,

(16)

in D′ (R2 × [0,T ]). Let us remark that system (16) is equivalent to (2). Such procedure is rather
standard and was carried out in [45], nonetheless we sketch a proof for the sake of self completeness
of the work. Among all the nonlinear interactions the convergence which is less immediate to
prove is the one arising from the less regular term, i.e.

Mn ⋅ ∇QMn
n→∞ÐÐÐ→M ⋅ ∇QM, .

Considering hence a test function ψ ∈ D (R2 × [0,T ])

∫ Mn ⋅ ∇QMn ψ dxdt − ∫ M ⋅ ∇QM ψ dxdt

= ∫ (Mn −M) ⋅ ∇QMn ψ dxdt + ∫ M ⋅ ∇Q (Mn −M) ψ dxdt,

= I1,n + I2,n.

Applying Hölder inequality we deduce the bound

I1,n ≲ ∥Mn −M∥L2
loc

(R+;L4
loc

) ∥∇QMn∥L2
loc

(R+;L2
loc

) ∥ψ∥L∞(R+;L4) .

Standard Sobolev embeddings and (15) imply that

∥Mn −M∥L2
loc

(R+;L4
loc

) ⩽ ∥Mn −M∥
L2
loc

(R+;H
1
2
loc

)
→ 0 as n→∞,

3Here indeed we implicitly use the continuous embedding

Hγ
(R; H1

(R2
) ,H− N

2 (R2
))↪ Hγ

([0,T ] ; H1
loc (R

2
) ,H

− N
2

loc (R2
))
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moreover since ∇Q is a pseudo-differential operator of order one we argue that

∥∇QMn∥L2
loc

(R+;L2
loc

) ≲ ∥Mn∥L2
loc

(R+;H1
loc

) <C <∞,

thanks to the results of Lemma 2.3, proving that I1,n
n→∞ÐÐÐ→ 0.

Similarly it can be proved that I2,n → 0 as n→∞.

3. Uniqueness of weak solutions

In this section we provide the proof of the uniqueness result for the weak solutions of system
(2). The main idea is to evaluate the difference between two weak solutions in a functional space

which is less regular than L2(R2) such as Ḣ−1/2(R2). For convenience, we introduce the following
notation:

(δ u, δω, δM, δH ) ∶= (u − ũ, ω − ω̃, M − M̃, H − H̃ ),
where (u, ω, M, H) and (ũ, ω̃, M̃, H̃) stand for the first and second solutions, respectively. Under
the assumption that the initial data of both solutions coincide, we remark that

(δ u, δω, δM, δH )∣t=0 = 0.

We then consider the Ḣ−1/2-energy δE−1/2(t) of (δ u, δω, δM, δH )

δE− 1
2
(t) ∶= ρ∥δ u(t) ∥2

Ḣ− 1
2 (R2)

+ ρk ∥δω(t) ∥2

Ḣ− 1
2 (R2)

+ ∥δM(t) ∥2

Ḣ− 1
2 (R2)

together with its corresponding dissipation

δD− 1
2
(t) ∶= η∥∇δ u ∥2

Ḣ− 1
2
+ η

′∥∇δω ∥2

Ḣ− 1
2
+ λ

′∥div δω ∥2

Ḣ− 1
2
+ σ∥∇δM ∥2

Ḣ− 1
2

We then aim at proving a standard Gronwall type inequality, which can be formulated as follows:

d

dt
δE− 1

2
(t) + ∫

t

0
δD− 1

2
(t′)dt′ ≤ f (t)δE− 1

2
(t), δE− 1

2
(0) = 0,

for a suitable function f (t) which is locally integrable in time.
We begin with considering the difference between the momentum equations of the two solutions,
driving the evolution of δ u:

ρ0(∂tδ u + u ⋅ ∇δ u + δ u ⋅ ∇ũ) − (η + ζ)∆δ u + ∇δp =

= µ (M ⋅ ∇δH + δM ⋅ ∇H̃ ) + 2ζ ( ∂2δω

−∂1δω
) .

We then take the Ḣ−1/2-inner product of the above equation with δ u, to get:

ρ

2

d

dt
∥δ u ∥2

Ḣ− 1
2
+ (η + ζ)∥∇δ u ∥2

Ḣ− 1
2
= ρ⟨u ⋅ ∇δ u,δ u ⟩

Ḣ− 1
2
+ ρ⟨δ u ⋅ ∇ũ,δ u ⟩

Ḣ− 1
2
+

+ µ⟨M ⋅ ∇δH,δ u ⟩
Ḣ− 1

2
+ µ⟨δM ⋅ ∇H̃,δ u ⟩

Ḣ− 1
2
+ 2ζ ⟨ ( ∂2δω

−∂1δω
) ,δ u ⟩

Ḣ− 1
2
.

(17)

We here remark that the above identity holds true in particular taking into account the regularity
of ∂tδu. Indeed, since we are dealing with L2-energy solution, we gather that ∂tδu belongs
to L2

loc(R+, Ḣ−1(R2)), while δu belongs to L2
loc(R+, Ḣ1(R2)). We hence take into account the

following affinity

⟨∂tδ u, δ u ⟩Ḣ−1×Ḣ1 ≃ ⟨∂tδ u, δ u ⟩
Ḣ− 1

2 ×Ḣ− 1
2
= 1

2

d

dt
∥δ u ∥

Ḣ− 1
2
.
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We then proceed to estimate each term on the right-hand side. To this end, we will repeatedly
make use of the following product law between Sobolev spaces (cf. Appendix, Theorem C.5):

Ḣ
1
2 (R2) × L2(R2) → Ḣ− 1

2 (R2).
Furthermore, in order to implement the estimates of the main convective terms, we need to

introduce the following inequality at the level of homogeneous Sobolev space Ḣ− 1
2 (R2):

Lemma 3.1. For any divergence-free vector field v in Ḣ
1
2 (R2) and any vector field B in Ḣ− 1

2 (R2)
⟨v ⋅ ∇B, B ⟩

Ḣ− 1
2 (R2)

≤ C∥∇v ∥L2(R2)∥∇B ∥
Ḣ− 1

2
∥B ∥

Ḣ− 1
2
,

for a suitable positive constant C.

For the sake of clearness, we postpone the proof of the above Lemma to the Appendix (cf. Lemma
B.1). Coming back to our problem, we remark that div u = 0. Thus, in accordance with Lemma
3.1, we gather that

⟨u ⋅ ∇δ u,δ u ⟩
Ḣ− 1

2
≲ ∥∇u ∥L2∥δ u ∥

H− 1
2
∥∇δ u ∥

H− 1
2
≲ ∥∇u ∥2

L2∥δ u ∥2

H− 1
2
+ ε∥∇δ u ∥2

H− 1
2
,

for a suitable small constant ε to be fixed later.Here the first intrinsic cancellation holds, thanks
to the free-divergence condition on u. Next, the second term is estimated as follows:

ρ⟨δ u ⋅ ∇ũ,δ u ⟩
Ḣ− 1

2
≲ ∥ δ u ⋅ ∇ũ ∥

H− 1
2
∥δ u ∥

H− 1
2

≲ ∥δ u ∥
Ḣ

1
2
∥∇ũ ∥L2∥δ u ∥

Ḣ− 1
2
≲ ∥∇ũ ∥2

L2∥δ u ∥2

Ḣ− 1
2
+ ε∥∇δ u ∥2

Ḣ− 1
2
.

Now, we consider the contribution of the Lorentz force δF = µ(M ⋅ ∇δH + δM ⋅ ∇H̃). It is worth

to emphasize that the level of regularity Ḣ−1/2 is a-priori in accordance with the regularity provided
by the standard L2-energy, F1, F2 ∈ L1

loc(R+, Ḣ−1/2(R2)).
We handle the first term of δF as follows:

µ⟨M ⋅ ∇δH,δ u ⟩
Ḣ− 1

2
= −µ⟨ (div M)δH,δ u ⟩

Ḣ− 1
2
− µ⟨M ⊗ δH,∇δ u ⟩

Ḣ− 1
2

≲ ∥div M ∥L2∥δH ∥
Ḣ

1
2
∥δ u ∥

Ḣ− 1
2
+ ∥M ∥

Ḣ
3
4
∥δH ∥

Ḣ− 1
4
∥∇δ u ∥

Ḣ− 1
2

≲ ∥∇M ∥L2∥∇δH ∥
Ḣ− 1

2
∥δ u ∥

Ḣ− 1
2
+ ∥M ∥

1
4

L2∥∇M ∥
3
4

L2×

×∥δH ∥
3
4

Ḣ− 1
2
∥∇δH ∥

1
4

Ḣ− 1
2
∥∇δ u ∥

Ḣ− 1
2

≲ ∥∇M ∥2
L2∥δH ∥2

Ḣ− 1
2
+ ∥M ∥

2
3

L2∥∇M ∥2
L2∥δH ∥2

Ḣ− 1
2
+ ε∥∇δH ∥2

Ḣ− 1
2
+ ε∥∇δ u ∥2

Ḣ− 1
2
,

where we have used an integration by parts and the following product law between Sobolev spaces
(cf. Appendix, Theorem C.5):

Ḣ
3
4 (R2) × Ḣ− 1

4 (R2)→ Ḣ− 1
2 (R2).

Next, the second term of δF is handled through

µ⟨δM ⋅ ∇H̃,δ u ⟩
Ḣ− 1

2
≲ ∥δM ∥

Ḣ
1
2
∥∇H̃ ∥L2∥δ u ∥

Ḣ− 1
2

≲ ∥∇H̃ ∥2
L2∥δ u ∥2

Ḣ− 1
2
+ ε∥∇δ u ∥2

Ḣ− 1
2
.

It remains to control the last term of the kinetic energy (17), which can be treated by a standard
Cauchy-Schwarz inequality:

2ζ ⟨ ( ∂2δω

−∂1δω
) ,δ u ⟩

Ḣ− 1
2
≲ ∥∇δω ∥

Ḣ− 1
2
∥δ u ∥

Ḣ− 1
2
≲ ε∥∇δω ∥2

Ḣ− 1
2
+ ∥δ u ∥2

Ḣ− 1
2
.
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Integrating all the previous estimates into the identity (17), we obtain

ρ

2

d

dt
∥δ u ∥2

Ḣ− 1
2
+ (η + ζ)∥∇δ u ∥2

Ḣ− 1
2
≲

≲ (1 + ∥M ∥
2
3

L2)∥∇(u, ũ, M, H̃) ∥2
L2∥ (δ u, δH) ∥2

Ḣ− 1
2
+ ε∥∇(δ u, δω,δH) ∥2

Ḣ− 1
2
.

(18)

We now take into account the difference between the angular velocity equations for the two
solutions of system (2). We hence gather the evolutionary equation for δω:

ρk(∂tδω + δ u ⋅ ∇ω + ũ ⋅ ∇δω ) − η
′∆ω − λ

′∇div δω =
= µ(M × δH + δM × H̃ ) + 2ζ( curl δ u − 2δω ).

(19)

We then proceed similarly as for proving (25): we take the Ḣ− 1
2 (R2)-inner product of the above

identity with δω and we integrate by parts, to get:

d

dt
ρk∥δω ∥2

Ḣ− 1
2
+ η

′∥∇δω ∥2

Ḣ− 1
2
+ λ

′∥divδω ∥2

Ḣ− 1
2
= ρk⟨δ u ⋅ ∇ω,δω ⟩

Ḣ− 1
2
+

+ρk⟨ ũ ⋅ ∇δω,δω ⟩
Ḣ− 1

2
+ µ⟨δM ×H,δω ⟩

Ḣ− 1
2
+ µ⟨δM × δH,δω ⟩

Ḣ− 1
2
+

+2ζ ⟨ curl δ u,δω ⟩
Ḣ− 1

2
− 4ζ∥δω ∥

Ḣ− 1
2
.

(20)

We then proceed by estimating each term on the right-hand side. First we have

ρk⟨δ u ⋅ ∇ω,δω ⟩
Ḣ− 1

2
≲ ∥δ u ⋅ ∇ω ∥

Ḣ− 1
2
∥δω ∥

Ḣ− 1
2

≲ ∥δ u ∥
Ḣ

1
2
∥∇ω ∥L2∥δω ∥

Ḣ− 1
2

≲ ∥∇ω ∥2
L2∥δω ∥2

Ḣ− 1
2
+ ε∥∇δ u ∥

Ḣ− 1
2
.

Next, the free divergence condition on ũ and Lemma 3.1 lead to

ρk⟨ ũ ⋅ ∇δω,δω ⟩
Ḣ− 1

2
≲ ∥∇ũ ∥L2∥δω ∥

Ḣ
1
2
∥δω ∥

Ḣ− 1
2

≲ ∥∇ũ ∥2
L2∥δω ∥2

Ḣ− 1
2
+ ε∥∇δω ∥2

Ḣ− 1
2
.

Now, we bound the terms related to µ as follows:

µ⟨δM ×H,δω ⟩
Ḣ− 1

2
≲ ∥δM ∥

Ḣ
1
2
∥H ∥L2

x
∥δω ∥

Ḣ− 1
2

≲ ∥∇δM ∥
Ḣ− 1

2
∥H ∥L2

x
∥δω ∥

Ḣ− 1
2

≲ ∥H ∥2
L2

x
∥δΩ ∥2

Ḣ− 1
2
+ ε∥δω ∥2

Ḣ− 1
2
,

together with

µ⟨δM × δH,δω ⟩
Ḣ− 1

2
≲ ∥δM ∥L2

x
∥δH ∥

Ḣ
1
2
∥δω ∥

Ḣ− 1
2

≲ ∥δM ∥L2∥∇δH ∥
Ḣ− 1

2
∥δω ∥

Ḣ− 1
2
,

≲ ∥δM ∥2
L2∥ δω ∥2

Ḣ− 1
2
+ ε∥∇δH ∥2

Ḣ− 1
2
.

Finally, the last term in (20) can be handled through

2ζ ⟨ curl δ u,δω ⟩
Ḣ− 1

2
≲ ∥∇δ u ∥

Ḣ− 1
2
∥δω ∥

Ḣ− 1
2
≲ ∥ δω ∥2

Ḣ− 1
2
+ ε∥∇δ u ∥2

Ḣ− 1
2
.

Thus, summarizing all previous estimates and integrating them in (20) we get

d

dt
ρk∥δω ∥2

Ḣ− 1
2
+ η

′∥∇δω ∥2

Ḣ− 1
2
+ λ

′∥divδω ∥2

Ḣ− 1
2
≲ (1 + ∥ (H, δM) ∥2

L2 +

+ ∥∇(ũ, ω) ∥2
L2)∥δω ∥2

Ḣ− 1
2
+ ε∥∇(δ u, δω, δM,δH) ∥2

Ḣ− 1
2
.

(21)
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We now take into account the difference between the magnetization equations of the two solutions,
namely

∂tδM + u ⋅ ∇δM + δ u ⋅ ∇δM − σ∆δM = ( M2

−M1
)δω + ( δM2

−δM1
) ω̃ − 1

τ
( δM − χδH ).

We then take into account the Ḣ− 1
2 -inner product between the above identity and δM, to obtain

d

dt
∥δM ∥2

L2
x
+ σ∥∇M ∥2

L2
x
= −⟨u ⋅ ∇δM,δM ⟩

Ḣ− 1
2
− ⟨δ u ⋅ ∇δM,δM ⟩

Ḣ− 1
2
+

+ ⟨δω ( M2

−M1
) ,δM ⟩

Ḣ− 1
2
+ ⟨ ω̃ ( δM2

−δM1
) ,δM ⟩

Ḣ− 1
2
− 1

τ
∥δM ∥2

Ḣ− 1
2
+ χ

τ
⟨δH,δM ⟩

Ḣ− 1
2
.

(22)

We hence proceed to estimate each term on the right-hand side. First, the divergence-free condition
on u together with Lemma 3.1 imply

⟨u ⋅ ∇δM,δM ⟩
Ḣ− 1

2
≲ ∥∇u ∥2

L2∥δM ∥2

Ḣ− 1
2
+ ε∥∇δM ∥2

Ḣ− 1
2
.

The second convective term on the right-hand side of (22) is handled by

⟨δ u ⋅ ∇δM,δM ⟩
Ḣ− 1

2
≲ ∥δ u ∥

Ḣ
1
2
∥∇δM ∥L2∥δM ∥

Ḣ− 1
2
≲ ∥∇δM ∥2

L2∥δM ∥2

Ḣ− 1
2
+ ε∥∇δ u ∥2

Ḣ
1
2
.

Furthermore, we observe that

⟨δω ( M2

−M1
) ,δM ⟩

Ḣ− 1
2
≲ ∥δω ∥

Ḣ
1
2
∥ M ∥L2∥δM ∥

Ḣ− 1
2
≲ ∥ M ∥2

L2∥δM ∥2

Ḣ− 1
2
+ ε∥∇δω ∥2

Ḣ
1
2
,

and that

⟨ ω̃ ( δM2

−δM1
) ,δM ⟩

Ḣ− 1
2
≲ ∥δM ∥

Ḣ
1
2
∥ ω̃ ∥L2∥δM ∥

Ḣ− 1
2
≲ ∥ ω̃ ∥2

L2∥δM ∥2

Ḣ− 1
2
+ ε∥∇δM ∥2

Ḣ− 1
2
.

Finally, the last term of (22) is controlled as follows:

⟨δH,δM ⟩
Ḣ− 1

2
≲ ∥δH ∥2

Ḣ− 1
2
+ ∥δM ∥2

Ḣ− 1
2
.

Integrating all previous estimates together with the identity (22), we finally obtain

d

dt
∥δM ∥2

L2
x
+ σ∥∇M ∥2

L2
x
≲ (1 + ∥ (M, ω̃) ∥2

L2 +

+ ∥∇(u, δM) ∥2
L2)∥ (δM,δH) ∥2

Ḣ− 1
2
+ ε∥∇(δ u, δΩ, δM) ∥2

Ḣ− 1
2
.

(23)

We are now in the position to get a final bound for the Ḣ−1/2-energy and its dissipation:

δE− 1
2
(t) ∶= ρ

2
∥δ u(t) ∥2

Ḣ− 1
2
+ ρk

2
∥δΩ(t) ∥2

Ḣ− 1
2
+ 1

2
∥δM(t) ∥2

Ḣ− 1
2
,

δD− 1
2
(t) ∶= (η + ζ)∥∇δ u ∥2

Ḣ− 1
2
+ η

′∥∇δω ∥2

Ḣ− 1
2
+ λ

′∥div δω ∥2

Ḣ− 1
2
+ σ∥∇δM ∥2

Ḣ− 1
2

we can integrate all the previous estimates into the following inequality:

d

dt
δE− 1

2
(t) + δD− 1

2
(t) ≲ f (t)(δE− 1

2
(t) + ∥δH(t) ∥2

Ḣ− 1
2
) + εδD− 1

2
(t) + ε∥∇δH(t) ∥2

Ḣ− 1
2
, (24)

for a suitable function f (t) in L1
loc(R+). To finally conclude making use of a standard Gronwall

inequality, we need to reformulate the terms depending on the effective magnetizing field δH
in terms of the energy δE−1/2(t) and its dissipation δD−1/2(t). This is achieved through the
following Lemma:
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Lemma 3.2. The Ḣ−1/2(R2)-norms of δH and ∇δH are bounded by

∥δH ∥
Ḣ− 1

2
≲ ∥δM ∥

Ḣ− 1
2

∥∇δH ∥
Ḣ− 1

2
= ∥divδM ∥

Ḣ− 1
2
. (25)

Proof. The result is a straightforward consequence of the the free-curl condition on δH: introducing
the potential function δφ satisfying ∇δφ = δH, the magnetostatic equation div δH + div δM = 0
reduces to ∆δφ = div δM. Hence, taking the Ḣ−1/2-inner product together with δφ leads to

∥δH ∥
Ḣ− 1

2
= −⟨div δH, δφ ⟩

Ḣ− 1
2
= ⟨div δM, δφ ⟩

Ḣ− 1
2

= ⟨δM, δH ⟩
Ḣ− 1

2
≲ ∥δM ∥2

Ḣ− 1
2
+ ε̃∥δH ∥2

Ḣ− 1
2
,

for a suitable small positive constant ε̃ . The first inequality is then achieved by absorbing the last
term on the right-hand side by the left-hand side.
In order to get the second inequality, it is sufficient to multiply the magnetostatic equation
div δH = −div δM by ∆δφ in Ḣ−1/2. Hence, thanks to an integration by parts, we gather

∥∇δH ∥
Ḣ− 1

2
= −⟨δH, ∆δH ⟩

Ḣ− 1
2
= −⟨div δM, ∆δφ ⟩

Ḣ− 1
2

= −⟨div δM, div δH, ⟩
Ḣ− 1

2
= ∥div δM ∥

Ḣ− 1
2
,

which concludes the proof of the lemma. �

Thanks to Lemma 3.2, inequality (24) consequently reduces to

d

dt
δE− 1

2
(t) + δD− 1

2
(t) ≲ f (t)δE− 1

2
(t) + εδD− 1

2
(t).

Hence, assuming the positive parameter ε small enough, we can absorb the last term in the above
inequality by the left-hand side. We thus finally deduce that

d

dt
δE− 1

2
(t) ≲ f (t)δE− 1

2
(t)

Then, thanks to the initial condition δE(0) = 0, the Gronwall inequality yields δE(t) to be
constantly null, especially

δ u = u − ũ = 0 δω = ω − ω̃ = 0 δM = M − M̃ = 0 δH = H − H̃ = 0,

and this concludes the proof of Theorem 1.2.

4. Long-time dynamics

The purpose of this section is to establish dispersion properties for solutions (u, ω, M, H) to the
non-linear system (2) and to prove Theorem 1.3. For the sake of a unified presentation we recall
here the statement of Theorem 1.3;

Theorem 4.1. Let (u0, ω0, M0, H0) be in L2(R2) and F in W 1,2
loc (R+, Ḣ−1(R2)). Denote by

(u, ω, M, H) the unique weak solution to (2) given by Theorem 1.2. Suppose that there exists a
positive constants K and an exponent η ∈]0,1[ such that, for almost every t > 0 one has

∥F(t) ∥2
L2(R2) + ∥F(t) ∥2

Ḣ−1(R2) + ∥∂tF(t) ∥2
H−1(R2) ≤ K

(1 + t)1+η
(26)

Then, for any α < η there exists a constant Cα such that the following decay property is satisfied

∥ (u(t), ω(t), M(t), H(t)) ∥L2(R2) ≤
C

(1 + t)α
.

The first preliminary result which is needed in our study is the following pointwise estimate for the
effective magnetizing fields.
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Lemma 4.2. Assume M in L2
loc(R+,L2(R2)) and the source term F in L2(R+, Ḣ−1(R2)). Then

the solution H = H(t, x) of magnetostatic equation

div (H + M ) = F, with curl H = 0,

satisfies
∣ Ĥ (ξ , t) ∣2 ≤ 2∣ M̂ (ξ , t) ∣2 + ∣ξ ∣−2∣ F̂ (ξ , t) ∣2, (27)

for any time t > 0 and ξ ∈ R2.

Proof. The curl of H being null, we can reformulate the equation on H in terms of the potential
φ as follows:

H = ∇φ ⇒ −∆φ = div M − F ⇒ −∆H = ∇div M − ∇F.

Then, passing in Fourier variables, we recast the latter equation in the following form:

Ĥ (ξ , t) = −ξ ⊗ ξ

∣ξ ∣2 M̂ (ξ , t) + ∣ξ ∣−1 iξ
∣ξ ∣ F̂ (ξ , t)

the desired inequality (27) then follows multiplying both sides by Ĥ (ξ , t) and applying a Cauchy-
Schwarz inequality. �

The second preliminary result which is needed in our study is the following one:

Proposition 4.3. Under the hypotheses of Theorem 4.1, the solution (u, ω, M, H) satisfies the
following pointwise estimate:

∣ û (ξ , t) ∣2 + ∣ ω̂ (ξ , t) ∣2 + ∣ M̂ (ξ , t) ∣2 + ∣ Ĥ (ξ , t) ∣2 ≤

≤ ∣ û0(ξ) ∣2 + ∣ ω̂0(ξ) ∣2 + ∣ M̂0(ξ) ∣2 + C + ∫
t

0
∣ ξ ∣−2∣ F̂ (ξ , t′) ∣2dt′,

for almost every t > 0 and ξ ∈ R2, and for a suitable positive constant C depending on the initial
data (u0, ω0, H0, M0) as well as on the parameter ρ, k, t′, η , η

′, χ, µ.

Proof. Passing in Fourier variables, we recast the momentum equation in the following form:

ρ0∂t û, + (η + ζ) ∣ξ ∣2û + iξ p̂ = −F(u ⋅ ∇u) + µ F(M ⋅ ∇H) + 2ζ ( iξ2ω̂

−iξ1ω̂
)

Multiplying by û, integrating in time and applying a Cauchy-Schwarz inequality, we get

ρ0∣ û (ξ , t) ∣2 + (η

2
+ ζ ) ∣ξ ∣2∫

t

0
∣ û (ξ , t′) ∣2 dτ ≤ ρ

2
∣ û0(ξ) ∣2 +

+ 2

η
∫

t

0
∣F(u ⋅ ∇u) (ξ , t′) ∣2dτ + 4µ

2

η
∫

t

0
∣F(M ⋅ ∇H) (ξ , t′) ∣2dτ +

+ 2ζ ∣ ξ ∣∫
t

0
∣ ω̂ (ξ , t′) ∣∣ û (ξ , t′) ∣2 dt′.

(28)
The standard energy space for weak solutions allows to estimate the non-linear terms on the
right-hand:

2

η
∫

t

0
∣F(u ⋅ ∇u) (ξ , t′) ∣2dt′ ≲ ∫

t

0
∥u (t′) ⋅ ∇u (t′) ∥2

L1(R2) ≤ ∥u ∥2
L∞t L2 ∫

t

0
∥∇u ∥2

L2 ≤C,

together with

4µ
2

η
∫

t

0
∣F(M⋅∇H) (ξ , t′) ∣2dt′ ≤ ∫

t

0
∥M (t′)⋅∇H (t′) ∥2

L1 ≤ ∥M ∥2
L∞t L2 ∫

t

0
∥∇H (t′) ∥2

L2dt′ ≤ C.
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Plugging the last inequalities in (28) eventually yields to the bound

ρ

2
∣ û (ξ , t) ∣2 + ( η

2
+ ζ) ∣ξ ∣2 ∫

t

0
∣ û (ξ , t′) ∣2dt′ ≤

≤C( ρ

2
∣ û0(ξ) ∣2 + ρ

2
∣ û0(ξ) ∣2 ) + 2ζ ∣ ξ ∣∫

t

0
∣ ω̂ (ξ , t′) ∣∣ û (ξ , t′) ∣dt′ +C.

(29)

Similarly, we multiply the equation for the angular velocity

ρk(∂tω + u ⋅ ∇ω ) − η
′∆ω = µ M ×H + 2ζ( curl u − 2ω )

by ω, we integrate in time and we apply a standard Cauchy-Schwartz inequality, to get

ρk
2

∣ ω̂ (ξ , t) ∣2 + ( ∣ ξ ∣2 η
′

2
+ 2ζ )∫

t

0
∣ ω̂ (ξ , t′) ∣2dt′ ≤ 4µ

2

η ′ ∫
t

0
∣F(M ×H) (ξ , t′) ∣2dt′ +

+∫
t

0
∣u ⋅ ∇ω (ξ , t′) ∣2dt′ + 2ζ ∣ ξ ∣∫

t

0
∣ ω̂ (ξ , t′) ∣∣u (ξ , t′) ∣dt′.

(30)

We then handle the non-linear terms on the right-hand side through the relations

2

η
∫

t

0
∣F(u ⋅ ∇u) (ξ , t′) ∣2dt′ ≲ ∫

t

0
∥u (t′) ⋅ ∇u (t′) ∥2

L1(R2)

≤ ∥u ∥2
L∞t L2 ∫

t

0
∥∇u ∥2

L2 ≤C,

4µ
2

η ′ ∫
t

0
∣F(M ×H) (ξ , t′) ∣dt′ ≤ ∫

t

0
∥M (t′) ×H (t′) ∥2

L1dt′

≤ ∥H ∥2
L∞t L2 ∫

t

0
∥M (t′) ∥2

L2dt′ ≤ C.

Hence, plugging the above estimates into (30) leads to

ρk
2

∣ ω̂ (ξ , t) ∣2 + ( ∣ ξ ∣2 η
′

2
+ 2ζ )∫

t

0
∣ ω̂ (ξ , t′) ∣2dt′ ≤

≤ ρk
2

∣ ω̂0(ξ) ∣2 + C + 2ζ ∣ ξ ∣∫
t

0
∣ ω̂ (ξ , t′) ∣∣u (ξ , t′) ∣dt′.

(31)

We now take the sum between (29) and (31)

ρ

2
( k∣ ω̂ (ξ , t) ∣2 + ∣ û (ξ , t) ∣2) + ∣ ξ ∣2∫

t

0
( η

2
∣ û (ξ , t′) ∣2 + η

′

2
∣ ω̂ (ξ , t′) ∣2 )dτ ≤

≤ ρ

2
(∣ û0(ξ) ∣2 + k∣ ω̂0(ξ) ∣2 ) + C,

(32)

where we have also used the positive sign of the non-linear term depending on ζ :

2ζ ∫
t

0
(∣ ω̂ (ξ , t′) ∣2 + ∣ξ ∣2∣u (ξ , t′) ∣2 − 2∣ξ ∣∣ ω̂ (ξ , t′) ∣∣u (ξ , t′) ∣)dt′ ≥ 0,

To conclude, we recast the equation of the magnetization M in Fourier space

∂tM̂ + F(u ⋅ ∇M) + σ ∣ξ ∣2M̂ = F (( M2

−M1
)ω) − 1

t′
( M̂ − χĤ ),
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we then multiply by M̂ and integrate in time (0, t) to obtain

1

2
∣ M̂ (ξ , t) ∣2 + ( σ

2
∣ ξ ∣2 + 1

τ
)∫

t

0
∣ M̂ (ξ , t′) ∣2 dt′ ≲ 1

2
∣ M̂0(ξ) ∣2 +

+ 2

σ
∫

t

0
∣F(u ⋅ ∇M) ∣2 (ξ , t′) dt′ + 2

σ
∫

t

0
∣F ( M2

−M1
)ω (ξ , t′)∣

2

dt′ +

+ χ

τ
∫

t

0
∣ Ĥ (ξ , t′) ∣∣ M̂ (ξ , t) ∣dt′.

(33)

Now, we pass to estimate the last terms in the previous inequality, first by

2

σ
∫

t

0
∣F(u ⋅ ∇M) ∣2 (ξ , t′) dt′ ≤ ∫

t

0
∥u (t′) ⋅ ∇M (t′) ∥2

L1(R2)dt′

≤ ∥u (t′) ∥2
L∞t L2 ∫

t

0
∥∇M (t′) ∥2

L2 ≤ C,

and then by

2

σ
∫

t

0
F (( M2

−M1
)ω)(ξ , t′) dt′ ≲ ∫

t

0
∥ ( M2

−M1
ω)∥2

L1(R2)dt′

≲ ∥M (t′) ∥2
L∞t L2 ∫

t

0
∥ω (t′) ∥2

L2 ≲C.

Now, we resort Lemma 4.2 in order to bound the last term which depends on the effective
magnetization field H:

χ

τ
∫

t

0
∣ Ĥ (ξ , t′) ∣∣ M̂ (ξ , t) ∣dt′ ≤ (1 + ν)χ

τ
∫

t

0
∣ M̂ (ξ , t′) ∣2dt′ + 1

ντ
∫

t

0
∣ ξ ∣−2∣F (ξ , t′) ∣2dt′.

Putting these relations together with (33), we deduce the final estimate on M

1

2
∣ M̂ (ξ , t) ∣2 + ( σ

2
∣ ξ ∣2 + 1 − (1 + ν)χ

τ
)∫

t

0
∣M (ξ , t′) ∣2 dt′ ≤

≤ 1

2
∣ M̂0(ξ) ∣2 + C + 1

ντ
∫

t

0
∣ ξ ∣−2∣F (ξ , t′) ∣2dt′.

(34)

The proof of the proposition is then accomplished combining inequalities (29), (31) and (34). �

We are now in the position of proving Theorem 4.1.

Proof of Theorem 4.1. We begin with recalling the a-priori energy bound of system (2):

1

2

d

dt
E(t) + c̃D(t) ≤C( ∥F(t) ∥2

L2(R2) + ∥F(t) ∥2
Ḣ−1(R2) + ∥∂tF(t) ∥2

Ḣ−1(R2)),

for a suitable positive constant c̃ > 0, where the energy E(t) and the dissipation D(t) are determined
by

E(t) = ρ ∥u ∥L2
x
+ ρk∥ω ∥2

L2
x
+ µ ∥H(t) ∥2

L2
x
+ ∥M ∥2

L2
x
,

D(t) = ∥∇u ∥L2
x
+ ∥∇ω ∥2

L2
x
+ ∥∇M ∥2

L2
x
+ ∥div M ∥2

L2
x
+ ∥M ∥2

L2
x
+ ∥H ∥2

L2 .
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Making use of the Fourier-Plancherel theorem, we recast the L2-energy estimate for system (2) in
Fourier variables:

d

dt ∫R2
[ ρ

2
∣ û (ξ , t) ∣2 + ρk

2
∣ ω̂ (ξ , t) ∣2 + 1

2
∣ M̂ (ξ , t) ∣2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
r(ξ , t)

+ ∣ Ĥ (ξ , t) ∣2]dξ +

+ c̃∫
R2

∣ξ ∣2 [ ∣ û (ξ , t) ∣2 + ∣ ω̂ (ξ , t) ∣2 + ∣M (ξ , t) ∣2]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R(ξ , t)

dξ ≤

≤ ∫
R2

( ∣ F̂ (ξ , t) ∣2 + ∣ ξ ∣−2∣ F̂ (ξ , t) ∣2 + ∣ ξ ∣2∣∂t F̂ (ξ , t) ∣2)dξ ≤ K
(1 + t)1+η

.

Next, for t ≥ 0 we define the ball Bt(0) ⊆ R2 as the ball centered in 0 and of radius ν(t), for a
function ν(t) to be determined later. Then we can write

∫
R2

∣ξ ∣2R (ξ , t)dξ ≥ ∫
R2∖Bt(0)

∣ξ ∣2 R (ξ , t)dξ ≥ ν(t)2 (∫
R2

R (ξ , t)dξ − ∫
Bt(0)

∣ξ ∣2R (ξ , t)dξ) ;

We summarize the previous inequalities in the following estimate

d

dt ∫R2
r (ξ , t) dξ + ν(t)2∫

R2
r (ξ , t) dξ ≲ 1

(1 + t)1+η
+ ν(t)2∫

Bt(0)
r (ξ , t) dξ . (35)

where we have also used the relation r (ξ , t) ≲ R (ξ , t) ≲ r (ξ , t). At this point, we notice that,

after setting V(t) ∶= ∫ t
0 ν (t′)2

dt′, we can write

e−V(t) d

dt
[eV(t)∫

R2
r (ξ , t)dξ] = d

dt ∫R2
r (ξ , t) dξ + ν(t)2∫

R2
r (ξ , t) dξ

Putting this relation in (35) we gather

e−V(t) d

dt
[eV(t)∫

R2
r (ξ , t)dξ] + ∫

R2
∣H (ξ , t) ∣2dξ+ ≲ 1

(1 + t)1+η
+ ν(t)2∫

Bt(0)
r (ξ , t) dξ .

(36)
Now, we pass to estimate the last term in the previous inequality: Proposition 4.3 implies

ν(t)2∫
Bt(0)

r (ξ , t) dξ = ν(t)2∫
Bt(0)

[ρ

2
∣ û (ξ , t) ∣2 + ρk

2
∣ ω̂ (ξ , t) ∣2 + 1

2
∣ M̂ (ξ , t) ∣2] dξ

≲ ν(t)2(1 + ∥ (u0, ω0, M0, H0) ∥2
L2

x
+ ∫

Bt(0)
(∫

t

0
∣ ξ ∣−2∣F̂ (ξ , t′) ∣2dt′)dξ) ≲ ν(t)2.

Hence we can insert this bound into (36) and integrate the resulting expression in time:

eV(t)∫
R2

r (ξ , t)dξ +∫
t

0
∫
R2

eV(t′)∣ Ĥ (ξ , t) ∣2dξ ≲ ∫
t

0
eV(t′) 1

(1 + t′)1+η
dt′ +∫

t

0
eV(t′)

ν(t)2dt′.

To conclude the proof we choose the function ν
2(t) = α/(1 + t) for a positive constant α < η.

After observing that

∫
t

0

eV(t′)

(1 + t′)1+η
dt′ = 1 − 1

(1 + t)η−α
and ∫

t

0
eV(t′)

ν(t)2dt′ = 1 − α
2

(1 + t)1−α

we finally discover that

∫
R2

[ρ

2
∣ û (ξ , t) ∣2 + ρk

2
∣ ω̂ (ξ , t) ∣2 + 1

2
∣ M̂ (ξ , t) ∣2]dξ = ∫

R2
r (ξ , t)dξ ≲ e−V(t) = 1

(1 + t)α
.
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The proof of the Proposition is then accomplished with the further remark that

∫
R2

∣ Ĥ (ξ , t) ∣2dξ ≤ ∫
R2

∣ M̂ (ξ , t) ∣2dξ + ∥F(t) ∥Ḣ−1(R2) ≲
1

(1 + t)α
.

�

5. Propagation of Sobolev regularities

In the previous sections we have established the theory of weak solutions for system (2), under
minimum smoothness assumption on the initial data and the the external magnetic force F . The
purpose of this section is to investigate solutions with higher regularities. Our goal is to prove
propagation of the initial smoothness, i.e. to prove Theorem 1.5.

For the sake of a unified presentation we recall here the main statement;

Theorem 5.1. Let us assume the initial data U0 ∶= (u0, ω0, M0, H0) is in the non-homogeneous
space Hs(R2), for a positive real s > 0. Assuming the source term F in L2

loc(R+,Hs(R2)) ∩
W 1,2

loc (R+,Hs−1(R2)). Let (u, ω, M, H) be the unique solution of system (2) given by Theorem
1.2. Then

(u, ω, M, H) ∈ L∞loc(R+,Hs(R2)) ∩ L2
loc(R+,Hs+1(R2))

and the following dissipation formula holds true:

1

2
Es(t) + ∫

t

0
Ds (t′)dt′ ≤ Ψs(U0, F, t),

where

Ψs(U0, F, t) = (1

2
Es(0) + C∫

t

0
[∥F (t′) ∥2

Ḣs + ∥F (t′) ∥2
Ḣs−1 + ∥∂tF (t′) ∥2

Ḣs−1 ]dt′),

with C, a suitable positive constant which depends on.

Proof of Theorem 5.1: For the sake of unified presentation, it is convenient to first introduce some
terminology. We recall that the definition of the homogeneous paraproduct operator Ṫab and the
homogeneous reminder Ṙ(a, b) correspond to

Ṫab = ∑
j∈Z

Ṡ j−1a ∆̇ jb and Ṙ(a, b) = ∑
j∈Z, ∣ν ∣≤1

∆̇ ja ∆̇ j+νb, where Ṡ ja = ∑
q≤ j−1

∆̇qa.

respectively. Introducing the notation T ′
a b = Ṫab + Ṙ(a,b) = ∑ j∈Z ∆̇ ja Ṡ j+1b, we recall that the

identity a b = Ṫab + Ṫ ′
b a holds true for all homogeneous tempered distributions a and b for which

the product is well-defined. By an abuse of notation we also introduce the terminology

ṪA ⋅ ∇B = ∑
j∈Z

Ṡ j−1A ⋅ ∇∆̇ jB and Ṫ ′
∇BA = ∑

j∈Z
∆̇ jA ⋅ ∇Ṡ j+1B,

for any vector field A and B returning value in R2.
To begin with, we make a paralinearization of system (2). We first fix an index j ∈ Z and next we

apply the homogeneous dyadic block ∆̇ j to the u-equation of system (2). We hence remark that

the function u j ∶= ∆̇ ju is a classical solution of the following PDE:

ρ0(∂tu j + Ṡ j−1u ⋅ ∇u j ) − (η + ζ)∆u j + ∇p j = −ρ(Ṫu ⋅ ∇u j − Ṡ j−1u ⋅ ∇u j )+

−ρ∆̇ j( Ṫ ′
∇uu ) + µ∆̇ j(M ⋅ ∇H ) + 2ζ ( ∂2ω j

−∂1ω j
) .
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Next, we perform an energy estimate multiplying both sides by u j and integrating over R2. We
then achieve

ρ

2

d

dt
∥u j ∥2

L2 + (η + ζ )∥∇u j ∥2
L2 = ρ ∫

R2
( Ṫu ⋅ ∇u j − Ṡ j−1u ⋅ ∇u j ) ⋅ u j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I j
1(u(t),u(t))

+

+ρ ∫
R2

∆̇ j( Ṫ ′
∇uu ) ⋅ u j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I j
2(u(t),u(t))

+µ ∫
R2

∆̇ j( ṪM ⋅ ∇H ) ⋅ u j − 2ζ ∫
R2

ω jcurl u j,
(37)

where the last identity holds true also thanks to the free divergence condition on u, leading to

∫
R2

(Ṡ j−1u ⋅ ∇u j) ⋅ u j = 0.

We also introduce the operators

I j
1(v, w) ∶= ∫

R2
( Ṫv ⋅ ∇w j − Ṡ j−1v ⋅ ∇w j ) ⋅w j,

I j
2(v, w) ∶= ∫

R2
∆̇ j( Ṫ ′

∇wv ) ⋅w j,

for two suitable vector field v(x) ∈ R2 and w(x) ∈ R2. Furthermore, the above definitions easily
extend to the case of a real value function w(x) ∈ R.

The nonlinear terms I j
1(u(t), u(t)) and I j

2(u(t), u(t)) of (37) are then bounded making use of
the following lemma, :

Lemma 5.2. Let v(x) ∈ R2 be a vector field in Ḣs(R2) ∩ Ḣ1(R2) and let w(x) be a vector field
(or a function) in Ḣs(R2) ∩ Ḣs+1(R2) There exists a suitable constant C which does not depend
on v and w, such that

∑
j∈Z

22 js(I j
1(v, w) + I j

2(v, w)) ≤ C
ε
( ∥∇v ∥2

L2∥w ∥2
Ḣs + ∥∇w ∥2

L2∥v ∥2
Ḣs) + ε∥∇w ∥2

Ḣs ,

for any small positive parameter ε.

Hence, we multiply both sides of (37) by 22 js and we perform a sum over j ∈ Z; we finally deduce
that

ρ

2

d

dt
∥u ∥2

Ḣs + (η + ζ )∥∇u ∥2
Ḣs ≤ ∑

j∈Z
22 js(I j

1(u(t), u(t)) + I j
2(u(t), u(t)))+

+ µ⟨ (M ⋅ ∇H ), u⟩Ḣs + 2ζ ⟨( ∂2ω

−∂1ω
) , u ⟩

Ḣs

.

(38)

We use now the estimate

⟨M ⋅ ∇H, u⟩Ḣs ≤ ε (∥∇u∥2
Ḣs + ∥∇M∥2

Ḣs)

+ C
ε
[ (1 + ∥M∥2

L2) ∥∇M∥2
L2 + ∥∇GF∥2

L2] (∥u∥2
Ḣs + ∥M∥2

Ḣs) + ∥∇GF∥2
Ḣs , (39)

whose proof is provided in Appendix B.2. let us now define the function

ΦM,H,u,F = (1 + ∥M ∥2
L2 + ∥H ∥2

L2 + ∥u ∥2
L2)( ∥∇M ∥2

L2 + ∥∇H ∥2
L2 + ∥∇u ∥2

L2) + ∥∇GF∥2
L2 . (40)

Lemma 5.3. Under the assumptions of Theorem 1.2 the function ΦM,H,u,F defined in (40) is well
defined and belongs to the space L1 (R+).
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Proof. It suffice to consider the uniform L2 energy bound provided in (3). �

Combining the identity (38) and Lemma 5.2 together with the above inequality (39), we gather
that there exists a suitable positive constant C for which the following inequality holds true:

ρ

2

d

dt
∥u ∥2

Ḣs + (η + ζ )∥∇u ∥2
Ḣs

≤C ΦM,H,u,F (∥M ∥2
Ḣs + ∥u ∥2

Ḣs) + ε ∥∇M∥2
Ḣs +C ∥∇GF∥2

Ḣs + 2ζ ⟨( ∂2ω

−∂1ω
) , u ⟩

Ḣs

. (41)

We now apply the dyadic block ∆̇ j to the equation of the angular momentum ω in system (2).

We first observe that ω j ∶= ∆̇ jω is a smooth solution of the following PDE

ρk(∂tω j − Ṡ j−1u ⋅ ∇ω j ) − η
′∆ω j = µ ∆ j(M ×H) + 2ζ( curl u j − 2ω j )−

− ρk(Ṫu ⋅ ∇ω j − Ṡ j−1u ⋅ ∇ω j) − ρk∆̇ j( Ṫ ′
∇ω u ).

Multiplying both sides by 22 js
ω j, integrating over R2 and performing a sum over j ∈ Z we get

ρk
2

d

dt
∥ω ∥2

Ḣs + η
′∥∇ω ∥2

Ḣs + 4ζ∥ω ∥2
Ḣs = −ρk∑

j∈Z
22 js∫

R2
( ∆̇ jṪu ⋅ ∇ω j − Ṡ j−1u ⋅ ∇ω j ) ⋅ω j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I j
1(u(t),ω(t))

−

−ρk∑
j∈Z

22 js∫
R2

∆̇ j( Ṫ ′
∇ω u ) ⋅ω j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I j
2(u(t),ω(t))

+ ∑
j∈Z

22 js
µ ∫

R2
∆̇ j(M ×H ) ⋅ω j + 2ζ ∑

j∈Z
22 js∫

R2
curl u jω j.

Let us state the following inequality, whose proof is postpones in Appendix B.3;

∑
j∈Z

22 js∫
R2

∆̇ j(M ×H ) ⋅ω j

= ⟨M ×H, ω ⟩Ḣs

≤ ε ∥ω∥2
Ḣs + ε ∥∇M∥2

Ḣs +
ε

2
∥∇GF∥2

Ḣs

+ C
ε
(∥M∥2

L2 ∥∇M∥2
L2 + ∥H∥2

L2 ∥∇H∥2
L2) ∥M∥2

Ḣs +
C
ε
∥M∥2

L2 ∥∇M∥2
L2 ∥GF∥2

Ḣs .

(42)

for any ε > 0. We then proceed similarly as for proving (41): we combine the above identity with
Lemma 5.2, to get

ρk
2

d

dt
∥ω ∥2

Ḣs + η
′∥∇ω ∥2

Ḣs + 2ζ∥ω ∥2
Ḣs − ε ∥∇M∥2

Ḣs

≤ C ΦM,H,u,F( ∥ω ∥2
Ḣs + ∥u ∥2

Ḣs + ∥M ∥2
Ḣs) + 2ζ ⟨ curl u, ω ⟩Ḣs

C
ε
∥M∥2

L2 ∥∇M∥2
L2 ∥GF∥2

Ḣs +C ∥∇GF∥2
Ḣs . (43)

We now apply the dyadic block ∆̇ j to the equation of the magnetic induction M in system (2).

We first observe that M j ∶= ∆̇ jM is a smooth solution of the following PDE

∂tM j + Ṡ j−1u ⋅ ∇M j − σ∆M j = −(Ṫu ⋅ ∇ω j − Ṡ j−1u ⋅ ∇ω j) + ∆̇ j (( M2

−M1
)ω ) − 1

τ
(M j − χH j )
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Multiplying both sides by 22 js
ω j, integrating over R2 and performing a sum over j ∈ Z we get

ρk
2

d

dt
∥M ∥2

Ḣs + σ∥∇M ∥2
Ḣs +

1

τ
∥M ∥2

Ḣs =∑
j∈Z

22 js∫
R2

( ∆̇ jṪu ⋅ ∇M j − Ṡ j−1u ⋅ ∇M j ) ⋅M j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I j
1(u(t),M(t))

−

−∑
j∈Z

22 js∫
R2

∆̇ j(Ṫ ′
∇Mu) ⋅M j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I j
2(u(t),M(t))

+ µ⟨( M2

−M1
)ω, M⟩

Ḣs
+ χ

τ
⟨H, M⟩Ḣs

With a procedure very similar to the one adopted in order to prove the inequality (42) we deduce
the following bound;

⟨( M2

−M1
)ω, M⟩

Ḣs

≤ (∥ω∥1/2
L2 ∥∇ω∥1/2

L2 ∥M∥1/2
Ḣs ∥∇M∥1/2

Ḣs + ∥M∥1/2
L2 ∥∇M∥1/2

L2 ∥ω∥1/2
Ḣs ∥∇ω∥1/2

Ḣs ) ∥M∥Ḣs ,

and hence applying a Young convexity inequality

⟨( M2

−M1
)ω, M⟩

Ḣs

≤ 1

2τ
∥M∥2

Ḣs + ε (∥∇M∥2
Ḣs + ∥∇ω∥2

Ḣs) +
C
ε

ΦM,H,u,F ( ∥ω ∥2
Ḣs + ∥u ∥2

Ḣs + ∥M ∥2
Ḣs).

Moreover
χ

τ
∥H ∥2

Ḣs +
χ

τ
⟨H, M ⟩Ḣs ≤ C∥F ∥2

Ḣs

Proceeding as for proving (41), we combine the above identity with Lemma 5.2, to get

ρk
2

d

dt
∥M ∥2

Ḣs + σ∥∇M ∥2
Ḣs +

1

2τ
∥M ∥2

Ḣs +
χ

τ
∥H ∥2

Ḣs

≤C∥GF ∥2
Ḣs +

C
ε

ΦM,H,u,F ( ∥ω ∥2
Ḣs + ∥u ∥2

Ḣs + ∥M ∥2
Ḣs) + ε ∥∇ω∥Ḣs (44)

Let us now define the following auxiliary function

ψ = C
ε
∥M∥2

L2 ∥∇M∥2
L2 ∥GF∥2

Ḣs +C ∥∇GF∥2
Ḣs ,

indeed ψ ∈ L1 (R+) thanks to the L2 energy bound for M and the regularity hypothesis assumed
on F . Combining the inequalities (41), (43), (44), considering the cancellation

2ζ ⟨( ∂2ω

−∂1ω
) , u ⟩

Ḣs

+ 2ζ ⟨ curl u, ω ⟩Ḣs = 0,

integrating in time, we immediately obtain the bound

Es(t) + ∫
t

0
Ds (t′)dt′ ≤ Es(0) + C∫

t

0
ΦM,H,u,F (t′) Es (t′)dt′ + ∫

t

0
ψ (t′) dt′,

for all time t ≥ 0. Therefore, this relation together with the Gronwall’s inequality conclude the
proof of Theorem 5.1, provided we show the bounds of Lemma 5.2. ◻

In order to complete the proof of Theorem 5.1, it remains us to get the estimates of Lemma 5.2.

Proof of Lemma 5.2. We begin with proving inequality (i), which follows from the following
commutator estimate (cf. [12], Lemma 10.25)
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Lemma 5.4. There exists a positive constant C such that, for any suitable functions v and w,
the following inequality holds true

∥ ∆̇ j( Ṫvw ) − Ṡ j−1v ∆̇ jw ∥
L2(R2)

≤ C∥∇v ∥L2(R2) ∑
∣q− j∣≤5

∥wq ∥L2(R2)

By taking advantage of the mentioned lemma, we get the following bound:

I j
1(t) ≤ C∥∇u(t) ∥L2∥u(t) ∥Ḣs∥∇u j(t) ∥L22− jsa j(t),

where the sequence (a j(t) ) j∈Z belongs to `2(Z), being defined by means of

a j(t) = ∑
∣q− j∣≤5

2qs∥uq(t) ∥L2(R2)

∥u(t) ∥Ḣs(R2)
.

It remains to control I( j)
2 , the non-linear term associated to the reminder ∆ jT ′

∇u⋅u. Since divu = 0,
by a repeated use of Bernstein inequalities, one has

I( j)
2 = ∫ ∆̇ jT ′

∇u⋅u u j = ∑
q≥ j−5

∫ ∆̇ j(∆̇qu ⋅ ∇Ṡq+2u)u j

≤ C ∑
q≥ j−5

2 j ∥ ∆̇ j(∆qu Ṡq+2∇u) ∥L1 ∥u j∥L2

≤ C ∑
q≥ j−5

∥ ∆̇qu ∥L2 ∥Ṡq+2∇u ∥L2 ∥∇u j∥L2

≤ C ∥∇u ∥L2 ∥∇u j ∥L2 ∑
q≥ j−5

∥∆̇qu∥L2 .

At this point, we remark that

∑
q≥ j−5

∥ ∆̇qu ∥L2 ≤ ∥u ∥Ḣs ∑
q≥ j−5

2−qs bq ,

where the sequence (bq(t))q≥−1
is defined, for all time t ≥ 0, by the formula

bq(t) ∶= 2qs ∥ ∆̇q u(t)∥Hs

∥u(t) ∥Hs
.

Notice that (bq(t))q≥−1
belongs to `2 and it has unitary norm. In the end, we gather

I( j)
2 ≤ C ∥∇u ∥L2 ∥u ∥Ḣs ∥∇u j ∥L2 ∑

q≥ j−5

2−qs bq .

This estimate concludes the proof of inequality (iii), and so of the whole Lemma.
�

Appendix A. A compactness result

In this small section we provide a self-contained proof of Theorem 2.1, the proof we present
here is a slight modification of [32, Theorem 5.2, p. 61].

Let us consider a sequence (vn)n in a bounded subset of Hγ ([0,T ] ; X0,X1), up to a (non
relabeled) subsequence vn ⇀ v in Hγ ([0,T ] ; X0,X1), whence w.l.o.g. we can assume v = 0. If we
prove that vn → 0 in L2 ([0,T ] ; X1) we can argue by interpolation that vn → 0 in L2 ([0,T ] ; X).

Let us suppose that vn is the restriction on [0,T ] of a wn ∈ Hγ (R; X0,X1) supported (in time)
in [−1,T + 1]. Indeed wn ⇀ 0 in Hγ (R+; X0,X1), we must hence prove that
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Jn = ∫
+∞

−∞
∥Ftwn (τ)∥2

X1
dτ

n→∞ÐÐÐ→ 0. (45)

Selecting a M > 0 we can say that

Jn = Jn,M + JM
n ,

where

JM
n = ∫

∣τ ∣≥M
∥Ftwn (τ)∥2

X1
dτ,

Jn,M = ∫
∣τ ∣≤M

∥Ftwn (τ)∥2
X1

dτ.

Since, by hypothesis, the sequences ( Ftwn)n , (∣τ ∣γ Ftwn)n are bounded in the space L2 (R; X1)
we can control the high frequency part JM

n as

JM
n = ∫

∣τ ∣≥M
(1 + ∣τ ∣2γ) ∥Ftwn (τ)∥2

X1
⋅ 1

(1 + ∣τ ∣2γ)
dτ,

≤ C
1 +M2γ

< ε

2
,

if M > (2C
ε
− 1)

1
2γ .

We must now control the low-frequency part Jn,M. In order to do so let us consider a function
ψ ∈ C∞c (R), such that ψ (t) ≡ 1 for each t ∈ [−1,T + 1]. In such setting wn = wnψ, whence

Ftwn (τ) = ∫
+∞

−∞
wn (t) [e−2πi τt

ψ (t)]dt. (46)

We want to prove that

for each τ ∈ R Ftwn (τ)⇀ 0 in X0.

In order to do so let us consider a φ ∈ X ′
0 and a generic τ ∈ R, indeed

⟨Ftwn (τ)∣φ⟩X0×X ′0
= ∫ Ftwn (x, τ) φ (x)dx,

= ∫ (∫
+∞

−∞
wn (x, t) [e−2πi τt

ψ (t)]dt) φ (x)dx,

= ∫ ∫
+∞

−∞
wn (x, t) [e−2πi τt

ψ (t)φ (x)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=Φτ(x,t)

d (x, t) ,

= ⟨wn∣Φτ⟩L2([0,T ];X0)×L2([0,T ];X ′0)
,

n→∞ÐÐÐ→ 0,

since wn ⇀ 0 in L2 ([0,T ] ; X0). Moreover since X0 ⋐ X1 we deduce that

for each τ ∈ R Ftwn (τ)→ 0 in X1.

Using the identity (46) we can deduce now that

∥Ftwn (τ)∥X1
⩽ ∥wn∥L2(R;X1) ∥e−2πi τt∥

L2(R) ≤C <∞,

whence using Lebesgue dominated convergence theorem we deduce that

Ftwn
n→∞ÐÐÐ→ 0 in L1

τ (R; X1) .
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This does not suffice still in order to prove the convergence (45), it is hence here that we use the
localization of Jn,M onto the low frequencies ∣τ ∣ ≤ M, using a Bernstein inequality in fact we can
argue that

Jn,M ≤CM1/2 ∥Fwn∥L1
τ (R;X1)

n→∞ÐÐÐ→ 0,

concluding the proof of Theorem 2.1.

Appendix B. Technical estimates

In the present technical section we will use continuously the following technical estimate

∥∆̇ j f ∥L2 ≤C c j 2−qs ∥ f ∥Ḣs , (47)

for any j ∈ Z and a (c j) j∈Z = (c j ( f )) j∈Z ∈ `2 (Z) so that ∑ j c2
j = 1.

B.1. Proof of Lemma 3.1 This section is devoted to the proof of Lemma 3.1, which played a
major role in the uniqueness result of weak solutions for system (2), in Section 3. We recall that
the uniqueness result holds thanks to suitable energy estimates at a level of Sobolev regularity
Ḣ−1/2(R2), in particular the one of Lemma 3.1, which can be summarized into

⟨v ⋅ ∇B, B ⟩
Ḣ− 1

2 (R2)
≤ C∥∇v ∥L2(R2)∥∇B ∥

Ḣ− 1
2
∥B ∥

Ḣ− 1
2
,

We then aim to prove a generalization of the above inequality, more precisely we perform a suitable
estimate at a level of Sobolev regularity Ḣϑ(R2), for any real index ϑ ∈ R+ with ϑ > −1. This

range specifically includes the case of Ḣ−1/2(R2), with ϑ = −1/2. We aim at proving the following
general statement.

Lemma B.1. Let ϑ > −1, then for any divergence-free vector field v in Ḣ1(R2) and any vector
field B in Ḣϑ(R2), the following bound holds

⟨v ⋅ ∇B, B ⟩Ḣϑ (R2) ≤ C∥∇v ∥L2(R2)∥∇B ∥Ḣϑ (R2)∥B ∥Ḣϑ (R2),

for a suitable positive constant C.

Proof. We recast the nonlinear term v ⋅ ∇B making use of the Bony decomposition

v ⋅ ∇B = Ṫv∇B + Ṫ ′
∇Bv,

where we recall that the homogeneous paraproduct , Ṫv∇B and the homogeneous reminder Ṫ ′
∇Bv

are defined as

Ṫv ⋅ ∇B = ∑
j∈Z

Ṡ j−1v ⋅ ∇∆̇ jB and Ṫ ′
∇Bv = ∑

j∈Z
∆̇ jv ⋅ ∇Ṡ j+1B,

For the sake of an unified presentation, we now denote by B j ∶= ∆̇ jB and by v j ∶= ∆̇ jv. Thus,

thanks to the isomorphism between Hilbert spaces Ḃs
2,2(R2) ≃ Ḣϑ(R2), we can reformulate the

Ḣϑ -inner product of the statement as follows:

∑
j∈Z

22 jϑ ∫
R2

∆̇ j(v ⋅ ∇B) ⋅ B j = ∑
j∈Z

22 jϑ{∫
R2

(Ṫv ⋅ ∇B j − Ṡ j−1v∇B j) ⋅ B j +

+ ∫
R2

(Ṡ j−1v ⋅ ∇B j) ⋅ B j + ∫
R2

∆̇ j(Ṫ∇Bv) ⋅ B j}.
(48)

Now, the free divergence condition on v is automatically transferred in its localization Ṡ j−1v, which

means div Ṡ j−1v = 0. This property leads to the standard cancellation

∫
R2

( Ṡ j−1v ⋅ ∇B j ) ⋅ B j = 0, for any j ∈ Z. (49)
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We then proceed to estimate the remaining term, the first making use of Lemma 5.4 while the
second one by a standard Bernstein-type inequality. More precisely, Lemma 5.4 yields

∑
j∈Z

22 jϑ ∫
R2

(Ṫv ⋅ ∇B j − Ṡ j−1v ⋅ ∇B j) ⋅ B j ≲ ∑
j∈Z

22 js∥ Ṫv ⋅ ∇B j − Ṡ j−1v ⋅ ∇B j ∥L2∥B j ∥L2

≲∑
j∈Z

22 js ∑
∣q− j∣≤5

∥∇v ∥L2∥Bq∥L2∥B j ∥L2

≲ ∥∇v ∥L2

⎛
⎝ ∑q∈Z

22qs∥Bq∥2
L2

⎞
⎠

1
2⎛
⎝ ∑j∈Z

22 js∥B j∥2
L2

⎞
⎠

1
2

≲ ∥∇v ∥L2(R2)∥∇B ∥Ḣs(R2)∥B ∥Ḣs(R2),

(50)

It then remains to bound the last term in (48), related to the low frequencies of B, that is

∑
j∈Z

22 jϑ ∫
R2

∆̇ j(Ṫ∇Bv) ⋅ B j ≲ ∑
j∈Z

22 jϑ ∑
q> j−5

∥ ∆̇ j(vq ⋅ ∇Ṡq+2B) ∥L2∥B j ∥L2 .

Now, we separately analyze any j-term on the right hand sides of the above inequality: a standard
Bernstein type inequality first leads to the following bound

∥ ∆̇ j(vq∇Ṡq+2∇B) ∥L2∥B j ∥L2 ≲ 2 j∥ ∆̇ j(vq ⋅ Ṡq+2∇B) ∥L1∥B j ∥L2 ≲ ∥vq ∥L2∥ Ṡq+2∇B ∥L2∥∇B j ∥L2

≲ 2 j−q∥∇vq ∥L2∥ Ṡq+2∇B ∥L2∥B j ∥L2 ≲ ∥∇vq ∥L2∥ Ṡq+2∇B ∥L2∥B j ∥L2 ,

from which we deduce

∑
j∈Z

22 jϑ ∑
q> j−5

∥ ∆̇ j(vq∇Ṡq+2∇B) ∥L2∥B j ∥L2 ≲

≲ ∥∇v ∥L2∥B ∥Ḣϑ ∥∇B ∥Ḣϑ ∑
j∈Z
∑

q> j−5

2( j−q)(ϑ+1)zq(t),
(51)

Here the sequence (zq(t))q∈Z is a priori in l1(Z), being defined by means of

zq(t) ∶= 22qϑ
∥Bq(t) ∥L2∥∇Bq(t) ∥L2

∥B(t) ∥Ḣϑ ∥∇B(t) ∥Ḣϑ

⇒ ∥ (zq(t))q∈Z ∥l1(Z) ≤ 1.

Secondly we apply a Young-type inequality between convolution of sequences as follows:

XXXXXXXXXXX
∑
j∈Z
∑

q> j−5

2( j−q)(ϑ+1)zq(t)
XXXXXXXXXXX`1(Z)

≤
⎛
⎝∑k<5

2k(ϑ+1)⎞
⎠
∥ (zq(t))q∈Z ∥l1(Z) ≤ C,

where C is a positive constant C which depends only on ϑ . Hence, we couple this estimate together
with (51), to eventually gather

∑
j∈Z

22 jϑ ∑
q> j−5

∥ ∆̇ j(vq∇Ṡq+2∇B) ∥L2∥B j ∥L2 ≲ ∥∇v ∥L2∥B ∥Ḣϑ ∥∇B ∥Ḣϑ . (52)

In order to conclude the proof of the Lemma, we summarize inequalities (50), (52) and identity
(49) into (48), to finally achieve

∑
j∈Z

22 jϑ ∫
R2

∆̇ j(v ⋅ ∇B) ⋅ B j ≲ ∣∇v ∥L2∥B ∥Ḣϑ ∥∇B ∥Ḣϑ ,

which corresponds to the desired inequality. �
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B.2. Proof of (39) In order to prove the estimate (39) we will require the following auxiliary
estimate

Lemma B.2. The following estimate holds true

∥∆̇ j (M ⋅ ∇H)∥L4/3 ≲ c j 2− js (∥M∥1/2
L2 ∥∇M∥1/2

L2 ∥∇H∥Ḣs + ∥M∥1/2
Ḣs ∥∇M∥1/2

Ḣs ∥∇H∥L2) ,

for some sequence (c j) j = (c j (M,H)) j ∈ `
2 (Z).

Proof. Using Bony paraproduct decomposition as in (58) we can say that

∆̇ j (M ⋅ ∇H) = ∆̇ jṪM∇H + ∆̇ jṪ ′
∇HM,

where thanks to the almost-orthogonality properties of the dyadic blocks (cf. [12, Chapter 2]) we
can say that

∆̇ jṪM∇H = ∑
∣ j−q∣≤4

∆̇ j (Ṡq−1M ∆̇q∇H) ,

∆̇ jṪ ′
∇HM = ∑

q> j−4

∆̇ j (∆̇qM Ṡq+2∇H) .

We can use Hölder inequality, Gagliardo-Nirenberg inequality and (47) in order to deduce that

∥∆̇ jṪM∇H∥
L4/3 ≲ ∥Ṡq−1M∥

L4 ∥∆̇q∇H∥
L2 ,

≲ c j ∥M∥1/2
L2 ∥∇M∥1/2

L2 ∥∇H∥Ḣs .

In the above estimate we used repeatedly the fact that for the term ∆̇ jṪM∇H the summation
indexes j and q differ at most for a uniform and constant value, hence we can interchange them
at the prize of a multiplication for a constant.

Similar computations allows us to deduce the bound

∥∆̇ jṪ ′
∇HM∥

L4/3 ≲ 2− js ∥M∥1/2
Ḣs ∥∇M∥1/2

Ḣs ∥∇H∥L2 ∑
q> j−4

2( j−q)sc̃q,

but we remark that

⎛
⎝ ∑q> j−4

2( j−q)sc̃q
⎞
⎠

j∈Z

= ((2ps1p<4) ⋆ c̃p) j∈Z = (c j) j∈Z ∈ `2 (Z) ,

concluding the proof. �

With the result of Lemma B.2 the proof of (39) is immediate. Let us write

⟨M ⋅ ∇H, u⟩Ḣs ≲∑
j

22 js ⟨∆̇ j (M ⋅ ∇H) , ∆̇ ju⟩L2 ,

≲∑
j

22 js ∥∆̇ j (M ⋅ ∇H)∥L4/3 ∥∆̇ ju∥L4 ,

≲ (∥M∥1/2
L2 ∥∇M∥1/2

L2 ∥∇H∥Ḣs + ∥M∥1/2
Ḣs ∥∇M∥1/2

Ḣs ∥∇H∥L2) ∥u∥1/2
Ḣs ∥∇u∥1/2

Ḣs .

(53)

We rely now on the following technical result, for a proof of which we refer to [46, Lemma 3.3];

Lemma B.3. Let us fix a s ∈ R and let M,GF be such that M,GF ∈ Ḣs, then there exists a positive
constant C such that

∥H∥Ḣs ⩽C (∥M∥Ḣs + ∥GF∥Ḣs) ,
where GF = ∇∆−1F .
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Inserting the result of Lemma B.3 in the estimate (53) and using repeatedly a Young convexity
inequality of the form

ab ≤ εap

p
+ C bq

εq
,

1

p
+ 1

q
= 1,

we deduce the following inequality for any ε > 0

⟨M ⋅ ∇H, u⟩Ḣs ≤ ε (∥∇u∥2
Ḣs + ∥∇M∥2

Ḣs)

+ C
ε
[ (1 + ∥M∥2

L2) ∥∇M∥2
L2 + ∥∇GF∥2

L2] (∥u∥2
Ḣs + ∥M∥2

Ḣs) + ∥∇GF∥2
Ḣs ,

concluding the proof of estimate (39).

B.3. Proof of (42) In a fashion analogous of what was done above we need first the following
technical result;

Lemma B.4. The following estimate hold true

∥∆̇ j (M ×H)∥L2 ≲ c j 2− js (∥M∥1/2
L2 ∥∇M∥1/2

L2 ∥H∥1/2
Ḣs ∥∇H∥1/2

Ḣs + ∥H∥1/2
L2 ∥∇H∥1/2

L2 ∥M∥1/2
Ḣs ∥∇M∥1/2

Ḣs )

Proof. As in the proof of Lemma B.2 we can use Bony paraproduct decomposition in order so that

∆̇ j (M ×H) = ∆̇ jṪMH + ∆̇ jṪ ′
HM.

Whence using the interpolation inequality ∥ f ∥L4 ≲ ∥ f ∥1/2
L2 ∥∇ f ∥1/2

L2 and (47);

∥∆̇ jṪMH∥
L2 ≤ ∑

∣ j−q∣≤4

∥ṠqM∥
L4 ∥∆̇qH∥

L4 ,

≲ c j 2− js ∥M∥1/2
L2 ∥∇M∥1/2

L2 ∥H∥1/2
Ḣs ∥∇H∥1/2

Ḣs .

Similar computations lead to the bound

∥∆̇ jṪ ′
HM∥

L2 ≲ c j 2− js ∥H∥1/2
L2 ∥∇H∥1/2

L2 ∥M∥1/2
Ḣs ∥∇M∥1/2

Ḣs .

�

We can now use the result of Lemma B.4 in order to conclude the proof of (42). Using the
result of Lemma B.4 and (47) we can in fact argue that

∫ ∆̇ j (M ×H) ⋅ ∆̇ jω dx

≲ ∥∆̇ j (M ×H)∥L2 ∥∆̇ jω∥
L2 ,

≲ b j 2−2 js (∥M∥1/2
L2 ∥∇M∥1/2

L2 ∥H∥1/2
Ḣs ∥∇H∥1/2

Ḣs + ∥H∥1/2
L2 ∥∇H∥1/2

L2 ∥M∥1/2
Ḣs ∥∇M∥1/2

Ḣs ) ∥ω∥Ḣs .
(54)

We can hence use a Young convexity inequality and Lemma B.3 in order to deduce the estimate

∥M∥1/2
L2 ∥∇M∥1/2

L2 ∥H∥1/2
Ḣs ∥∇H∥1/2

Ḣs ∥ω∥Ḣs

≲ ε

2
∥ω∥2

Ḣs +
ε

2
∥∇H∥2

Ḣs +
C
ε
∥M∥2

L2 ∥∇M∥2
L2 ∥H∥2

Ḣs ,

≲ ε

2
∥ω∥2

Ḣs +
ε

2
∥∇M∥2

Ḣs +
ε

2
∥∇GF∥2

Ḣs

+ C
ε
∥M∥2

L2 ∥∇M∥2
L2 ∥M∥2

Ḣs +
C
ε
∥M∥2

L2 ∥∇M∥2
L2 ∥GF∥2

Ḣs .

(55)



33

Similarly we can deduce that

∥H∥1/2
L2 ∥∇H∥1/2

L2 ∥M∥1/2
Ḣs ∥∇M∥1/2

Ḣs ∥ω∥Ḣs ≲
ε

2
∥ω∥2

Ḣs +
ε

2
∥∇M∥2

Ḣs +
C
ε
∥H∥2

L2 ∥∇H∥2
L2 ∥M∥2

Ḣs .

(56)
Plugging hence estimate (55) and (56) in (54) and summing in j ∈ Z we deduce the bound

∑
j∈Z

22 js∫ ∆̇ j (M ×H) ⋅ ∆̇ jω dx

≲ ε ∥ω∥2
Ḣs + ε ∥∇M∥2

Ḣs +
ε

2
∥∇GF∥2

Ḣs

+ C
ε
(∥M∥2

L2 ∥∇M∥2
L2 + ∥H∥2

L2 ∥∇H∥2
L2) ∥M∥2

Ḣs +
C
ε
∥M∥2

L2 ∥∇M∥2
L2 ∥GF∥2

Ḣs ,

concluding the proof of (42).

Appendix C. Overview of the Littlewood Paley theory

This section is devoted to an overview of the Littlewood-Paley theory. We present here some
technical tools that have been crucial to our proofs. For more specifics, we refer the interested
reader to [12].
We begin with introducing the so called “Littlewood-Paley decomposition”, which is characterized
by an homogeneous partition of unity within the Fourier space Rd

ξ
.

We first take into account a radial function χ which belongs to D(B(0,2)), being identically 1 in
B(0,1/2). We also assume that the function

r ∈ R+ → χ(re)

is non increasing, for any vector e in Rd. We then introduce the sequence (ϕ j) j∈Z as

ϕ j(ξ) ∶= χ ( ξ

2 j+1
) − χ ( ξ

2 j ) ,

which satisfies

∣ j − q∣ > 5 ⇒ Supp ϕ j ∩ Supp ϕq = ∅, and ∑
j∈Z

ϕ j(ξ) = 1 ∀ξ ∈ Rd ∖ {0}.

For any integer j ∈ Z, the homogeneous dyadic block ∆̇ j and the low frequency cut-off operator

Ṡ j are then defined by means of

∆̇ j ∶= ϕ j(D), Ṡ j ∶= ∑
q≤ j−1

∆̇q.

where throughout we agree that f (D) stands for the pseudo-differential operator

u→ F−1( f F(u)),

for any smooth function f . Both ∆̇ j and Ṡ j maps the Lebesgue space Lp(Rd) into itself, for any
j ∈ Z and p ∈ [1,+∞]. The norm of these maps are independent of the indexes j and p.
The following classical property holds true: for any homogeneous tempered distribution u ∈ S ′

h ,
we can decompose u as

u = ∑
j

∆̇ ju,
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in the sense of S ′
h . Formally, for two appropriately tempered distributions a and b we have the so

called Bony’s paraproduct decomposition [13]:

ab = Ṫab + Ṫba + Ṙ(a,b) (57)

being Ṫab the homogeneous paraproduct and Ṙ(a,b) the homogeneous reminder, i.e.

Ṫab =∑
j∈Z

Ṡ j−1a∆̇ jb, Ṙ(a,b) = ∑
j∈Z,

i∈{0,±1}

∆̇ ja∆̇ j+ib.

It is common in literature to regroup the second homogeneous paraproduct of (57) into the
reminder as follows:

ab = Ṫab + Ṫ ′
b a, where Ṫ ′

b a ∶= ∑
j∈Z

∆̇ jaṠ j+2b (58)

Let us present the so-called Bernstein’s inequalities, which explain the way derivatives act on
spectrally localized functions.

Lemma C.1. Let 0 < r < R. A constant C exists so that, for any nonnegative integer k, any couple
(p,q) in [1,+∞]2, with p ≤ q, and any function u ∈ Lp, we have, for all λ > 0,

supp û ⊂ B(0,λR) Ô⇒ ∥∇ku∥Lq ≤ Ck+1
λ

k+d( 1
p−

1
q ) ∥u∥Lp ;

supp û ⊂ {ξ ∈ Rd ∣ rλ ≤ ∣ξ ∣ ≤ Rλ} Ô⇒ C−k−1
λ

k∥u∥Lp ≤ ∥∇ku∥Lp ≤ Ck+1
λ

k∥u∥Lp .

We are now in the position to define the class of homogeneous Besov spaces.

Definition C.2. Let s ∈ R and 1 ≤ p, r ≤ +∞. The homogeneous Besov space Ḃs
p,r = Ḃs

p,r(Rd)
is defined as the subset of homogeneous tempered distributions u in S ′

h for which the following
norm is bounded

∥u ∥Ḃs
p,r
∶= ∥ (2 js ∥ ∆̇ ju ∥Lp )

j∈Z ∥
`r
< +∞ .

Homogeneous Besov spaces can be understood as interpolation spaces between the Sobolev ones.
Furthermore for all s ∈ R we have the isomorphism of Banach spaces Ḃs

2,2 ≅ Ḣs, with

∥ f ∥Ḣs ∼
⎛
⎝∑j∈Z

22 js ∥ ∆̇ j f ∥2
L2

⎞
⎠

1/2

. (59)

Indeed, the previous isomorphism is an isomorphism between Hilbert spaces: the Ḃs
2,2-inner product

⟨ f , g⟩Ḃs
2,2
∶=∑

j∈Z
22 j s⟨∆̇ j f , ∆̇ jg⟩L2 ,

is equivalent to the classical one over Ḣs.
A consequence of the Bernstein’s inequality is the following embedding result.

Proposition C.3. The space Ḃs1
p1,r1 is continuously embedded in the space Ḃs2

p2,r2 for all indexes
p1 ≤ p2, r1 ≤ r2 and

s2 = s1 − d ( 1

p1
− 1

p2
) .

We finally recall a classical commutator estimate (see e.g. Lemma 2.97 of [12]).
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Lemma C.4. Let Φ ∈ C1(Rd) such that (1 + ∣ ⋅ ∣)Φ̂ ∈ L1. There exists a constant C such that,
for any function h for which ∇h ∈ Lp(Rd), for any f ∈ Lq(Rd) and for all λ > 0, one has

∥[Φ(λ
−1D),h] f ∥Lr ≤ C λ

−1 ∥∇h∥Lp ∥ f ∥Lq ,

where r ∈ [1,+∞] satisfies the relation 1/r = 1/p + 1/q.

Theorem C.5. Let s and t be two real numbers such that ∣s∣ and ∣t ∣ belong to [0,N/2). Let us
assume that s + t is positive, then for every a ∈ Ḣs(RN) and for every b ∈ Ḣt(RN), the product ab
belongs to Ḣs+t−N/2(RN) and there exists a positive constant (not dependent on a and b) such
that

∥ab∥Ḣs+t−1 ≤C∥a∥Ḣs∥b∥Ḣt

Proof. At first we identify the Sobolev spaces Ḣs and Ḣt with the Besov spaces Ḃs
2,2 and Ḃt

2,2,

respectively. We hence claim that ab belongs to Ḃs+t−N/2
2,2 and

∥ab∥
Ḃs+t−N/2
2,2

≤C∥a∥Ḃs
2,2

∥b∥Ḃt
2,2
,

for a suitable positive constant.
We decompose the product ab through the Bony decomposition, namely ab = Ṫab + Ṫba + R(a,b),
where

Ṫab ∶=∑
q∈Z

∆̇qa Ṡq−1b, Ṫba ∶=∑
q∈Z

Ṡq−1a ∆̇qb, Ṙ(a,b) ∶= ∑
q∈Z
∣ν ∣≤1

∆̇qa ∆̇q+νb.

For any q ∈ Z, we have

2q(s+t−N
2
)∥(∆̇qṪab, ∆̇qṪba)∥L2 ≲

≲ ∑
∣q−q′∣≤5

2q′s∥∆̇qa∥L22q′(t− N
2
)∥Ṡq−1b∥L∞ + ∑

∣q−q′∣≤5

2q′(s−N
2
)∥Ṡq−1a∥L∞2q′t∥∆̇qb∥L2 ,

so that we gather

∥(Ṫab, Ṫba)∥
Ḃ

s+t−N
2

2,2

≤ ∥(Ṫab, Ṫba)∥
Ḃ

s+t−N
2

2,1

≲ ∥a∥Ḃs
2,2

∥b∥
Ḃ

t−N
2

∞,2

+ ∥a∥
Ḃ

s−N
2

∞,2

∥b∥Ḃt
2,2
≲ ∥a∥Ḃs

2,2
∥b∥Ḃt

2,2
,

where we have used the embedding Ḃσ
2,2 ↪ Ḃσ−N/2

∞,2 .

In order to conclude the proof, we have to handle the homogeneous reminder Ṙ(a,b). By a direct
computation, for any q ∈ Z,

2(t+s)q∥∆̇qṘ(a,b)∥L1 ≤ ∑
q′≥q−5
∣ν ∣≤1

2(q−q′)(s+t)2q′s∥∆̇q′a∥L22(q′+ν)t∥∆̇q′+νa∥L2 ,

so that, thanks to the Young inequality, we deduce

∥Ṙ(a,b)∥
Ḃ

s+t−N
2

2,2

≲ ∥Ṙ(a,b)∥Ḃs+t
1,1
≲ ∥a∥Ḃs

2,2
∥b∥Ḃt

2,2
,

where we have used the embedding Ḃs+t
1,1 ↪ Ḃs+t−N/2

2,2 and moreover that ∑q≤5 2q(s+t) is finite, since
s + t is positive. �
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