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Normal lubrication force between spherical particles immersed in a shear-thickening
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In this work, the inverse bi-viscous model [Physics of Fluids 29, 103104 (2017)] is

used to describe a shear-thickening fluid. An analytical velocity profile in a planar

Poiseuille flow is utilized to calculate an approximate solution to the generalized

lubrication force between two close spheres interacting hydrodynamically in such a

medium. This approximate analytical expression is compared to the exact numerical

solution.The flow topology of the shear-thickening transition within the interparticle

gap is also shown and discussed in relation to the behaviour of the lubrication force.

The present result can allow in the future to perform numerical simulations of dense

particle suspensions immersed in a shear-thickening matrix based on an effective

lubrication force acting between pairwise interacting particles. This model may find

additional value in representing experimental systems consisting of suspensions in

shear thickening media, polymer coated suspensions, and industrial systems such as

concrete.

a)Electronic mail: adolfo.vazquez@uam.es
b)Electronic mail: wagnernj@udel.edu
c)Electronic mail: mellero@bcamath.org
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I. INTRODUCTION

Particulate suspensions are ubiquitous in nature and industrial applications, and the

understanding of their flow properties represents both a challenging academic and techni-

cal problem. From a computational point of view, the dilute and semi-dilute regimes are

generally amenable of direct numerical simulations where one resolves precisely the flow of

the suspending phase and the rigid body dynamics of the suspended particles is coupled to

the surrounding fluid solution via suitable fluid/structure-interaction schemes (e.g. detailed

force balance, distributed Lagrange multiplier, force coupling method or immersed boundary

methods)1. These approaches have been successfully applied to suspensions with Newtonian

and non-Newtonian matrices using finite volumes/elements techniques2–5 and Lagrangian

methods6–9.

In very dense systems however, particles under flow can get very close to each other (i.e. the

average interparticle separation is much smaller than the particle radius) entering the so-

called lubrication regime. In this case long-range hydrodynamic interactions are screened out

and one can restrict the multi-body problem to a set of solid particles interacting pairwisely

via short-range dissipative (i.e. lubrication) forces. This approach allows to bypass the

need to resolve flow features at very small scales - i.e. in the vanishing gaps between nearly

touching objects - which can be numerically very time consuming. On the other hand, this

’simplification’ introduces novel challenges of both, numerical and modelling nature. From

a computational perspective, analytical solutions for the lubrication drag resulting from the

squeezing flow between close spheres is diverging for vanishing interparticle gaps and it re-

quires specific implicit techniques for an accurate and stable integration10,11. With regard to

the modelling issue, although the problem of nearly touching lubricated spheres in a simple

Newtonian solvent has been widely studied, there are scarce analytical works focusing on

the corresponding problem with non-Newtonian suspending media12–14. At the same time,

dense particulate systems interacting with complex non-Newtonian media are very common

in practical applications and it is therefore of paramount importance to address the problem

of generalized lubrication interactions in complex liquids. For a review, see Chapter 10 of

Ref.15 and16–18.

In19 we have studied the problem of lubrication between two spheres in a shear-thinning

medium modelled by the so-called bi-viscosity model. This was originally introduced in20
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to model viscoplastic fluids with a pseudo-yield stress. Recently the model has been also

used to incorporate shear-rate dependent slippage effects21 on effective lubrication between

particles.

In this work, we consider the alternative case of a suspending non-Newtonian liquid

exhibiting discontinuous shear-thickening (DST) rheological response and derive the result-

ing analytical expression for the interparticle lubrication force between two solid spheres

suspended in such a medium. DST is a general phenomenon in several complex liquids

and refers to a significant increase of liquid viscosity when large shear-rates or stresses are

applied22. It happens typically at very large shear rates and has profound implications for

several processing conditions as it limits transport of paints, inks and other concentrated

dispersions in spraying, coating and pumping operations but, when properly controlled, can

be also used to engineer novel materials as selective dampers and shock absorbers23,24.

Specifically to the system considered here, an analytical pairwise lubrication force be-

tween particles immersed in a DST matrix can be used to perform efficient particulate flow

simulations of the kind of complex suspension studied experimentally in25, using minimal

pairwise lubrication models, i.e. without the need to resolve the entire flow around the

particles.

In this work we consider two spheres immersed in a shear-thickening fluid and we aim

at the analytical derivation of the resulting complex lubrication force acting on them. As

we said before, the shear-thickening fluid is modelled as an inverse biviscous model with

viscosity defined as26

η(γ̇) =







































η0, if γ̇ ≤ γ̇c − δγ̇

mγ̇ + n, if γ̇c − δγ̇ < γ̇ ≤ γ̇c + δγ̇

η1, if γ̇ ≥ γ̇c + δγ̇

(1)

where η1 > η0 and m and n are constants ensuring the continuity of the viscosity function

and momentum balance. As discussed in Ref.26, a truly DST model is obtained as a limit

of δγ̇ → 0 in the regularized model presented above and it captures the essential physics of

sudden increase in flow resistance of DST fluids, but modelling is limited to a generalized

Newtonian framework. In this paper, we follow the route proposed in19 to derive the overall
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FIG. 1. Scheme of the problem of lubrication between two spheres.

lubrication force acting on each sphere as a result of the squeezing flow in/out of the gap

for departing/approaching particles. In order to derive a closed-form analytical expression,

we use the analytical solution for the pressure-driven flow of a DST fluid in a channel flow

and use it to model the radial squeezing flow component26.

The structure of the paper is the following one: in Sec. 2, as a corollary the preliminary

result for the flow of a inverse bi-viscous fluid driven by a constant pressure gradient between

two parallel plates is discussed. This result is used in Sec. 3, where the calculation of the

normal lubrication force between two spheres is presented. We consider the case of non-

colloidal spherical particles suspended in a DST-liquids in Sec. 4 where the effect of relative

particle velocity, viscosity ratio η1/η0 as well as choice of shear rate γ̇c are explored. The

local topology of the regions with different viscosities is also analyzed in Sec. 4. Finally

conclusions are provided in Sec. 5.

II. CALCULATION OF THE NORMAL LUBRICATION FORCE

A. Definition of the different regions

Let us consider the squeezing flow between two very close spheres of radius a1 and a2.

The normal relative velocity between spheres is V . The system of reference and geometry

of the problem is summarized in Fig. 1.
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If we consider only small gaps between spheres, their surfaces z1(r) and z2(r) can be

approximated by paraboloids. Thus, the distance between them can be defined as h(r) =

h0

(

1 + r2

2ah0

)

, where 1
a
= 1

a1
+ 1

a2
and h0 is the distance between surfaces at r = 027.

As in the lubrication force calculation between two spheres in a Newtonian fluid27, we

can consider that the squeezing fluid is moving uni-directionally along the r coordinate if

the velocity V is sufficiently small. The result obtained in26 for the planar flow of an inverse

bi-viscous shear-thickening fluid, with the rheology given by Eq. (1), under the influence

of a constant pressure gradient can be then used here. For a given coordinate r, different

velocity profiles can be distinguished depending on the value of the following lengths:

zc(r) = − η0γ̇c
∂p/∂r(r)

z′c(r) = − η1γ̇c
∂p/∂r(r)

=
η1
η0
zc(r) (2)

where the pressure gradient ∂p/∂r(r) has been considered negative (squeezing flow) and

its formal expression still needs to be determined. For the sake of completeness we briefly

explain the effect of zc(r) and z′c(r) on the velocity profiles. For a further understanding of

the reader is referred to Ref.26. Three different regimes can be distinguished: if zc ≥ h(r)/2,

the critical shear rate γ̇c is not reached at any z coordinate, and the solution at coordinate

r reduces to the standard Poiseuille flow for a mono-viscous fluid of viscosity η0 (regime I).

If zc < h(r)/2 and z′c ≥ h(r)/2 the fluid at the coordinate r is in the regime II, where a

limitation in the shear rate to γ̇c shows up in the closest regions of the gap to the wall26.

Such a limitation comes from the fact that when the critical shear rate γ̇c is reached, the

viscosity is increased, and the shear rate reduces below γ̇c. In the practice, this means that in

those regions in the limit of δγ̇ → 0 the shear rate will be equal to γ̇c. Finally, if z
′
c < h(r)/2

the regions of limited shear rate get closer to the center, displaced by a region of viscosity

η1 (regime III). The velocity profile can be written then as follows:

u(r, z) =



















u(r, z)|I , if r ∈ RI

u(r, z)|II , if r ∈ RII

u(r, z)|III , if r ∈ RIII

(3)

where RI , RII and RIII are, respectively, the regions of the space where the fluid is in the

regimes I, II or III respectively. The explicit expressions of the velocity profiles have been
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calculated in section II C from Ref.26 and read

u(r, z)|I =
1

2η0

∂p

∂r

(

(z − c)2 − h2

4

)

(4)

u(r, z)|II =



















γ̇c
(

z − c+ h
2

)

if z < c− zc
1

2η0

∂p

∂r

(

(z − c)2 + zc (zc − h)
)

if |z − c| ≤ zc

−γ̇c
(

z − c− h
2

)

if z > c+ zc

u(r, z)|III =































1
2η0

∂p

∂r
((z − c)2 + zc (zc − 2z′c)) +

1
2η1

∂p

∂r

(

z′2c − h2

4

)

if |z − c| ≤ zc

γ̇c (z − (c− z′c)) +
1

2η1

∂p

∂r

(

z′2c − h2

4

)

if c− z′c ≤ z < c− zc

−γ̇c (z − (c+ z′c)) +
1

2η1

∂p

∂r

(

z′2c − h2

4

)

if c+ zc < z ≤ c+ z′c
1

2η1

∂p

∂r

(

(z − c)2 − h2

4

)

if |z − c| > z′c

where c(r) = (z1(r) + z2(r))/2 defines the center position of the channel. The use of I,

II and III subscripts will be used along this work with the meaning defined in the above

equation. Note that the quantities z1, z2, c, h, zc, z
′
c and ∂p/∂r depend on the r coordinate.

For the sake of clarity such a dependency has not been explicitly written. The DST velocity

profiles reported in Eq. (4) approximate very well the ones corresponding to the regularized

DST version (1) when δγ̇/γ̇c ≪ 126. Note also that thanks to the assumption that h0 ≪ a

the squeezing flow is unidirectional and radial.

For a Newtonian fluid, the maximum shear rate γ̇s for a given position r, which is located

at the surfaces of the spheres, is given by19

γ̇s(r) = − 1

η0

∂p

∂r
(r)

∣

∣

∣

∣

newt

h(r)

2
=

3rV

h2(r)
(5)

This function, which has been drawn in Fig. 2, is characterized by a maximum value γ̇max
s

at the position

rmax =

√

2

3
ah0 (6)

whose value is given by

γ̇max
s ≡ γ̇s(rmax) =

9

8

V

h0

√

3

2

a

h0

(7)

Therefore, the condition to obtain a non-Newtonian behavior at some coordinate r is gen-

erally defined as

γ̇c < γ̇max
s (8)
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FIG. 2. The maximum shear rate γ̇s(r) depending on r of a Newtonian fluid. The pressure gradient

of the fluid will be different than in the Newtonian case in the region r1 < r < r2 (regions RII and

RIII).

which ensures that there will be some r coordinate in the regime II. There will be another

critical shear rate γ̇′
c > γ̇c, that will be used to determine the transition of the biviscous

liquid to have a non-null RIII region. The γ̇′
c condition will be as follows

γ̇′
c < γ̇max

s

Note that we are using the maximum shear rate of a Newtonian fluid as the reference to

compare, although is not the real maximum shear rate in the regions RII and RIII . This

is convenient given that γ̇max
s does not depend on the viscosity, but it also means that γ̇′

c is

not representing the real limiting shear rate of the bi-viscous fluid to have a non-null region

RIII . Instead it represents the maximum shear rate that a Newtonian fluid would have

under the same conditions of the bi-viscous one, when it goes through the transition. The

explicit relationship between γ̇c and γ̇′
c will be calculated later, at section IID.

Three possibilities can be described related to these critical shear rates; if γ̇c ≥ γ̇max
s the

fluid behaves as Newtonian in every r coordinate, so r ∈ RI , ∀r. If γ̇c < γ̇max
s and γ̇′

c ≥ γ̇max
s
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two different regions appear, which can be defined as

r ∈ RI if r ≤ r1 or r ≥ r2

r ∈ RII if r1 < r < r2 (9)

Finally, if γ̇c < γ̇max
s and γ̇′

c < γ̇max
s three different regions can be distinguished

r ∈ RI if r ≤ r1 or r ≥ r2

r ∈ RII if r1 < r ≤ r′1 or r′2 ≤ r < r2

r ∈ RIII if r′1 < r < r′2 (10)

The latter case is the one drawn at Fig. 2.

B. Calculation of r1, r2, r
′
1 and r′2

Calculation of r1 and r2 is made in a similar way to what done in Ref.19. Such a coor-

dinates can be found by calculating the distances r where γ̇s(r) is equal to γ̇c (see Fig. 2),

which leads us to the next equation

(

r

rmax

)4

+ 6

(

r

rmax

)2

− 16

(

γ̇max
s

γ̇c

)(

r

rmax

)

+ 9 = 0 (11)

where rmax was defined in (6). Eq. (11) is a quartic equation which has unique real solutions

given by

r1 = rmax

[

Q−
√

−3−Q2 + 4

(

γ̇max
s

γ̇c

)

1

Q

]

r2 = rmax

[

Q+

√

−3−Q2 + 4

(

γ̇max
s

γ̇c

)

1

Q

]

(12)

where

Q =

√

−1 +
1

P + P (13)

P =
3

√

√

√

√−1 + 2

(

γ̇max
s

γ̇c

)2

+ 2

(

γ̇max
s

γ̇c

)

√

(

γ̇max
s

γ̇c

)2

− 1

8



Expressions for r′1 and r′2 can be obtained by replacing γ̇′
c for γ̇c in r1 and r2 expressions,

leading to

r′1 = rmax

[

Q′ −
√

−3−Q′2 + 4

(

γ̇max
s

γ̇′
c

)

1

Q′

]

r′2 = rmax

[

Q′ +

√

−3−Q′2 + 4

(

γ̇max
s

γ̇′
c

)

1

Q′

]

(14)

being

Q′ =

√

−1 +
1

P ′
+ P ′ (15)

P ′ =
3

√

√

√

√−1 + 2

(

γ̇max
s

γ̇′
c

)2

+ 2

(

γ̇max
s

γ̇′
c

)

√

(

γ̇max
s

γ̇′
c

)2

− 1

C. Calculation of the minimum gaps to have regions in the regimes II and III

The calculation of the minimum gap hlim
0 to have any non-null region in the regime II

can be done similarly to the way outlined in Ref.19 by equating γ̇max
s = γ̇c at Eq. (7), and

it yields

hlim
0 =

3

4
3

√

9

2

V 2a

γ̇2
c

(16)

In the same way, by doing γ̇max
s = γ̇′

c at Eq. (7), one can calculate the minimum gap between

spheres h′lim
0 to observe the regime III in some r coordinate. It reads

h′lim
0 = hlim

0
3

√

4
(

3− (η0/η1)
2)2

(17)

D. Pressure gradient calculation

As in the classical calculation of the normal lubrication force between spheres in a squeez-

ing flow, the pressure gradient can be calculated by using the law of conservation of mass.

As in the mono-viscous case, in the region RI is given by19

∂p

∂r
(r)









I

= −6η0rV

h3(r)
(18)

In the case of the region RII , the conservation of mass reads

πr2V |II = 2πr

∫ z2(r)

z1(r)

u(r, z)|IIdz (19)

9



The integration in the latter equation is done by using the expression of u(r, z)|II from Eq.

(4), with the next result

∫ z2(r)

z1(r)

u(r, z)|IIdz =
1

12
γ̇ch

2(r)

(

3−
(

2zc(r)

h(r)

)2
)

(20)

where the relation between zc and ∂p/∂r, Eq. (2), has been used. By replacing Eqs. (20)

and (5) in (19), the next quadratic equation in zc is obtained

(

2zc(r)

h(r)

)2

+ 2
γ̇s(r)

γ̇c
− 3 = 0 (21)

which can be easily solved, obtaining

2zc(r)

h(r)









II

=

√

3− 2
γ̇s(r)

γ̇c
(22)

Note that if γ̇s(r)/γ̇c = 1 then 2zc(r)/h(r) = 1, ensuring the continuity of this solution

between the regions RI and RII . It is also important to realize that when γ̇s(r) >
3
2
γ̇c the

solution is not real. That means that the mass conservation law can not be hold for any

value of zc(r). However, this limit is never achieved because region III is reached beforehand.

Indeed we can calculate what is the critical shear rate γ̇′
c, where, as it was said before, the

RIII is not a null set anymore. This occurs when 2z′c(rmax)/h(rmax) = 1. By applying Eqs.

(22) and (2) to this condition one can conclude that γ̇′
c is defined as follows

γ̇′
c =

1

2

(

3−
(

η0
η1

)2
)

γ̇c (23)

Note that the Eq. (22) for γ̇s(r) = γ̇′
c is real, ensuring the real nature of such an equation

for the whole region RII . Note also that, as was explained in section IIA, γ̇′
c is not the real

maximum shear rate that the biviscous fluid shows during the transition, but the maximum

shear rate of the Newtonian reference.

According to Eq. (2), the pressure gradient can be obtained from Eq. (22), yielding

∂p

∂r









II

= −2η0γ̇ch
−1(r)

√

3− 2 γ̇s(r)
γ̇c

(24)

The same procedure can be followed to calculate the pressure gradient in the region RIII .

The conservation of mass applied to such a region reads

πr2V |III = 2πr

∫ z2(r)

z1(r)

u(r, z)|IIIdz (25)
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The integral on the latter equation can be calculated, obtaining

∫ z2(r)

z1(r)

u(r, z)|IIIdz =
h2

12
γ̇c

(

1− η2
0

η2
1

)(

2z′
c

h

)3

+ 2
(

2z′
c

h

) (26)

where Eq. (2) has been used again. By replacing Eqs. (26) and (5) in (25), the next cubic

equation in z′c is obtained

(

1− η20
η21

)(

2z′c
h

)3

− 2
γ̇s
γ̇c

(

2z′c
h

)

+ 2 = 0 (27)

One can check that if 2z′c/h = 1 the shear rate γ̇s(r) equals to γ̇′
c as should be expected. Eq.

(27) is a depressed cubic equation of the form t3 + pt+ q = 0, where

q = 2

(

η21
η21 − η20

)

p = −q
γ̇s(r)

γ̇c
(28)

It can be demonstrated that the solution to this equation is given by

2z′c
h









III

= −2

√

−p

3
cos

(

θ + 4π

3

)

(29)

cos θ = −3q

2p

√

−3

p
, 0 < θ <

π

2
(30)

The pressure gradient ∂p/∂r|III can be calculated from z′c by using Eq. (2).

In order to calculate the pressure p(r) the pressure gradient must be integrated along

the r coordinate. We have not found any analytical solutions to the integrals of the exact

pressure gradients in regions RII and RIII , so in the next section we will describe how to

obtain approximated analytical solutions.

E. Pressure gradient approximations

In order to derive a practical analytical solution, we propose an approximated analytical

expression for the pressure gradient. Such an expression must allow to be analytically

integrated twice in order to calculate the force.
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Case γ̇c < γ̇max
s < γ̇′

c

The condition that the maximum shear rate γ̇max
s lies between γ̇c and γ̇′

c means that

there is no coordinate r ∈ RIII As a consequence the region of coordinates r in the regime

II is given by r1 < r ≤ r2. In this case, the only continuity issues on the pressure gradient

expression that we should consider are the transitions between regimes I and II (at r1 and r2).

Specifically, we are going to approximate 2zc(r)/h(r)|II given by Eq. (22). Such a function

has a minimum between r1 and r2 at rmax =
√

2
3
ah0, equal to zmax = 2zc(r)/h(r)|max

II =
√

3− 27rmax|V |/(8γ̇ch2
0), so one can approximate this function with a two-piecewise linear

function. The first piece will interpolate this function at r1 and rmax, and the second piece

at rmax and r2. The approximated pressure gradient reads then

∂p

∂r
(r)

∣

∣

∣

∣

II

≈ −2η0γ̇c [h(r) (mkr + nk)]
−1 (31)

where

mk = − (1− zmax)

(rmax − rk)

nk =
rmax − rkzmax

(rmax − rk)
(32)

and

rk =







r1, if r1 < r ≤ rmax

r2, if rmax < r ≤ r2
(33)

Case γ̇max
s ≥ γ̇′

c

When γ̇max
s ≥ γ̇′

c there will be a non null region r′1 < r ≤ r′2 in the regime III, and two

regions r1 < r ≤ r′1 and r′2 < r ≤ r′2 in the regime II. The pressure gradient approximation

at RII will be done as it was in the previous section but interpolating at r1 and r′1 for the

first piece, and at r′2 and r2 for the second one. The approximation of the pressure gradient

at RII is given then by

∂p

∂r
(r)

∣

∣

∣

∣

II

≈ −2η0γ̇c [h(r) (mjkr + njk)]
−1 (34)

where

mjk = −1− (η0/η1)

(rj − rk)

njk =
rj − rk(η0/η1)

(rj − rk)
(35)
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and

rk =







r1, if r1 < r ≤ r′1

r2, if r′2 < r ≤ r2

rj =







r′1, if r1 < r ≤ r′1

r′2, if r′2 < r ≤ r2
(36)

In general, we have checked that the pressure gradient in the region RIII can not be

satisfactorily approximated by a one or two-piecewise linear function as was done for the

region RII . So, in order to find an approximation of ∂p/∂r at this region, a different route

will be followed which is similar to the one used in Ref.19. If Eq. (27) is written in terms of

x = 2z′c/h, the next cubic equation is obtained

A(x) = x3 + px+ q = 0 (37)

where p and q have already been defined in Eq. (28). This function will be approached by

its linear interpolation at points x = 0 and x = 1. Note that taking the interpolation point

at x = 0 ensures the continuity of this expression for the transition between RII and RIII .

The interpolation at x = 1 ensures a good behavior of this approximation when the pressure

gradient is very big and 2z′c/h is close to 1. With this interpolation, the approximated A(x)

function reads

A(x)|approx ≈ (1 + p)x+ q (38)

Introducing such an approximation at Eq. (37) the next expression for z′c can be found

2z′c
h

≈ − 2

1− 2 γ̇s
γ̇c

− η2
0

η2
1

(39)

and from the latter an approximation for the pressure gradient at RIII can be calculated

∂p

∂r
(r)

∣

∣

∣

∣

III

≈ η1

(

γ̇c
h(r)

(

1− η20
η21

)

− 6V
r

h3(r)

)

(40)

III. LUBRICATION FORCE

In order to calculate the force, the pressure gradient must be integrated first to obtain

an expression for the pressure, as follows

p(r) = −
∫ ∞

r

∂p

∂r
(r)dr (41)
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More details about the calculation of the pressure and the detailed results obtained can be

consulted in the appendix A. From the pressure the lubrication force can be calculated by

integration as

F =

∫ ∞

0

p(r)2πrdr (42)

The reader is referred to the appendix B to consult the explicit calculation of the lubrication

force. For the sake of clarity just the final result is shown here, which reads

F =

∫ ∞

0

p(r)2πrdr =



















F1, if h0 ≥ hlim
0

F2, if h′lim
0 ≤ h0 < hlim

0

F3, if h0 < h′lim
0

(43)

with hlim
0 and h′lim

0 defined in Eq.(16)-(17) and with the next expressions for F1, F2 and F3

F1 = 6πη0V a2h−1
0

F2 = 6πη0V a2
(

h−1
0 + h−1(r2)− h−1(r1)

)

+ 3πη0V a

(

(

r2
h(r2)

)2

−
(

r1
h(r1)

)2
)

+

2πη0γ̇caλ2

F3 = 6πη0V a2
(

h−1
0 + h−1(r2)− h−1(r1)

)

+ 6πη1V a2
(

h−1(r′1)− h−1(r′2)
)

+

3πη0V a

(

(

r2
h(r2)

)2

−
(

r1
h(r1)

)2
)

− 3πη1V a

(

(

r′2
h(r′2)

)2

−
(

r′1
h(r′1)

)2
)

+

2πη0γ̇caλ3 (44)

where λ2 and λ3 are defined in the Appendix.

IV. RESULTS

In Fig. 3 we have compared the approximated analytical expression proposed in Eq. (44)

with the exact solution calculated numerically for three different viscosity ratios η1/η0 =

10, 100, 1000. The other parameters are the reduced particle radius a = 25 µm corresponding

to a typical non-colloidal case (particle radii a1 = a2), low-viscosity plateau η0 = 10−3 Pa ·s,
high-viscosity plateau is η1. Finally, critical shear-rate for DST transition is chosen to be

γ̇c = 6000 s−1 and the normally approaching particle velocity V = 0.1 mm/s. At ’large’

interparticle distances (still much smaller than a, to be in the lubrication regime), the hy-

drodynamic lubrication interaction between two spheres mediated by the DST solvent liquid
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FIG. 3. Approximated analytical force (solid lines) compared to the numerical calculation (dashed

lines) of the exact solution for different ratios η1/η0. The circles correspond to the frames shown

at Fig. 4.

behaves as the expected Newtonian force with viscosity η0. Similarly, at very small interpar-

ticle distances, the Newtonian lubrication force with viscosity η1 is recovered. In the middle,

a transition between the two regimes is observed which is in excellent agreement with the

exact result estimated numerically over a wide range of viscosity ratios considered. Recent

rheological studies of spherical and cubic noncolloidal particles suspended in model shear

thickening colloidal fluids have been interpreted in terms of an effective, shear thickening

suspending medium and provide motivation for developing accurate and robust descriptions

of such systems25,28. Note also the similarity of the results of Fig. 3 with those of Potanin

and Russel12 describing the hydrodynamic interactions of particles grafted with polymer

brushes where the Brinkman’s equations are used to solve the slow flow in the near-wall

polymeric layer.

In order to explore in detail the flow features of the DST transition, in Fig. 4 we plot in

the narrow gap between approaching spheres the different regions at viscosity, respectively,

η0, η1 and transitional. The spheres shown in this figure are separated by different gaps
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FIG. 4. Regions between two spheres with the same radius. The parameters are a = 25 µm,

a1 = a2, η0 = 10−3 Pa·s, η1 = 10η0, γ̇c = 6000 s−1 and V = 0.1mm/s at distances h0/(2a) = 0.004,

0.0037, 0.0035, 0.003, 0.001 and 0.0001. Spheres have been drawn with white color. Light gray, dark

gray and black regions represent the exact analytical Newtonian region with η0, the transitional

region, and the Newtonian region with viscosity η1 respectively. The analytical approximation

used to calculate the lubrication force is depicted with red dashed lines. In the inset of plot (D)

the squeezing flow profiles corresponding to three typical sections -drawn as vertical lines in the

particle gap- are also shown.
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FIG. 5. Effect of viscosity ratio η1/η0 on three flow topology. Regions between two spheres with

the same radius. The parameters are a = 25 µm, a1 = a2, η0 = 10−3 Pa · s, γ̇c = 6000 s−1 and

V = 0.1 mm/s at distances h0/(2a) = 0.0035 (left), and h0/(2a) = 0.003 (right). Lines separating

different regions are drawn for η1/η0 = 5, 10, 50 (orange,red and blue respectively).

corresponding to the circles drawn at Fig. 3. The exact analytical regions have been drawn

as shaded regions, whereas the approximated analytical regions limits have been depicted

by red dashed lines. In the inset the squeezing flow profiles corresponding to three typical

sections -drawn as vertical lines in the particle gap- are shown. Blue, green and orange lines

correspond to profiles in regions RI , RII and RIII respectively. The circles on the profiles

indicate the position of z = c± zc and z = c± z′c.

As discussed above, at ’large’ distances no transition is observed and the behavior is

trivially Newtonian (regime I: not shown here). At moderate distances (Fig. 4 A), a first

transition is triggered with the fluid behaving quasi-everywhere as Newtonian (light gray)

except in two small areas (dark gray) close to the sphere’s surfaces where the shear-rate is

constant (regime II). These gray regions grow as particles get closer (Fig. 4 B) as a result

of the increase of the region II, until a second transition (Fig. 4 C) occurs with two new

areas (black) appearing again near the sphere’s surfaces (regime III). The size of the areas

progressively increases pervading the entire space in the gap, with the exception of a small

region located symmetrically along the center-to-center distance (Fig. 4 D, E). Note also

the thin horizontal region connecting the central region of viscosity η0 with the outside flow

domain (also at viscosity η0). The connecting region becomes progressively thinner as the

two spheres get closer until finally, for very small gaps (Fig. 4 F) the liquid within the gap

is basically behaving as a Newtonian liquid with viscosity η1.
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Finally, in Fig. 5 the effect of the viscosity ratio is shown. All the parameters are fixed

as in Fig. 4 and the flow topology is shown for three different ratios (η1/η0 = 1, 10, 50)

corresponding to orange,red and blue lines respectively. The lines denote the transition

between the different regimes in Fig. 4. Two different interparticle distances are considered:

(A) h0/2a = 0.0035 and (B) h0/2a = 0.003. It is clear that an increasing η1/η0 has the

effect to merge the two transitional regions (gray areas in Fig. 4) leaving a narrow thin

area between them where the fluid did not reach the critical shear rate and it behaves as

Newtonian with viscosity η0.

A final remark on the validity of the DST lubrication model is in order. All the previous

considerations are based on the premise to have a continuum-like behaviour of the suspending

medium. In particular, if the suspending medium is a shear thickening colloidal dispersion

such as those considered in25, the minimal scales should be h0 ≫ Rcoll where Rcoll is the size

of the small colloidal particle forming the dispersion. Typically a ratio h0/Rcoll ∼ 5− 10 is

considered sufficient to have continuum-like behaviour on the scale h0. On the other hand,

in order to have a lubrication approximation between two spheres immersed in this medium,

it is required that h0/a ≪ 1 where a is the radius of the large non-colloidal particles (Fig. 1).

Typically h0/a <∼ 0.1 is a reasonable choice. Therefore our lubrication model is accurate

for dimensionless interparticle distances: Rcoll/a < h0/a < 0.1 (Fig. 1). At larger distances

h0 lubrication does not hold. At smaller distances the continuum assumption breaks down.

Therefore, the smaller the ratio Rcoll/a, the wider will be the regime of applicability of the

present model.

V. CONCLUSIONS

Based on the profile of a bi-viscous shear-thickening fluid in a Poiseuille flow calculated

in Ref.26, an approximate analytical solution of the lubrication force between two spheres

approaching/departing each other in a squeezing DST solvent medium is obtained. The

approximation has been taken in the expression of the pressure gradient in such a way that

it can be integrated twice in order to obtain an expression for the total force. Such an

analytical solution ensures the correct behavior at both limits of close and far distances of

interparticle surfaces, where the force is equal to the Newtonian lubrication force with η1

and η0 viscosities respectively. For intermediate gaps, the agreement with the numerical
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calculation of the exact solution is excellent. The Newtonian normal lubrication force is

also recovered when η1 = η0 extending consistently the scenario described in19 for the shear

thinning fluids to the shear thickening regime.

The calculated lubrication force is identical to the Newtonian case of viscosity η0 (low-

viscosity regime) for distances h > hlim
0 . When the particles get closer the viscosity increases

abruptly (solid-like regime) until for very small gaps (h << hlim
0 ) the Newtonian lubrication

force of viscosity η1 is the dominant interaction (high-viscosity regime). The explanation

of such a behavior has been done in terms of the viscosity regions distribution in the gap

between particles.

The theoretical results obtained in this work can allow in the future to perform simu-

lations of dense suspensions with a discontinuous shear-thickening matrix based on effec-

tive lubrication dynamics numerical approaches8,10,11,29. Such simulations can be validated

against experimental data25,28 and should prove valuable for efficient modeling of important

industrial systems, such as concrete30.

ACKNOWLEDGMENTS

Computing resources offered by HPC Wales via the Project No. HPCWT050 (Multiscale

particle simulation for complex fluids) are gratefully acknowledged. A.V-Q also thanks

support from MINECO (Spain) under grants No. FIS2013-47350-C5-1-R and FIS2017-

86007-C3-1-P.

Appendix A: Calculation of the pressure

The pressure can be obtained from the pressure gradient by doing the next integral

p(r) = −
∫ ∞

r

∂p

∂r
(r)dr (A1)

Two cases will be distinguished: when γ̇c < γ̇max
s < γ̇′

c and when γ̇max
s > γ̇′

c.
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1. Case γ̇c < γ̇max
s < γ̇′

c

In this case the region RIII is null, and the pressure can be calculated as follows, depend-

ing on the value of r:

p(r)|r<r1
= −

∫ r1

r

∂p

∂r
(r)

∣

∣

∣

∣

I

dr −
∫ r2

r1

∂p

∂r
(r)

∣

∣

∣

∣

II

dr −
∫ ∞

r2

∂p

∂r
(r)

∣

∣

∣

∣

I

dr

p(r)|r1≤r≤r2
= −

∫ r2

r

∂p

∂r
(r)

∣

∣

∣

∣

II

dr −
∫ ∞

r2

∂p

∂r
(r)

∣

∣

∣

∣

I

dr

p(r)|r>r2
= −

∫ ∞

r2

∂p

∂r
(r)

∣

∣

∣

∣

I

dr = 3η0V ah−2(r) (A2)

The explicit solution is

p(r)|r≤r1 = 3η0V a
(

h−2(r) + h−2(r2)− h−2(r1)
)

+

2η0γ̇ca (φ(r1, rmax,m1, n1)− φ(r2, rmax,m2, n2))

p(r)|r1<r≤rmax
= 3η0V ah−2(r2) + 2η0γ̇ca (φ(r, rmax,m1, n1)− φ(r2, rmax,m2, n2))

p(r)|rmax<r≤r2 = 3η0V ah−2(r2)− 2η0γ̇caφ(r2, r,m2, n2)

p(r)|r>r2 = 3η0V ah−2(r) (A3)

where

φ(ra, rb,m, n) =
1

3r2maxm
2 + n2

[

2√
3

n

rmax

(

arctan

(

1√
3

rb
rmax

)

− arctan

(

1√
3

ra
rmax

))

+m ln

(

(

mrb + n

mra + n

)2
h(ra)

h(rb)

)]

(A4)
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2. Case γ̇max
s > γ̇′

c

In this case the region RIII is not null and the pressure can be calculated as follows

depending on the value of r:

p(r)|r<r1
= −

∫ r1

r

∂p

∂r
(r)

∣

∣

∣

∣

I

dr −
∫ r′

1

r1

∂p

∂r
(r)

∣

∣

∣

∣

II

dr −
∫ r′

2

r′
1

∂p

∂r
(r)

∣

∣

∣

∣

III

dr −
∫ r2

r′
2

∂p

∂r
(r)

∣

∣

∣

∣

II

dr −
∫ ∞

r2

∂p

∂r
(r)

∣

∣

∣

∣

I

dr

p(r)|r1≤r≤r′
1

= −
∫ r′

1

r

∂p

∂r
(r)

∣

∣

∣

∣

II

dr −
∫ r′

2

r′
1

∂p

∂r
(r)

∣

∣

∣

∣

III

dr −
∫ r2

r′
2

∂p

∂r
(r)

∣

∣

∣

∣

II

dr −
∫ ∞

r2

∂p

∂r
(r)

∣

∣

∣

∣

I

dr

p(r)|r′
1
≤r≤r′

2

= −
∫ r′

2

r

∂p

∂r
(r)

∣

∣

∣

∣

III

dr −
∫ r2

r′
2

∂p

∂r
(r)

∣

∣

∣

∣

II

dr −
∫ ∞

r2

∂p

∂r
(r)

∣

∣

∣

∣

I

dr

p(r)|r′
1
≤r≤r′

2

= −
∫ r2

r

∂p

∂r
(r)

∣

∣

∣

∣

II

dr −
∫ ∞

r2

∂p

∂r
(r)

∣

∣

∣

∣

I

dr

p(r)|r>r2
= −

∫ ∞

r2

∂p

∂r
(r)

∣

∣

∣

∣

I

dr = 3η0V ah−2( r) (A5)

The explicit solution reads

p(r)|r≤r1 = 3η0V a
(

h−2(r) + h−2(r2)− h−2(r1)
)

+ 3η1V a
(

h−2(r′1)− h−2(r′2)
)

+

2η0γ̇ca (φ(r1, r
′
1,m1′1, n1′1)− φ(r2, r

′
2,m2′2, n2′2))−

(

η21 − η20
η1

)

γ̇cα(r
′
2, r

′
1)

p(r)|r1<r≤r′
1
= 3η0V ah−2(r2) + 3η1V a

(

h−2(r′1)− h−2(r′2)
)

+

2η0γ̇ca (φ(r, r
′
1,m1′1, n1′1)− φ(r2, r

′
2,m2′2, n2′2))−

(

η21 − η20
η1

)

γ̇cα(r
′
2, r

′
1)

p(r)|r′
1
<r≤r′

2
= 3η0V ah−2(r2) + 3η1V a

(

h−2(r)− h−2(r′2)
)

−

2η0γ̇caφ(r2, r
′
2,m2′2, n2′2)−

(

η21 − η20
η1

)

γ̇cα(r
′
2, r)

p(r)|r′
2
<r≤r2 = 3η0V ah−2(r2)− 2η0γ̇caφ(r2, r,m2′2, n2′2)

p(r)|r>r′
2
= 3η0V ah−2(r) (A6)

where the dimensionless function α is given by

α(ra, rb) =

√

2a

h0

(

arctan

(

1√
3

rb
rmax

)

− arctan

(

1√
3

ra
rmax

))

(A7)
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Appendix B: Calculation of the Force

The lubrication force is calculated as follows

F =

∫ ∞

0

p(r)2πrdr =



















F1, if h0 ≥ hlim
0

F2, if h′lim
0 ≤ h0 < hlim

0

F3, if h0 < h′lim
0

(B1)

where F1, F2 and F3 are calculated as follows

F1 =

∫ ∞

0

p(r)|newt2πrdr

F2 =

∫ r1

0

p(r)|r<r12πrdr +

∫ r2

r1

p(r)|r1≤r<r22πrdr +

∫ ∞

r2

p(r)|r≥r22πrdr

F3 =

∫ r1

0

p(r)|r<r12πrdr +

∫ r′
1

r1

p(r)|r1≤r<r′
1
2πrdr +

∫ r′
2

r′
1

p(r)|r′
1
≤r<r′

2
2πrdr +

∫ r2

r′
2

p(r)|r′
2
≤r<r22πrdr +

∫ ∞

r2

p(r)|r≥r22πrdr (B2)

and they read explicitly

F1 = 6πη0V a2h−1
0

F2 = 6πη0V a2
(

h−1
0 + h−1(r2)− h−1(r1)

)

+

3πη0V a

(

(

r2
h(r2)

)2

−
(

r1
h(r1)

)2
)

+

2πη0γ̇caλ2

F3 = 6πη0V a2
(

h−1
0 + h−1(r2)− h−1(r1)

)

+ 6πη1V a2
(

h−1(r′1)− h−1(r′2)
)

+

3πη0V a

(

(

r2
h(r2)

)2

−
(

r1
h(r1)

)2
)

− 3πη1V a

(

(

r′2
h(r′2)

)2

−
(

r′1
h(r′1)

)2
)

+

2πη0γ̇caλ3 (B3)
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where

λ2 =
[

r21φ(r1, rmax,m1, n1)− r2maxφ(r2, rmax,m2, n2)+

σ(rmax, rmax,m1, n1)− σ(r1, rmax,m1, n1) +

σ(r2, r2,m2, n2)− σ(rmax, r2,m2, n2)]

λ3 =

[(

η1
η0

− η0
η1

)

(r′1 − r′2) + r21φ (r1, r
′
1,m1′1, n1′1)− r′22 φ (r2, r

′
2,m2′2, n2′2)+

σ (r′1, r
′
1,m1′1, n1′1)− σ (r1, r

′
1,m1′1, n1′1) +

σ (r2, r2,m2′2, n2′2)− σ (r′2, r
′
2,m2′2, n2′2)] +

π

√

2a

h0

γ̇c
(η21 − η20)

η1
× (B4)

(

(

r′21 − 2ah(r′1)
)

arctan

(

1√
3

r′1
rmax

)

−
(

r′22 − 2ah(r′2)
)

arctan

(

1√
3

r′2
rmax

))

being

σ(ra, rb,m, n) ≡ 2

∫

φ(ra, rb,m, n)radra =
1

3mrmax (n2 + 3m2r2max)
× (B5)

[

2
√
3mn

(

−
(

3r2max + r2a
)

arctan

(

1√
3

ra
rmax

)

+ r2a arctan

(

1√
3

rb
rmax

))

+

3rmax

(

2
(

n2 −m2r2a
)

ln (n+mra) + 2m2ah(ra) ln (2ah(ra)) +m2r2a ln

(

(n+mrb)
2

2ah(rb)

))]
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21A. Vázquez-Quesada, P. Español, and M. Ellero, “Apparent slip mechanism between

two spheres based on solvent rheology: theory and implication on the shear-thinning of

non-brownian suspensions,” Physical Review Fluids under review (2018).

22N. J. Wagner and J. F. Brady, “Shear thickening in colloidal dispersions,” Physics Today

62, 27–32 (2009).

23Y. S. Lee, E. D. Wetzel, and N. J. Wagner, “The ballistic impact characteristics of kevlar R©
woven fabrics impregnated with a colloidal shear thickening fluid,” Journal of materials

science 38, 2825–2833 (2003).

24J. N. Fowler, A. A. Pallanta, C. B. Swanik, and N. J. Wagner, “The use of shear thickening

nanocomposites in impact resistant materials,” Journal of biomechanical engineering 137,

054504 (2015).

25C. D. Cwalina and N. J. Wagner, “Rheology of non-brownian particles suspended in con-

centrated colloidal dispersions at low particle reynolds number,” Journal of Rheology 60,

47–59 (2016).

26A. Vázquez-Quesada, N. Wagner, and M. Ellero, “Planar channel flow of a discontinuous

shear-thickening model fluid: Theory and simulation,” Physics of Fluids 29, 103104 (2017).

27E. Guazzelli and J. F. Morris, A physical introduction to suspension dynamics (Cambridge

University Press, 2011).

28C. D. Cwalina, K. J. Harrison, and N. J. Wagner, “Rheology of cubic particles suspended

in a newtonian fluid,” Soft Matter 12, 4654–4665 (2016).

29A. Vázquez-Quesada, X. Bian, and M. Ellero, “Three-dimensional simulations of dilute

and concentrated suspensions using smoothed particle hydrodynamics,” Computational

Particle Mechanics 1, 36 (2015).
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