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Abstract

In this paper some new results concerning the Cp classes introduced by Muckenhoupt [28] and later
extended by Sawyer [39], are provided. In particular we extend the result to the full range expected
p > 0, to the weak norm, to other operators and to their vector-valued extensions. Some of those results
rely upon sparse domination results that in some cases we provide as well. We will also provide sharp
weighted estimates for vector valued extensions relying on those sparse domination results.

1. Introduction

1.1. The Cp condition
We recall that a weight w, that is, a non-negative locally integrable function, belongs to the Muck-

enhoupt Ap class for 1 < p <∞ if

[w]Ap = sup
Q

(
1

|Q|

∫
Q

w

)(
1

|Q|

∫
Q

w−
1
p−1

)p−1

<∞,

where the supremum is taken over all cubes in Rn with sides parallel to the axes. And in the case p = 1
we say that w ∈ A1 if

Mw ≤ κw a.e.

and we define [w]A1
= inf{κ > 0 : Mw ≤ κw a.e.}. The quantity [w]Ap is called the Ap constant or

characteristic of the weight w. We say that w ∈ A∞ if

[w]A∞ = sup
Q

1

w(Q)

∫
Q

M(wχQ) <∞.

Calderón-Zygmund principle states that for each singular operator there exists a maximal operator that
“controls” it. A paradigmatic example of that principle is the Coifman-Fefferman estimate, namely, for
each 0 < p <∞ and every w ∈ A∞ there exists c = cn,w,p > 0 such that

‖T ∗f‖Lp(w) ≤ c‖Mf‖Lp(w). (1.1)

where T ∗ stands for the maximal Calderón-Zygmund operator (see Subsection 2.1 for the precise defini-
tion). This kind of estimate plays a central role in modern euclidean Harmonic Analysis. In particular
we emphasize its key role in the main result in [23].

The estimate in (1.1) leads to a natural question. Is the A∞ condition necessary for (1.1) to hold?
B. Muckenhoupt [28] provided a negative answer to the question. He proved that in the case when T is
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the Hilbert transform, (1.1) does not imply that w satisfies the A∞ condition. He showed that if (1.1)
holds with p > 1 and T is the Hilbert transform, then w ∈ Cp, that is if there exist c, δ > 0 such that
for every cube Q and every subset E ⊆ Q we have that

w(E) ≤ c
(
|E|
|Q|

)δ ∫
Rn
M(χQ)pw.

Observe that that A∞ ⊂ Cp for every p > 0. B. Muckenhoupt showed, in dimension one, that if w ∈ Ap,
1 < p < ∞, then wχ[0,∞) ∈ Cp. In the same paper it was conjectured that the Cp condition is also
sufficient for (1.1) to hold, which is still open. Not much later, the necessity of the Cp condition was
extended to arbitrary dimension and a converse result was provided by E.T. Sawyer [39]. More precisely
he proved the following result.

Theorem I (E. Sawyer [39]). Let 1 < p <∞ and let w ∈ Cp+ε for some ε > 0. Then

‖T ∗(f)‖Lp(w) ≤ c‖Mf‖Lp(w). (1.2)

Also, relying upon Sawyer’s techniques, K. Yabuta [40, Theorem 2] established the following result
extending the classical result of C. Fefferman and E. Stein relating M and the sharp maximal M#

function [10, 17].

Theorem II (K. Yabuta [40]). Let 1 < p <∞ and let w ∈ Cp+ε for some ε > 0. Then

‖M(f)‖Lp(w) ≤ c‖M#f‖Lp(w). (1.3)

The proof of this result, although based on a key lemma from [39], is simpler than the proof of
(1.2) by Sawyer. In this paper we will present a different approach for proving (1.2) based on Yabuta’s
lemma which is conceptually much simpler and much flexible. Furthermore, we extend estimate (1.2)
to the full expected range, namely 0 < p < ∞ and to some vector-valued operators. We remark that
in the last case, the classical good-λ seems not be applicable. None of the known methods yield this
result.

Remark 1. We remark that we do not know how to extend Theorem II to the full range 0 < p <∞ as
in Theorems 1 and 2 below. However, this lemma is the key to prove those theorems in the full range.

We remark that more recently, A. Lerner [19] provided another proof of Yabuta’s result (1.3) im-
proving it slightly. He established, using a different argument, that if a weight w satisfies the following
estimate

w(E) ≤
(
|E|
|Q|

)δ ∫
Rn
ϕp (M(χQ))w,

where ∫ 1

0

ϕp(t)
dt

tp+1
<∞

then (1.3) holds.
Let us now turn attention to our contribution. We say that an operator T satisfies the condition

(D) if there are some constants, δ ∈ (0, 1) and c > 0 such that for all f ,

M#
δ (Tf)(x) ≤ cMf(x). (D)

Some examples of operators satisfying condition (D) are:

• Calderón-Zygmund operators These operators are generalization of the regular singular inte-
gral operators as defined above. This was observed in [2].

• Weakly strongly singular integral operators These operators were considered by C. Feffer-
man in [9].

• Pseudo-differential operators. To be more precise, the pseudo-differential operators satisfying
condition (D) are those that belong to the Hörmander class ([13]).

• Oscillatory integral operators These operators were by introduced by Phong and Stein [35].
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The proof that last three cases satisfy condition (D) can be found in [1].
It is also possible to consider a suitable variant of condition (D) which will allow us to treat some

vector-valued operators. We recall that given an operator G, 1 < q < ∞ and f = {fj}∞j=1 we define
the vector-valued extension Gq by

Gqf(x) =

 ∞∑
j=1

|G(fj)(x)|q
 1

q

We say that an operator T satisfies the (Dq) condition with 1 < q < ∞ if for every 0 < δ < 1 there
exists a finite constant c = Cδ,q,T > such that

M#
δ

(
T qf

)
(x) ≤ cM(|f |q)(x) (Dq)

where |f |q(x) =
(∑∞

j=1 |fj(x)|q
) 1
q

. Two examples of operators satisfying the (Dq) condition are the
Hardy-Littlewood maximal operator ([6] Proposition 4.4) and any Calderón-Zygmund operator ([34]
Lemma 3.1).

Next theorems extend and improve the main result from [39] since we are able to provide some
answers for the range 0 < p ≤ 1 and to consider vector-valued extensions. It is not clear that the
method of [39] can be extended to cover both situations. Furthermore, we can extend this result to the
multilinear context and other operators like fractional integrals.

Theorem 1. Let T be an operator satisfying the (D) condition. Let 0 < p <∞ and let w ∈ Cmax{1,p}+ε
for some ε > 0. Then

‖Tf‖Lp(w) ≤ c‖Mf‖Lp(w). (1.4)

Additionally, if 1 < q <∞ and T satisfies the (Dq) condition then

‖T qf‖Lp(w) ≤ c‖M(|f |q)‖Lp(w).

Remark 2. We don’t know how to extend (1.4) to rough singular integral operators or to the Bochner–
Riesz multiplier at the critical index. Indeed, it is not known whether any of these operators satisfies
condition (D) above.

Remark 3. Following a similar strategy as in the proof of (1.4) the following result holds. Let Iα,
0 < α < n, be a fractional operator and let 1 < p <∞. Let w ∈ Cp+ε for some ε > 0. Then

‖Iαf‖Lp(w) ≤ c‖Mαf‖Lp(w).

It is possible to extend these kind of results to the multilinear setting as follows. Following [12], we
say that T is an m-linear Calderón-Zygmund operator if, for some 1 ≤ qj <∞, it extends to a bounded
multilinear operator from Lq1 × · · · ×Lqm to Lq, where 1

q = 1
q1

+ · · ·+ 1
qm

, and if there exists a function
K, defined off the diagonal x = y1 = · · · = ym in (Rn)m+1, satisfying

T (f1, . . . , fm)(x) =

∫
(Rn)m

K(x, y1, . . . , ym)f1(y1) . . . fm(ym) dy1 . . . dym

for all x /∈ ∩mj=1supp fj ; and also satisfies similar size and regularity conditions as that in Section 2.1.
It was shown in [24], following the Calderón-Zygmund principle mentioned above, that the right

maximal operator that “controls” these m-linear Calderón-Zygmund operators is defined by

M(~f )(x) = sup
Q3x

m∏
i=1

1

|Q|

∫
Q

|fi(yi)|dyi,

where ~f = (f1, . . . , fm) and where the supremum is taken over all cubes Q containing x. In fact, these
m-linear Calderón-Zygmund operators satisfy a version of the (D) condition mentioned above as can
be found in [24, Theorem 3.2].

Lemma 1. Let T be an m-linear Calderón-Zygmund operator and δ ∈ (0, 1
m ). Then, there is a constant

c such that
M#
δ (T (~f ))(x) ≤ cM(~f )(x). (1.5)
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This estimate is very sharp since it is false in the case δ = 1
m . Also this estimate is quite useful since

one can deduce the following multilinear version of Coifman-Fefferman estimate (1.1),

‖T (~f)‖Lp(w) ≤ c ‖M(~f)‖Lp(w) 0 < p <∞, w ∈ A∞,

which can be found in [24] leading to the characterization of the class of (multilinear) weights for which
any mulitilinear Calderón-Zygmund operators are bounded.

Relying upon the pointwise estimate (1.5) it is possible to establish the following extension of (1.4).

Theorem 2. Let T be an m-linear Calderón-Zygmund operator, and let 0 < p < ∞. Also let w ∈
Cmax{1,mp}+ε for some ε > 0. Then

‖T (~f)‖Lp(w) ≤ c ‖M(~f)‖Lp(w).

We emphasize that the method of Sawyer in [39] does not produce the preceding result even for the
case p > 1.

For commutators, the following estimates are known (see [30, 34]). For every 0 < ε < δ < 1,

M#
ε ([b, T ]f)(x) ≤ cδ,T ‖b‖BMO

(
Mδ(Tf) +M2(f)(x)

)
, (1.6)

M#
ε ([b, T ]qf)(x) ≤ cδ,T ‖b‖BMO

(
Mδ(T qf) +M2(|f |q)(x)

)
, 1 < q <∞, (1.7)

where T is a Calderón-Zygmund operator satisfying a log-Dini condition. Relying upon them we obtain
the following result.

Theorem 3. Let T be an ω-Calderón-Zygmund operator with ω satisfying a log-Dini condition and let
b ∈ BMO. Let 0 < p <∞ and let w ∈ Cmax{1,p}+ε for some ε > 0. Then there is a constant c depending
on the Cmax{1,p}+ε condition such that

‖[b, T ]f‖Lp(w) ≤ c ‖b‖BMO ‖M2f‖Lp(w).

Additionally, if 1 < q <∞ then Then there is a constant c depending on the Cmax{1,p}+ε condition such
that

‖[b, T ]qf‖Lp(w) ≤ c ‖b‖BMO ‖M2(|f |q)‖Lp(w).

Remark 4. We remark that a similar estimate can be derived for the general k-th iterated commutator:
let 0 < p < ∞ and let w ∈ Cmax{1,p}+ε for some ε > 0. Then there is a constant c depending on the
Cmax{1,p}+ε condition such that

‖T kb f‖Lp(w) ≤ c ‖b‖kBMO ‖Mk+1f‖Lp(w).

In the following results we observe that rephrasing Sawyer’s method [39] in combination with sparse
domination results, that in the vector-valued we settle in section 1.2, we obtain estimates like (1.2)
where the strong norm ‖ · ‖Lp(w) is replaced by the weak norm ‖ · ‖Lp,∞(w). The disadvantage of this
approach is that we have to restrict ourselves to the range 1 < p <∞.

Theorem 4. Let T be an ω-Calderón-Zygmund operator with ω satisfying the Dini condition. Let
1 < p <∞ and let w ∈ Cp+ε for some ε > 0. Then there exists c = cT,p,ε,w such that

‖Tf‖Lp,∞(w) ≤ c‖Mf‖Lp,∞(w).

If aditionally 1 < q <∞ then

‖T qf‖Lp,∞(w) ≤ c‖M(|f |q)‖Lp,∞(w).

We also obtain some results for commutators which are completely new in both the scalar and the
vector-valued case.

Theorem 5. Let T be an ω-Calderón-Zygmund operator with ω satisfying a Dini condition and b ∈
BMO. Let 1 < p <∞ and w ∈ Cp+ε for some ε > 0. Then there exists c = cT,p,ε,w such that

‖[b, T ]f‖Lp(w) ≤ c‖b‖BMO‖M2f‖Lp(w),

‖[b, T ]f‖Lp,∞(w) ≤ c‖b‖BMO‖M2f‖Lp,∞(w).

If aditionally 1 < q <∞ then

‖[b, T ]qf‖Lp(w) ≤ c‖b‖BMO‖M2(|f |q)‖Lp(w),

‖[b, T ]qf‖Lp,∞(w) ≤ c‖b‖BMO‖M2(|f |q)‖Lp,∞(w).
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We would like to note that the preceding result extends results based in the M ] approach that
hold for Calderón-Zygmund operators satisfying a log-Dini condition to operators satisfying just a Dini
condition.

1.2. Sparse domination for vector-valued extensions
In the recent years a number of authors have exploited the sparse domination approach to provide

quantitative weighted estimates. Our contribution in that direction in this paper is to settle some
domination results for vector-valued extensions that we state in the following results. First we summarize
some pointwise domination results.

Theorem 6. Let 1 < q <∞ and f = {fj}∞j=1 such that |f |q ∈ L∞c . There exist 3n dyadic lattices Dj
and sparse families Sj ⊆ Dj, such that

• Maximal function.

|Mqf(x)| ≤ cn,q
3n∑
k=1

AqSk |f |q(x),

where

AqSf(x) =

∑
Q∈Sk

〈|f |〉qQχQ(x)

 1
q

.

• Calderón-Zygmund operators.

∣∣T qf(x)
∣∣ ≤ cnCT 3n∑

k=1

ASk |f |q(x),

where
ASf(x) =

∑
Q∈S
〈|f |〉QχQ(x)

and CT = CK + ‖ω‖Dini + ‖T‖L2→L2 .

• Commutators. If additionally b ∈ L1
loc

|[b, T ]qf(x)| ≤ cnCT
3n∑
j=1

(
TS,b|f |q(x) + T ∗S,b|f |q(x)

)
,

where

TS,bf(x) =
∑
Q∈S
|b(x)− bQ|〈|f |〉QχQ(x),

T ∗S,bf(x) =
∑
Q∈S
〈|b− bQ||f |〉QχQ(x).

We recall that if Ω ∈ L1(Sn−1) satisfies
∫
Sn−1 Ω = 0. we define the rough singular integral operator

TΩ as

TΩf(x) = p.v.
∫
Rn

Ω(x′)

|x|n
f(x− y)dy,

where x′ = x/|x| and the associated maximal operator by

T ∗Ωf(x) = sup
ε>0

∣∣∣∣∣
∫
|x−y|>ε

Ω(x′)

|x|n
f(x− y)dy

∣∣∣∣∣ .
We also recall that the operator B(n−1)/2, the Bochner–Riesz multiplier at the critical index, which is
defined by

̂B(n−1)/2(f)(ξ) = (1− |ξ|2)
(n−1)/2
+ f̂(ξ).

In our next Theorem we present our sparse domination results for vector-valued extensions of those
kind of operators and commutators.
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Theorem 7. Let Ω ∈ L∞(Sn−1). If T is TΩ or B(n−1)/2 and 1 ≤ s < q′+1
2 , then there exists a sparse

collection S such that ∣∣∣∑
j∈Z

∫
Rn
T (fj)gjdx

∣∣∣ ≤ cn,qCT s′∑
Q∈S
〈|f |q〉Q〈|g|q′〉s,Q|Q|.

If 1 < s < min{q′,q}+1
2 , then there exists a sparse collection S such that∣∣∣∑

j∈Z

∫
Rn
T ∗Ω(fj)gjdx

∣∣∣ ≤ cn,q‖Ω‖L∞(Sn−1)s
′
∑
Q∈S
〈|f |q〉s,Q〈|g|q′〉s,Q|Q|.

If 1 < s < q′+1
2 , 1 < r < q+1

2 and b ∈ BMO then∣∣∣∑
j∈Z

∫
Rn

[b, TΩ](fj)gjdx
∣∣∣ ≤ cn,q‖b‖BMO‖Ω‖L∞(Sn−1)s

′max{r′, s′}
∑
Q∈S
〈|f |q〉r,Q〈|g|q′〉s,Q|Q|.

The rest of the paper is organised as follows. In Section 2 we gather some preliminary results and
definitions needed in the rest of the paper. Sections 3 and 4 are devoted to settle sparse domination
results. Additionally we provide two appendices. In Appendix A we gather some quantitative estimates
that follow from the sparse domination results. Finally, in Appendix B we collect some quantitative
versions of unweighted estimates that are needed to obtain some of the sparse domination results.

2. Preliminaries

2.1. Notations and basic definitions
In this Section we fix the notation that we will use in the rest of the paper. First we recall the

definition of ω-Calderón-Zygmund operator.

Definition 1. A ω-Calderón-Zygmund operator T is a linear operator bounded on L2(Rn) that admits
the following representation

Tf(x) =

∫
K(x, y)f(y)dy

with f ∈ C∞c (Rn) and x 6∈ supp f and where K : Rn × Rn \ {(x, x) : x ∈ Rn} −→ R has the following
properties

Size condition |K(x, y)| ≤ CK 1
|x−y|n , x 6= 0.

Smoothness condition Provided that |y − z| < 1
2 |x− y|, then

|K(x, y)−K(x, z)|+ |K(x, y)−K(z, y)| ≤ 1

|x− y|n
ω

(
|y − z|
|x− y|

)
,

where the modulus of continuity ω : [0,∞)→ [0,∞) is a subaditive, increasing function such that
ω(0) = 0.

It is possible to impose different conditions on the modulus of continuity ω. The most general one
is the Dini condition. We say that a modulus of continuity ω satisfies a Dini condition if

‖ω‖Dini =

∫ 1

0

ω(t)
dt

t
<∞.

We will say that the modulus of continuity ω satisfies a log-Dini condition if

‖ω‖log-Dini =

∫ 1

0

ω(t) log

(
1

t

)
dt

t
<∞.

Clearly ‖ω‖Dini ≤ ‖ω‖log-Dini We recall also that if ω(t) = ctδ we are in the case of the classical
Hölder-Lipschitz condition.
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Definition 2. Let ω be a modulus of continuity and K be a kernel satisfying the properties in the
preceding definition. We define the maximal Calderón-Zygmund operator T ∗ as

T ∗f(x) = sup
ε>0

∣∣∣∣∣
∫
|x−y|>ε

K(x, y)f(y)dy

∣∣∣∣∣ .
To end the Section we would like to recall also the definitions of some variants and generaliza-

tions of the Hardy-Littlewood maximal function. We will denote Msf(x) = M(|f |s)(x)
1
s , M ]f(x) =

supQ3x
1
|Q|
∫
Q
|f − 〈f〉Q|, and M ]

sf(x) = M ](|f |s)(x)
1
s , where s > 0.

Now we recall that we say that Φ is a Young function if it is a continuous, convex increasing function
that satisfies Φ(0) = 0 and such that Φ(t)→∞ as t→∞.

Let f be a measurable function defined on a set E ⊂ Rn with finite Lebesgue measure. The Φ-norm
of f over E is defined by

‖f‖Φ(L),E := inf

{
λ > 0 :

1

|E|

∫
E

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
.

Using this Φ-norm we define, in the natural way, the Orlicz maximal operator MΦ(L) by

MΦ(L)f(x) = sup
x∈Q
‖f‖Φ(L),Q.

Some particular cases of interest are

• Mr for r > 1 given by the Young function Φ(t) = tr.

• ML(logL)δ with δ > 0 given by the Young function Φ(t) = t log(e + t)δ. It is a well known fact
that

M (k+1)f 'ML(logL)kf,

where Mk = M◦
(k)
· · · ◦M .

• ML(log logL)δ with δ > 0 given by the Young function Φ(t) = t(log log(ee + t))δ.

• ML(logL)(log logL)δ with δ > 0 given by the function Φ(t) = t log(e+ t)(log log(ee + t))δ.

One basic fact about this kind of maximal operators that follows from the definition of the norm is the
following. Given Ψ and Φ Young functions such that for some κ, c > 0 Ψ(t) ≤ κΦ(t), then

‖f‖Ψ(L),Q ≤ (Ψ(c) + κ)‖f‖Φ(L),Q,

and consequently
MΨ(L)f(x) ≤ (Ψ(c) + κ)MΦ(L)f(x).

Associated to each Young function A there exists a complementary function Ā that can be defined
as follows

Ā(t) = sup
s>0
{st−A(s)}.

That complementary function is a Young function as well and it satisfies the following pointwise estimate

t ≤ A−1(t)Ā−1(t) ≤ 2t.

An interesting property of this associated function is that the following estimate holds

1

|Q|

∫
Q

|fg|dx ≤ 2‖f‖A,Q‖g‖Ā,Q.

A case of interest for us is the case A(t) = t log(e+ t). In that case we have that

1

|Q|

∫
Q

|fg|dx ≤ c‖f‖L logL,Q‖g‖exp(L),Q.

From that estimate taking into account John-Nirenberg’s theorem, if b ∈ BMO, then

1

|Q|

∫
Q

|f(b− bQ)|dx ≤ c‖f‖L logL,Q‖b− bQ‖exp(L),Q ≤ c‖f‖L logL,Q‖b‖BMO. (2.1)

For a detailed account about the ideas presented in the end of this Section we refer the reader to
[36, 37].
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2.2. Lerner-Nazarov formula
In this Section we recall the definitions of the local oscillation and the Lerner-Nazarov oscillation

and we show that the latter is controlled by the former. Built upon Lerner-Nazarov oscillation we will
also introduce formula, which will be a quite useful tool for us. Most of the ideas covered in this Section
are borrowed from [22]. Among them, we start with the definition of dyadic lattice.

Let us call D(Q) the dyadic grid obtained repeatedly subdividing Q and its descendents in 2n cubes
with the same side length.

Definition 3. A dyadic lattice D in Rn is a family of cubes that satisfies the following properties

1. If Q ∈ D then each descendant of Q is in D as well.
2. For every 2 cubes Q1, Q2 we can find a common ancestor, that is, a cube Q ∈ D such that
Q1, Q2 ∈ D(Q).

3. For every compact set K there exists a cube Q ∈ D such that K ⊆ Q.

A way to build such a structure is to consider an increasing sequence of cubes {Qj} expanding each
time from a different vertex. That choice of cubes gives that Rn = ∪jQj and it is not hard to check
that

D =
⋃
j

{Q ∈ D(Qj)}

is a dyadic lattice.

Lemma 2. Given a dyadic lattice D there exist 3n dyadic lattices Dj such that

{3Q : Q ∈ D} =

3n⋃
j=1

Dj

and for every cube Q ∈ D we can find a cube RQ in each Dj such that Q ⊆ RQ and 3lQ = lRQ

Remark 5. Fix D. For an arbitrary cube Q ⊆ Rn there is a cube Q′ ∈ D such that lQ
2 < lQ′ ≤ lQ

and Q ⊆ 3Q′ . It suffices to take the cube Q′ that contains the center of Q . From the lemma above
it follows that 3Q′ = P ∈ Dj for some j ∈ {1, . . . , 3n}. Therefore, for every cube Q ⊆ Rn there exists
P ∈ Dj such that Q ⊆ P and lP ≤ 3lQ. From this follows that |Q| ≤ |P | ≤ 3n|Q|

Definition 4. S ⊆ D is a η-sparse family with η ∈ (0, 1) if for each Q ∈ S we can find a measurable
subset EQ ⊆ Q such that

η|Q| ≤ |EQ|

and all the EQ are pairwise disjoint.

We also recall here the definition of Carleson family.

Definition 5. We say that a family S ⊆ D is Λ-Carleson with Λ > 1 if for each Q ∈ S we have that∑
P∈S, P⊆Q

|P | ≤ Λ|Q|.

The following result that establishes the relationship between Carleson and sparse families was obtained
in [22] and reads as follows.

Lemma 3. If S ⊆ D is a η-sparse family then it is a 1
η -Carleson family. Conversely if Sis Λ-Carleson

then it is 1
Λ -sparse.

Now we turn to recall the definition of the local oscillation [18] which is given in terms of decreasing
rearrangements.

Definition 6 (Local oscillation). Given λ ∈ (0, 1), a measurable function f and a cube Q. We define

w̃λ(f ;Q) := inf
c∈R

((f − c)χQ)
∗

(λ|Q|).
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For any function g, its decreasing rearrangement g∗ is given by

g∗(t) = inf {α > 0 : |{x ∈ Rn : |g| > α}| ≤ t} .

In particular,

((f − c)χQ)
∗

(λ|Q|) = inf {α > 0 : |{x ∈ Q : |f − c| > α}| ≤ λ|Q|} .

Now we define Lerner-Nazarov oscillation [22]. We would like to observe that decreasing rearrange-
ments are not involved in the definition.

Definition 7 (Lerner-Nazarov oscillation). Given λ ∈ (0, 1), a measurable function f and a cube Q.
We define the λ-oscillation of f on Q as

wλ(f ;Q) := inf {w(f ;E) : E ⊆ Q, |E| ≥ (1− λ)|Q|} ,

where
w(f ;E) = sup

E
f − inf

E
f.

It is not hard to check that Lerner-Nazarov oscillation is controlled by the local oscillation.

Lemma 4. Given a measurable function f we have that for every λ ∈ (0, 1),

w(f ;Q) ≤ 2w̃λ(f ;Q).

Theorem III (Lerner-Nazarov formula). Let f : Rn → R be a measurable function such that for each
ε > 0

|{x ∈ [−R,R]n : |f(x)| > ε}| = o(Rn) as R→∞.

Then for each dyadic lattice D and every λ ∈ (0, 2−n−2] we can find a regular 1
6 -sparse family of cubes

S ⊆ D (depending on f) such that

|f(x)| ≤
∑
Q∈S

wλ(f ;Q)χQ(x) a.e.

3. Proof of Theorem 6

3.1. Hardy-Littlewood Maximal operator
We are going to prove

Mqf(x) ≤ cn,q
3n∑
k=1

∑
Q∈Sk

(
1

|Q|

∫
Q

|f |q
)q

χQ(x)

 1
q

.

First we observe that from Remark 5 it readily follows that

Mf(x) ≤ cn
3n∑
k=1

MDkf(x).

Taking that into account it is clear that

Mqf(x) ≤ cn
3n∑
k=1

M
Dk
q f(x). (3.1)

The following estimate for local oscillations

w̃λ

((
M
D
q f
)q

;Q
)
≤ cn,q

λq

(
1

|Q|

∫
Q

|f |q
)q

,

was established in [4, Lemma 8.1]. Now we recall that by Lemma 4

wλ

((
M
D
q f
)
q;Q

)
≤ 2w̃λ

((
M
D
q f
)q

;Q
)
.
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Then

wλ

((
M
D
q f
)q

;Q
)
≤ cn,q

λq

(
1

|Q|

∫
Q

|f |q
)q

.

Using now Lerner-Nazarov formula (Theorem III) there exists a 1
6 -sparse family S ⊂ D such that

M
D
q f(x)q ≤

∑
Q∈S

wλ

((
M
D
q f
)q

;Q
)
χQ(x)

≤ 2cn,q
λq

∑
Q∈S

(
1

|Q|

∫
Q

|f |q
)q

χQ(x).

Consequently

M
D
q f(x) ≤ cn,q

∑
Q∈S

(
1

|Q|

∫
Q

|f |q
)q

χQ(x)

 1
q

.

Applying this to each M
Dk
q f(x) in (3.1) we obtain the desired estimate.

3.2. Calderón-Zygmund operators and commutators
To settle this case we borrow ideas from [20] and [25]. Let T be an ω-CZO with ω satisfying Dini

condition and 1 < q <∞. We define the grand maximal truncated operatorMTq by

MT q
f(x) = sup

Q3x
ess sup
ξ∈Q

∣∣T q(fχRn\3Q)(ξ)
∣∣ .

We also consider a local version of this operator

MT q,Q0
f(x) = sup

x∈Q⊆Q0

ess sup
ξ∈Q

∣∣T q(fχ3Q0\3Q)(ξ)
∣∣ .

Lemma 5. Let T be an ω-CZO with ω satisfying Dini condition and 1 < q < ∞. The following
pointwise estimates hold:

1. For a.e. x ∈ Q0

|T q(fχ3Q0)(x)| ≤ cn‖T q‖L1→L1,∞ |f |q(x) +MT q,Q0
f(x).

2. For all x ∈ Rn
MT q

f(x) ≤ cn,q(‖ω‖Dini + CK)Mqf(x) + T ∗qf(x). (3.2)

Furthermore ∥∥∥MT q

∥∥∥
L1→L1,∞

≤ cn,qCT ,

where CT = CK + ‖ω‖Dini + ‖T‖L2→L2 .

Proof. Both estimates essentially follow from adapting arguments in [20] so we will establish just (3.2).
Let x, ξ ∈ Q. Denote by Bx the closed ball centered at x of radius 2diamQ. Then 3Q ⊂ Bx, and we
obtain

|T q(fχRn\3Q)(ξ)| ≤ |T q(fχRn\Bx)(ξ) + T q(fχBx\3Q)(ξ)|
≤ |T q(fχRn\Bx)(ξ)− T q(fχRn\Bx)(x)|
+ |T q(fχBx\3Q)(ξ)|+ |T q(fχRn\Bx)(x)|.

By the smoothness condition, since ||a|r − |b|r| ≤ 2max{1,r}−1|a− b|r for every r > 0 we have that

|T q(fχRn\Bx)(ξ)− T q(fχRn\Bx)(x)|

=

∣∣∣∣∣∣∣
 ∞∑
j=1

|T (fjχRn\Bx)(ξ)|q
 1

q

−

 ∞∑
j=1

|T (fjχRn\Bx)(x)|q
 1

q

∣∣∣∣∣∣∣
≤

 ∞∑
j=1

∣∣T (fjχRn\Bx)(ξ)− T (fjχRn\Bx)(x)
∣∣q 1

q

.
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Now using the smoothness condition (see [20, Proof of Lemma 3.2 (ii)]∣∣T (fjχRn\Bx)(ξ)− T (fjχRn\Bx)(x)
∣∣ ≤ cn‖ω‖DiniMfj(x),

and then we have that

|T q(fχRn\Bx)(ξ)− T q(fχRn\Bx)(x)| ≤ cn,q‖ω‖Dini

 ∞∑
j=1

|Mfj(x)|q
 1

q

= cn,q‖ω‖DiniMqf(x).

On the other hand the size condition of the kernel yields

|T q(fχBx\3Q)(ξ)| ≤

∣∣∣∣∣∣∣
 ∞∑
j=1

|T (fjχBx\3Q)(ξ)|q
 1

q

∣∣∣∣∣∣∣
≤ cnCK

∣∣∣∣∣∣∣
 ∞∑
j=1

(
1

|Bx|

∫
Bx

|fj |
)q 1

q

∣∣∣∣∣∣∣
≤ cnCK

∣∣∣∣∣∣∣
 ∞∑
j=1

(Mfj(x))
q

 1
q

∣∣∣∣∣∣∣ ≤ cnCKMqf(x).

To end the proof of the pointwise estimate we observe that

|T q(fχRn\Bx)(x)| ≤ T ∗qf(x).

Now, taking into account the pointwise estimate we have just obtained and Theorem 18 below it is clear
that ∥∥∥MT q

∥∥∥
L1→L1,∞

≤ cn,qCT .

This ends the proof.

Having the results above at our disposal now we sketch the proofs of the case of Calderón-Zygmund
operators and commutators in Theorem 6. Since the case of Calderón-Zygmund operators is simpler,
we just show the the case of commutators, to make clear how ideas in [20, 25], need to be adapted to
the case of vector-valued extensions.

From Remark 5 it follows that there exist 3n dyadic lattices such that for every cube Q of Rn there
is a cube RQ ∈ Dj for some j for which 3Q ⊂ RQ and |RQ| ≤ 9n|Q|

Let us fix a cube Q0 ⊂ Rn. We claim that there exists a 1
2 -sparse family F ⊆ D(Q0) such that for

a.e. x ∈ Q0∣∣∣[b, T ]q(fχ3Q0
)(x)

∣∣∣ ≤ cnCT ∑
Q∈F

(
|b(x)− bRQ |〈|f |q〉3Q + 〈|(b− bRQ)||f |q〉3Q

)
χQ(x). (3.3)

Arguing as in [25] from (3.3) it follows that there exists a 1
2 -sparse family F such that for every x ∈ Rn,∣∣∣[b, T ]qf(x)

∣∣∣ ≤ cnCT ∑
Q∈F

(
|b(x)− bRQ |〈|f |q〉3Q + 〈|(b− bRQ)||f |q〉3Q

)
χQ(x).

Now we observe that since 3Q ⊂ RQ and |RQ| ≤ 3n|3Q| we have that |h|3Q ≤ cn|h|RQ . Setting

Sj = {RQ ∈ Dj : Q ∈ F}

and using that F is 1
2 -sparse, we obtain that each family Sj is 1

2·9n -sparse. Then we have that

∣∣∣[b, T ]qf(x)
∣∣∣ ≤ cnCT 3n∑

j=1

∑
R∈Sj

(|b(x)− bR|〈|f |q〉R + 〈|(b− bR)||f |q〉R)χR(x).
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To prove the claim it suffices to prove the following recursive estimate: There exist pairwise disjoint
cubes Pj ∈ D(Q0) such that

∑
j |Pj | ≤

1
2 |Q0| and for a.e. x ∈ Q0,∣∣∣[b, T ]q(fχ3Q0)(x)

∣∣∣χQ0(x)

≤ cnCT
(
|b(x)− bRQ0

|〈|f |q〉3Q0 + 〈|(b− bRQ0
)||f |q〉3Q0

)
+
∑
j

∣∣∣[b, T ]q(fχ3Pj )(x)
∣∣∣χPj (x).

Iterating this estimate we obtain the claim with F = {P kj } where {P 0
j } = {Q0}, {P 1

j } = {Pj} and
{P kj } are the cubes obtained at the k-th stage of the iterative process. Now we observe that for any
arbitrary family of disjoint cubes Pj ∈ D(Q0) we have that by the sublinearity of [b, T ]q,∣∣∣[b, T ]q(fχ3Q0)(x)

∣∣∣χQ0(x) ≤
∣∣∣[b, T ]q(fχ3Q0)(x)

∣∣∣χQ0\
⋃
j Pj

(x)

+
∑
j

∣∣∣[b, T ]q(fχ3Q0\3Pj )(x)
∣∣∣χPj (x) +

∑
j

∣∣∣[b, T ]q(fχ3Pj )(x)
∣∣∣χPj (x).

So it suffices to show that we can choose a family of pairwise disjoint cubes Pj ∈ D(Q0) with
∑
j |Pj | ≤

1
2 |Q0| and such that for a.e. x ∈ Q0,∣∣∣[b, T ]q(fχ3Q0

)(x)
∣∣∣χQ0\

⋃
j Pj

(x) +
∑
j

∣∣∣[b, T ]q(fχ3Q0\3Pj )(x)
∣∣∣χPj (x)

≤ cnCT
(
|b(x)− bRQ0

|〈|f |q〉3Q0
+ 〈|(b− bRQ0

)||f |q〉3Q0

)
.

Now we recall that [b, T ]f = [b− c, T ]f = (b− c)Tf − T ((b− c)f) for every c ∈ R. Then

[b, T ]q(fχ3Q0
)(x)χQ0\

⋃
j Pj

(x) =

( ∞∑
k=1

∣∣[b− bRQ0
, T ](fkχ3Q0

)(x)
∣∣q) 1

q

χQ0\
⋃
j Pj

(x)

≤

( ∞∑
k=1

∣∣(b(x)− bRQ0

)
T (fkχ3Q0)(x)− T

((
b− bRQ0

)
fkχ3Q0

)
(x)
∣∣q) 1

q

χQ0\
⋃
j Pj

(x)

≤

( ∞∑
k=1

(∣∣(b(x)− bRQ0

)
T (fkχ3Q0

)(x)
∣∣+
∣∣T ((b− bRQ0

)
fkχ3Q0

)
(x)
∣∣)q) 1

q

χQ0\
⋃
j Pj

(x)

=
∣∣b(x)− bRQ0

∣∣T q (fχ3Q0
) (x)χQ0\

⋃
j Pj

(x) + T q
((
b− bRQ0

)
fχ3Q0

)
(x)χQ0\

⋃
j Pj

(x).

Analogously we also have that∑
j

∣∣∣[b, T ]q(fχ3Q0\3Pj )(x)
∣∣∣χPj (x)

≤
∑
j

(∣∣b(x)− bRQ0

∣∣T q (fχ3Q0\3Pj
)

(x) + T q
((
b− bRQ0

)
fχ3Q0\3Pj

))
χPj (x).

And combining both estimates∣∣∣[b, T ]q(fχ3Q0)(x)
∣∣∣χQ0\

⋃
j Pj

(x) +
∑
j

∣∣∣[b, T ]q(fχ3Q0\3Pj )(x)
∣∣∣χPj (x) ≤ I1 + I2,

where

I1 =
∣∣b(x)− bRQ0

∣∣∣∣T q(fχ3Q0
)(x)

∣∣χQ0\
⋃
j Pj

(x) +
∑
j

∣∣T q(fχ3Q0\3Pj )(x)
∣∣χPj (x)


and

I2 =
∣∣T q ((b− bRQ0

)fχ3Q0

)
(x)
∣∣χQ0\

⋃
j Pj

(x) +
∑
j

∣∣T q ((b− bRQ0
)fχ3Q0\3Pj

)
(x)
∣∣χPj (x).
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Now we define the set E = E1 ∪ E2 where

E1 = {x ∈ Q0 : |f |q > αn〈|f |q〉3Q0
} ∪

{
x ∈ Q0 : MTq,Q0

f > αnCT 〈|f |q〉3Q0

}
and

E2 =
{
x ∈ Q0 : |b− bRQ0

||f |q > αn〈|b− bRQ0
||f |q〉3Q0

}
∪
{
x ∈ Q0 : MT,Q0

(
(b− bRQ0

)f
)
> αnCT 〈|b− bRQ0

||f |q〉3Q0

}
.

SinceMT q
is of weak type (1, 1) with

‖MT q
‖L1→L1,∞ ≤ cnCT .

from this point it suffices to follow the arguments given in [25, Theorem 1.1] taking into account Lemma
5 to end the proof.

4. Proof of Theorem 7

To settle Theorem 7, unlike our previous approach, we do not need to go through the original proof.
This is due to a very nice observation by Culiuc, Di Plinio and Ou [5], combined with the corresponding
results for the scalar setting. Let us recall first those results.

Theorem IV ([3, Theorems A and B]). Let T be TΩ or B(n−1)/2. Then for all 1 < p <∞, f ∈ Lp(Rn)

and g ∈ Lp′(Rn), we have that∣∣∣ ∫
Rn
T (f)gdx

∣∣∣ ≤ cnCT s′∑
Q∈S
〈|f |〉Q〈|g|〉s,Q|Q|,

where S is a sparse family of some dyadic lattice D,{
1 < s <∞ if T = B(n−1)/2 or T = TΩ with Ω ∈ L∞(Sn−1)

q′ ≤ s <∞ if T = TΩ with Ω ∈ Lq,1 logL(Sn−1)

and

CT =


‖Ω‖L∞(Sn−1), if T = TΩ with Ω ∈ L∞(Sn−1)

‖Ω‖Lq,1 logL(Sn−1) if Ω ∈ Lq,1 logL(Sn−1)

1 if T = B(n−1)/2.

For T ∗Ω with Ω ∈ L∞(Sn−1) the following sparse domination was provided in [7].∣∣∣∣∫
Rn
T ∗Ω(f)g

∣∣∣∣ ≤ cn‖Ω‖L∞(Sn−1)s
′
∑
Q∈S
〈|f |〉s,Q〈|g|〉s,Q|Q| 1 < s <∞. (4.1)

In the case of commutators, the following result was recently obtained in [38], hinging upon tech-
niques in [21].

Theorem V. Let TΩ be a rough homogeneous singular integral with Ω ∈ L∞(Sn−1). Then, for every
compactly supported f, g ∈ C∞(Rn) every b ∈ BMO and 1 < p < ∞, there exist 3n dyadic lattices Dj
and 3n sparse families Sj ⊂ Dj such that

|〈[b, TΩ]f, g〉| ≤ Cns′‖Ω‖L∞(Sn−1)

∞∑
j=1

(
TSj ,1,s(b, f, g) + T ∗Sj ,1,s(b, f, g)

)
, (4.2)

where

TSj ,r,s(b, f, g) =
∑
Q∈Sj

〈|f |〉r,Q〈|(b− bQ)g|〉s,Q|Q|

T ∗Sj ,r,s(b, f, g) =
∑
Q∈Sj

〈|(b− bQ)f |〉r,Q〈|g|〉s,Q|Q|.
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Analogously as we did in the preceding sections, if 1 < q <∞ and T is TΩ or B(n−1)/2 and b ∈ L1
loc,

we consider the corresponding vector-valued versions of T and [b, T ] that are defined as follows

T qf(x) =
( ∞∑
j=1

|T (fj)|q
) 1
q

[b, T ]qf(x) =
( ∞∑
j=1

|[b, T ](fj)|q
) 1
q

.

Having those results at our disposal, we have∣∣∣∑
j∈Z

∫
Rn
T (fj)gjdx

∣∣∣ ≤ cnCT s′∑
j

∑
Q∈Sj

〈|fj |〉Q〈|gj |〉s,Q|Q|

≤ 2cnCT s
′
∫
Rn

∑
j

M1,s(fj , gj)(x)dx,

where
Mr,s(f, g)(x) = sup

Q3x
〈|f |〉r,Q〈|g|〉s,Q,

and 〈|h|〉u,Q = 〈|h|u〉
1
u

Q with u > 1.
In the case of T ∗Ω, taking into account (4.1) and arguing as above∣∣∣∑

j∈Z

∫
Rn
T ∗Ω(fj)gjdx

∣∣∣ ≤ 2cnCT s
′
∫
Rn

∑
j

Ms,s(fj , gj)(x)dx.

For the commutator [b, TΩ] with b ∈ BMO and Ω ∈ L∞(Sn−1), taking into account Theorem V, we
observe that choosing u = s+1

2 then u′ ≤ 2s′ and we have that∑
Q∈Sj

〈f〉Q〈(b− bQ)g〉u,Q|Q| ≤
∑
Q∈Sj

〈f〉Q〈b− bQ〉u( su )
′
,Q
〈g〉s,Q|Q|

≤ cnu
( s
u

)′
‖b‖BMO

∑
Q∈Sj

〈f〉Q〈g〉s,Q|Q|

≤ cnu
( s
u

)′
‖b‖BMO

∑
Q∈Sj

〈f〉r,Q〈g〉s,Q|Q|

≤ cns′‖b‖BMO

∑
Q∈Sj

〈f〉r,Q〈g〉s,Q|Q|.

On the other hand ∑
Q∈Sj

〈(b− bQ)f〉Q〈g〉u,Q|Q| ≤ cnr′‖b‖BMO

∑
Q∈Sj

〈f〉r,Q〈g〉s,Q|Q|,

from which it readily follows that

|〈[b, TΩ]f, g〉| ≤ cns′(s′ + r′)‖b‖BMO

∑
Q∈Sj

〈f〉r,Q〈g〉s,Q|Q|.

Consequently ∣∣∣∑
j∈Z

∫
Rn

[b, T ](fj)gjdx
∣∣∣ ≤ cns′max{s′, r′}‖b‖BMO

∫
Rn

∑
j

Mr,s(fj , gj)(x)dx.

where
Mr,s(f, g)(x) = sup

Q3x
〈|f |〉r,Q〈|g|〉s,Q.

The consideratons above reduce the proof of Theorem 7 to provide a sparse domination for (Mr,s)1(f ,g).
That was already done in [5]. Here we would like to track the constants, so present an alternative proof.
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Lemma 6. Let 1 < q <∞, 1 ≤ s < q′+1
2 and 1 ≤ r < q+1

2 . Then there exists a sparse family of dyadic
cubes S such that

(M1,s)1(f ,g) ≤ cnqq′
∑
Q∈S
〈|f |q〉r,Q〈|g|q′〉s,QχQ.

Proof. Again, we use the three lattice theorem to reduce the problem to study the related dyadic
maximal operator. Namely, we shall prove

(MD1,s)1
(f ,g) ≤ cnqq′

∑
Q∈S
〈|f |q〉r,Q〈|g|q′〉s,QχQ,

where D is a dyadic grid and

MD1,s(f, g)(x) = sup
Q3x
Q∈D

〈|f |〉r,Q〈|g|〉s,Q.

We shall use the Lerner-Nazarov formula. So we only need to calculate the local mean oscillation. For
every x ∈ Q0, notice that

MDr,s(f, g)(x) = max{MDr,s(fχQ0
, gχQ0

)(x), sup
Q∈D
Q⊃Q0

〈|f |〉r,Q〈|g|〉s,Q}.

the second term on the right is constant, so based on this we define

K0 =
∑
j∈Z

sup
Q∈D
Q⊃Q0

〈|fj |〉r,Q〈|gj |〉s,Q.

Then ∣∣{x ∈ Q0 : |(MD1,s)1
(f ,g)(x)−K0| > t}

∣∣ ≤ ∣∣{x ∈ Q0 : |(MD1,s)1
(fχQ0

,gχQ0
)(x)| > t}

∣∣.
Now we are in the position to apply the Fefferman-Stein inequality for vector-valued maximal operators.
Since we need to track the constants, here we use the version in Grafakos’ book [11, Theorem 5.6.6]:

‖Mq(f)‖L1,∞ ≤ cnq′‖|f |q‖L1 . (4.3)

We also need the Hölder’s inequality for the weak type spaces, which can also be found in [11, p. 16]:

‖f1 · · · fk‖Lp,∞ ≤ p−
1
p

k∏
i=1

p
1
pi
i ‖fi‖Lpi,∞ , (4.4)

where 1
p =

∑k
i=1

1
pi

and 0 < pi <∞. With (4.3) and (4.4) at hand, we have that since 1 < r, s <∞,

‖(M1,s)
D
1 (f ,g)‖

L
rs
r+s

,∞ ≤ r
1
r s

1
s

(
r + s

rs

) r+s
rs

‖Mqf‖Lr,∞‖(Ms)q′g‖Ls,∞

≤ r 1
r s

1
s

(
r + s

rs

) r+s
rs

‖(Mr)qf‖Lr,∞‖(Ms)q′g‖Ls,∞

≤ r 1
r s

1
s

(
r + s

rs

) r+s
rs

‖Mq/r|f |r‖
1
r

L1,∞‖Mq′/s|g|
s‖

1
s

L1,∞

≤ cnr
1
r s

1
s

(
r + s

rs

) r+s
rs (q

r

)′ (q′
s

)′
‖|f |rq‖

1
r

L1‖|g|sq′‖
1
s

L1 .

Now we observe that cnr
1
r s

1
s

(
r+s
rs

) r+s
rs
(
q
r

)′ (
q′

s

)′
≤ cnqq′ = κ. Then,

∣∣{x ∈ Q0 : |(MD1,s)1
(fχQ0

,gχQ0
)(x)| > t}

∣∣ ≤ κ
rs
r+s

t
rs
r+s

(∫
Q0

|f |rq
) 1
r
rs
r+s
(∫

Q0

|g|sq′
) 1
s
rs
r+s

.
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Taking into account the preceding estimates, we have that

ωλ((MD1,s)1(f ,g), Q0) ≤
(
(MD1,s)1(f ,g)−K0

)∗
(λ|Q0|)

≤ cnqq′λ−
r+s
rs 〈|f |q〉r,Q0

〈|g|q′〉s,Q0
χQ0

≤ cnqq′λ−2〈|f |q〉r,Q0〈|g|q′〉s,Q0χQ0 ,

where the last inequality holds since 0 < λ < 1. From this point, a direct application of Lerner-Nazarov
formula (Theorem III) together with the 3n-dyadic lattices trick ends the proof.

5. Proofs of Cp condition estimates

5.1. Proofs of M ] approach results. Theorems 1, 2 and 3
Proof of Theorem 1. Let δ ∈ (0, 1) be a parameter to be chosen. Then, by the Lebesgue differentiation
theorem

‖T (f)‖Lp(w) ≤ ‖M(T (f)δ)
1
δ ‖Lp(w) = ‖M(T (f)δ)‖

1
δ

Lp/δ(w)
.

Now we choose δ ∈ (0, 1) such that

max{1, p} < p

δ
< max{1, p}+ ε.

If we denote ε1 = max{1, p}+ε− p
δ then, since w ∈ Cmax{1,p}+ε, we have that w ∈ Cp/δ+ε1 and a direct

application of Lemma II combined with the (D) condition yields

‖T (f)‖Lp(w) ≤ c ‖M#(T (f)δ)‖
1
δ

Lp/δ(w)
= c ‖M#

δ (T (f))‖Lp(w) ≤ c ‖Mf‖Lp(w),

which is the desired result. The vector-valued case is analogous, assuming the (Dq) condition instead
so we omit the proof.

Proof of Theorem 2. The proof is similar to the case m = 1. Let δ ∈ (0, 1
m ) be a parameter to be

chosen. Then, as above
‖T (~f)‖Lp(w) ≤ ‖M(|T (~f)|δ) 1

δ ‖Lp(w).

Now we choose δ ∈ (0, 1
m ) such that

max{1,mp} < p

δ
< max{1,mp}+ ε.

If we denote εm = max{1,mp}+ ε− p
δ then, since w ∈ Cmax{1,mp}+ε, we have that w ∈ Cp/δ+εm and a

direct application of Lemma II combined with (1.5) yields

‖T (~f)‖Lp(w) ≤ c ‖M#(|T (~f)|δ)‖
1
δ

Lp/δ(w)
= c ‖M#

δ (T (~f))‖Lp(w) ≤ c ‖M(~f)‖Lp(w),

as we wanted to prove.

Proof of Theorem 3. We will use the key pointwise estimate (1.6): if 0 < δ < δ1: there exists a positive
constant c = cδ,δ1,T such that,

M#
δ ([b, T ]f)(x) ≤ cδ,δ1,T ‖b‖BMO

(
Mδ1(Tf) +M2(f)(x)

)
.

By the Lebesgue differentiation theorem,

‖[b, T ]f‖Lp(w) ≤ ‖M(|[b, T ]f |δ) 1
δ ‖Lp(w).

We choose 0 < δ < δ1 < 1 such that

max{1, p} < p

δ1
<
p

δ
< max{1, p}+ ε.

Now, if we denote ε1 = max{1, p}+ ε− p
δ then, since w ∈ Cmax{1,p}+ε, we have that w ∈ Cp/δ+ε1 and

a direct application of Lemma II yields

‖[b, T ]‖Lp(w) ≤ c‖M#(|[b, T ]|δ) 1
δ ‖Lp(w).
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Combining the preceding estimate with (1.6),

‖[b, T ]‖Lp(w) ≤ c ‖b‖BMO

(
‖Mδ1(Tf)‖Lp(w) + ‖M2f‖Lp(w)

)
.

For the second term we are done, whilst for first one, taking into account our choice for δ1 and arguing
as in the proof of Theorem 1,

‖Mδ1(Tf)‖Lp(w) ≤ c‖Mf‖Lp(w)

and we are done. Taking into account (1.7) the vector-valued case is analogous so we omit the proof.

5.2. Proofs of Theorems 4 and 5
The proof of Theorem 4 is actually a consequence of the sparse domination combined with the

following Theorem.

Theorem 8. Let 1 < p < q <∞. Let S be a sparse family and w ∈ Cq. Then

‖ASf‖Lp(w) ≤ c‖Mf‖Lp(w),

‖ASf‖Lp,∞(w) ≤ c‖Mf‖Lp,∞(w).

Something analogous happens with Therorem 5. It is a consequence of the sparse domination
combined with the following result.

Theorem 9. Let 1 < p < q <∞. Let S be a sparse family and w ∈ Cq, and b ∈ BMO. Then

‖Tb,Sf‖Lp(w) ≤ c‖b‖BMO‖Mf‖Lp(w),

‖Tb,Sf‖Lp,∞(w) ≤ c‖b‖BMO‖Mf‖Lp,∞(w).

and

‖T ∗b,Sf‖Lp(w) ≤ c‖b‖BMO‖M2f‖Lp(w),

‖T ∗b,Sf‖Lp,∞(w) ≤ c‖b‖BMO‖M2f‖Lp,∞(w).

To establish the preceding results we will rely upon some Lemmas that are based on ideas of [39].

5.2.1. Lemmata
In this section we present the technical lemmas needed to establish Theorems 4 and 5. Results here

are essentially an elaboration of Sawyer’s arguments [39].
Let Ωk := {f > 2k} and define

(Mk,p,q(f)(x))p = 2kp
∫

Ωk

d(y,Ωck)n(q−1)

d(y,Ωck)nq + |x− y|nq
dy.

When Ωk is open let Ωk = ∪jQkj be the Whitney decomposition, i.e., Qkj are pairwise disjoint and

8 <
dist(Qkj ,Ωck)

diamQkj
≤ 10,

∑
j

χ6Qkj
≤ CnχΩk ,

then it is easy to check that
Mk,p,q(f)p h 2kp

∑
j

M(χQkj )q.

Our key lemma is the following

Lemma 7. Suppose that 1 < p < q <∞ and that w satisfies the Cq condition. Then for all compactly
supported f ,

sup
k

∫
(Mk,p,q(Mf))pw ≤ C‖Mf‖pLp,∞(w).
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Proof. Let Ωk := {Mf > 2k} = ∪jQkj be the Whitney decomposition. Let N be a positive integer (to
be chosen later) and fix a Whitney cube Qk−Ni . We now claim

|Ωk ∩ 3Qk−Ni | ≤ Cn2−N |Qk−Ni |. (5.1)

Indeed, let g = fχ22
√
nQk−Ni

and h = f − g. Let x0 ∈ 22
√
nQk−Ni \ Ωk−N . It is easy to check that for

any x ∈ 3Qk−Ni , we have
M(h)(x) ≤ cnM(f)(x0) ≤ cn2k−N .

Let N be sufficiently large such that cn2−N ≤ 1/2. Then

|Ωk ∩ 3Qk−Ni | = |{x ∈ 3Qk−Ni : M(f) > 2k}|
≤ |{x ∈ 3Qk−Ni : M(g) > 2k−1}|

≤ 21−kcn

∫
g ≤ 21−kcn|22

√
nQk−Ni |M(f)(x0)

≤ Cn2−N |Qk−Ni |.

As that in [39], define S(k) = 2kp
∑
j

∫
M(χQkj )qw and S(k;N, i) = 2kp

∑
j

∫
M(χQkj )qw, where the

latter sum is taken over those j for which Qkj ∩ Q
k−N
i 6= ∅. Since Qkj ∩ Q

k−N
i 6= ∅ together with (5.1)

implies `(Qkj ) ≤ `(Qk−Ni ) for large N , and this further implies Qkj ⊂ Q
k−N
i , we have

S(k;N, i) ≤
∫

2kp
∑

j:Qkj⊂3Qk−Ni

|MχQkj |
qw

=

∫
5Qk−Ni

+

∫
Rn\5Qk−Ni

:= I + II for N large.

By the argument in [39], we know

I ≤ Cδ2kpw(5Qk−Ni ) + δ2kp
∫
|MχQk−Ni

|qw,

where we have used M(χ6Qk−Ni
) hM(χQk−Ni

). Next we estimate II, we have

II ≤ cn2kp
∫
Rn\5Qk−Ni

∑
|Qkj |q

|x− cQk−Ni
|nq

w(x)dx

≤ cn,q2kp
∫
Rn\5Qk−Ni

( 2−N |Qk−Ni |
|x− cQk−Ni

|n
)q
w(x)dx

≤ cn,q2N(p−q)2(k−N)p

∫
|MχQk−Ni

|qw.

Thus for N large (depending on p, q),

S(k) ≤
∑
i

S(k;N, i)

≤ Cδcn2kpw(Ωk−N ) + (δ2Np + cn,q2
N(p−q))S(k −N)

≤ Cn,δ2kpw(Ωk−N ) +
1

2
S(k −N).

Taking the supremum over k ≤M , we get

sup
k≤M

∫
(Mk,p,q(Mf))pw ≤ cn,p,q‖M(f)‖pLp,∞(w),

provided that

sup
k≤M

∫
(Mk,p,q(Mf))pw <∞.
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By monotone convergence, we can assume that f has compact support, say supp f ⊂ Q. Without loss
of generality, assume f ≥ 0 and 2s < 〈f〉Q ≤ 2s+1. Then it is easy to check that

M(f) & 2sM(χQ).

Moreover, for k ≥ s+ 1, Ωk ⊂ 3Q and we have

sup
s+1<k≤M

2kp
∑
j

∫
M(χQkj )qw

≤ sup
s+1<k≤M

2kp
∫
M(χQ)qw

= sup
s+1<k≤M

2kp
∑
`≥1

∫
2`+1Q\2`Q

M(χQ)qw + sup
s+1<k≤M

2kp
∫

2Q

M(χQ)qw

= I + II.

First, we estimate II. We have

II ≤ 2Mpw(2Q) ≤ 2Mpw({x : MχQ(x) ≥ 1

2n
})

≤ 2Mpcn,p‖MχQ‖pLp,∞(w) ≤ 2Mp−spcn,p‖Mf‖pLp,∞(w) <∞.

Next we estimate I. Direct calculations give us

I ≤ sup
s+1<k≤M

2kp
∑
`≥1

cn,q2
−nq`w(2`+1Q \ 2`Q)

≤ sup
s+1<k≤M

2kp
∑
`≥1

cn,q2
−nq`w({x : M(χQ) ≥ 1

2(`+1)n
})

≤ 2Mpcn,q
∑
`≥1

2−n(q−p)`‖M(χQ)‖pLp,∞(w)

≤ cn,p,q2Mp2−sp‖Mf‖pLp,∞(w) <∞.

It remains to consider the case k ≤ s. We still follow the idea of Sawyer, but with slight changes. In
this case, Ωk ⊂ (2

s−k+2
n + 1)Q. Then again,

sup
k≤s

2kp
∑
j

∫
|M(χQkj )|qw ≤ sup

k≤s
2kpcn,q

∫
|Mχ

2
s−k
n Q
|qw

= 2sp sup
m≥0

2−mpcn,q

∫
|Mχ

2
m
n Q
|qw

≤ 2sp sup
m≥0

2−mpcn,q

∫
2
m
n

+1Q

|Mχ
2
m
n Q
|qw

+ 2sp sup
m≥0

2−mpcn,q
∑
`≥1

∫
2
m
n

+`+1Q\2
m
n

+`Q

|Mχ
2
m
n Q
|qw

≤ cn,p,q‖Mf‖pLp,∞(w) <∞,

where the last step follows from similar calculations as the ones above. Now

sup
k≤M

∫
(Mk,p,q(Mf))pw ≤ cn,p,q‖M(f)‖pLp,∞(w)

and taking the supremum over M we conclude the proof.

Our last result in this subsection is the following technical lemma.

Lemma 8. Let {Qkj }j be a collection of disjoint cubes in {Mf > 2k}, then

2kp
∑
j

M(χQkj )q .Mk,p,q(Mf)p.
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Proof. The proof is straightforward. Indeed, let cQkj be the center of Qkj , and P be the cube from
the Whitney decomposition of {Mf > 2k} which contains cQkj . Of course by the Whitney property,
Qkj ⊂ cnP for some dimensional constant cn. Then

M(χQkj ) ≤M(χcnP ) ≤ c′nM(χP )

and the result follows.

5.2.2. Proof of Theorem 8
We only provide the proof for the strong type (p, p) estimate, since the weak type (p, p) is analogous.

Let γ > 0 a small parameter that will be chosen, then we have that

‖ASf‖pLp(w) ≤
∑
k∈Z

2(k+1)pw({x : 2k < ASf(x) ≤ 2k+1})

≤ cp
∑
k∈Z

2kpw({x : ASf(x) > 2k})

≤ cp
∑
k∈Z

2kpw({x : ASf(x) > 2k,M(f)(x) ≤ γ2k})

+ cp
∑
k∈Z

2kpw({x : M(f)(x) > γ2k})

≤ cp
∑
k∈Z

2kpw({x : ASf(x) > 2k,M(f)(x) ≤ γ2k}) + cp,γ‖Mf‖pLp(w).

So we only need to estimate∑
k∈Z

2kpw({x : ASf(x) > 2k,M(f)(x) ≤ γ2k}).

Split S = ∪mSm, where
Sm := {Q ∈ S : 2m < 〈f〉Q ≤ 2m+1}.

It is easy to see that, if 2m ≥ γ2k, then for x ∈ Q ∈ Sm, Mf(x) > γ2k. Set m0 = blog2( 1
γ )c+ 1, then

we have∑
k∈Z

2kpw({x : ASf(x) > 2k, M(f)(x) ≤ γ2k})

=
∑
k∈Z

2kpw

x :
∑

m≤k−m0

ASmf(x) > 2k(1− 1√
2

)
∑

m≤k−m0

2
m−k+m0

2 , M(f)(x) ≤ γ2k




≤
∑
k∈Z

2kp
∑

m≤k−m0

w

({
x : ASmf(x) > (1− 1√

2
)2

m+k+m0
2 , M(f)(x) ≤ γ2k

})
.

Denote bm =
∑
Q∈Sm χQ, then ASmf ≤ 2m+1bm. and therefore, if we denote S∗m is the collection of

maximal dyadic cubes in Sm, taking into account the local exponential decay for sparse operators (see
for instance [29]),∣∣∣{ASmf(x) > (1− 1√

2
)2

m+k+m0
2

}∣∣∣ ≤ ∣∣∣{bm >

√
2− 1

2
√

2
2
−m+k+m0

2

}∣∣∣
≤
∑
Q∈S∗m

∣∣∣{x ∈ Q : bm >

√
2− 1

2
√

2
2
−m+k+m0

2

}∣∣∣ ≤ exp(−c2
−m+k+m0

2 )
∑
Q∈S∗m

|Q|.

Now, by the Cq condition, we have

w

({
ASmf(x) > (1− 1√

2
)2

m+k+m0
2

})
=
∑
Q∈S∗m

w

({
x ∈ Q : ASmf(x) > (1− 1√

2
)2

m+k+m0
2

})

≤ exp(−cε2
−m+k+m0

2 )
∑
Q∈S∗m

∫
M(χQ)qw.
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Since ∪Q∈S∗mQ ⊂ {x : Mf(x) > 2m}, a combined application of Lemmas 7 and 8 yields the desired
result.

5.2.3. Proof of Theorem 9
We may assume that ‖b‖BMO = 1 Again we just settle the strong type estimate, since the weak-weak

type (p, p) estimate is analogous.
First we note that using (2.1)

T ∗b,Sf(x) =
∑
Q∈S

1

|Q|

∫
Q

|b− bQ||f |χQ . ‖b‖BMO

∑
Q∈S
‖f‖L logL,QχQ = ‖b‖BMOAL logL,Sf.

Now we observe that we have that

‖AL logL,Sf‖Lp(w) ≤
∑
k∈Z

2(k+1)pw({x : 2k < AL logL,Sf ≤ 2k+1})

≤ cp
∑
k∈Z

2kpw({x : AL logL,Sf(x) > 2k})

≤ cp
∑
k∈Z

2kpw({x : AL logL,Sf(x) > 2k,ML logLf(x) ≤ γ2k})

+ cp
∑
k∈Z

2kpw({x : ML logLf(x) > γ2k})

≤ cp
∑
k∈Z

2kpw({x : AL logL,Sf(x) > 2k,ML logLf(x) ≤ γ2k})

+ cp,γ‖ML logLf‖pLp(w).

So we only need to estimate∑
k∈Z

2kpw({x : AL logL,Sf(x) > 2k,ML logLf(x) ≤ γ2k}).

Split S = ∪mSm, where
Sm := {Q ∈ S : 2m < ‖f‖L logL,Q ≤ 2m+1}.

It is easy to see that, if 2m ≥ γ2k, then for x ∈ Q ∈ Sm, ML logLf(x) > γ2k. Set m0 = blog2( 1
γ )c+ 1,

we have∑
k∈Z

2kpw({x : AL logL,Sf(x) > 2k,ML logLf(x) ≤ γ2k})

=
∑
k∈Z

2kpw({x :
∑

m≤k−m0

AL logL,Smf(x) > 2k(1− 1√
2

)
∑

m≤k−m0

2
m−k+m0

2 ,ML logLf(x) ≤ γ2k})

≤
∑
k∈Z

2kp
∑

m≤k−m0

w({x : AL logL,Smf(x) > (1− 1√
2

)2
m+k+m0

2 ,ML logLf(x) ≤ γ2k}).

Denote bm =
∑
Q∈Sm χQ, then AL logL,Smf ≤ 2m+1bm. and therefore, by sparseness,∣∣∣{AL logL,Smf(x) > (1− 1√

2
)2

m+k+m0
2

}∣∣∣
≤
∣∣∣{bm >

√
2− 1

2
√

2
2
−m+k+m0

2

}∣∣∣ ≤ exp(−c2
−m+k+m0

2 )
∑
Q∈S∗m

|Q|,

where S∗m is the collection of maximal dyadic cubes in Sm. By the Cq condition, we have

w

({
AL logL,Smf(x) > (1− 1√

2
)2

m+k+m0
2

})
≤ exp(−cε2

−m+k+m0
2 )

∑
Q∈S∗m

∫
M(χQ)qw.
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Since ∪Q∈S∗mQ ⊂ {x : ML logLf(x) > 2m} ⊆ {x : M(Mf)(x) > 2m−n} then we have that using Lemma
8 ∑

Q∈S∗m

M(χQ)qw .Mm−n,p,q(M(Mf))p

and consequently ∑
Q∈S∗m

∫
M(χQ)qw .

∫
Mm−n,p,q(M(Mf))p.

Hence taking into account Lemma 7

w

({
AL logL,Smf(x) > (1− 1√

2
)2

m+k+m0
2

})
. exp(−cε2

−m+k+m0
2 )

∫
Mm−n,p,q(M(Mf))p

. exp(−cε2
−m+k+m0

2 )‖M(Mf)‖pLp(w).

' exp(−cε2
−m+k+m0

2 )‖ML logLf‖pLp(w).

This yields ∑
k∈Z

2kpw({x : AL logL,Sf(x) > 2k,ML logLf(x) ≤ γ2k})

.
∑
k∈Z

2kp
∑

m≤k−m0

exp(−cε2
−m+k+m0

2 )‖ML logLf‖pLp(w)

and we are done.
Now we turn our attention to Tb,Sf(x). We observe that we have that arguing as before

‖Tb,Sf(x)f‖pLp(w) ≤
∑
k∈Z

2(k+1)pw({x : 2k < Tb,Sf(x) ≤ 2k+1})

≤ cp
∑
k∈Z

2kpw({x : Tb,Sf(x) > 2k,M(f)(x) ≤ γ2k}) + cp,γ‖Mf‖pLp(w).

So we only need to estimate∑
k∈Z

2kpw({x : Tb,Sf(x) > 2k,M(f)(x) ≤ γ2k}).

Split S = ∪mSm, where
Sm := {Q ∈ S : 2m < 〈f〉Q ≤ 2m+1}.

It is easy to see that, if 2m ≥ γ2k, then for x ∈ Q ∈ Sm, Mf(x) > γ2k. Set m0 = blog2( 1
γ )c+ 1, we

have ∑
k∈Z

2kpw({x : Tb,Sf(x) > 2k,M(f)(x) ≤ γ2k})

=
∑
k∈Z

2kpw

x :
∑

m≤k−m0

Tb,Smf(x) > 2k(1− 1√
2

)
∑

m≤k−m0

2
m−k+m0

2 ,M(f)(x) ≤ γ2k




≤
∑
k∈Z

2kp
∑

m≤k−m0

w

({
x : Tb,Smf(x) > (1− 1√

2
)2

m+k+m0
2 ,M(f)(x) ≤ γ2k

})
.

Now we observe that Tb,Smf(x) ≤ 2m+1
∑
Q∈Sm |b(x)− bQ|χQ, therefore∣∣∣{Tb,Smf(x) > (1− 1√

2
)2

m+k+m0
2

}∣∣∣
≤
∣∣∣{ ∑

Q∈Sm

|b(x)− bQ|χQ >

√
2− 1

2
√

2
2
−m+k+m0

2

}∣∣∣
=
∑
Q∈S∗m

∣∣∣{x ∈ Q :
∑

P∈Sm,P⊆Q

|b(x)− bP |χP >
√

2− 1

2
√

2
2
−m+k+m0

2

}∣∣∣,
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where S∗m is the collection of maximal dyadic cubes in Sm. Now taking into account [25, Lemma 5.1],
we have that there exists a sparse family S̃m containing Sm such that

|b(x)− bP |χP (x) ≤ ‖b‖BMOcn
∑

R⊆P,P∈Sm

χR(x) = cn
∑

R⊆P,P∈Sm

χR(x).

Taking that into account we can continue the preceding computation as follows

∑
Q∈S∗m

∣∣∣∣∣∣
x ∈ Q :

∑
P∈Sm,P⊆Q

cn ∑
R⊆P,P∈S̃m

χR(x)

χP >

√
2− 1

2
√

2
2
−m+k+m0

2


∣∣∣∣∣∣

∑
Q∈S∗m

∣∣∣∣∣∣∣
x ∈ Q :

 ∑
P∈S̃m,P⊆Q

χP

2

> c

√
2− 1

2
√

2
2
−m+k+m0

2


∣∣∣∣∣∣∣

≤ exp(−c2
−m+k+m0

4 )
∑
Q∈S∗m

|Q|.

Hence, combining the preceding estimates and using the Cq condition, we have

w

({
Tb,Smf(x) > (1− 1√

2
)2

m+k+m0
2

})
≤ exp(−cε2

−m+k+m0
4 )

∑
Q∈S∗m

∫
M(χQ)qw.

Since ∪Q∈S∗mQ ⊂ {x : Mf(x) > 2m} then we have that using Lemma 8∑
Q∈S∗m

M(χQ)qw .Mm,p,q(Mf)p

and consequently ∑
Q∈S∗m

∫
M(χQ)qw .

∫
Mm,p,q(Mf)p.

Hence taking into account Lemma 7

w
{
Tb,Smf(x) > (1− 1√

2
)2

m+k+m0
2

}
. exp(−cε2

−m+k+m0
4 )

∫
Mm,p,q(Mf)p

. exp(−cε2
−m+k+m0

4 )‖Mf‖pLp(w).

This yields ∑
k∈Z

2kpw({x : Tb,Smf(x) > 2k,M(f)(x) ≤ γ2k})

.
∑
k∈Z

2kp
∑

m≤k−m0

exp(−cε2
−m+k+m0

4 )‖Mf‖pLp(w)

and we are done.
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Appendix A. Consequences of sparse domination results

The following results follow combining the sparse domination results provided above and ideas in
[14, 25] and a suitable adaption of the conjugation method in the case of the one weighted setting for
the commutator.

Theorem 10 (Ap weak and strong type estimates). Let 1 < p, q <∞ and w ∈ Ap. Then

• Maximal function

‖Mq(σf)‖Lp(w) . [w]
1
p

Ap

(
[w]

( 1
q−

1
p )

+

A∞
+ [σ]

1
p

A∞

)
‖|f |q‖Lp(σ)

‖Mq(σf)‖Lp,∞(w) . [w]
1
p

Ap
[w]

( 1
q−

1
p )

+

A∞
‖|f |q‖Lp(σ) p 6= q.
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• Calderón-Zygmund operators

‖T q(σf)‖Lp(w) ≤ cn,p,qCT [w]
1
p

Ap

(
[w]

1
p′

A∞
+ [σ]

1
p

A∞

)
‖|f |q‖Lp(σ)

‖T q(σf)‖Lp,∞(w) ≤ cn,p,qCT [w]
1
p

Ap
[w]

1
p′

A∞
‖|f |q‖Lp(σ).

• Commutators of Calderón-Zygmund operators

‖[b, T ]qf‖Lp(w) ≤ cn,p,qCT [w]
1
p

Ap

(
[w]

1
p′

A∞
+ [σ]

1
p

A∞

)
([w]A∞ + [σ]A∞) ‖f‖Lp(w).

If µ, λ ∈ Ap, and ν =
(
µ
λ

) 1
p . If b ∈ BMOν , namely if ‖b‖BMOν = supQ

1
ν(Q)

∫
Q
|b − bQ|dx < ∞,

then
‖[b, T ]qf‖Lp(λ) ≤ cn,p,qCT max

{
[µ]Ap [λ]Ap

}max{1, 1
p−1} ‖b‖BMOν‖|f |q‖Lp(µ).

• Rough singular integrals, commutators and B(n−1)/2

‖T q‖Lp(w) ≤ cn,p,q cT [w]
1
p

Ap
([w]

1
p′

A∞
+ [σ]

1
p

A∞
) min{[σ]A∞ , [w]A∞},

‖(T ∗Ω)q‖Lp(w) ≤ cn,p,q‖Ω‖L∞(Sn−1)[w]
1
p

Ap
([w]

1
p′

A∞
+ [σ]

1
p

A∞
) max{[σ]A∞ , [w]A∞},

‖[b, TΩ]q‖Lp(w) ≤ cn,p,q‖Ω‖L∞(Sn−1)‖b‖BMO[w]
1
p

Ap
([w]

1
p′

A∞
+ [σ]

1
p

A∞
) max{[σ]A∞ , [w]A∞}2.

The following estimates can be obtained using the proofs for sparse operators contained in [8, 25].

Theorem 11 (Endpoint estimates). Let 1 < p, q <∞, w a weight and v ∈ A1. Then

• Calderón-Zygmund operators

‖T q(f)‖L1,∞(w) . cΦ

∫
Rn
|f(x)|qMΦw(x)dx,

where cΦ =
∫∞

1
Φ−1(t)

t2 log(e+t)dt. From this estimate we derive the following

‖T q(f)‖L1,∞(v) . [v]A1 log(e+ [v]A∞)

∫
Rn
|f(x)|qv(x)dx.

• Commutators

w
({
x ∈ Rn : [b, T ]qf(x) > t

})
. cT

cϕ
t

∫
Rn

Φ

(
‖b‖BMO

|f(x)|q
t

)
M(Φ◦ϕ)(L)w(x)dx,

where Φ(t) = t log(e+ t) and cϕ =
∫∞

1
ϕ−1(t)

t2 log(e+t)dt. From this estimate it follows that

v
({
x ∈ Rn : [b, T ]qf(x) > t

})
. [v]A1 [v]A∞ log(e+ [v]A∞)

∫
Rn

Φ

(
|f |q‖b‖BMO

t

)
vdx.

Using results for sparse operators contained in [7, 26, 27, 33, 37] we obtain the following result.

Theorem 12 (Fefferman-Stein type inequalities). Let w a weight, 1 < p <∞ and r > 1 small enough.
Then

• Calderón-Zygmund operators and commutators

||[b, T ]qf ||Lp(w) ≤ cn,qCT ‖b‖BMO (pp′)
2

(r′)
1+ 1

p′ ‖|f |q‖Lp(Mrw)

||T qf ||Lp(w) ≤ cn,qCT pp′(r′)
1
p′ ‖|f |q‖Lp(Mrw).
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• Rough singular integrals, commutators and B(n−1)/2

‖T q(f)‖Lp(w) ≤ cn,p,qcT (r′)
1
p′ ‖|f |q‖Lp(Mrw),

‖(T ∗Ω)q(f)‖Lp(w) ≤ cn,p,q‖Ω‖L∞(Sn−1)(r
′)

1+ 1
p′ ‖|f |q‖Lp(Mrw),

‖[b, TΩ]q‖Lp(w) ≤ cn,p,q‖b‖BMO‖Ω‖L∞(Sn−1)(r
′)

2+ 1
p′ ‖|f |q‖Lp(Mrw).

Theorem 13. Let 1 ≤ s < p <∞, r > 1 small enough and w ∈ As. Then

• Calderón-Zygmund operators and commutators

||T qf ||Lp(w) ≤ cn,qCT pp′[w]
1
p

As
[w]

1
p′

A∞
‖|f |q‖Lp(w),

||[b, T ]qf ||Lp(w) ≤ cn,qCT ‖b‖BMO (pp′)
2

[w]
1
p

As
[w]

1+ 1
p′

A∞
‖|f |q‖Lp(w),

• Rough singular integrals, commutators and B(n−1)/2

‖T q(f)‖Lp(w) ≤ cn,p,q[w]
1
p

As
[w]

1
p′

A∞
‖|f |q‖Lp(w),

‖(T ∗Ω)q(f)‖Lp(w) ≤ cn,p,q‖Ω‖L∞(Sn−1)[w]
1
p

As
[w]

1+ 1
p′

A∞
‖|f |q‖Lp(w),

‖[b, TΩ]q(f)‖Lp(w) ≤ cn,p,q‖b‖BMO‖Ω‖L∞(Sn−1)[w]
1
p

As
[w]

2+ 1
p′

A∞
‖|f |q‖Lp(w).

In the following Theorems we gather some estimates in the spirit of [29], some of them already
contained there, that can be settled combining sparse domination results with ideas in [16, 32].

Theorem 14. Let 1 < q < ∞, T be an ω-Calderón-Zygmund operator with ω satisfying the Dini
condition and b ∈ BMO. Assume also that supp |f |q ⊆ Q. Then∣∣{x ∈ Q : Mqf(x) > tM (|f |q) (x)

}∣∣ ≤ c1e−c2tq |Q|,∣∣{x ∈ Q : Tqf(x) > tM (|f |q) (x)
}∣∣ ≤ c1e−c2t|Q|,∣∣∣{x ∈ Q :

∣∣∣[b, T ]qf(x)
∣∣∣ > tM2 (|f |q) (x)

}∣∣∣ ≤ c1e−√c2
t

‖b‖BMO |Q|.

We will finish this section with a similar type result for rough singular integrals.

Theorem 15. Let Ω ∈ L∞(Sn−1) and T = TΩ or B(n−1)/2. Let also Q be a cube and f such that
supp f ⊆ Q, then there exist some constants c, α > 0 such that

|{x ∈ Q : |Tf(x)| > tMf(x)}| ≤ ce−
√
αt |Q| , t > 0.

Remark 6. We believe that the preceding estimate is not sharp, we conjecture that the decay should be
exponential instead of subexponential.

Appendix B. Unweighted quantitative estimates

In this appendix we collect some quantitative unweighted estimates for Calderón-Zygmund satisfying
Dini condition and their vector-valued counterparts. These estimates are somehow implicit in the
literature and are a basic ingredient for our fully-quantitative sparse domination results. Our first
result provides a quantitative pointwise estimate involving M ]

δ and T . It can be obtained following the
strategy devised in [2] it is not hard to check that the following estimate holds.

Proposition 1. Let T be an ω-Calderón-Zygmund operator satisfying a Dini condition. For each
0 < δ < 1 we have that

M ]
δ (Tf)(x0) ≤ 2n+1

(
1

1− δ

) 1
δ

(‖T‖L2→L2 + ‖ω‖Dini)Mf(x0).

Our next result provides quantitative control of ‖T q‖L1→L1,∞
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Proposition 2. Let 1 < q <∞ and T be an ω-Calderón-Zygmund operator satisfying a Dini condition.
Then

‖T q‖L1→L1,∞ ≤ cn(‖ω‖Dini + ‖T‖Lq→Lq ).

Furthermore, since ‖T‖Lq→Lq ≤ cn (‖ω‖Dini + ‖T‖L2→L2)

‖T q‖L1→L1,∞ ≤ cn(‖ω‖Dini + ‖T‖L2→L2).

Proof. It suffices to follow the proof in [34], but considering the Calderón-Zygmund decomposition with
respect to the level αλ and then optimize in α.

Appendix B.1. Boundedness of Mq on Lp,∞

In this Section we prove that Mq : Lp,∞ → Lp,∞. For that purpose we will use the following
Fefferman-Stein type estimate obtained in [31, Theorem 1.1]

Theorem 16. Let 1 < p < q <∞ then, if g is a locally integrable function, we have that∫
Rn
Mqfg ≤

∫
Rn
|f |qMg.

As we anounced, using the estimate in Theorem 16, we can obtain the following result.

Theorem 17. Let 1 < p, q <∞. Then∥∥Mqf
∥∥
Lp,∞

≤ cn,q ‖|f |q‖Lp,∞ .

Proof. Let us fix 1 < r < min {p, q}. Then

∥∥Mqf
∥∥
Lp,∞

=
∥∥∥(Mqf

) r
r

∥∥∥
Lp,∞

=
∥∥∥(Mqf

)r∥∥∥ 1
r

L
p
r
,∞
.

Now by duality ∥∥∥(Mqf
)r∥∥∥ 1

r

L
p
r
,∞

=

 sup
‖g‖

L
( pr )

′
,1

=1

∣∣∣∣∫
Rn

(Mqf)
r
g

∣∣∣∣


1
r

,

and using Theorem 16 together with Hölder’s inequality in the context of Lorentz spaces we have∣∣∣∣∫
Rn

(
Mqf

)r
g

∣∣∣∣ ≤ ∫
Rn

∣∣∣(Mqf
)r
g
∣∣∣ ≤ ∫

Rn
|f |rq |Mg|

≤ ‖ |f |rq ‖L pr ,∞‖Mg‖
L( pr )

′
,1

≤ cn,p,q‖ |f |q ‖
r
Lp,∞‖g‖

L( pr )
′
,1
≤ cn,p,q‖ |f |q ‖

r
Lp,∞ .

Summarizing ∥∥Mqf
∥∥
Lp,∞

=
∥∥∥(Mqf

)r∥∥∥ 1
r

L
p
r
,∞
≤
(
cn,p,q‖ |f |q ‖

r
Lp,∞

) 1
r ≤ cn,p,q‖ |f |q ‖Lp,∞ .

Appendix B.2. Weak type (1, 1) of T ∗q
In this Section we present a fully quantitative estimate of the weak-type (1, 1) of T ∗q via a suitable

pointwise Cotlar inequality.
Now we recall Cotlar’s inequality for T ∗. In [15, Theorem A.2] the following result is obtained

Lemma 9. Let T be an ω-Calderón-Zygmund operator with ω satisfying a Dini condition and let
δ ∈ (0, 1). Then

T ∗f(x) ≤ cn,δ (Mδ(|Tf |)(x) + (‖T‖L2→L2 + ‖ω‖Dini)Mf(x)) .

Armed with this lemma we are in the position to prove the following pointwise vector-valued Cotlar’s
inequality.

28



Lemma 10. Let T be an ω-Calderón-Zygmund operator with ω satisfying a Dini condition, δ ∈ (0, 1)
and 1 < q <∞. Then

T ∗qf(x) ≤ cn,δ
(
M q

δ
(|Tf |δ)(x)

1
δ + (‖T‖L2→L2 + ‖ω‖Dini)Mqf(x)

)
,

where |Tf |δ stands for
{
|Tfj |δ

}∞
j=1

.

Proof. It suffices to apply Lemma 9 to each term of the sum.

Theorem 18. Let T be an ω-Calderón-Zygmund operator with ω satisfying the Dini condition, and
1 < q <∞. Then

‖T ∗qf‖L1,∞ ≤ cn,δ,q (‖T‖L2→L2 + ‖ω‖Dini) ‖|f |q‖L1 .

Proof. Using the previous lemma

‖T ∗qf‖L1,∞ ≤ cn,δ
(∥∥∥M q

δ
(|Tf |δ) 1

δ

∥∥∥
L1,∞

+ (‖T‖L2→L2 + ‖ω‖Dini)
∥∥Mqf

∥∥
L1,∞

)
.

For the second term we have that ∥∥Mqf
∥∥
L1,∞ ≤ cn,q‖|f |q‖L1

so we only have to deal with the first term.
Using that Mq : Lp,∞ → Lp,∞ (Theorem 17) we have that∥∥∥M q

δ
(|Tf |δ)(x)

1
δ

∥∥∥
L1,∞

=
∥∥∥M q

δ
(|Tf |δ)

∥∥∥ 1
δ

L
1
δ
,∞
≤ Cn,δ,q

∥∥∥|Tf |δq
δ

∥∥∥ 1
δ

L
1
δ
,∞

= Cn,δ,q
∥∥T qf∥∥L1,∞ ≤ Cn,δ,q‖T q‖L1→L1,∞‖|f |q‖L1 .

Now, taking into account Proposition 2 we have that

max
{
‖T q‖L1→L1,∞ , ‖T‖L2→L2 + ‖ω‖Dini

}
≤ cn,q (‖T‖L2→L2 + ‖ω‖Dini)

and we are done.
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