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Abstract

We study two population models describing the dynamics of interacting neu-
rons, initially proposed by Pakdaman, Perthame, and Salort (2010, 2014). In
the first model, the structuring variable s represents the time elapsed since its
last discharge, while in the second one neurons exhibit a fatigue property and the
structuring variable is a generic “state”. We prove existence of solutions and steady
states in the space of finite, nonnegative measures. Furthermore, we show that
solutions converge to the equilibrium exponentially in time in the case of weak
nonlinearity (i.e., weak connectivity). The main innovation is the use of Doeblin’s
theorem from probability in order to show the existence of a spectral gap prop-
erty in the linear (no-connectivity) setting. Relaxation to the steady state for the
nonlinear models is then proved by a constructive perturbation argument.
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1 Introduction
Several mean-field models have been proposed to understand the electrical activity of a
group of interacting neurons. They are all based on simplified models for the electrical
activity of a single neuron, which give rise to an averaged partial differential equation
(PDE) or integro-differential equation suitable when the number of neurons involved
is large. In a rough approximation, neurons are assumed to undergo some sort of
natural “charging” process, with a sudden “discharge” taking place in a stochastic way
depending on the current charge, the time since the last discharge, and the activity
of other connected neurons. A family of these models is structured by the membrane
potential of neurons; that is, the quantity under study is the density n(t, v) of neurons
with potential v at time t. The mathematical theory of these models is recent; see
Tuckwell (1988); Brunel and Hakim (1999); Brunel (2000); Brette and Gerstner (2005);
Rossant et al. (2011); Cáceres et al. (2011); Carrillo et al. (2013); Cáceres and Schneider
(2017, 2018). The family of models we study in this paper is structured by the elapsed
time since the last discharge and has been proposed in Pakdaman et al. (2010, 2013,
2014). The first model is based on stochastic simulations done in Pham et al. (1998).
It is a nonlinear version of the conservative renewal equation (sometimes called as
McKendrick-Von Foerster equation) which has been well-studied by many authors in
the past as a model for a broad range of biological phenomena like epidemic spread and
cell division (Perthame, 2006; Gyllenberg and Webb, 1990; Diekmann and Gyllenberg,
2008; Iannelli, 1995; Metz and Diekmann, 1986; Webb, 1985; Thieme, 2003). The
second model has many similarities with a class of partial differential equations called
growth-fragmentation equations. The nonlinear version we study here was introduced in
Pakdaman et al. (2014), but on this general type of equations we also mention the works
in Doumic-Jauffret and Gabriel (2010); Michel (2006); Perthame and Ryzhik (2005);
Calvez et al. (2010); Engler et al. (2006); Farkas and Hagen (2007); Gabriel (2012);
Laurençot and Walker (2007); Simonett and Walker (2006).

The dynamics of an age-structured, interacting neuron population is given by the
integro-differential PDE

∂

∂t
n(t, s) +

∂

∂s
n(t, s) + p(N(t), s)n(t, s) = 0, t, s > 0,

N(t) := n(t, s = 0) =

∫ +∞

0

p(N(t), s)n(t, s)ds, t > 0,

n(t = 0, s) = n0(s), s ≥ 0.

(1)

which models the evolution of a neuron population density n(t, s) depending on time
t and the time s elapsed since the last discharge. Neurons randomly fire at a rate p
per unit of time, and they re-enter the cycle from s = 0 immediately after they fire, as
imposed through the boundary condition at s = 0; the variable s can thus be regarded
as the ‘age’ of neurons, making a parallel with models for birth and death processes. The
global activity N(t) denotes the density of neurons which are undergoing a discharge
at time t. If the firing rate p increases with N , interactions are excitatory : the firing of
neurons makes it more likely that connected neurons will also fire; if p decreases with N
then interactions are inhibitory. This nonlinear model preserves positivity (see Section
3 for a rigorous proof) and has the conservation property

d

dt

∫ +∞

0

n(t, s) ds = 0. (2)

2



In particular, this ensures that if the density of neurons is a probability distribution
initially, then it remains so. Whenever it is convenient we assume that n0 is a probability
distribution (which may be assumed after a suitable scaling).

The second model we consider is a modified version of the first one where s represents
a generic “state” of the neuron, not necessarily the time elapsed since the last discharge.
This model was proposed in Pakdaman et al. (2014), and assumes that neurons in a
state u return to a certain state s < u after firing, with a certain probability distribution
κ(s, u). The model reads as follows:

∂

∂t
n(t, s) +

∂

∂s
n(t, s) + p(N(t), s)n(t, s)

=

∫ +∞

0

κ(s, u)p(N(t), u)n(t, u)du, u, s, t > 0,

n(t, s = 0) = 0, N(t) :=

∫ +∞

0

p(N(t), s)n(t, s)ds, t > 0,

n(t = 0, s) = n0(s), s ≥ 0.

(3)

This equation differs from the first one in the addition of a kernel κ = κ(s, u). For
fixed u, the quantity κ(·, u) is a probability measure which gives the distribution of
neurons which take the state s when they discharge at a state u. Hence, neurons do
not necessarily start the cycle from s = 0 after firing, and so s cannot be properly
understood as an ‘age’ variable in this model. One should notice that equation (1) is
a limiting case of equation (3) when κ(·, u) = δ0(s), the Dirac delta at s = 0. This
connection is seen more obviously when a definition for weak or measure solutions is
given; see Section 4. We remark that the terms involving p and κ are mathematically
close to the ones appearing in fragmentation processes.

These equations and similar models have been shown to exhibit many interesting
phenomena which are consistent with the experimental behaviour of neurons: depending
on the parameter p and the initial data one can find periodic solutions, apparently
chaotic solutions, and solutions which approach an equilibrium state. The first two
kinds of behaviour (periodic and chaotic solutions) are harder to study mathematically;
numerical simulations have been performed in Pakdaman et al. (2010, 2013) and some
explicit solutions have been found. Regarding convergence to equilibrium, some regimes
are studied in these works using perturbative techniques, such as the so-called low-
connectivity and high-connectivity cases. Our contribution in this work is a simplified
study of the low-connectivity case (corresponding to a weak nonlinearity) which gives
improved results, and which uses a promising technique for this and similar models.

As a population balance equation of a form that appears often in mathematical
biology, several techniques exist to study equations (1) and (3) rigorously. We refer to
Perthame (2006) for a good exposition of many of the relevant tools. One of the main
methods used so far in the study of convergence to equilibrium for equations (1) and (3)
is the entropy method, which roughly consists in finding a suitable Lyapunov functional
H = H(n) such that

d

dt
H(n(t, ·)) = −D(n(t, ·)) ≤ 0 (4)

along solutions n = n(t, s) to (1) or (3), and then investigating whether one may prove
inequalities of the type λH(n) ≤ D(n) for some λ > 0 and a family of functions n suf-
ficiently large to contain n(t, ·) for all times t. If the answer is positive, one can apply
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the Gronwall inequality to (4) and deduce that H(n(t, ·)) decays exponentially with a
rate proportional to e−λt. This in turn may give useful information on the approach
to equilibrium, often implying that n(t, ·) approaches equilibrium in the L1 norm. A
fundamental difficulty is that phenomenological equations motivated by biological con-
siderations do not have any obvious Lyapunov functionals. This difficulty leads us to
considering cases which are close to a linear regime, taking advantage of the fact that
mass- and positivity-conserving linear equations (essentially Markov evolutions) have a
well-known family of Lyapunov functionals. This idea was followed in Pakdaman et al.
(2010, 2013, 2014), using a specific Lyapunov functional obtained by integrating the
primitive of n− n∗ (where n∗ is an equilibrium state) against a suitable weight.

Apart from the entropy method, for the time elapsed neuron network model (1),
another approach has been developed in Mischler and Weng (2018); Weng (2015). This
approach is based on spectral analysis theory for semigroups in Banach spaces. In
Mischler and Weng (2018), uniqueness of the steady state and its nonlinear exponential
stability in the weak connectivity regime for the first model was proved. This approach
is extended in Weng (2015) to the cases without delay and with delay both in the weak
and strong connectivity regimes considering a particular step function as a firing rate.
Furthermore, in Chevallier et al. (2015) the link between several point processes models
(Poisson, Wold, Hawkes) that have been proved to statistically fit real spike trains
data and age-structured partial differential equations as introduced by Pakdaman et al.
(2010) was investigated. This approach is extended to generalized Hawkes processes as
microscopic models of individual neurons in Chevallier (2017).

We propose an alternative approach that is based on neither the entropy method
nor the forementioned approaches, but instead takes advantage of a set of results in
the theory of Markov processes known as Doeblin’s theory, with some extensions such
as Harris’ theorem; see Harris (1956), or Hairer and Mattingly (2011); Gabriel (2018)
for simplified recent proofs and Stroock (2005, Chapter 2) for a basic exposition. The
idea is still based on first studying the linear case and then carrying out a perturbation
argument; the difference is that we study the spectral properties of the linear operator
by Doeblin’s theory, which is quite flexible and later simplifies the proofs. We obtain
a spectral gap property of the linear equation in a set of measures, and this leads to
a perturbation argument which naturally takes care of the boundary conditions in (1)-
(3). Similar ideas are reviewed in Gabriel (2018) for the renewal equation, and have
been recently used in Bansaye et al. (2017) for neuron population models structured by
voltage.

Due to this strategy, studying solutions to (1) and (3) in the sense of measures
comes as a natural setting for two important reasons: first, it fits well with the linear
theory; and second, it allows us to treat the weakly nonlinear case as a perturbation
of the linear one. Note that one difference between the weakly nonlinear case and
the linear case for equation (1) is in the boundary condition, and this is conveniently
encoded as a difference in a measure source term; see the proof of Theorem 1.1 for
details on this. Measure solutions are also natural since a Delta function represents an
initial population whose age (or structuring variable) is known precisely. There exist
also recent works on numerical schemes for structured population models in the space
of nonnegative measures (Carrillo et al., 2014; Brännström et al., 2013; Gwiazda et al.,
2014). Entropy methods have also been extended to measure initial data by Gwiazda
and Wiedemann (2016) for the renewal equation.
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Let us detail our notation and assumptions before stating the main results. Regard-
ing the regularity of the firing rate p = p(N, s), we always assume that p is bounded,
Lipschitz and nonnegative:

p ∈ W 1,∞([0,+∞)× [0,+∞)), p(N, s) ≥ 0 for all N, s ∈ [0,+∞). (5)

and we call L the Lipschitz constant of p with respect to N ; that is, L is the smallest
number such that

|p(N1, s)− p(N2, s)| ≤ L|N1 −N2| for all N1, N2, s ≥ 0. (6)

We assume that for a fixed global activity N the firing rate increases as time passes;
more precisely,

∂

∂s
p(N, s) > 0, for all N, s ≥ 0. (7)

where the derivative is defined. We also assume certain bounds on p: there exist
s∗, pmin, pmax > 0 such that

pmin1[s∗,∞) ≤ p(N, s) ≤ pmax for all N, s ≥ 0, (8)

where 1A denotes the characteristic function of a set A. Regarding κ, the basic mod-
elling assumption is that

for each u ≥ 0, κ(·, u) is a probability measure supported on [0, u]. (9)

We also impose a positivity condition on κ which essentially states that after firing
there is always a sizeable probability of jumping to a state with s close to 0: there exist
ε, 0 < δ < s∗ such that

κ(·, u) ≥ ε1[0,δ] for all u ≥ s∗. (10)

Our main result can be formulated as follows for both equation (1) and (3):

Theorem 1.1. We assume that (5)–(8) are satisfied for equation (1), or (5)–(10) for
equation (3). We assume also that L is small enough depending on p and κ (with an
explicit estimate; see remarks after the statement).

Let n0 be a probability measure on [0,+∞). There is a unique probability measure
n∗ which is a stationary solution to (1) or (3), and there exist constants C ≥ 1, λ > 0
depending only on p and κ such that the (mild or weak) measure solution n = n(t) to
(1)-(3) satisfies

‖n(t)− n∗‖TV ≤ Ce−λt‖n0 − n∗‖TV, for all t ≥ 0. (11)

Remark 1.2. The constants are all constructive. To be precise, one can take

λ = λ1 − C̃, C = C1 for (1),

λ = λ2 − C̃, C = C2 for (3),

where

C1 :=
1

1− s∗β
, λ1 = − log(1− s∗β)

2s∗

C2 :=
1

1− εδ(s∗ − δ)β
, λ2 = − log(1− εδ(s∗ − δ)β)

2s∗

5



and with
β = pmine

−2pmaxs∗ and C̃ = 2pmax
L

1− L
.

The smallness condition on L can be written as

L < min

{
p2min

p2max (s∗pmin(s∗pmin + 2) + 2)
,

log(1− s∗β)

log(1− s∗β)− 4pmaxs∗

}
for (1)

or

L < min

{
pminεδ(s∗ − δ)β

pminεδ(s∗ − δ)β + pmaxe4pmaxs∗
,

log(1− εδ(s∗ − δ))
log(1− εδ(s∗ − δ))− 4pmaxs∗

}
for (3).

As remarked above, the closest results in the literature are those of Pakdaman et al.
(2010, 2014). Our equation (1) is essentially the model in Pakdaman et al. (2010),
written in a slightly different formulation that does not include time delay and does
not highlight the connectivity as a separate parameter (the connectivity of neurons in
our case is measured in the size of ∂Np). The results in Pakdaman et al. (2010) use
entropy methods and show exponential convergence to equilibrium (a similar statement
to Theorem 1.1) in a weighted L1 space, for the case with delay and for a particular
form of the firing rate p. As compared to this, our results work in a space of measures
and can be easily written for general firing rates p; however, we have not considered the
large-connectivity case (which would correspond to large ∂Np in our case) or the effects
of time delay.

Similar remarks apply to the results for equation (3) contained in Pakdaman et al.
(2014). In this case our strategy gives in general conditions which are simpler to state,
and provide a general framework which may be applied to similar models. Again, we
have not considered a time delay in the equation, which is a difference with the above
work. There are numerical simulations and further results on regimes with a stronger
nonlinearity in Pakdaman et al. (2010, 2013, 2014).

This paper is organized as follows. In Section 2 we state Doeblin’s Theorem from
the theory of Markov processes, which plays a crucial role in our convergence results.
Section 3 and section 4 are dedicated to the age-structured neuron population model
(1) and the structured neuron population model with a fatigue (3) respectively. The
organisation of those last two sections is the same: in each, we first give proofs for well-
posedness, and existence and uniqueness of stationary solutions, always in the weak
nonlinearity regime. Later we consider the linear equations (when p does not depend
on N) and we prove that solutions have positive lower bounds which ensures that the
associated stochastic semigroups satisfy the Doeblin condition, obtaining exponential
convergence results for the linear problems. Finally, we prove exponential relaxation to
the steady state for the nonlinear models (1)–(3) by a perturbation argument based on
the linear theory.

2 Spectral gaps in total variation
We briefly present here the version of Doeblin’s theorem that we use in this paper. A
recent proof which brought it to our attention can be found in ?; a general version
known as Harris’ theorem can be found in Harris (1956); Hairer and Mattingly (2011).
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This result applies to stochastic semigroups defined in a space of measures (or in an L1

space); that is, mass- and positivity-preserving semigroups1.
Given a measurable space (E,A) we denote byM(E) the set of finite measures on

E, and by P(E) the set of probability measures on E. We equipM(E) with the usual
total variation norm which we denote by ‖ · ‖TV; we recall that this norm is defined by
‖µ‖ :=

∫
E
µ+ +

∫
E
µ−, where µ = µ+ − µ− is the Hahn-Jordan decomposition of the

measure µ into its positive and negative parts.

Definition 2.1. Let (E,A) be a measurable space. A stochastic operator onM(E) is
a linear operator S : M(E) → M(E) such that Sµ ≥ 0 for all µ ≥ 0, and such that∫
E
Sµ =

∫
E
µ for all µ ∈ M(E). Equivalently, it is a linear operator which preserves

the space P(E) of probability measures on E.
A stochastic semigroup onM(E) is a semigroup (St)t≥0 of operators St : M(E)→

M(E) such that St is a stochastic operator for each t ≥ 0. A stationary state of a
semigroup (St)t≥0 onM(E) is a measure µ ∈M(E) such that Stµ = µ for all t ≥ 0.

We observe that ‖Stµ‖TV ≤ ‖µ‖TV holds true for all µ ∈M(E). Since St preserves
order, we have −St|µ| ≤ Stµ ≤ St|µ| which implies |Stµ| ≤ St|µ|. Then we integrate
both sides to obtain

∫
|Stµ| ≤

∫
Stµ =

∫
|µ| for all µ ∈ M(E) by using the mass

conservation property of St.

Definition 2.2. We say a stochastic operator S satisfies the Doeblin condition when
there exist 0 < α < 1 and a probability measure ν on (E,A) such that

Sµ ≥ αν for all µ ∈ P(E). (12)

The following version of Doeblin’s theorem is essentially the same as the one in
Gabriel (2018) or Stroock (2005, Chapter 2), and a particular case of Hairer and Mat-
tingly (2011) if one ignores some technical conditions regarding the existence of a kernel
for the semigroup. We give a short proof here for clarity, essentially along the lines of
Gabriel (2018).

Theorem 2.3 (Semigroup version of Doeblin’s theorem). Let (E,A) be a measurable
space and (St)t≥0 a stochastic semigroup onM(E). If there exists t0 > 0 such that St0
satisfies the Doeblin condition (12) then the semigroup has a unique equilibrium n∗ in
P(E), and

‖St(n− n∗)‖TV ≤
1

1− α
e−λt‖n− n∗‖TV, for all t ≥ 0, (13)

for all n ∈ P(E), where

λ := − log(1− α)

t0
> 0.

In addition,
‖St0(n1 − n2)‖TV ≤ (1− α)‖n1 − n2‖TV (14)

for any probability measures n1, n2 on E.
1In the literature a Markov semigroup is often the dual of this kind of semigroup, but is sometimes

also the same as our definition of a stochastic semigroup. We give the definition to avoid any confusion.

7



Proof. By the triangle inequality we have

‖St0µ1 − St0µ2‖TV ≤ ‖St0µ1 − αν‖TV + ‖St0µ2 − αν‖TV.

Now, since St0µ1 ≥ αν, we can write

‖St0µ1 − αν‖TV =

∫
(St0µ1 − αν) =

∫
µ1 − α = 1− α,

due to mass conservation, and similarly for the term ‖St0µ2 − αν‖TV. This gives

‖St0µ1 − St0µ2‖TV ≤ 2(1− α) = (1− α)‖µ1 − µ2‖TV. (15)

if µ1, µ2 ∈ P(E) have disjoint support. By homogeneity, this inequality is obviously
also true for any nonnegative µ1, µ2 ∈M(E) having disjoint support with

∫
µ1 =

∫
µ2.

We obtain the inequality in general for any µ1, µ2 ∈ M(E) with the same integral by
writing µ1−µ2 = (µ1−µ2)+− (µ2−µ1)+, which is a difference of nonnegative measures
with the same integral. This shows (14).

The contractivity (15) shows that the operator St0 has a unique fixed point in P(E),
which we call n∗. In fact, n∗ is a stationary state of the whole semigroup since for all
s ≥ 0 we have

St0Ssn∗ = SsSt0n∗ = Ssn∗,

which shows that Ssn∗ (which is again a probability measure) is also a stationary state
of St0 ; due to uniqueness,

Ssn∗ = n∗.

Hence the only stationary state of (St)t≥0 must be n∗, since any stationary state of
(St)t≥0 is in particular a stationary state of St0 .

In order to show (13), for any n ∈ P(E) and any t ≥ 0 we write

k := bt/t0c,

(where b·c denotes the integer part) so that

t

t0
− 1 < k ≤ t

t0
.

Then,

‖St(n− n∗)‖TV = ‖St−kt0Skt0(n− n∗)‖TV ≤ ‖Skt0(n− n∗)‖TV

≤ (1− α)k‖n− n∗‖TV ≤
1

1− α
exp

(
t log(1− α)

t0

)
‖n− n∗‖TV.

3 An age-structured neuron population model
In this section we consider equation (1) for an age-structured neuron population. We
first develop a well-posedness theory in the sense of measures, and then we use Doe-
blin’s Theorem 2.3 for the linear problem (32) to show exponential convergence to the
equilibrium. After giving conditions for existence and uniqueness of a stationary solu-
tion to equation (1), we use a perturbation argument in order to obtain a result on its
asymptotic behaviour.
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3.1 Well posedness

In order to develop our well-posedness theory in measures we need to introduce our
notation and the norms we will be considering. We denote R+

0 := [0,+∞), andM(R+
0 )

is the set of finite, signed Borel measures on R+
0 . M+(R+

0 ) denoted the subset ofM(R+
0 )

formed by the nonnegative measures. Since we will always work in R+
0 , for simplicity

we will often writeM andM+ to denote these sets, respectively.
We often identify a measure µ ∈ M(R+

0 ) with its density with respect to Lebesgue
measure, denoting the latter by the function µ = µ(s). We abuse notation by writing
µ(s) even for measures that may not have a density with respect to Lebesgue measure.
Similarly, for a function n : [0, T ) → M(R+

0 ) we may often write n(t, s) even if n(t)
does not have a density with respect to Lebesgue measure. In these cases any identities
involved should be understood as identities between measures.

We denote by C0(R+
0 ) ≡ C0 the set of continuous functions φ on R+

0 with lims→+∞ φ(s) =
0 endowed with the supremum norm

‖φ‖∞ := sup
s≥0
|φ(s)|,

C0(R+
0 ) becomes a Banach space. Similarly, Cc(R+

0 ) ≡ Cc denotes the set of compactly
supported continuous functions on [0,+∞).

InM one can define the usual total variation norm, which we will denote by ‖ ·‖TV.
We recall that (M, ‖·‖TV) is a Banach space, and is the topological dual of C0([0,+∞))
with the supremum norm, as stated by the Riesz representation theorem. The weak-
∗ topology on M is the weakest topology that makes all functionals T : M → R,
µ 7→

∫
R+
0
φµ continuous, for all φ ∈ C0. In the associated topology, a sequence (µk)k≥1

inM converges in the weak-∗ sense to µ ∈M when

lim
k→+∞

∫
R+
0

φµk =

∫
R+
0

φµ for all φ ∈ C0.

We will also use the bounded Lipschitz norm ‖ · ‖BL onM, sometimes known as the
flat metric or the W 1,∞ dual metric, defined by

‖µ‖BL := sup
ψ∈L

∫
R+
0

ψµ, µ ∈M

where

L := {ψ ∈ C(R+
0 ) | ψ bounded and Lipschitz with ‖ψ‖∞ + ‖ψ′‖∞ ≤ 1}.

One sees from this definition that the bounded Lipschitz norm is dual to the norm

‖ψ‖1,∞ := ‖ψ‖∞ + ‖ψ′‖∞, ψ ∈ W 1,∞(R+
0 )

defined onW 1,∞(R+
0 ) = {ψ ∈ C(R+

0 ) | ψ bounded and Lipschitz} (but (M, ‖·‖BL) is not
the topological dual of W 1,∞). An important property of this norm is that it metrises
the weak-∗ topology on any tight set with bounded total variation. We recall that a set
B ⊆M is tight if for every ε > 0 there exists R > 0 such that |µ|((R,+∞)) < ε for all
µ ∈ B.
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Lemma 3.1 (Lorenz (2010), 2.5.1, Proposition 43). If B ⊆M is tight and is bounded
in total variation norm, then the topology associated to ‖ · ‖BL on B is equal to the
weak-∗ topology on B.

If I ⊆ R is an interval we denote by C(I,M+(R+
0 )) the set of functions n : I →

M+(R+
0 ) which are continuous with respect to the bounded Lipschitz norm onM+(R+

0 ).
We define mild measure solutions to equation (1) by the usual procedure of rewriting
it using Duhamel’s formula. We denote by (Tt)t≥0 the translation semigroup generated
on (M, ‖ · ‖BL) by the operator −∂s. That is: for t ≥ 0, any measure n ∈ M(R+

0 ) and
any φ ∈ C0(R+

0 ), ∫
R+
0

φ(s)Ttn(s) ds :=

∫
R+
0

φ(s+ t)n(s) ds. (16)

In other words, using the notation we follow in this paper,

Ttn(s) := n(s− t),

with the understanding that n is zero on (−∞, 0).

Definition 3.2. Assume p satisfies (5) and is nonnegative. A couple of functions
n ∈ C([0, T ),M+(R+

0 )) and N ∈ C([0, T ), [0,+∞)), defined on an interval [0, T ) for
some T ∈ (0,+∞), is called amild measure solution to (1) with initial data n0 ∈M(R+

0 )
and N0 ∈ R if it satisfies n(0) = n0, N(0) = N0,

n(t, s) = Ttn0(s)−
∫ t

0

Tt−τ
(
p(N(τ), ·)n(τ, ·)

)
(s) dτ +

∫ t

0

Tt−τ
(
N(τ)δ0

)
(s) dτ (17)

for all t ∈ [0, T ), and

N(t) =

∫ ∞
0

p(N(t), s)n(t, s) ds, t ∈ [0, T ).

Remark 3.3. We notice that the second term in (17) can be rewritten as∫ t

0

Tt−τ
(
N(τ)δ0

)
(s) dτ =

∫ t

0

N(τ)δt−τ (s) dτ

= N(t− s)1[0,t](s) = N(t− s)1[0,∞)(t− s). (18)

This will sometimes be a more convenient form.

By integrating in R+
0 , Definition 3.2 directly implies mass conservation:

Lemma 3.4 (Mass conservation for measure solutions). Let T ∈ (0,+∞]. Any mild
measure solution (n,N) to (1) defined on [0, T ) satisfies∫

R+
0

n(t, s) ds =

∫
R+
0

n0(s) ds, for all t ∈ [0, T ), (19)

or in other words (since solutions are nonnegative measures by definition),

‖n(t)‖TV = ‖n0‖TV for all t ∈ [0, T ).

10



Lemma 3.5. Assume that p satisfies (5) and the Lipschitz constant L in (6) satisfies
L < 1/‖n‖TV, and let n ∈M(R+

0 ). There exists a unique N ∈ R satisfying

N =

∫ ∞
0

p(N, s)n(s) ds. (20)

Under these conditions, if n1, n2 ∈ M(R+
0 ) are two measures and N1, N2 ∈ R are the

corresponding solutions to (20), then

|N1 −N2| ≤
‖p‖∞

1− L‖n1‖TV

‖n1 − n2‖TV. (21)

Proof. We define the map Φ: R→ R by

Φ(N) :=

∫ ∞
0

p(N, s)n(s) ds,

and we notice that for any N1, N2 ∈ R,

|Φ(N1)− Φ(N2)| ≤ ‖p(N1, ·)− p(N2, ·)‖∞‖n‖TV ≤ L|N1 −N2|‖n‖TV.

Since L < 1/‖n‖TV, the map Φ is contractive and has a unique fixed point, which is a
solution to (20). For the second part of the lemma, consider n1, n2 ∈ M(R+

0 ) and N1,
N2 the corresponding solutions to (20). Then

|N1 −N2| ≤
∫ ∞
0

|p(N1, s)− p(N2, s)|n1(s) ds+

∣∣∣∣∫ ∞
0

p(N2, s)(n1(s)− n2(s)) ds

∣∣∣∣
≤ L|N1 −N2|‖n1‖TV + ‖p‖∞‖n1 − n2‖TV,

which shows (21).

Theorem 3.6 (Well-posedness of (1) in measures). Assume that p satisfies (5) and
the Lipschitz constant L in (6) satisfies L ≤ 1/(4‖n0‖TV). For any given initial data
n0 ∈ M+(R+

0 ) there exists a unique measure solution n ∈ C([0,+∞);M+(R+
0 )) of (1)

in the sense of Definition 3.2. In addition, if n1, n2 are any two mild measure solutions
to (1) (with possibly different initial data) defined on any interval [0, T ) then

‖n1(t)− n2(t)‖TV ≤ ‖n1(0)− n2(0)‖TV e
4‖p‖∞t for all t ∈ [0, T ). (22)

Remark 3.7. We notice that the condition that L is small is already needed here, since
otherwise the problem is not well-posed: consider for example the case p(N, s) := N ,
for which a solution should satisfy

N(t) = N(t)

∫ ∞
0

n(t, s) ds,

which only allows two options: either N(t) = 0 or
∫∞
0
n(t, s) ds = 1. If

∫∞
0
n0(s) ds = 1

then the second option holds and there are infinitely many solutions (since the choice
of N = N(t) is free). If

∫∞
0
n0(s) ds 6= 1 then N(t) must be 0 for all t > 0. In this latter

case, either N0 = 0 (and then the only solution is just pure transport: n(t, s) = n0(s−t)
for s > t, n(t, s) = 0 otherwise) or N0 6= 0 (and there there are no solutions).

Similar ill-posed examples can be easily designed with firing rates of the form
p(N, s) = f(N)g(s).

11



Proof of Theorem 3.6. The proof of this result is a standard fixed-point argument as
followed for example in Cañizo et al. (2013), or in Pakdaman et al. (2010) for L1

solutions.
Let us first show existence of a solution for a nonnegative initial measure n0 ∈

M+(R+
0 ). If n0 = 0 it is clear that setting n(t) equal to the zero measure on R+

0 for all
t defines a solution, so we assume n0 6= 0. Fix C, T > 0, to be chosen later. Consider
the complete metric space

X = {n ∈ C([0, T ],M+(R+
0 )) | n(0) = n0, ‖n(t)‖TV ≤ C for all t ∈ [0, T ]},

endowed with the norm
‖n‖X := sup

t∈[0,T ]
‖n(t)‖TV.

We remark that C([0, T ],M(R+
0 )) refers to functions which are continuous in the bounded

Lipschitz topology, not in the total variation one. Define an operator Ψ: X → X by

Ψ[n](t) := Ttn0 −
∫ t

0

Tt−τ
(
p(N(τ), ·)n(τ)

)
dτ +

∫ t

0

Tt−τ
(
N(τ)δ0

)
dτ (23)

for all n ∈ X , where N(t) is defined implicitly (see Lemma 3.5) as

N(t) =

∫ ∞
0

p(N(t), s)n(t, s) ds for t ∈ [0, T ]. (24)

The definition of Ψ[n] indeed makes sense, since both τ 7→ Tt−τ
(
p(N(τ), ·)n(τ)

)
and

τ 7→ Tt−τ
(
N(τ)δ0

)
are continuous functions from [0, T ] toM(R+

0 ), hence integrable (in
the sense of the Bochner integral).

We first check that Ψ[n] is indeed in X . It is easy to see that t 7→ Ψ[n](t) is
continuous in the bounded Lipschitz topology, and it is a nonnegative measure for each
t ∈ [0, T ]. We also have

‖Ψ[n](t)‖TV ≤ ‖n0‖TV +

∫ t

0

‖p(N(τ), ·)n(τ, ·)‖TV dτ +

∫ t

0

‖N(τ)δ0‖TV dτ

≤ ‖n0‖TV + TC‖p‖∞ + T‖N‖L∞([0,T ]) ≤ ‖n0‖TV + 2TC‖p‖∞.

We choose
T ≤ 1

4‖p‖∞
and C := 2‖n0‖TV, (25)

so that
‖n0‖TV + 2TC‖p‖∞ ≤ ‖n0‖TV +

C

2
≤ C.

Hence with these conditions on T and C we have Ψ[n] ∈ X .
Let us show that Ψ is a contraction mapping. Take n1, n2 ∈ X and let N1, N2 be

defined by (24) corresponding to n1 and n2, respectively. We have

‖Ψ[n1](t)−Ψ[n2](t)‖TV ≤
∫ t

0

‖(p(N1(τ), ·)− p(N2(τ), ·))n1(τ, ·)‖TV dτ

+

∫ t

0

‖p(N2(τ), ·)(n1(τ)− n2(τ))‖TV dτ +

∫ t

0

‖(N1(τ)−N2(τ))δ0‖TV dτ

=: T1 + T2 + T3.

12



We bound each term separately. For T1, since L ≤ 1/(4‖n0‖TV), using Lemma 3.5 we
have

T1 ≤ TCL sup
τ∈[0,T ]

|N1(τ)−N2(τ)|

≤ 2TCL‖p‖∞‖n1 − n2‖X ≤ T‖p‖∞‖n1 − n2‖X . (26)

For T2,
T2 ≤ T‖p‖∞‖n1 − n2‖X , (27)

and for T3, using again Lemma 3.5,

T3 ≤ T sup
τ∈[0,T ]

|N1(τ)−N2(τ)| ≤ 2T‖p‖∞‖n1 − n2‖X . (28)

Putting equations (26)–(28) together and taking the supremum over 0 ≤ t ≤ T ,

‖Ψ[n1]−Ψ[n2]‖X ≤ 4T‖p‖∞‖n1 − n2‖X .

Taking now T ≤ 1/(8‖p‖∞) ensures that Ψ is contractive, so it has a unique fixed
point in X , which is a mild measure solution on [0, T ]. If we call n this fixed point,
since ‖n(T )‖TV = ‖n0‖TV by mass conservation (see Lemma 3.4), we may repeat this
argument to continue the solution on [T, 2T ], [2T, 3T ], showing that there is a solution
defined on [0,+∞).

In order to show stability of solutions with respect to the initial data (which im-
plies uniqueness of solutions), take two measures n1

0, n
2
0 ∈ M+(R+

0 ), and consider two
solutions n1, n2 with initial data n1

0, n2
0 respectively. We have

‖n1(t)− n2(t)‖TV ≤ ‖n1
0 − n2

0‖TV +

∫ t

0

‖(p(N1(τ), ·)− p(N2(τ), ·))n1(τ, ·)‖TV dτ

+

∫ t

0

‖p(N2(τ), ·)(n1(τ)− n2(τ))‖TV dτ +

∫ t

0

‖(N1(τ)−N2(τ))δ0‖TV dτ, (29)

and with very similar arguments as before we obtain that

‖n1(t)− n2(t)‖TV ≤ ‖n1
0 − n2

0‖TV + 2L‖n0‖TV‖p‖∞
∫ t

0

‖n1(τ)− n2(τ)‖TV dτ

+ ‖p‖∞
∫ t

0

‖n1(τ)− n2(τ)‖TV dτ + 2‖p‖∞
∫ t

0

‖n1(τ)− n2(τ)‖TV dτ

≤ ‖n1
0 − n2

0‖TV + 4‖p‖∞
∫ t

0

‖n1(τ)− n2(τ)‖TV dτ. (30)

Gronwall’s inequality then implies (22).

Weak solutions Definition 3.2 is convenient for finding solutions, but later we will
need a more manageable form:

Definition 3.8. (Weak solution to (1)) Assume p satisfies (5) and is nonnegative. A
couple of functions n ∈ C([0, T ),M+(R+

0 )) and N ∈ C([0, T ), [0,+∞)), defined on an
interval [0, T ) for some T ∈ (0,+∞], is called a weak measure solution to (1) with

13



initial data n0 ∈ M(R+
0 ) and N0 ∈ R if it satisfies n(0) = n0, N(0) = N0, and for each

ϕ ∈ C∞c (0,+∞) the function t 7→
∫∞
0
ϕ(s)n(t, s) ds is absolutely continuous and

d

dt

∫ ∞
0

ϕ(s)n(t, s) ds

=

∫ ∞
0

∂sϕ(s)n(t, s) ds−
∫ ∞
0

p(N(t), s)n(t, s)ϕ(s) ds+

∫ ∞
0

N(t)δ0(s)ϕ(s) ds. (31)

for almost all t ∈ [0, T ), and

N(t) =

∫ ∞
0

p(N(t), s)n(t, s) ds, for all t ∈ [0, T ).

Equivalence results between definitions based on the Duhamel formula and defini-
tions of weak solutions based on integration against a test function are fairly common.
Here we use the main theorem in Ball (1977) with f(t, ·) = −p(N(t), ·)n(t, ·)−N(t)δ0(·),
which implies that mild solutions of our equation are are equivalent to weak solutions:

Theorem 3.9 (Ball (1977)). Assume p satisfies (5) and is nonnegative, and take T ∈
(0,+∞]. A function n : [0, T ) → M+(R+

0 ) is a weak measure solution (cf. Definition
3.8) to (1) if and only if it is a mild measure solution (cf. Definition 3.2).

3.2 The linear equation

When p = p(N, s) does not depend on N , equation (1) becomes linear:
∂

∂t
n(t, s) +

∂

∂s
n(t, s) + p(s)n(t, s) = 0, t, s > 0,

N(t) := n(t, s = 0) =

∫ +∞

0

p(s)n(t, s) ds, t > 0,

n(t = 0, s) = n0(s), s ≥ 0.

(32)

This is referred to as the “no-connectivity” case or the “J = 0 case” in Pakdaman et al.
(2010).

3.2.1 Well-posedness

We give a similar definition for mild measure solutions :

Definition 3.10. Assume p : [0,+∞)→ [0,+∞) is a bounded measurable function. A
function n ∈ C([0, T ),M+(R+

0 )), defined on an interval [0, T ) for some T ∈ (0,+∞],
is called a mild measure solution to (32) with initial data n0 ∈ M(R+

0 ) if it satisfies
n(0) = n0 and

n(t, s) = Ttn0(s)−
∫ t

0

Tt−τ
(
p(·)n(τ, ·)

)
(s) dτ +

∫ t

0

Tt−τ
(
N(τ)δ0

)
(s) dτ (33)

for all t ∈ [0, T ), with

N(t) :=

∫ ∞
0

p(s)n(t, s) ds, t ∈ [0, T ). (34)
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Our existence result stated in 3.6 easily gives the following as a consequence:

Theorem 3.11 (Well-posedness of (32) in measures). Assume that p : [0,+∞) →
[0,+∞) is bounded, Lipschitz and nonnegative. For any given initial data n0 ∈M(R+)
there exists a unique measure solution n ∈ C([0,+∞);M(R+

0 )) of the linear equation
(32) in the sense of Definition 3.10. In addition, if n is any mild measure solution to
(32) defined on any interval [0, T ) then

‖n(t)‖TV ≤ ‖n(0)‖TV for all t ∈ [0, T ). (35)

Proof. This result can be mostly deduced from Theorem 3.6. For the existence part,
split n0 into its positive and negative parts as n0 = n+

0 − n−0 . Theorem 3.6 gives the
existence of two solutions n+ and n− with initial data n+

0 and n−0 , respectively; then
n := n+ − n− is a mild measure solution with initial data n0. For uniqueness, if n is
any mild solution on [0, T ), the same argument as in (29)–(30) shows that

‖n(t)‖TV ≤ ‖n0‖TV + 4‖p‖∞
∫ t

0

‖n1(τ)‖TV dτ,

which gives by Gronwall’s inequality that

‖n(t)‖TV ≤ ‖n0‖TV e
4‖p‖∞t for all t ∈ [0, T ).

In particular, by linearity this implies solutions are unique. Finally, with the same
argument as in Lemma 3.4 one sees that for any solution n defined on [0, T ) it holds∫

R+
0

n(t, s) ds =

∫
R+
0

n0(s) ds

for all t ∈ [0, T ). Due to uniqueness, with the same splitting we used at the beginning
of the proof we have n(t) = n+(t)− n−(t), so

‖n(t)‖TV ≤ ‖n+(t)‖TV + ‖n−(t)‖TV = ‖n+
0 ‖TV + ‖n−0 ‖TV = ‖n0‖TV,

which finishes the proof.

The above result allows us to define an evolution semigroup (St)t≥0 (in fact it is a
C0-semigroup onM with the bounded Lipschitz topology) by setting

St : M→M, St(n0) := n(t)

for any n0 ∈M, where n(t) is the mild measure solution to (32) with initial data n0.

Stationary solutions for the linear equation We remark that Theorem 3.15 below
implies that the linear equation (32) has a unique stationary solution in the space of
probabilities on [0,+∞) (for p bounded, Lipschitz, and satisfying (8)); of course in this
case this solution is explicit, given by

n∗(s) := N∗e
−

∫ s
0 p(τ) dτ , s ≥ 0,

where N∗ is the appropriate normalisation constant that makes this a probability den-
sity. Although Theorem 3.15 does not rule out the existence of other stationary solutions
which may not be probabilities, since the solution is explicit it is not difficult to see
that, up to a constant factor, n∗ is the only stationary solution within the set of all
finite measures. This is also a consequence of Doeblin’s theorem below.
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3.2.2 Positive lower bound

Our main result on the spectral gap for the linear operator is based on the fact that for
any initial probability distribution, solutions have a universal lower bound after a fixed
time. We give the following lemma:

Lemma 3.12. Let p : [0,+∞) → [0,+∞) be bounded, Lipschitz function satisfying
(7) and (8), and consider the semigroup (St)t≥0 given by the existence Theorem 3.11.
Then St0 satisfies Doeblin’s condition (12) for t0 = 2s∗ and α = pmins∗e

−2pmaxs∗. More
precisely, for t0 = 2s∗ we have

S2s∗n0(s) ≥ pmine
−2pmaxs∗1{0<s<s∗}

for all probability measures n0 on [0,+∞).

Proof. We define a semigroup S̃t associated to the linear problem
∂
∂t
ñ(t, s) + ∂

∂s
ñ(t, s) = −p(s)ñ(t, s), t, s > 0,

ñ(t, 0) = 0, t > 0

ñ(0, s) = n0(s), s ≥ 0,

(36)

which has the explicit solution

ñ(t, s) =

{
n0(s− t)e−

∫ t
0 p(s−t+τ) dτ , s > t,

0, t > s.

Then we write the solution to the linear equation (32) as

n(t, s) = S̃tn0(s) +

∫ t

0

S̃t−τ (N(τ)δ0)(s) dτ.

For s > t we have

n(t, s) ≥ S̃tn0(s) = n0(s− t)e−
∫ t
0 p(s−t+τ) dτ ≥ n0(s− t)e−pmaxt

S̃t−τn0(s) ≥ n0(s− t+ τ)e−pmax(t−τ).

Then for t > s∗ it holds that

N(t) =

∫ +∞

0

p(s)n(t, s) ds ≥ pmine
−pmaxt

∫ ∞
s∗

n0(s− t) ds

≥ pmine
−pmaxt

∫ +∞

0

n0(s) ds = pmine
−pmaxt.

Therefore, for any s > 0 and t > s+ s∗ we have:

n(t, s) ≥
∫ t

0

S̃t−τ (N(τ)δ0)(s) dτ ≥
∫ t

s∗

S̃t−τ (pmine
−pmaxτδ0)(s) dτ

≥ pmin

∫ t

s∗

e−pmaxτe−pmax(t−τ)δ0(s− t+ τ) dτ = pmine
−pmaxt1{0<s<t−s∗}.

Hence for t = 2s∗ and all 0 < s < s∗ we obtain the result.
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3.2.3 Spectral gap

Exponential convergence to the equilibrium for the linear equation is an immediate
consequence of Theorem 2.3. We give the following proposition based on that:

Proposition 3.13. For a given initial data n0 ∈ M(R+), let p : [0,∞) → [0,+∞)
be bounded, Lipschitz function satisfying (7) and (8). Then, there exists a unique
probability measure n∗ ∈ P([0,+∞)) which is a stationary solution to (32), and any
other stationary solution is a multiple of it. Also, for

C =
1

1− α
> 1 and λ := − log(1− α)

t0

we have
‖St(n0 − n∗)‖TV ≤ Ce−λt‖n0 − n∗‖TV, for all t ≥ 0. (37)

In addition, for t0 := 2s∗ we have

‖St0(n1 − n2)‖TV ≤ (1− α)‖n1 − n2‖TV (38)

for any probability distributions n1, n2, and with

α := pmins∗e
−2pmaxs∗ .

Proof. We apply Theorem 2.3, since Lemma 3.12 shows that St0 satisfies the Doeblin
condition for t0 = 2s∗. Moreover,

C =
1

1− α
= eλt0 = e− log(1−pmins∗e−2pmaxs∗ ) =

1

1− pmins∗e−2pmaxs∗
> 1.

3.3 Stationary solutions for the nonlinear equation

Definition 3.14. We say that a nonnegative function n∗ ∈ C([0,+∞)) ∩ C1(0,+∞) is
a stationary solution to (1) if it satisfies

∂

∂s
n∗(s) + p(N∗, s)n∗(s) = 0, s > 0,

n∗(0) =: N∗ =

∫ +∞

0

p(N∗, s)n∗(s) ds.
(39)

The following result is essentially the same as that given in Pakdaman et al. (2010).
There it is proved for a particular form of p, i.e. for p(x, s) = 1s>s∗(x), for some
nonnegative s∗ ∈ C1([0,+∞)) such that d

dx
s∗(x) ≤ 0 with s∗(0) < 1. So we prove it

here for completeness, and to adapt it to our precise assumptions:

Theorem 3.15. Assume (5), (6), (8) for p and also that

L < (pmax)
−2
(
s2∗
2

+
s∗
pmin

+
1

p2min

)−1
.

Then there exists a unique probability measure n∗ which is a stationary solution to (1).
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Proof. If there is a stationary solution n∗ then (since the first equation of (39) is an
ordinary differential equation) it must satisfy

n∗(s) = n∗(0)e−
∫ s
0 p(N∗,τ) dτ = N∗e

−
∫ s
0 p(N∗,τ) dτ , s ≥ 0. (40)

If n∗ is a probability, by integrating we see that

N∗ =

(∫ +∞

0

e−
∫ s
0 p(N∗,τ) dτ ds

)−1
. (41)

In particular, N∗ must be strictly positive. Conversely, if N∗ > 0 is such that (41) is
satisfied then we may define n∗ = n∗(s) by (40) and it is straightforward to check that
it is a probability, and it is a stationary solution to (1). Hence the problem is reduced
to showing that there exists a unique solution N∗ > 0 to (41); this is ensured by a
simple fixed point argument, since

∂

∂N

(∫ +∞

0

e−
∫ s
0 p(N,τ) dτ ds

)−1
=

∫ +∞
0

( ∫ s
0
∂Np(N, τ)dτ

)(
e−

∫ s
0 p(N,τ) dτ

)
ds( ∫ +∞

0
e−

∫ s
0 p(N,τ) dτ ds

)2
≤ L

∫ +∞
0

se−
∫ s
0 p(N,τ) dτ ds( ∫ +∞

0
e−pmaxs ds

)2 ≤ L(pmax)
2

(∫ s∗

0

s ds+

∫ +∞

s∗

se−pmin(s−s∗) ds

)

= L(pmax)
2

(
s2∗
2

+
s∗
pmin

+
1

p2min

)
< 1.

where we have used (6) and (8). Note that these calculation is rigorous due to (5) and
the fact that the integrals in s converge uniformly for all N .

Similarly to our main results, the condition on L in the above theorem can be
understood as a condition of weak nonlinearity.

3.4 Asymptotic behaviour

In this section we prove Theorem 1.1 for equation (1). Formally, the proof is based on
rewriting it as

∂

∂t
n = LN(n) = LN∗(n) + (LN(n)− LN∗(n)) =: LN∗(n) + h, (42)

where we define

LN(n)(t, s) := − ∂

∂s
n(t, s)− p(N(t), s)n(t, s) + δ0(s)

∫ ∞
0

p(N(t), u)n(t, u) du,

and

h(t, s) :=
[
p(N∗, s)− p(N(t), s)

]
n(t, s)

+ δ0(s)

∫ +∞

0

[
p(N(t), u)− p(N∗, u)

]
n(t, u) du. (43)

18



We treat the term h as a perturbation. In order to do this rigorously, notice that h
contains a multiple of δ0, so it is necessary to use a concept of solution in a space of
measures. Then, since the solutions we are using do not allow us to write (42) rigorously,
we need to use a concept of solution that allows for the same formal computation; this
is the reason why weak solutions were introduced earlier.

Before proving the Theorem 1.1 for equation (1) we need the following lemma:

Lemma 3.16. Assume the conditions in Theorem 1.1 for equation (1). Then h, defined
by (43), satisfies

‖h(t)‖TV ≤ C̃‖n(t)− n∗‖TV for all t ≥ 0, (44)

where C̃ := 2pmax
L

1−L . It also satisfies∫ ∞
0

h(t, s) ds = 0 for all t ≥ 0.

Proof. We notice that the stationary solution n∗ exists due to Theorem 3.15, and the
solution n(t) ≡ n(t, s) with initial data n0 was obtained in Theorem 3.6. Call N∗ the
total firing rate corresponding to the stationary solution n∗. We estimate directly each
of the terms in the expression of h:

‖h(t)‖TV ≤ ‖(p(N∗, s)−p(N(t), s))n(t, s)‖TV+
∥∥∥δ0 ∫ +∞

0

(p(N(t), s)−p(N∗, s))n(t, s) ds
∥∥∥
TV

≤ ‖p(N∗, s)− p(N(t), s)‖∞‖n(t)‖TV +
∣∣∣ ∫ +∞

0

(p(N(t), s)− p(N∗, s))n(t, s) ds
∣∣∣

≤ L|N∗ −N(t)|+ ‖p(N∗, s)− p(N(t), s)‖∞‖n(t)‖TV

≤ Lpmax

1− L
‖n(t)− n∗‖TV + L|N∗ −N(t)| ≤ 2pmax

L

1− L
‖n(t)− n∗‖TV,

where the last inequality is due to Lemma 3.5 and the fact that ‖n∗‖TV = ‖n(t)‖TV = 1,
which imply

|N∗ −N(t)| ≤ pmax

1− L
‖n(t)− n∗‖TV.

Regarding the integral of h in s we have∫ +∞

0

h(t, s) ds =

∫ +∞

0

[p(N∗, s)− p(N(t), s)]n(t, s) ds

+

∫ +∞

0

δ0(x)

∫ +∞

0

[p(N(t), s)− p(N∗, s)]n(t, s) ds dx

=

∫ +∞

0

[p(N∗, s)− p(N(t), s)]n(t, s) ds+

∫ +∞

0

[p(N(t), s)− p(N∗, s)]n(t, s) ds

= 0,

which gives the result.

Proof of Theorem 1.1 for eq. (1). Call N∗ the value of the total firing rate at equilib-
rium. The solution n to equation (1) is in particular a weak solution (see Theorem 3.9).
Then one sees it is also a weak solution (in the sense of Ball (1977)) to the equation

d

dt
n(t, ·) = LN∗n(t, ·) + h(t, ·),

19



where LN∗ is the linear operator corresponding to p = p(N∗, s) for N∗ fixed,

LN∗n(t, s) := − ∂

∂s
n(t, s)− p(N∗, s)n(t, s) + δ0

∫ +∞

0

p(N∗, u)n(t, u) du.

Then by Ball (1977) we may use Duhamel’s formula and write the solution as

n(t, s) = Stn0(s) +

∫ t

0

St−τh(τ, s) dτ, (45)

where St is the linear semigroup defined in Section 3.2. We subtract the stationary
solution from both sides;

n(t, s)− n∗(s) = Stn0(s)− n∗(s) +

∫ t

0

St−τh(τ, s) dτ.

Then we take the TV norm;

‖n(t)− n∗‖TV ≤ ‖Stn0 − n∗‖TV +
∥∥∥∫ t

0

St−τh(τ, s) dτ
∥∥∥
TV
. (46)

By using Lemma 3.16 and Proposition 3.13, Equation (46) becomes:

‖n(t)− n∗‖TV ≤ ‖St(n0 − n∗)‖TV +

∫ t

0

‖St−τh(τ, s)‖TV dτ

≤ Ce−λt‖n0 − n∗‖TV + C̃

∫ t

0

e−λ(t−τ)‖n(τ)− n∗‖TV dτ.

Therefore, by Gronwall’s inequality we obtain

‖n(t)− n∗‖TV ≤ Ce−(λ−C̃)t‖n0 − n∗‖TV.

4 A structured neuron population model with fatigue
We now consider Equation (3) for a structured neuron population model. We follow
the same order as in Section 3.

4.1 Well-posedness

We refer the reader to Section 3.1 for preliminary notation and useful results. We
define mild measure solutions in a similar way. Still denoting by (Tt)t≥0 the translation
semigroup generated on (M, ‖ · ‖BL) by the operator − ∂

∂s
, we rewrite (3) as

∂

∂t
n(t, s)− Ln(t, s) = A[n](t, s),

where

L = − ∂

∂s
and A[n](t, s) := −p(N(t), s)n(t, s)+

∫ +∞

0

κ(s, u)p(N(t), u)n(t, u) du.

(47)
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Definition 4.1. Assume that p satisfies (5),(6) and κ satisfies (9). A couple of functions
n ∈ C([0, T ),M+(R+

0 )) and N ∈ C([0, T ), [0,+∞)), defined on an interval [0, T ) for
some T ∈ (0,+∞), is called a mild measure solution to (3) with initial data n0(s) ∈
M(R+

0 ), n(0) = n0 if it satisfies

n(t, s) = Ttn0(s) +

∫ t

0

Tt−τA[n(τ, ·)](s)dτ, for all t ∈ [0, T ), (48)

where A[n](t, s) is defined as in (47) and

N(t) =

∫ +∞

0

p(N(t), s)n(t, s)ds, t ∈ [0, T ).

By integrating in R+
0 , Definition 4.1 directly implies mass conservation. Therefore

Lemma 3.4 holds true for this equation as well. Moreover we have the Lemma 3.5
satisfied with the same constants.

Theorem 4.2 (Well-posedness of (3) in measures). Assume that p satisfies (5), (6)
and the Lipschitz constant L in (6) satisfies L ≤ 1/(4‖n0‖TV). Assume also (9) for
κ. For any given initial data n0 ∈ M(R+) there exists a unique measure solution
n ∈ C([0,+∞);M(R+

0 )) of (3) in the sense of Definition 4.1. In addition, if n1, n2 are
any two mild measure solutions to (1) (with possibly different initial data) defined on
any interval [0, T ) then

‖n1(t)− n2(t)‖TV ≤ ‖n1(0)− n2(0)‖TV e
4‖p‖∞t for all t ∈ [0, T ). (49)

Proof of Theorem 4.2. Let us first show existence of a solution for a nonnegative initial
measure n0 ∈M+(R+

0 ). If n0 = 0 it is clear that setting n(t) equal to the zero measure
on R+

0 for all t defines a solution, so we assume n0 6= 0. Fix C, T > 0, to be chosen
later. Consider the complete metric space

Y = {n ∈ C([0, T ],M+(R+
0 )) | n(0) = n0, ‖n(t)‖TV ≤ C for all t ∈ [0, T ]},

endowed with the norm
‖n‖Y := sup

t∈[0,T ]
‖n(t)‖TV.

We remark that C([0, T ],M(R+
0 )) refers to functions which are continuous in the bounded

Lipschitz topology, not in the total variation one. Define an operator Γ : Y → Y by

Γ[n](t) := Ttn0 +

∫ t

0

Tt−τ (A[n](τ, , ))(s)dτ (50)

for all n ∈ Y .

The definition of Γ[n] indeed makes sense, since τ 7→ Tt−τ (A[n](τ, ·)) is a continuous
function from [0, T ] toM(R+

0 ), hence integrable.
We first check that Γ[n] is indeed in Y . It is easy to see that t 7→ Γ[n](t) is continuous

in the bounded Lipschitz topology, and it is a nonnegative measure for each t ∈ [0, T ].
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We also have

‖Γ[n](t)‖TV ≤ ‖n0‖TV +

∫ t

0

‖p(N(τ), ·)n(τ, ·)‖TV dτ

+

∫ t

0

∥∥∥∥∫ +∞

0

κ(., u)p(N(τ), u)n(τ, u) du

∥∥∥∥
TV

dτ

≤ ‖n0‖TV + TC‖p‖∞

+

∫ t

0

∫ +∞

0

∣∣∣∣( ∫ +∞

0

κ(s, u) ds
)
p(N(τ), u)n(τ, u)

∣∣∣∣ du dτ

≤ ‖n0‖TV + TC‖p‖∞ +

∫ t

0

‖p(N(τ), ·)n(τ, ·)‖TV dτ

≤ ‖n0‖TV + 2TC‖p‖∞

Here we used the assumption (9) on κ. We choose

T ≤ 1

4‖p‖∞
, and C := 2‖n0‖TV, (51)

so that
‖n0‖TV + 2TC‖p‖∞ ≤ ‖n0‖TV +

C

2
≤ C.

Hence with these conditions on T and C we have Γ[n] ∈ Y .
Let us show that Γ is a contraction mapping. Take n1, n2 ∈ Y and let N1, N2 be

defined by (24) corresponding to n1 and n2, respectively. We have

‖Γ[n1](t)− Γ[n2](t)‖TV ≤
∫ t

0

‖(p(N1(τ), ·)− p(N2(τ), ·))n1(τ, ·)‖TV dτ

+

∫ t

0

‖p(N2(τ), ·)(n1(τ, ·)− n2(τ, ·))‖TV dτ

+

∫ t

0

∥∥∥∥∫ +∞

0

κ(·, u)(p(N1(τ), u)− p(N2(τ), u))n1(τ, u) du

∥∥∥∥
TV

dτ

+

∫ t

0

∥∥∥∥∫ +∞

0

κ(·, u)p(N2(τ), u)(n1(τ, u)− n2(τ, u)) du

∥∥∥∥
TV

dτ

=: T1 + T2 + T3 + T4.

We bound each term separately. We can bound T3 and T4 in the following way;

T3 ≤
∫ t

0

∫ +∞

0

∣∣∣∣ (∫ +∞

0

κ(s, u) ds

)
(p(N1(τ), u)− p(N2(τ), u))n1(τ, u)

∣∣∣∣ du dτ = T1,

T4 ≤
∫ t

0

∫ +∞

0

∣∣∣∣ (∫ +∞

0

κ(s, u) ds

)
p(N2(τ), ·)(n1(τ)− n2(τ))

∣∣∣∣ du dτ = T2

For T1, since L ≤ 1/(4‖n0‖TV), using Lemma 3.5 as previously calculated we have

T1 ≤ T‖p‖∞‖n1 − n2‖Y , (52)

and for T2,
T2 ≤ T‖p‖∞‖n1 − n2‖Y . (53)
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Putting equations (52)–(53) together and taking the supremum over 0 ≤ t ≤ T ,

‖Γ[n1]− Γ[n2]‖Y ≤ 4T‖p‖∞‖n1 − n2‖Y .

Taking now T ≤ 1/(4‖p‖∞) ensures that Γ is contractive, so it has a unique fixed
point in Y , which is a mild measure solution on [0, T ]. If we call n this fixed point,
since ‖n(T )‖TV = ‖n0‖TV by mass conservation (see Lemma 3.4), we may repeat this
argument to continue the solution on [T, 2T ], [2T, 3T ], showing that there is a solution
defined on [0,+∞).

In order to show stability of solutions with respect to the initial data (which im-
plies uniqueness of solutions), take two measures n1

0, n
2
0 ∈ M+(R+

0 ), and consider two
solutions n1, n2 with initial data n1

0, n2
0 respectively. We have

‖n1(t)− n2(t)‖TV ≤ ‖n1
0 − n2

0‖TV +

∫ t

0

‖(p(N1(τ), ·)− p(N2(τ), ·))n1(τ, ·)‖TV dτ

+

∫ t

0

‖p(N2(τ), ·)(n1(τ)− n2(τ))‖TV dτ

+

∫ t

0

∥∥∥∥∫ +∞

0

κ(s, u)(p(N1(τ), ·)− p(N2(τ), ·))n1(τ, ·) du

∥∥∥∥
TV

dτ

+

∫ t

0

∥∥∥∥∫ +∞

0

κ(s, u)p(N2(τ), ·)(n1(τ)− n2(τ)) du

∥∥∥∥
TV

dτ,

and with very similar arguments as before we obtain that

‖n1(t)− n2(t)‖TV ≤ ‖n1
0 − n2

0‖TV + 4‖p‖∞
∫ t

0

‖n1(τ)− n2(τ)‖TV dτ.

Gronwall’s inequality then implies (49).

4.2 The linear equation

The linear version of equation (3) obtained when p = p(N, s) does not depend on N :
∂

∂t
n(t, s) +

∂

∂s
n(t, s) + p(s)n(t, s) =

∫ +∞

0

κ(s, u)p(u)n(t, u) du, u, s, t > 0,

n(t, s = 0) = 0, N =

∫ +∞

0

p(s)n(t, s) ds, t > 0,

n(t = 0, s) = n0(s), s ≥ 0.

(54)

4.2.1 Well-posedness

Similarly to Section 3.2.1, we can generalise slightly our concept of solution to include
measures which are not necessarily nonnegative:

Definition 4.3. Assume that p : [0,+∞) → [0,+∞) is a bounded, nonnegative func-
tion satisfying (6) and κ satisfies (9). A couple of functions n ∈ C([0, T ),M+(R+

0 )) and
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N ∈ C([0, T ), [0,+∞)), defined on an interval [0, T ) for some T ∈ (0,+∞], are called a
mild measure solution to (3) with initial data n0(s) ∈M(R+

0 ) if it satisfies n(0) = n0

n(t, s) = Ttn0(s) +

∫ t

0

Tt−τA[n(τ, ·)](s) dτ (55)

for all t ∈ [0, T ) where

A[n](t, s) := −p(s)n(t, s) +

∫ +∞

0

κ(s, u)p(u)n(t, u) du

and

N(t) =

∫ +∞

0

p(s)n(t, s) ds, t ∈ [0, T ).

By the existence result for (3) we have:

Theorem 4.4 (Well-posedness of (54) in measures). Assume that p : [0,+∞)→ [0,+∞)
is a bounded, nonnegative, Lipschitz function. Assume also that κ satisfies (9). For any
given initial data n0 ∈M(R+) there exists a unique measure solution n ∈ C([0,+∞);M(R+

0 ))
of the linear equation (54) in the sense of Definition 4.3. In addition, if n is a mild
measure solution to (54) defined on any interval [0, T ) then

‖n(t)‖TV ≤ ‖n(0)‖TV, for all t ∈ [0, T ). (56)

For the proof of this result one can follow the same procedure as in the proof of
Theorem 3.11, so we omit it here. Theorem 4.4 allows us to define a C0-semigroup
(St)t≥0 onM, such that St(n0) := n(t) for any n0 ∈M where n(t) is the mild solution
to (54) similarly as in Section 3.2.1.

Given p, we define L as the generator of the corresponding semigroup St, defined
on its domain D(L). One can of course see that for sufficiently regular measures n,

Ln(s) =
∂

∂s
n(s) + p(s)n(s)−

∫ +∞

0

κ(s, u)p(u)n(u) du. (57)

Since the only unbounded operator involved in this expression is ∂
∂s
n, one sees that the

domain D(L) can be described explicitly as

D(L) :=
{
n ∈M(R+

0 ) | ∂
∂s
n ∈M(R+

0 )
}
,

where the derivative is taken in the sense of distributions on R. Expression (57) is valid
for all n ∈ D(L), again understanding the derivative in distributional sense.

Finally, for the arguments regarding the nonlinear equation (3) we will need a result
on continuous dependence of the solutions of the linear equation (54) on the firing rate
p:

Theorem 4.5 (Continuous dependence with respect to p for the linear equation).
Let p1, p2 be bounded, nonnegative, Lipschitz functions. Assume also that κ satisfies
(9). For any given initial data n0 ∈ M(R+) consider n1, n2 the two solutions to the
linear equation (54) on [0,+∞) with firing rate p1, p2 respectively and initial data n0.
Assuming ‖p1‖∞ 6= 0, it holds that

‖n1(t)− n2(t)‖TV ≤
‖n0‖TV‖p1 − p2‖∞

‖p1‖∞
(
e2‖p1‖∞t − 1

)
for all t ≥ 0. (58)
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Proof. With the obvious changes in notation, from (55) we have

‖n1(t)− n2(t)‖TV ≤
∫ t

0

‖Tt−τA1[n1(τ, ·)]− Tt−τA2[n2(τ, ·)]‖TV dτ

=

∫ t

0

‖A1[n1(τ)]− A2[n2(τ)]‖TV dτ.

In a very similar way as the estimate we carried out for Theorem 4.2, this last term can
be estimated as

‖A1[n1(τ)]− A2[n2(τ)]‖TV

≤ 2‖p1(s)(n1(τ, s)− n2(τ, s))‖TV + 2‖n2(s)(p1(s)− p2(s))‖TV

≤ 2‖p1‖∞‖n1(τ, ·)− n2(τ, ·))‖TV + 2‖n0‖TV‖p1 − p2‖∞.

Hence, calling m(t) ≡ m(t) := ‖n1(t, ·) − n2(t, ·)‖TV and K := ‖n0‖TV‖p1 − p2‖∞, we
have

m(t) ≤ 2‖p1‖∞
∫ t

0

m(τ) dτ + 2tK.

Gronwall’s Lemma then shows that

m(t) ≤ K

‖p1‖∞
(
e2‖p1‖∞t − 1

)
.

Stationary solutions for the linear equation

Definition 4.6. A stationary solution to (54) n∗ ∈M is defined as such that n∗ ∈ D(L)
and

Ln∗ = 0.

We remark that Proposition 4.8 below implies that the linear equation (54) has
a unique stationary solution in the space of probabilities on [0,+∞) (for p bounded,
Lipschitz, satisfying (8) and κ satisfying (9)); n∗ is the only stationary solution up to
a constant factor within the set of all finite measures.

4.2.2 Positive lower bound

Analogous to Section 3.2, we want to show that for a given positive initial distribution,
solutions of (54) after some time have a positive lower bound, so that the semigroup
St(n0) satisfies the Doeblin’s condition given in (12).

Lemma 4.7. Let p : [0,+∞) −→ [0,+∞) be a bounded, Lipschitz function satisfying
(7) and (8). We assume also that κ satisfies (9) and (10). Consider the semigroup
defined as St(n0) := n(t) for any n0 ∈ M. Then St0 satisfy the Doeblin condition (12)
for t0 = 2s∗ and α = εδpmin(s∗ − δ)e−pmaxt0. More precisely, for t0 = 2s∗ we have

S2s∗n0(s) ≥ εδpmine
−2pmaxs∗1{δ<s<s∗}

for all probability measures n0 on [0,+∞).
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Proof. Since for s, t > 0, it holds true for solutions of (54) that
∂

∂t
n(t, s) +

∂

∂s
n(t, s) ≥ −p(s)n(t, s).

Moreover, solutions of (54) satisfy n(t, s) ≥ ñ(t, s) where the equation on ñ(t, s) was
defined in (36) of Lemma 3.12. By the same argument we have for t > s∗, N(t) ≥
pmine

−pmaxt.
We consider the same semigroup S̃t associated to (36). Then, solutions of (54)

satisfy

n(t, s) = S̃tn0(s) +

∫ t

0

S̃t−τ

(∫ +∞

0

κ(., u)p(u)n(t, u) du
)

(s) dτ

≥ S̃tn0(s) +

∫ t

0

S̃t−τ (εN(τ)1{s≤δ}) dτ

since∫ +∞

0

κ(s, u)p(u)n(t, u) du ≥
∫ +∞

0

φ(s)p(u)n(t, u) du ≥ ε1{s≤δ}

∫ +∞

0

p(u)n(t, u) du

= ε1{s≤δ}N(t).

Then for t > s+ s∗ and s > δ we have

n(t, s) ≥
∫ t

0

S̃t−τ (εN(τ)1{s≤δ}) dτ ≥
∫ t

s∗

S̃t−τ (ε1{s≤δ}pmine
−pmaxτ ) dτ

≥ εpmin

∫ t

s∗

e−pmaxτe−pmax(t−τ)1{0<s−t+τ≤δ} dτ = εpmine
−pmaxt

∫ t

s∗

1{0<s−t+τ≤δ} dτ

= εδpmine
−pmaxt1{δ<s<t0−s∗}.

Hence for t = 2s∗ and δ < s < s∗ we obtain the result.

4.2.3 Spectral gap

We again obtain a spectral gap property as a consequence of Theorem 2.3:

Proposition 4.8. Let n0 ∈M(R+) be the initial data given for (54). We assume that
p is a nonnegative, Lipschitz function satisfying (6)–(8) and κ satisfies (9), (10). Then,
there exists a unique probability measure n∗ ∈ P([0,+∞)) which is a stationary solution
to (54), and any other stationary solution is a multiple of it. Also for

C =
1

1− α
> 1, and λ = − log(1− α)

t0
,

we have
‖St(n0 − n∗)‖TV ≤ Ce−λt‖n0 − n∗‖TV, for all t ≥ 0.

In addition, for t0 := 2s∗ we have

‖St0(n1 − n2)‖TV ≤ (1− α)‖n1 − n2‖TV (59)

for any probability distributions n1, n2, and with

α := εδpmin(s∗ − δ)e−2pmaxs∗ .

Proof. Lemma 4.7 ensures the operator St0 satisfies the Doeblin condition (12) for t0 =
2s∗. We obtain the result by applying Theorem 2.3.
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4.3 Stationary solutions for the nonlinear equation

Definition 4.9. We say that a pair (n∗, N∗), where n∗ ∈ M+(R+
0 ) and N∗ ≥ 0, is a

stationary solution to (3) if n∗ ∈ D(L) and

LN∗n∗ = 0, N∗ =

∫ +∞

0

p(N∗, s)n∗(s) ds,

where LN∗ is the semigroup generator associated to p(s) ≡ p(N∗, s) (see Theorem 4.4
and the following remarks; observe that the domain D(L) does not depend on the value
of N∗). We say that N∗ is the global neural activity associated to the stationary solution.

We give the following theorem for existence and uniqueness of stationary solutions:

Theorem 4.10. Assume (5), (6), (8), (9), and also that

L <
(

1 +
Cpmax

αpmin

)−1
,

where C := e4pmaxs∗ and α is given by Proposition 4.8. Then there exists a unique
stationary solution (n∗, N∗) of (3) such that n∗ is a probability measure.

Proof. Proposition 4.8 ensures that for a fixed N∗, there exists a unique probability
stationary solution of the corresponding linear problem. We prove the existence of a
stationary solution by recovering N∗ from n∗ and carrying out a fixed-point argument.
We define a map Υ : [0,+∞) −→ [0,+∞), by

Υ(N) :=

∫ +∞

0

p(N, s)n(s) ds,

where n is the unique probability measure which is an equilibrium of the linear prob-
lem associated to p(s) ≡ p(N, s). We notice that the statement we wish to prove is
equivalent to the fact that Υ has a unique fixed point.

Let us show that this map is contractive. For any N1, N2 ≥ 0,

|Υ(N1)−Υ(N2)| =
∣∣∣∣ ∫ +∞

0

(
p(N1, s)n1(s)− p(N2, s)n2(s)

)
ds

∣∣∣∣
≤
∫ +∞

0

|(p(N1, s)− p(N2, s))n2(s)| ds+

∫ +∞

0

|p(N1, s)(n1(s)− n2(s))| ds

≤ L|N1 −N2|+ pmax‖n1 − n2‖TV.

Now, we will prove later that

‖n1 − n2‖TV ≤
LC

αpmin

|N1 −N2|, (60)

where C := e4pmaxs∗ and α is the one from Proposition 4.8. This implies that

|Υ(N1)−Υ(N2)| ≤ L
(

1 +
Cpmax

αpmin

)
|N1 −N2|,
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which makes Υ a contraction operator if L satisfies the inequality in the statement. So
in order to complete the proof we only need to show (60). For this we define the two
operators

P1(n) := S1
t0
n− n, P2(n) := S2

t0
n− n,

where for i = 1, 2, (Sit)t≥0 is the linear semigroup given by Theorem 4.4, associated to
the firing rate pi(s) := p(Ni, s), and t0 := 2s∗ is the time mentioned in Proposition 4.8.
We use that, since n1, n2 are equilibria for the linear equations with p1, p2,

0 = P1(n1) = P2(n2)

so that

0 = ‖P1(n1)− P2(n2)‖TV = ‖P1(n1 − n2) + (P1 − P2)(n2)‖TV

≥ ‖P1(n1 − n2)‖TV − ‖(P1 − P2)n2‖TV,

which implies
‖P1(n1 − n2)‖TV ≤ ‖(P1 − P2)n2‖TV. (61)

Then by Proposition 4.8 we have

‖P1(n1 − n2)‖TV ≥ ‖n1 − n2‖TV − ‖S1
t0

(n1 − n2)‖TV ≥ α‖n1 − n2‖TV,

since
∫
n1 ds =

∫
n2 ds = 1, where α is the one in Proposition 4.8. On the other hand,

by (58),

‖(P1 − P2)n2‖TV = ‖(S1
t0
− S2

t0
)n2‖TV ≤

‖n2‖TV‖p1 − p2‖∞
‖p1‖∞

(
e2‖p1‖∞t0 − 1

)
≤ L|N1 −N2|

pmin

e2pmaxt0 .

Using the last two equations in (61),

‖n1 − n2‖TV ≤
1

α
‖(P1 − P2)n2‖TV ≤

L|N1 −N2|
αpmin

e2pmaxt0 ,

which proves (60). Therefore Υ has a unique fixed point, and hence (3) has a unique
stationary solution.

4.4 Asymptotic behaviour

In this section we prove Theorem 1.1 for equation (3). We define two operators in the
following way:

LN(t)n(t, s) := ∂tn(t, s) = −∂sn(t, s)− p(N(t), s)n(t, s) +

∫
κ(s, u)p(N(t), u)n(t, u)du,

LN∗n̄(s) := −∂sn̄(s)− p(N∗, s)n̄(s) +

∫
κ(s, u)p(N∗, u)n̄(s)du.

We rewrite (3) as

∂

∂t
n(t, s) = LN(t)n(t, s) = LN∗n(t, s)− (LN∗ − LN(t))n(t, s). (62)
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Then, similarly as in Section 3.4 by Ball (1977) we may use Duhamel’s formula and
write the solution as

n(t, s) = Stn0(s) +

∫ t

0

St−τh(τ, s) dτ, (63)

where Stn0(s) := eLN∗n0(s) and n̄ is the solution to linear problem, LN∗ is acting on
n(t, s). Also,

h(t, s) := (LN∗ − LN(t))n(t, s)

= (p(N(t), s)− p(N∗, s))n(t, s) +

∫ +∞

0

κ(s, u)(p(N∗, u)− p(N(t), u))n(t, u) du. (64)

Then we give the following lemma:

Lemma 4.11. Assume that (6) and (8) hold true for a Lipschitz function p and κ
satisfies (9). Then h, which is defined by (64), satisfies

‖h(t)‖TV ≤ C̃‖n(t)− n∗‖TV, (65)

where C̃ = 2pmax
L

1−L . Moreover
∫ +∞
0

h(t, s) ds = 0.

Proof.

‖h(t)‖TV = ‖(LN∗ − LN(t))n(t, s)‖TV

≤ ‖(p(N(t), s)−p(N∗, s))n(t, s)‖TV+
∥∥∥∫ +∞

0

κ(s, u)(p(N∗, u)−p(N(t), u))n(t, u)du
∥∥∥
TV

≤ L‖n(t)‖TV|N∗ −N(t)|+ L‖n(t)‖TV|N∗ −N(t)|

≤ 2pmax
L‖n(t)‖TV

1− L‖n(t)‖TV

‖n(t)− n∗‖TV = 2pmax
L

1− L
‖n(t)− n∗‖TV

Since

|N∗ −N(t)| =
∣∣∣ ∫ +∞

0

p(N∗, s)n∗(s)ds−
∫ +∞

0

p(N(t), s)n(t, s)ds
∣∣∣

≤
∣∣∣ ∫ +∞

0

(
p(N∗, s)n∗(s) + (p(N∗, s)n(t, s)− p(N∗, s)n(t, s))p(N(t), s)n(t, s)

)
ds
∣∣∣

≤
∣∣∣ ∫ +∞

0

p(N∗, s)(n∗(s)− n(t, s))ds
∣∣∣+
∣∣∣ ∫ +∞

0

(p(N∗, s)− p(N(t), s)n(t, s)ds
∣∣∣

≤ pmax‖n(t)− n∗‖TV + L|N∗ −N(t)|‖n‖TV

implies that

|N∗ −N(t)| ≤ pmax

1− L‖n(t)‖TV
‖n(t)− n∗‖TV =

pmax

1− L
‖n(t)− n∗‖TV (66)
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since ‖n(t)‖TV = ‖n∗‖TV = 1. Moreover we have∫ +∞

0

h(t, s) ds =

∫ +∞

0

p(N(t), s)n̄(t, s) ds−
∫ +∞

0

p(N∗, s)n̄(t, s) ds

+

∫ +∞

0

∫ +∞

0

κ(s, u)p(N∗, u)n̄(t, u) du ds−
∫ +∞

0

∫ +∞

0

κ(s, u)p(N(t), u)n̄(t, u) du ds

= N(t)−
∫ +∞

0

p(N∗, s)n̄(t, s) ds

+

∫ +∞

0

(∫ u

0

κ(s, u) ds
)
p(N∗, u)n̄(t, u) du+

∫ +∞

0

∫ u

0

κ(s, u) dsp(N(t), u)n̄(t, u) du

= N(t)−
∫ +∞

0

p(N∗, s)n̄(t, s) ds+

∫ +∞

0

p(N∗, u)n̄(t, u) du−N(t) = 0.

Proof of Theorem 1.1 for (3). We subtract the unique probability stationary solution
from both sides of (63):

n(t, s)− n∗(s) = Stn0(s)− n∗(s) +

∫ t

0

St−τh(τ, s) dτ.

We take the total variation norm and obtain

‖n(t)− n∗‖TV ≤ ‖Stn0 − n∗‖TV +
∥∥∥∫ t

0

St−τh(τ, s) dτ
∥∥∥
TV
.

Then by Proposition 4.8 and Lemma 4.11 we have

‖n(t)− n∗‖TV ≤ Ce−λt‖n0 − n∗‖TV +

∫ t

0

‖St−τh(τ, s)‖TV dτ

≤ Ce−λt‖n0 − n∗‖TV +

∫ t

0

e−λ(t−τ)‖h(τ, s)‖TV dτ

≤ Ce−λt‖n0 − n∗‖TV + C̃

∫ t

0

e−λ(t−τ)‖n(τ)− n∗‖TV dτ.

Therefore, by Gronwall’s inequality

‖n(t)− n∗‖TV ≤ Ce−(λ−C̃)t‖n0 − n∗‖TV.
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