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Ańıbal Rodŕıguez Bernal, from Universidad Complutense de Madrid, who helped
me to obtain this Ph.D. position.
Lastly, I thank my family for their unconditional support throughout all these years.

E.C.G-C.

This Ph.D. thesis was carried out at the Basque Center for Applied Mathematics
(BCAM) and at the University of the Basque-Country (UPV/EHU).

This research is supported by the Basque Government through the BERC 2014-
2017 program, by the Spanish Ministry of Economy and Competitiveness MINECO:
BCAM Severo Ochoa accreditation SEV-2013-0323, and by MTM2014-52347-C2-1-
R of DGES.

iii



iv Acknowledgements



Abstract

In this thesis, we present a mathematical study of three problems arising in the
kinetic theory of quantum gases.

In the first part, we consider a Boltzmann equation that is used to describe the
time evolution of the particle density of a homogeneous and isotropic photon gas,
that interacts through Compton scattering with a low-density electron gas at non-
relativistic equilibrium. The kernel in the kinetic equation is highly singular, and we
introduce a truncation motivated by the very-peaked shape of the kernel along the
diagonal. With this modified kernel, the global existence of measure-valued weak
solutions is established for a large set of initial data.

We also study a simplified version of this equation, that appears at very low
temperatures of the electron gas, where only the quadratic terms are kept. The
global existence of measure-valued weak solutions is proved for a large set of initial
data, as well as the global existence of L1 solutions for initial data that satisfy a
strong integrability condition near the origin. The long time asymptotic behavior of
weak solutions for this simplified equation is also described.

In the second part of the thesis, we consider a system of two coupled kinetic
equations related to a simplified model for the time evolution of the particle density
of the normal and superfluid components in a homogeneous and isotropic weakly
interacting dilute Bose gas. We establish the global existence of measure-valued
weak solutions for a large class of initial data. The conservation of mass and energy
and the production of moments of all positive order is also proved. Finally, we study
some of the properties of the condensate density and establish an integral equation
that describes its time evolution.
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Resumen

En esta tesis, se consideran tres problemas relacionados con la teoŕıa cinética de
gases para part́ıculas cuánticas.

En el primer problema, se estudian las soluciones débiles de la siguiente ecuación
integro-diferencial:

∂u

∂t
(t, x) =

∫ ∞
0

b(x, y)
[
u(t, y)

(
x2 + u(t, x)

)
e−x − u(t, x)

(
y2 + u(t, y)

)
e−y
]
dy, (1)

para t > 0, x ≥ 0. El núcleo b(x, y) ≥ 0 es una función continua y simétrica en
[0,∞)2 \ {(0, 0)}, singular en el origen (x, y) = (0, 0), con el soporte contenido en un
entorno de la diagonal {x = y ≥ 0}.

En el segundo problema, se considera una versión simplificada de la ecuación (1),
donde solo aparecen los términos cuadráticos:

∂u

∂t
(t, x) = u(t, x)

∫ ∞
0

b(x, y)
(
e−x − e−y

)
u(t, y)dy t > 0, x ≥ 0. (2)

En el tercer y último problema, se considera el siguiente sistema de dos ecuaciones
acopladas: 

∂g

∂t
(t, x) = n(t)Q(g)(t, x) t > 0, x > 0,

n′(t) = −n(t)

∫ ∞
0

Q(g)(t, x)dx t > 0,

(3)

(4)

Q(g)(t, x) =

∫ x

0
q(g)(t, x, y)dy − 2

∫ ∞
x

q(g)(t, y, x)dy, (5)

q(g)(t, x, y) =
g(t, x− y)√

x− y
g(t, y)
√
y
− g(t, x)√

x

(
1 +

g(t, x− y)√
x− y

+
g(t, y)
√
y

)
, (6)

y se estudian sus soluciones débiles en términos de la medida G(t, ·) definida por

G(t, ·) = n(t)δ0(·) + g(t, ·), t ≥ 0, (7)

donde δ0(·) el la delta de Dirac en x = 0.

Aunque con un núcleo distinto, que denotaremos en esta sección por K(x, y), la
ecuación (1) aparece en la literatura como un modelo simplificado para describir la
evolución en tiempo de la la densidad de part́ıculas de un gas de fotones, homogéneo
e isotrópico, que interactúa únicamente mediante el efecto Compton con un gas
diluido de electrones en equilibrio no relativista (cf. [25], [49], [72], [42]). La función
u(t, x) ≥ 0 representa la densidad de fotones con enerǵıa x ≥ 0 en el gas a tiempo

1
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t ≥ 0. El núcleo b(x, y) que se considera en (1) es una aproximación de K(x, y), cuya
expresión expĺıcita se conoce (ver [57] para una deducción detallada).

La ecuación (1) aparece ya en en el art́ıculo de Kompaneets [49], de 1957. Una
deducción de la ecuación, siguiendo un argumento de tipo Boltzmann, puede verse
en [25]. En [23] se deriva, mediante un método tipo BBGKY, una ecuación de trans-
porte más general que describe un sistema homogéneo e isotrópico de fotones y de
part́ıculas cargadas. También se obtienen los resultados de [25] y se incorporan térmi-
nos de corrección que representan efectos de correlación. Teoŕıas cinéticas efectivas
y generales para describir las dinámicas de quasipart́ıculas en plasmas relativistas
pueden consultarse en [12] y en [8].

En cuanto a la literatura matemática, la ecuación (1) ha sido estudiada bajo
distintas condiciones sobre el núcleo b. En [29] se prueba la existencia de soluciones
para núcleos acotados y para núcleos con un determinado crecimiento exponencial.
La ecuación (1) con el núcleo f́ısico K(x, y) ha sido estudiada por M. Chane-Yook
y A. Nouri en [22], y E. Ferrari y A. Nouri en [34]. En [34] se prueba que, si bien
el problema de Cauchy tiene soluciones débiles globalmente definidas en tiempo
para cualquier dato inicial no negativo u0 ∈ L1(R+) acotado superiormente por la
distribución de Planck en casi todo punto, i.e., tal que u0(x) ≤ x2(ex − 1)−1 para
casi todo x > 0, no existe solución, ni siquiera definda localmente en tiempo, si
u0(x) > x2(ex − 1)−1 para casi todo x > 0.

La ecuación simplificada (2) se introduce en [76, 77] para estudiar la evolución
de la distribución de fotones a temperatura muy baja, pero finita. A pesar de que
(2) es una aproximación de (1) un tanto basta, ciertas propiedades qualitativas de
sus soluciones podŕıan guardar semejanzas con las de (1).

El sistema (3)–(4) es una cierta aproximación de un modelo simplificado que
describe la evolución de un gas diluido de bosones, homogéneo e isotrópico, en pre-
sencia de un condensado, donde solo se consideran aquellas interacciones en las que
interviene el condensado (cf. [26], [47], [73], [66]). En [1] y en [3, 4] se estudian pro-
blemas similares para distintas aproximaciones. La función g(t, x) ≥ 0 representa la
densidad de bosones con enerǵıa x > 0 del gas a tiempo t ≥ 0, y n(t) ≥ 0 representa
la densidad de condensado a tiempo t ≥ 0.

El sistema (3)–(4) puede deducirse de ecuaciones más generales y complicadas
para part́ıculas cuánticas (cf. [73], [68], [71], [62]), de donde se obtienen ecuaciones de
tipo Boltzmann, como la ecuación de Nordheim ([58]). Estas ecuaciones se conside-
ran para el caso en que la matriz de transición de probabilidad se toma proporcional
a
√
n(t) y la enerǵıa E(p) de una part́ıcula con momento p ∈ R3 y masa m se toma

como E(p) = |p|2/(2m). Para distribuciones espacialmente homogéneas y radial-
mente simétricas, todas las integrales angulares pueden resolverse expĺıcitamente y
se obtienen las ecuaciones (3)–(4).

El sistema (3)–(4) también puede deducirse de la ecuación de Nordheim, teniendo
en cuenta únicamente el término de la integral de colisión que involucra al condensa-
do (cf. [67], [66] y Proposition 3.2.1). Es posible que las soluciones del sistema (3)–(4)
guarden por tanto ciertas similitudes con las soluciones de la ecuación de Nordheim.
La teoŕıa sobre soluciones débiles globales para la ecuación homogénea de Norhdeim
ha sido desarrollada por X. Lu en [53, 54, 55, 56], y más recientemente, por X. Lu
y W. Li en [51]. Por otro lado, en [32] y [33] se estudia, para el caso isotrópico, el
comportamiento singular de algunas soluciones. Varios resultados de existencia en el
caso no homogéneo han sido obtenidos recientemente por L. Arkeryd y A. Nouri en
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[5, 6, 7]. El problema de Cauchy para una modificación del sistema (3)–(4) ha sido
considerado por A. Nouri en [60]. Si en la ecuación (3) se tiran los términos lineales,
se obtiene la aproximación de turbulencia débil, que ha sido estudiada en detalle,
para n(t) ≡ 1, por A. H. M. Kierkels y J. J. L. Velázquez en [45, 46]. En el Caṕıtulo
3 adaptaremos algunos de los resultados que aparecen en [45].

Por consideraciones f́ısicas, se espera que las soluciones de los tres problemas
(1), (2) y (3)–(4) satisfagan las siguientes leyes de conservación. En (1) y en (2), la
conservación del número total de part́ıculas, que en ambos casos se escribe como∫ ∞

0
u(t, x)dx = constante ∀t ≥ 0,

y en el sistema (3)–(4), tanto la conservación del número total de part́ıculas como
la enerǵıa total, que se escriben, respectivamente,

n(t) +

∫ ∞
0

g(t, x)dx = constante ∀t ≥ 0,∫ ∞
0

x g(t, x)dx = constante ∀t ≥ 0.

Sin embargo, los argumentos matemáticos para derivar estas leyes de conserva-
ción sulen involucrar el teorema de Fubini, cuyas hipótesis no se satisfacen necesa-
riamente en todos los casos, debido a las singularidades de los núcleos que aparecen
en (1) y en (5)–(6).

Aunque la interacción de part́ıculas que se consideran (esferas duras, sección de
corte Thomson) en la derivación de (1) y de (3)–(4) no son singulares, cuando las
ecuaciones se escriben para distribuciones radialmente simétricas, śı que aparecen
núcleos singulares debido a los factores geométricos. Con estas singularidades, las
integrales de colisión en (1), (2), y en (5)–(6) no están bien definidas en un entorno
del origen bajo la hipótesis de que u(t, ·) y g(t, ·) sean funciones integrables.

Es posible, aun aśı, considerar las siguientes formulaciones débiles de los proble-
mas (1), (2), y (3)–(4). Para toda ϕ ∈ C1

b ([0,∞)), la formulación débil de (1) se
escribe:

d

dt

∫ ∞
0
ϕ(x)u(t, x)dx =

1

2

∫ ∞
0

∫ ∞
0
kϕ(x, y)u(t, x)u(t, y)dydx− 1

2

∫ ∞
0
Lϕ(x)u(t, x)dx,

(8)

kϕ(x, y) = b(x, y)(e−x − e−y)(ϕ(x)− ϕ(y)),

Lϕ(x) =

∫ ∞
0

b(x, y)y2e−y(ϕ(x)− ϕ(y))dy,

y para el problema (2),

d

dt

∫ ∞
0
ϕ(x)u(t, x)dx =

1

2

∫ ∞
0

∫ ∞
0
kϕ(x, y)u(t, x)u(t, y)dydx. (9)

Por último, en términos de la medida G(t, ·) definida en (7), la formulación débil del
sistema (3)–(4) se escribe:

d

dt

∫
[0,∞)

ϕ(x)G(t, x)dx = (10)

= G(t, {0})
[ ∫∫

[0,∞)2

φϕ(x, y)G(t, x)G(t, y)dxdy −
∫

[0,∞)
ψϕ(x)G(t, x)dx

]
,
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φϕ(x, y) =
1
√
xy

(
ϕ(x+ y) + ϕ(|x− y|)− 2ϕ(máx{x, y})

)
,

ψϕ(x) =
√
x
(
ϕ(0) + ϕ(x)

)
− 2√

x

∫ x

0
ϕ(y)dy.

Para ϕ ∈ C1
b ([0,∞)), el lado derecho de (8) tiene perfecto sentido si u(t, ·) es

una función integrable con un momento exponencial finito. Sin embargo, en [29]
se prueba que, de entre todas las distribuciones con el mismo número de part́ıclas
M > 0, los máximos de la entroṕıa H para el problema (1) vienen dados en términos
de las distribuciones de Bose-Einstein:

uM (x) = αδ0(x) + uµ(x), uµ(x) =
x2

ex−µ − 1
,

µ ≤ 0, α ≥ 0, αµ = 0, M = α+

∫ ∞
0

uµ(x)dx.

Vamos entonces a considerar soluciones u del problema (1) tales que u(t, ·) es una
medida no negativa en [0,∞). Es necesario entonces que las funciones kϕ y Lϕ en (8)
sean continuas en [0,∞)2 y [0,∞) respectivamente, lo que se consigue para funciones
test ϕ ∈ C1

b ([0,∞)) que satisfagan la condición ϕ′(0) = 0.
En la ecuación simplificada (2) consideraremos tanto soluciones débiles medida

como soluciones con valores en L1.
Por otra parte, si ϕ ∈ C1

b ([0,∞)), las funciones φϕ y ψϕ en (10) son continuas en
[0,∞)2 y [0,∞) respectivamente, y el lado derecho de (10) está bien definido para
medidas no negativas G(t, ·) finitas, con un momento de orden 1/2 finito.

Soluciones con valores en espacios de medida han sido consideradas por otros
autores en problemas relacionados (cf., por ejemplo, [29], [45] y [53, 54, 55, 56]).

Pasemos ahora a describir brevemente algunos de los contenidos principales de
la tesis. La existencia global de soluciones débiles para los problemas de valor inicial
asociados a (1), (2) y (3)–(4) se prueba para datos iniciales generales, y se obtienen
estimaciones para algunos de sus momentos. Para ello se utilizan técnicas clásicas,
si bien es importante usarlas en la formulación débil expresada en las variables ade-
cuadas. Primero, se considera una sucesión de problemas aproximados para núcleos
acotados, y se prueba la existencia de soluciones por medio de un argumento de pun-
to fijo. Después, se obtienen soluciones débiles por paso al ĺımite. La compacidad de
la sucesión de soluciones aproximadas se obtiene de las cotas uniformes dadas por
las leyes de conservación.

Otro de los temas principales de esta tesis, para el cual se han obtenido resultados
parciales, consiste en estudiar la evolución de las funciones

u(t, {0}) =

∫
{0}

u(t, x)dx y G(t, {0}) =

∫
{0}

G(t, x)dx.

Este problema está motivado por la posible relación de (1) y (3)–(4) con las distribu-
ciones de Bose-Einstein. La prueba de los resultados obtenidos involucra el estudio
detallado de las integrales∫

[0,∞)
ϕ(x)u(t, x)dx y

∫
[0,∞)

ϕ(x)G(t, x)dx
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para ciertas clases de funciones test ϕ (funciones monótonas en (1) y en (2), y
funciones convexas en (3)–(4)).

Sobre la ecuación simplificada (2), también se prueba la existencia global de
soluciones con valores en L1 bajo fuertes condiciones de integrabilidad sobre el da-
to inicial. Por último, se describe el comportamiento asintótico en tiempo de las
soluciones débiles con valores medida del problema (2) que se han obtenido.

La estructura de la tesis es la siguiente. En el Caṕıtulo 1 se introducen los tres
problemas principales (1), (2), y (3)–(4). Las ecuaciones (1) y (2) se estudian en el
Caṕıtulo 2, y el sistema (3)–(4) en el Caṕıtulo 3. Los resultados técnicos del Caṕıtulo
2 se presentan en los Apéndices A y B, y los del Caṕıtulo 3, en el Apéndice C.



6 CONTENTS



Chapter 1

Introduction

In this thesis, we consider three nonlinear problems related to the kinetic theory of
quantum gases.

In the first problem, we study the weak solutions of the following integro-
differential equation:

∂u

∂t
(t, x) =

∫ ∞
0

b(x, y)
[
u(t, y)

(
x2 +u(t, x)

)
e−x−u(t, x)

(
y2 +u(t, y)

)
e−y
]
dy (1.0.1)

for t > 0, x ≥ 0. The kernel b(x, y) ≥ 0 is a continuous symmetric function on
[0,∞)2 \ {(0, 0)} with a singularity at the origin (x, y) = (0, 0) and supported in a
neighbourhood of the diagonal {x = y ≥ 0}.

In the second problem, we study a simplified version of (1.0.1) in which the linear
terms are neglected and we consider the quadratic part only:

∂u

∂t
(t, x) = u(t, x)

∫ ∞
0

b(x, y)
(
e−x − e−y

)
u(t, y)dy t > 0, x ≥ 0. (1.0.2)

In the third and last problem, we consider the following system of two coupled
equations: 

∂g

∂t
(t, x) = n(t)Q(g)(t, x) t > 0, x > 0,

n′(t) = −n(t)

∫ ∞
0

Q(g)(t, x)dx t > 0,

(1.0.3)

(1.0.4)

Q(g)(t, x) =

∫ x

0
q(g)(t, x, y)dy − 2

∫ ∞
x

q(g)(t, y, x)dy, (1.0.5)

q(g)(t, x, y) =
g(t, x− y)√

x− y
g(t, y)
√
y
− g(t, x)√

x

(
1 +

g(t, x− y)√
x− y

+
g(t, y)
√
y

)
, (1.0.6)

and study their weak solutions in terms of the measure-valued function G defined
by

G(t, ·) = n(t)δ0(·) + g(t, ·), t ≥ 0, (1.0.7)

where δ0(·) is the Dirac delta in x = 0.

The equation (1.0.1) is related to a simplified description for the time evolution
of the particle density of a homogeneous and isotropic photon gas that interacts
through Compton scattering with a dilute electron gas at nonrelativistic equilibrium

7
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(cf. [25], [49], [72], [42]). Up to a constant, the function u(t, x) ≥ 0 represents the
particle density of photons with energy x ≥ 0 at time t ≥ 0. The kernel b(x, y) that
we consider in (1.0.1) is a certain approximation of the kernel that appears in the
literature, denoted in this section by K(x, y). An explicit expression for K(x, y) is
known and a derivation is given in [57].

The equation (1.0.1) may already be found in Kompaneets’s paper [49], in 1957.
A detailed deduction of (1.0.1), using a strictly Boltzmann approach, may be found
in [25]. A transport equation to describe a homogeneous isotropic system of charged
particles and photons is derived in [23] by means of a BBGKY type method. In
that paper, similar results as in [25] are obtained, with the addition of correction
terms that represent correlation effects. General effective kinetic theories describing
quasiparticle dynamics in relativistic plasmas may be found in [12] and [8].

In the mathematical literature, the equation (1.0.1) has already been studied
under different conditions on the kernel b. The existence of solutions for the Cauchy
problem was proved in [29] for bounded kernels and for kernels with an exponential
growth at infinity. The equation (1.0.1) with the physical kernel K(x, y) has been
considered by M. Chane-Yook and A. Nouri in [22], and E. Ferrari and A. Nouri in
[34]. It is proved in [34] that the Cauchy problem has a global weak solution for all
nonnegative initial data u0 ∈ L1(R+) that are bounded from above by the Planck
distribution at almost every point, i.e., such that u0(x) ≤ x2(ex − 1)−1 a.e. x > 0,
but that there is no weak solution, even local in time, if u0(x) > x2(ex − 1)−1 a.e.
x > 0.

The simplified equation (1.0.2) was introduced in [76, 77] in order to analyze, at
low but finite temperature of the electron gas, the evolution of the particle density
of photons at low energies. Although (1.0.2) is a coarse approximation of (1.0.1),
certain qualitative properties of its solutions could bear a resemblance with those of
(1.0.1).

The system (1.0.3)–(1.0.4) is an approximation of a simplified model that de-
scribes the evolution of a homogeneous and isotropic dilute Bose gas in presence of
a condensate, where only the interactions involving the condensate are taken into
account (cf. [26], [47], [73], [66]). Similar problems, where different approximations
are considered, may be found in [1] and [3, 4]. The function g(t, x) ≥ 0 represents,
up to a constant, the particle density of bosons with energy x > 0 at time t ≥ 0,
and n(t) ≥ 0 stands for the condensate density at time t ≥ 0. The problem (1.0.3)–
(1.0.4) may be derived from more general and complicated equations for quantum
particles (cf. [73], [68], [71], [62]). In the derivation procedure, general Boltzmann
equations for quantum particles are obtained, as the so-called Nordheim equation
(cf. [58]). These kinetic equations are then considered for probability transition
matrices proportional to

√
n(t), and for a certain approximation of the energy of a

particle. Then, for radially symmetric and spatially homogeneous density functions,
all the angular integrals can be performed explicitly and the equations (1.0.3)–(1.0.4)
are obtained.

The system (1.0.3)–(1.0.4) may also be formally deduced from the Nordheim
equation, keeping only the collision integral that corresponds to the interactions
involving the condensate (cf. [67], [66], and Proposition 3.2.1). It may then be
possible for the solutions to (1.0.3)–(1.0.4) to share some similarities with those of
the Nordheim equation. The existence of global weak solutions for the homogeneous
Nordheim equation and some of its qualitative properties has been developed by X.



9

Lu in [53, 54, 55, 56], and more recently by X. Lu and W. Li in [51]. Singular isotropic
solutions of the Nordheim equation are described in [32] and [33]. Some existence
results in the non homogeneous case have been obtained by L. Arkeryd and A. Nouri
in [5, 6, 7]. The Cauchy problem for a modification of the system (1.0.3)–(1.0.4)
has been considered by A. Nouri in [60]. If the linear terms in equation (1.0.3) are
dropped, one obtains the so-called wave turbulence approximation, that has been
studied in detail, for n(t) ≡ 1, by A. H. M. Kierkels and J. J. L. Velázquez in [45, 46].
In Chapter 3, we will reproduce and adapt some of the arguments presented in [45].

It is expected from physical considerations that the solutions of (1.0.1), (1.0.2),
and (1.0.3)–(1.0.4) satisfy the following conservation laws. The conservation of the
total number of particles in (1.0.1) and (1.0.2), that in both cases reads:∫ ∞

0
u(t, x)dx = constant ∀t ≥ 0, (1.0.8)

and for the system (1.0.3)–(1.0.4), the conservation of the total number of particles
and the total energy, that reads, respectively,

n(t) +

∫ ∞
0

g(t, x)dx = constant ∀t ≥ 0, (1.0.9)∫ ∞
0

x g(t, x)dx = constant ∀t ≥ 0. (1.0.10)

However, the arguments to derive these conservation laws involve Fubini’s the-
orem, whose hypothesis are not necessarily fulfilled, due to the singularities of the
kernels in (1.0.1) and (1.0.5)–(1.0.6).

Although the particle interactions that are considered (hard spheres, Thomson
cross section) in the derivation of (1.0.1) and (1.0.3)–(1.0.4) are not singular, when
the equations are written in terms of the densities of particles in energy variables,
singular kernels do appear in the collision integrals. Due to these singularities, the
collision integrals in (1.0.1) and (1.0.5)–(1.0.6) are not well defined near the origin
under the natural assumption that u(t, ·) and g(t, ·) are integrable functions for all
t ≥ 0.

It is possible, however, to consider the following weak formulation for the equa-
tion (1.0.1):

d

dt

∫ ∞
0
ϕ(x)u(t, x)dx =

1

2

∫ ∞
0

∫ ∞
0
kϕ(x, y)u(t, x)u(t, y)dydx− 1

2

∫ ∞
0
Lϕ(x)u(t, x)dx,

(1.0.11)

kϕ(x, y) = b(x, y)(e−x − e−y)(ϕ(x)− ϕ(y)),

Lϕ(x) =

∫ ∞
0

b(x, y)y2e−y(ϕ(x)− ϕ(y))dy,

for all ϕ ∈ C1
b ([0,∞)). The corresponding weak formulation for the simplified equa-

tion (1.0.2) reads:

d

dt

∫ ∞
0
ϕ(x)u(t, x)dx =

1

2

∫ ∞
0

∫ ∞
0
kϕ(x, y)u(t, x)u(t, y)dydx, (1.0.12)
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and finally, in terms of the nonnegative measure G(t, ·) defined by (1.0.7), the weak
formulation for the system (1.0.3)–(1.0.4) reads:

d

dt

∫
[0,∞)

ϕ(x)G(t, x)dx = (1.0.13)

= G(t, {0})
[ ∫∫

[0,∞)2

φϕ(x, y)G(t, x)G(t, y)dydx−
∫

[0,∞)
ψϕ(x)G(t, x)dx

]
,

φϕ(x, y) =
1
√
xy

(
ϕ(x+ y) + ϕ(|x− y|)− 2ϕ(max{x, y})

)
,

ψϕ(x) =
√
x
(
ϕ(0) + ϕ(x)

)
− 2√

x

∫ x

0
ϕ(y)dy,

for all ϕ ∈ C1
b ([0,∞)).

For ϕ ∈ C1
b ([0,∞)), the right hand side of (1.0.11) is well defined for u(t, ·) an

integrable function with a finite exponential moment. However, it was proved in
[29] that among all the distributions with the same number of particles M > 0,
the maxima of the entropy H for the problem (1.0.1) are given in terms of the
Bose-Einstein distributions:

uM (x) = αδ0(x) + uµ(x), uµ(x) =
x2

ex−µ − 1
,

µ ≤ 0, α ≥ 0, αµ = 0, M = α+

∫ ∞
0

uµ(x)dx.

We are then going to consider solutions u of the problem (1.0.1) such that u(t, ·) is
a nonnegative measure on [0,∞). The functions kϕ and Lϕ in (1.0.11) then need to
be continuous on [0,∞)2 and [0,∞) respectively. That is achieved for test functions
ϕ ∈ C1

b ([0,∞)) that satisfy the condition ϕ′(0) = 0.

In the simplified problem (1.0.2), we will consider measure-valued solutions as
well as L1-valued solutions.

On the other hand, for ϕ ∈ C1
b ([0,∞)), the functions φϕ and ψϕ in (1.0.13) are

continuous on [0,∞)2 and [0,∞) respectively, and the right hand side of (1.0.13)
is well defined for finite nonnegative measures G(t, ·) with a finite moment of order
1/2.

Measure-valued solutions have been considered by other authors in related prob-
lems (cf., for instance, [29], [45] and [53, 54, 55, 56]).

Let us mention very briefly some of the main contributions of this thesis. The
global existence of weak solutions for the initial value problems associated to (1.0.1),
(1.0.2), and (1.0.3)–(1.0.4) is established for a large set of initial data. Several
estimates on some of their moments are also obtained. This is done using classical
arguments, although it is important to use them with the weak formulation in the
appropriate variables. We first consider a sequence of approximated problems for
bounded kernels, then we prove the existence of solutions by means of a fixed point
theorem, and finally obtain weak solutions by passage to the limit. The compactness
of the sequence of approximate solutions is deduced from uniform bounds, provided
by the conservation laws.
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Motivated by the possible relation of problems (1.0.1) and (1.0.3)–(1.0.4) with
the Bose-Einstein distributions, we have also been interested in the time evolution
of the functions

u(t, {0}) =

∫
{0}

u(t, x)dx and G(t, {0}) =

∫
{0}

G(t, x)dx,

and some partial results have been obtained. Their proofs involve the careful study
of the evolution of the integrals∫

[0,∞)
ϕ(x)u(t, x)dx and

∫
[0,∞)

ϕ(x)G(t, x)dx

for certain classes of test functions ϕ (monotone test functions for (1.0.1) and convex
for (1.0.3)–(1.0.4)).

Lastly, the existence of L1-valued solutions for the simplified equation (1.0.2) is
proved under a strong integrability condition on the initial data, and the asymptotic
behavior of the measure-valued weak solutions to (1.0.2) is also described.

This thesis is organized as follows. In the present Chapter 1 we introduce the
main problems (1.0.1), (1.0.2) and (1.0.3)–(1.0.4). The equations (1.0.1) and (1.0.2)
are studied in Chapter 2 and the system (1.0.3)–(1.0.4) in Chapter 3. Some technical
results of Chapter 2 are presented in the Appendices A and B, and those of Chapter
3 in Appendix C.

We present, in the next two sections, the main results of Chapter 2 and Chapter 3.

1.1 On a Boltzmann equation for Compton scattering
with a low-density electron gas at non-relativistic
equilibrium

The evolution of the particle density of a photon gas that interacts only through
Compton scattering with a low density electron gas at nonrelativistic equilibrium,
is usually described by a Boltzmann equation (cf. [61], [42]). When the photon gas
is spatially homogeneous and its particle density f isotropic, the equation simplifies
to the following expression (cf. [25], [72]):

k2∂f

∂t
(t, k) = Qβ(f, f)(t, k) t > 0, k ≥ 0, (1.1.14)

Qβ(f, f)(t, k) =

∫ ∞
0

(
f(t, k′) (1 + f(t, k))e−βk−

−f(t, k)(1 + f(t, k′))e−βk
′
)
kk′Bβ(k, k′)dk′,

where k = |k| denotes the energy of a photon of momentum k ∈ R3 (taking the
speed of light c equal to 1), β = (~T )−1, T is the temperature of the electron gas
and (4π/3)k2f(t, k) ≥ 0 is the particle density. The function Bβ(k, k′) is the so-
called redistribution function and has been deduced in [57]. Previous mathematical
results on this equation may be found in [29], [22, 34]. See also [38] and [18] for
numerical methods and simulations.
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It is common in the physics literature to approximate (1.1.14) by the Kompaneets
equation:

∂f

∂t
=

1

k2

∂

∂k

(
k4

(
∂f

∂k
+ f2 + f

))
, (1.1.15)

(cf. [49]). Equation (1.1.15) has deserved great attention due to its importance in
modern cosmology and high energy astrophysics (cf. [11], [42]). However, although
this approximation is generally performed under some assumptions on the solution
f , no precise mathematical statement for such assumptions are known (for simpler
kernels than Bβ, a rigorous derivation of (1.1.15) may be found in [29]).

It is expected from physical considerations that the total number of particles is
conserved by (1.1.14). Since the particle density f is assumed to be isotropic, that
with some abuse of notation we express as f(t,k) = f(t, k), if we introduce the new
variable v(t, k) = k2f(t, k) that is (up to a constant) the particle density in energy
variables, the conservation of the total number of particles then writes∫ ∞

0
v(t, k)dk = constant ∀t ≥ 0.

In terms of v, the equation (1.1.14) reads

∂v

∂t
(t, k) =

∫ ∞
0

Bβ(k, k′)

kk′
qβ(v, v)(t, k, k′)dk′, (1.1.16)

qβ(v, v)(t, k, k′) = v(t, k′)
(
k2 + v(t, k)

)
e−βk − v(t, k)

(
k′2 + v(t, k′)

)
e−βk

′
. (1.1.17)

In the nonrelativistic limit, when β >> (mc2)−1, where m is the mass of an electron
and c is the speed of light, the differential cross section for Compton scattering is
usually approximated by the Thomson differential cross section (cf. [42]), and it is
then possible to deduce the following expression for the function Bβ (cf. [57]):

Bβ(k, k′) =
√
β eβ

(k′+k)
2

∫ π

0

(1 + cos2 θ)

|k′ − k|
e
−βm

(k′−k)2+
|k′−k|4

4m2

2|k′−k|2 sin θdθ.

In particular, the function Bβ satisfies the following properties (cf. Figure 1.1 and
Figure 1.2):

(i) It is singular at the origin:

Bβ(k, k) =
44

15

√
β

(
1

k
+ β

)
+O(k) as k → 0,

(ii) it grows exponentially at infinity:

Bβ(k, k) = eβk
(
O
(

1

k2

)
+ e−

βk2

2m O
(

1

k3

))
as k →∞,

(iii) it is strictly positive at the axes:

Bβ(k, 0) = Bβ(0, k) =
8

3

√
β

k
e
βk
2 e−

βm
2

(
1+ k2

4m2

)
> 0, k > 0.

The kernel (kk′)−1Bβ(k, k′) in (1.1.16) is therefore quite singular at the axes and, of
course, does not satisfy the hypothesis imposed in [29]. Is not even possible to give
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Figure 1.1: The kernel Bβ(k, k′) for β = 10, m = 1, (k, k′) ∈ (0, 12 )2.
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Figure 1.2: Cross sections of Bβ perpendicular to the diagonal and very close to the origin.

More precisely, let B̃β(w, z) = Bβ(k, k′) with w = (k + k′)/
√

2, z = (k − k′)/
√

2. The figure

shows, for β = 10, m = 1 and z ∈ (− 1
2 ,

1
2 ), the function z 7→ B̃β(w, z) for the values w = 0.01

(blue), w = 0.02 (red) and w = 0.03 (yellow).
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Figure 1.3: From left to right, the kernel Bβ(k, k′) with m = 1, (k, k′) ∈ (0, 12 )2 and for
β = 7, β = 10 and β = 13.

Figure 1.4: From left to right, several level sets Bβ(k, k′) = constant for m = 1, (k, k′) ∈
(0, 12 )2 and β = 7, β = 10 and β = 13.
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sense to the right hand side of (1.1.16), not even in weak form, for a general finite
nonnegative measure v(t).

We then consider the following truncated problem:

∂v

∂t
(t, k) =

∫ ∞
0

Bβ(k, k′)Φ(k, k′)

kk′
qβ(v, v)(t, k, k′)dk′ (1.1.18)

where qβ(v, v) is defined in (1.1.17) and Φ is a cut-off function supported in a neigh-
bourhood of the diagonal {k = k′ > 0} of the form (cf. Figure 1.5):

|k − k′| ≤
√
kk′(k + k′) for k, k′ << 1,

θk ≤ k′ ≤ k

θ
elsewhere, where θ ∈ (0, 1) is fixed.

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

Figure 1.5: The support of Φ(k, k′) for (k, k′) ∈ [0, 12 ]2, θ = 1/2.

This truncation, similar to the one proposed in [77], is suggested by the very
peaked shape of Bβ along the diagonal (cf. Figure 1.1–Figure 1.4). The function BβΦ
is a first, rough approximation of Bβ that keeps, nevertheless, a singular behavior
at the origin. A possible extension to this work could be the construction of weak
solutions to (1.1.16) through the truncated problem (1.1.18), by passage to the limit
in the cut-off function parameters.

Although in this work the value of β remains fixed, and may then be taken equal
to 1, certain aspects of the equation appear more clearly in some other variables,
rescaled with β. In particular, the fact that Bβ is more and more peaked along the
diagonal as β → ∞ (cf. Figure 1.3 and Figure 1.4). When the time is rescaled to
β3t and the energy to βk, so that the total number of particles is unchanged, the
equation (1.1.18) rewrites as (1.0.1), where

u(t, x) = β−1v(t̃, k) t = β3t̃, x = βk. (1.1.19)

The function b(x, y) in (1.0.1) that we consider, satisfies general conditions. In par-
ticular, these conditions are fulfilled by the truncated kernel (kk′)−1Bβ(k, k′)Φ(k, k′).
The function K(x, y) mentioned at the beginning of the introduction corresponds
to the kernel (kk′)−1Bβ(k, k′) written in the rescaled variables as in (1.1.19).
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In order to present the main results of Chapter 2, let us denote by M+([0,∞))
the space of nonnegative finite Radon measures on [0,∞), endowed with the so-
called narrow topology, and denote by C([0,∞),M+([0,∞))) the space of continuous
functions from [0,∞) onto M+([0,∞)). For convenience and unless otherwise is
noted, we write µ(x)dx for every measure µ, even if µ is not absolutely continuous
with respect to the Lebesgue measure.

Let us define now the following notion of weak solutions.

Definition 1.1.1. Given u0 ∈ M+([0,∞)), we say that u is a weak solution of
(1.0.1) with initial data u0 if:

(i) u ∈ C([0,∞),M+([0,∞))) and
∫

[0,∞) ϕ(x)u(0, x)dx =
∫

[0,∞) ϕ(x)u0(x)dx for

all ϕ ∈ Cb([0,∞)).
(ii) The map t 7→

∫
[0,∞) ϕ(x)u(t, x)dx belongs to W 1,∞

loc ([0,∞)) for all ϕ ∈
C1
b ([0,∞)) with ϕ′(0) = 0,

(iii) u satisfies the weak formulation (1.0.11) for almost every t ≥ 0 and for all
ϕ ∈ C1

b ([0,∞)) with ϕ′(0) = 0.

We may then state our result about the existence of global weak solutions (cf.
Theorem 2.1.2).

Theorem. Given any u0 ∈M+([0,∞)) satisfying∫
[0,∞)

eηxu0(x)dx <∞ (1.1.20)

for some η ∈
(

1−θ
2 , 1

2

)
, there exists u ∈ C([0,∞),M+([0,∞))) weak solution of

(1.0.1) with initial data u0. Moreover, u satisfies∫
[0,∞)

u(t, x)dx =

∫
[0,∞)

u0(x)dx ∀t ≥ 0,∫
[0,∞)

eηxu(t, x)dx ≤ eCηt
∫

[0,∞)
eηxu0(x)dx ∀t ≥ 0,

where Cη is a positive constant.

The entropy functional

H(u(t)) =

∫
[0,∞)

h(x, ur(t, x))dx−
∫

[0,∞)
xus(t, x)dx,

h(x, s) = (x2 + s) ln(x2 + s)− s ln s− x2 ln(x2)− sx,

(cf. [58], [29]) is well defined for the weak solutions thus obtained, where u = ur+us
is the Lebesgue decomposition of u into a regular and a singular part (cf. [29] Lemma
3.1 and Lemma 4.1). However, due to the singularity of the kernel b, we do not know
how to give sense to the corresponding dissipation of entropy D(u(t)) that appears
in [29].

We have scarce information about the qualitative properties of the weak solutions
of (1.0.1), and in particular, on their long time behavior. It may then be useful to
consider the simplified equation (1.0.2), introduced in [76, 77], where the linear terms
in the right hand side of (1.0.1) have been dropped. For large values of the parameter
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β, this simplification is suggested by the fact that, when (1.1.18) is written in the
rescaled variables (1.1.19), the linear terms in the collision integral are formally of
lower order (cf. Appendix B.1).

We define now the following notion of weak solutions for the simplified problem
(1.0.2).

Definition 1.1.2. Given u0 ∈ M+([0,∞)), we say that u is a weak solution of
(1.0.2) with initial data u0 if:

(i) u ∈ C([0,∞),M+([0,∞))) and
∫

[0,∞) ϕ(x)u(0, x)dx =
∫

[0,∞) ϕ(x)u0(x)dx for

all ϕ ∈ Cb([0,∞)).
(ii) The map t 7→

∫
[0,∞) ϕ(x)u(t, x)dx belongs to W 1,∞

loc ([0,∞)) for all ϕ ∈
C1
b ([0,∞)) with ϕ′(0) = 0,

(iii) u satisfies the weak formulation (1.0.12) for almost every t ≥ 0 and for all
ϕ ∈ C1

b ([0,∞)) with ϕ′(0) = 0.

The existence of weak solutions for (1.0.2) presented below (cf. Theorem 2.5.1)
is proved with the same arguments as for equation (1.0.1).

Theorem. For any initial data u0 ∈ M+([0,∞)) satisfying (1.1.20) for some η >
(1 − θ)/2, there exists a weak solution u ∈ C([0,∞),M+([0,∞))) of (1.0.2) with
initial data u0. Moreover, u also satisfies∫

[0,∞)
u(t, x)dx =

∫
[0,∞)

u0(x)dx ∀t ≥ 0,∫
[0,∞)

eηxu(t, x)dx ≤
∫

[0,∞)
eηxu0(x)dx ∀t ≥ 0,

Our next result shows the existence of solutions in L1 for initial data that satisfy
a strong integrability condition (cf. Theorem 2.1.4).

Theorem. For any nonnegative initial data u0 ∈ L1(R+) such that:

∀r > 0,

∫ ∞
0

u0(x)
(
e

r

x3/2 + eηx
)
dx <∞ (1.1.21)

for some η > (1 − θ)/2, there exists a nonnegative weak solution u of (1.0.2) with
initial data u0. Moreover, u ∈ C([0,∞), L1(R+)), satisfies (1.0.2) in L1(R+) for
almost every t > 0 and

‖u(t)‖1 = ‖u0‖1 ∀t ≥ 0,

u(t, x) ≤ u0(x)e
tC0

x3/2 ∀t ≥ 0, a.e. x > 0,

where C0 is a positive constant.

The condition (1.1.21) on the initial data is then a sufficient condition to have a
global solution in L1, and therefore, to prevent the formation of any Dirac delta in
finite time.

The weak solutions of (1.0.2) satisfy two properties that may be loosely described
as follows:

(i) the support of the solution is invariant in time (cf. Proposition 2.5.4) and
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(ii) the distribution of mass tends to “move” to lower values on the energy
spectrum (cf. Proposition 2.5.5).

These two properties have the following consequence on the long time behavior
of the solutions. Suppose, for example, that the support of the initial data u0 is an
interval (a0, a1), with a0 > 0. If a1 − a0 is sufficiently small, then a weak solution
of (1.0.2) converges to Mδa0 , where M is the integral of the initial data u0. Even if
a1− a0 is large, or the support of u0 was the disjoint union of two intervals (a0, a1),
(a2, a3) with a0 > 0, due to the non local nature of (1.0.2), one could still expect all
the mass to move or jump to the lower endpoint a0 of the left interval. However,
due to the lack of strict positivity of the kernel b that we consider, particles that
are sufficiently far away from each other do not interact. As a consequence, if the
distance between the two intervals (a0, a1) and (a2, a3) is sufficiently large, the mass
on each of the intervals is constant in time, and the solution converges to a sum of,
at least, two Dirac measures, one at the point a0 and other at the point a2. This is
stated in the following result (cf. Theorem 2.1.8).

Theorem. Let u be a weak solution of (1.0.2) for an initial data u0 ∈M+([0,∞))
satisfying (1.1.20) for some η ≥ (1 − θ)/2. Then there exist a sequence of nonneg-
atives numbers {(mi, ki)}i∈N such that u converges in C([0,∞),M+([0,∞))) to the
measure

µ =

∞∑
i=0

miδki . (1.1.22)

This Theorem shows that the asymptotic state of the simplified equation (1.0.2)
is formed by an at most countable set of Dirac measures. This suggests the possibility
for the solutions of the complete equation (1.0.1) to develop more than one peak
that could remain for very long times.

1.2 On a system of two coupled equations for the nor-
mal fluid - condensate interaction in a Bose gas

A kinetic description of a weakly interacting dilute Bose gas below the critical tem-
perature, when a condensate is present, was considered in [26] and [47]. The expres-
sions of the collision integral for the interactions between particles in the normal
component of the gas, and for the interaction of the condensate with particles in the
normal component of the gas where deduced. Their results were then generalized in
[73], where the authors derived coupled equations for the distribution functions of
the normal and superfluid components.

The system that only takes into account the interaction of the condensate with
particles in the normal fluid for a homogeneous isotropic gas has been treated in [3],
where the existence of global solutions is proved for several approximations of the
scattering amplitude and the energy of the particles. This problem has also been
considered in [1], where the transition probability matrix is taken proportional to
|p||p1||p2| and the energy of a particle with momentum p ∈ R3 is proportional to
|p|
√
n(t).

The purpose of this chapter is to consider one of the regimes introduced in
[26] and [47], where the square of the transition probability matrix in the kinetic
equation is taken proportional to the condensate density n(t), and where the energy
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of a particle with momentum p ∈ R3 and mass m is taken to be E(p) = |p|2/(2m).
With this approximations and for a spatially homogeneous and isotropic gas, the
system may be written as (1.0.3)–(1.0.4) (cf. [66]). The same approximation, but
for a non isotropic gas with periodic spatial dependence has been considered in [4]
for initial data close to equilibrium The existence of weak solutions to (1.0.3) with
a simplified equation for n(t) has been proved in [60].

Let us present now our main results on the weak solutions of (1.0.3)–(1.0.4) (cf.
Definition 3.1.2) that are studied in Chapter 3 in terms of the measure G(t) defined
in (1.0.7). We start with the global existence of weak solutions (cf. Theorem 3.1.3
and Theorem 3.1.4) and some properties of their moments Mα(G), where

Mα(G) =

∫
[0,∞)

xαG(x)dx α ∈ R,

M α
+([0,∞)) = {G ∈M+([0,∞)) : Mα(G) <∞} .

Theorem. Suppose that G0 ∈M 1
+([0,∞)) satisfies G0({0}) > 0. Then, there exists

a weak solution G ∈ C
(
[0,∞),M 1

+([0,∞))
)

to (1.0.3)–(1.0.4) with initial data G0

that satisfies the following properties:

(i) G conserves the total number of particles N and energy E:

M0(G(t)) = M0(G0) = N ∀t ≥ 0,

M1(G(t)) = M1(G0) = E ∀t ≥ 0.

(ii) For all α ≥ 3, if Mα(G0) <∞, then G ∈ C
(
(0,∞),M α

+([0,∞))
)

and

Mα(G(t)) ≤
(
Mα(G0)

2
α−1 + α2α−1E

α+1
α−1 τ(t)

)α−1
2 ∀t > 0,

where τ(t) =
∫ t

0 G(s, {0})ds.

(iii) For all α ≥ 3,

Mα(G(t)) ≤ C(α,E)

(
1

1− e−γ(α,E)τ(t)

)2(α−1)

∀t > 0,

where the constants C(α,E) and γ(α,E) are defined in Theorem 3.3.1.

(iv) If α ∈ (1, 3] and

E > C(α)N5/3,

where C(α) > 0 is an explicit constant, then Mα(G(t)) is a decreasing function
on (0,∞).

(v) For all T > 0, R > 0 and α ∈
(
−1

2 ,∞
)
,∫ T

0
G(t, {0})

∫
(0,R]

xαG(t, x)dxdt ≤

≤ 2R
1
2

+α

1−
(

2
3

) 1
2

+α

(∫ T

0
G(t, {0})dt

) 1
2
(√

E

2

∫ T

0
G(t, {0})dt+

√
N

)
. (1.2.23)
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Some remarks can be made about the result above.

(a) The condition G0({0}) > 0 just reflects the initial presence of a condensate
in the system, and it is necessary in view of the particular form of (1.0.3)-(1.0.4)
and (1.0.13).

(b) An estimate for the moment of order α ≥ 3 of the solution is provided in
point (ii), under the assumption that the same moment is finite for the initial data.
In point (ii), on the contrary, no assumption is made on the initial data. It is
shown the instantaneous gain of moments of any order α ≥ 3. The estimate in (iii)
blows-up as t→ 0, as it should.

(c) If an algebraic behavior around the origin like G(t, x) ∼ xβ was known for
some β ∈ R, then we would need β ≥ −1/2, so that the left hand side of (1.2.23) is
integrable for all α > −1/2. Of course, no such algebraic behavior of G is known to
hold.

Some properties of the function n(t) are given in the next two results (cf. The-
orem 3.1.7 and Theorem 3.1.8).

Theorem. Let G be a weak solution to (1.0.3)–(1.0.4) constructed above, and de-
compose it as

G(t, x) = n(t)δ0(x) + g(t, x), n(t) = G(t, {0}).

Then, the function n is right continuous and a.e. differentiable on [0,∞). Moreover,
there exists a positive measure µ on [0,∞) such that

0 < µ((0, t]) <∞ ∀t > 0 (1.2.24)

and

n′(t) =
d

dt
µ((0, t])− n(t)M1/2(g(t)) a.e. t > 0. (1.2.25)

The value µ((0, t]) is a limit that involves the behavior of g near the origin. This
term appears because the collision operator Q(g)(t, x) in (1.0.5) is not integrable at
the origin. If we had g ∈ L1(R+) and M−1/2(g(s)) < ∞ for a.e. s ∈ [0, t], that
would imply µ((0, t]) = 0 (cf. Proposition 3.6.4), and the function n would follow,
according to (1.2.26), the equation

n′(t) = −n(t)M1/2(g(t)) a.e. t > 0. (1.2.26)

The function n would then be monotonically decreasing on [0,∞). However, the
property (1.2.24) shows that this can not be the case and that, in particular, for
every t > 0 there exists a subset E ⊂ [0, t) with |E| > 0 such that M−1/2(g(s)) =∞
for all s ∈ E, even if the moment of order −1/2 of the initial data g0 is finite. Then
g loses instantaneously the moment M−1/2(g(s)) and the behavior of n(t) is more
involved.

This is quite different from the results obtained in [1], where the authors have
shown the existence of a global solution (n, g) that satisfies

d

dt
(n2(t)) = −2

∫ ∞
0

P (g)(t, x)dx ∀t > 0, (1.2.27)
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where P (g)(t, x) is the corresponding collision integral in the equation for g, and the
integral in the right hand side of (1.2.27) is absolutely convergent.

The property (1.2.24) gives some further insight about the possible behavior of
G near the origin. If G(t, x) ∼ xβ around the origin for some β ∈ R, we saw above
that necessarily β ≥ −1/2. Suppose, moreover, that G(t) has no atoms on (0,∞)
for all t ∈ [0, T ] for some T > 0. Then, if β > −1/2, we would have

sup
t∈[0,T ]

∫
(0,∞)

G(t, x)√
x

dx <∞,

and by Proposition 3.6.4 we would obtain µ((0, t]) = 0 for all t ∈ (0, T ], in con-
tradiction with (1.2.24). This observation implies that in case G had the algebraic
behavior G(t, x) ∼ xβ near the origin, either β = −1/2 or, if β > −1/2, then G(t)
would have atoms on (0,∞) for t ∈ A ⊂ [0, T ] with |A| > 0.

In the last result of this section, we prove that, under some conditions on the two
first moments of the initial data G0, the function n(t) vanishes as t→∞, sufficiently
fast to be integrable.

Theorem. Let G be a weak solution to (1.0.3)–(1.0.4) with mass N and energy E
constructed above. If, for some α ∈ (1, 3],

E > C(α)N5/3, (1.2.28)

where C(α) > 0 is an explicit constant, then

lim
t→∞

n(t) = 0

and there is an explicit constant C(N,E, α) such that, for all t0 > 0,∫ ∞
t0

n(t)dt ≤ C(N,E, α)Mα(G(t0)).

According to [53] and the references therein, given an initial datum G0 with total
mass N and energy E, the kinetic temperature T and the critical kinetic temperature
Tc (cf. [53] for a definition) satisfy the following relation

T

Tc
= κ

E

N5/3
, κ =

(2π)
1
3

3

ζ(3/2)5/3

ζ(5/2)
.

Using this identity, the condition (1.2.28) reads in terms of the variable T :

T > κC(α)Tc.

The value κC(α) increases with α and takes its minimum at α = 1, κC(1) ≈ 4.48403
(cf. Remark 3.1.12). The result above then could be interpreted as follows: the
density n(t) converges to zero if the kinetic temperature of the initial datum G0 is
κC(1) times above of the critical kinetic temperature.
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1.3 Conclusions

In this thesis, we have studied three problems, (1.0.1), (1.0.2) and (1.0.3)–(1.0.4),
related to the mathematical description of dilute gases for quantum particles. These
problems are given by kinetic equations that, when written in terms of the natural
density in radial variables, have singular kernels. The singularities do not come from
the particle interactions that are considered, but rather from the angular integrations
and the geometric factors that appear when considering radially symmetric solutions.

The global existence of measure-valued weak solutions for a large class of initial
data has been proved for these three problems. In the case of (1.0.2), we have also
obtained a sufficient condition on the initial data in order to have global L1-valued
solutions.

Some properties of the weak solutions have been obtained. For example, we
have described the long time behavior of the weak solutions of (1.0.2), proving their
convergence to a countable sum of Dirac masses. In problem (1.0.3)–(1.0.4), we
have obtained estimates on the time evolution of some moments of G, as well as
some properties of the function n(t). In particular, the evolution of n(t) has been
proved to follow a non trivial integral equation, involving the local behavior of the
measure g around the origin. The long time behavior of the function n(t) has also
been studied under certain conditions.

Several questions related to these results remain open and could be the object
of future research. One interesting question is, for example, the existence (or non
existence) of weak solutions to (1.0.1), where the kernel b(x, y) is replaced by K(x, y),
for general initial data. It would also be interesting to understand the long time
behavior of the weak solutions u and G of the problems (1.0.1) and (1.0.3)–(1.0.4)
respectively, as well as to know under what conditions, if any, the weak solutions
take their values u(t) and G(t) in L1(0,∞) or in M+([0,∞)). Lastly, it would be
worthwhile to extend the analysis of Chapter 3 to the whole Nordheim equation
by considering also the collision integral that accounts for the interactions between
particles with strictly positive energy.
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Chapter 2

On a Boltzmann equation for
Compton scattering with a
low-density electron gas at
non-relativistic equilibrium

2.1 Introduction.

When only Compton scattering events are considered, the evolution of the particle
density of a gas of photons that interact with electrons at non relativistic equilibrium
is usually described by means of a Boltzmann equation that may be found in [25],
[49], [72] and many others. For a spatially homogeneous isotropic gas of photons
and non relativistic electrons at equilibrium, the equation simplifies to the following
expression:

k2∂f

∂t
(t, k) = Qβ(f, f)(t, k), t > 0, k ≥ 0, (2.1.1)

Qβ(f, f)(t, k) =

∫ ∞
0

(
f(t, k′) (1 + f(t, k))e−βk−

−f(t, k)(1 + f(t, k′))e−βk
′
)
kk′Bβ(k, k′)dk′. (2.1.2)

The variable k = |k| denotes the energy of a photon of momentum k ∈ R3 (taking
the speed of light c equal to 1), β = (~T )−1, T is the temperature of the gas of
electrons, (4π/3)k2f(t, k) ≥ 0 is the particle density, and Bβ(k, k′) is a function
called sometimes the redistribution function.

We emphasize that only elastic collisions of one photon and one electron giving
rise to one photon and one electron are considered in this equation, and no radiation
effects are taken into account. As shown in [17], the cross section for emission of an
additional photon of energy k diverges as k approaches zero, and so the probability
of a Compton process unaccompanied by such emission is zero. It follows that the
equation (2.1.1), (2.1.2) can not take accurately into account photons with too small
energy.

When the speed of light c is taken into account, the corresponding equation
(2.1.1), (2.1.2) is very often approximated by a nonlinear Fokker Planck equation
(cf. [49]). For β >> (mc2)−1 (that corresponds to non relativistic electrons with

23
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mass m), the scattering cross section of photons with energies k << mc2 may be
approximated by the Thompson scattering cross section. It is then possible to deduce
the following expression of Bβ(k, k′):

Bβ(k, k′) =
√
β eβ

(k′+k)
2

∫ π

0

(1 + cos2 θ)

|k′ − k|
e−β

∆2+m2v4

4
2mv2 d cos θ, (2.1.3)

v =
1

m
|k′ − k|, ∆ = k′ − k, (2.1.4)

(cf. [57] and [30]). It is then argued (cf. [49] for example) that Bβ(k, k′) is strongly
peaked in the region {

k > 0, k′ > 0 : |k − k′| << min{k, k′}
}

(2.1.5)

for large values of β, (cf. Figure 1.3) and then, if the variations of f are not too
large, it is possible to expand the integrand of (2.1.1) around k and, after a suitable
rescaling of the time variable, the equation (2.1.1), (2.1.2) is approximated by:

k2∂f

∂t
=

∂

∂k

(
k4

(
∂f

∂k
+ f2 + f

))
, (2.1.6)

the Kompaneets equation ([49]). However, it is difficult to determine under what
conditions on the initial data and in what range of photon energies k, is this ap-
proximation correct.

Due in particular to its importance in modern cosmology and high energy astro-
physics, the Kompaneets equation (2.1.6) has received great attention in the litera-
ture of physics (cf. the review [11]). It has also been studied from a more strictly
mathematical point of view [20, 28, 43], and several of its possible approximations
have also been considered [9, 50]. It was first observed in [75] that for a large class
of initial data, as t increases, the solutions of (2.1.6) may develop steep profiles, very
close to a shock wave, near k = 0. This was proved to happen in [28] for some of
the solutions, for k in a neighborhood of the origin and at large times.

On the basis of the equilibrium distributions FM of (2.1.1), (2.1.2) given by

k2FM = k2fµ + αδ0, µ ≤ 0, α ≥ 0, αµ = 0, (2.1.7)

fµ(k) =
1

ek−µ − 1
,

∫ ∞
0

k2fµ(k)dk = Mµ, M = α+Mµ, (2.1.8)

some of its unsteady solutions are also expected to develop, asymptotically in time,
very large values and strong variation in very small regions near the origin. This was
proved to be true in [29] where, under the assumptions that e−η(k+k′)(kk′)−1Bβ(k, k′)
is a bounded function on [0,∞)2 for some η ∈ [0, 1), it is shown that, as t → ∞,
certain solutions form a Dirac delta at the origin. A detailed description of this
formation was later given in [31], assuming Bβ(k, k′)(kk′)−1 ≡ 1 and for some classes
of initial data. Of course, in the region where this delta formation takes place,
the equation (2.1.1), (2.1.2) can not be approximated by the Kompaneets equation
(2.1.6).

It is obvious however that the function Bβ(k, k′) in (2.1.3), (2.1.4) does not
satisfies the conditions imposed in [29] or [31]. On the other hand, the Boltzmann
equation (2.1.1), (2.1.2) with the kernel (2.1.3), (2.1.4) was considered in [60] and
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[34]. Local existence for small initial data with a moment of order −1 was proved
in [60]. It was proved in [34] that, although the Cauchy problem is globally solvable
in time for initial data bounded from above by the Planck distribution, there is no
solution, even local in time, for initial data greater that the Planck distribution.
This seems to be an effect of the very small values of k and k′ with respect to |k−k′|
in the collision integral, and indicates that some truncation is needed in order to
have a reasonable theory for the Cauchy problem. (cf. Section 2.1.1 below).

In this article, we consider first the Cauchy problem for an equation where the
kernel (2.1.3), (2.1.4) is truncated in a region where k or k′ are much smaller than
|k − k′|, although keeping the strong singularity at the origin k = k′ = 0. This is
achieved by multiplying the kernel Bβ by a suitable cut off function Φ(k, k′),

k2∂f

∂t
(t, k) = Q̃β(f, f)(t, k) (2.1.9)

Q̃β(f, f)(t, k) =

∫ ∞
0

(
f(t, k′) (1 + f(t, k))e−βk−

−f(t, k)(1 + f(t, k′))e−βk
′
)
kk′Φ(k, k′)Bβ(k, k′)dk′ (2.1.10)

The Cauchy problem for (2.1.9), (2.1.10) proved to have weak solutions for a large
class of initial data in the space of non negative measures. Because of some difficulties
coming from the kernel Bβ and its truncation, it is not possible to perform the
same analysis as in [29] or [31], where the asymptotic behavior of the solutions was
described.

In order to obtain some further insight, a simplified equation was proposed in
[76] and [77], where the authors suggest to keep only the quadratic terms in (2.1.2)
when f >> 1 (or when the function f has a large derivative) and consider,

k2∂f

∂t
(t, k) = f(t, k)

∫ ∞
0

f(t, k′)
(
e−βk − e−βk′

)
kk′Bβ(k, k′)dk′. (2.1.11)

This equation may be formally obtained in the limit β → ∞ and βk of order one
(cf. Appendix B). If the reasoning leading from equation (2.1.1) to the Kompaneets
equation is applied to the equation (2.1.11) we obtain the non linear first order
equation,

k2∂f

∂t
=

∂

∂k

(
k4f2

)
. (2.1.12)

For the same reasons as for the equation (2.1.1), we shall consider the equation with
the truncated redistribution function,

k2∂f

∂t
(t, k) = f(t, k)

∫ ∞
0

f(t, k′)
(
e−βk − e−βk′

)
kk′Φ(k, k′)Bβ(k, k′)dk′. (2.1.13)

As for the equation (2.1.9), (2.1.10), equation (2.1.13) has weak solutions for
a large set of initial data. Moreover, if the initial data is an integrable function
sufficiently flat around the origin, it has a global solution that remains for all time an
integrable function flat around the origin. The weak solutions of (2.1.13) converge
to a limit as t tends to infinity that may be almost completely characterized. It
is formed by an at most countable number of Dirac masses, whose locations are
determined by the way in which the mass of the initial data is distributed. This
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suggests a possible transient behavior for the solutions of the complete equation
(2.1.9), where large and concentrated peaks could form and remain for some time.

We refer to [39] for recent numerical simulations on the behavior of the solutions
of the equation (2.1.1) and the Kompaneets approximation. The anisotropic case
has also been recently considered in [19].

We describe now our results in more detail.

2.1.1 The function Bβ(k, k′). Weak formulation.

Due to the k2 factor in the left hand side of (2.1.1), it is natural to introduce the
new variable

v(t, k) = k2f(t, k). (2.1.14)

This variable v is now, up to a constant, the photon density in the radial variables,
and equation (2.1.1), (2.1.2) reads,

∂v

∂t
(t, k) = Qβ(v, v)(t, k), t > 0, k ≥ 0, (2.1.15)

Qβ(v, v)(t, k) =

∫ ∞
0

qβ(v, v′)
Bβ(k, k′)

kk′
dk′, (2.1.16)

qβ(v, v) = v′(k2 + v)e−βk − v(k′2 + v′)e−βk
′
, (2.1.17)

where we use the common notation v = v(t, k) and v′ = v(t, k′). As a consequence
of the change of variables (2.1.14), the factor kk′ in the collision integral has been
changed to (kk′)−1.

An expression of Bβ(k, k′) may be obtained at low density of electrons and using
the non relativistic approximation of the Compton scattering cross section (cf. [57,
30]). It may be seen in particular that Bβ(k, 0) > 0 for all k > 0, and

Bβ(k, k′) =
44

15

(
2

k + k′
+ 1

)
+O(k + k′), k + k′ → 0, (2.1.18)

Bβ(k, 0) =
8

3

√
β

k
e
βk
2 e−

βm
2

(
1+ k2

4m2

)
. (2.1.19)

The kernel Bβ(k, k′)(kk′)−1 is then rather singular near the axes, and the collision
integral Qβ(v, v) is not defined for v(t) a general non negative bounded measure. In
order to overcome this problem, it is usual to introduce weak solutions. A natural
definition of weak solution is:

d

dt

∫
[0,∞)

v(t, k)ϕ(k)dk =
1

2

∫∫
[0,∞)2

(
ϕ(k)− ϕ(k′)

)
qβ(v, v′)

Bβ(k, k′)

kk′
dkdk′ (2.1.20)

for a suitable space of test functions ϕ. Again, we use the notation ϕ = ϕ(k) and
ϕ′ = ϕ(k′). Since Bβ(k, 0) > 0 for all k > 0, the integral in the right hand side of
(2.1.20) may still diverge. It was actually proved in [34] that for initial data v0 such
that

v0(x) >
x2

ex − 1
, ∀x ≥ 0,

the (2.1.20) has no solution in C([0, T ),M 1
+([0,∞))), for any T > 0.

Kernels with that kind of singularities have been considered in coagulation equa-
tions. One possible way to overcome this difficulty is to impose test functions ϕ
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compactly supported on (0,∞), like in [59], or such that ϕ(x) ∼ xα as x → 0 for
some α large enough, like for example in [36], (but in that case we could not expect
to obtain any information on what happens near the origin), or also to look for solu-
tions v in suitable weighted spaces like in [10] and [21] (but that would exclude the
Dirac delta at the origin). In all these cases, the propagation of negative moments
for all t > 0 is necessary. That property does not seem to hold true for (2.1.9), cf.
Remark 2.2.13 for the local propagation of some negative moments. See Remark
2.1.5 and Remark 2.5.8 for the equation (2.1.13).

Truncated kernel: why and how.

As we have already mentioned, the equation (2.1.1), (2.1.2) does not describe the
Compton scattering if “too” low energy photons are considered, since in that case
the spontaneous emission of photons must be taken into account (cf. [17]). At this
level of description then, some cut off seems necessary for a coherent description,
where only collisions of one photon and one electron giving one photon and one
electron are considered.

In view of the properties of the function Bβ for β large presented in Appendix
B, and since no precise indication is available in the literature of physics, we use a
mathematical criteria as follows:

(i) - We truncate the kernel Bβ, down to zero, out of the following subset of
[0,∞)× [0,∞):

∀(k, k′) ∈ [0, δ∗]
2, |k − k′| ≤ ρ∗(kk′)α1(k + k′)α2 , (2.1.21)

∀(k, k′) ∈ [0,∞)2 \ [0, δ∗]
2, θk ≤ k′ ≤ θ−1k, (2.1.22)

for some constants δ∗ > 0, ρ∗ > 0, α1 ≥ 1/2, 2α2 ≥ 3− 4α, and θ ∈ (0, 1).
(ii) - In order to minimize the region of this truncation, we choose α1 = α2 = 1/2.
(iii) - We leave Bβ unchanged as much as possible inside that region, but at the

same time we want the resulting truncated kernel to belong to C((0,∞)× (0,∞)).

Remark 2.1.1. It is suggested in [74] that for very large values of β, the support
of Bβ is a subdomain of |k− k′|<2k2/mc2 for small values of k and k′. That would
be a stronger truncation than in (ii).

Then we multiply Bβ(k, k′) by Φ(k, k′), where:

1. Φ(k, k′) = Φ(k′, k) for all k > 0, k′ > 0,
2. Φ ∈ C([0,∞)2 \ {(0, 0}),
3. supp(Φ) = D, where (k, k′) ∈ D if and only if (2.1.21) and (2.1.22) hold for
α1 = α2 = 1/2, and some constants θ ∈ (0, 1), δ∗ > 0 and ρ∗ = ρ∗(θ, δ∗).
4. Φ(k, k′) = 1 ∀(k, k′) ∈ D1 ⊂ D, where (k, k′) ∈ D1 if and only if,

|k − k′| ≤ ρ1

√
kk′(k + k′) if (k, k′) ∈ [0, δ∗]

2,

θ1k ≤ k′ ≤ θ−1
1 k if (k, k′) ∈ [0,∞)2 \ [0, δ∗]

2,

for some θ1 ∈ (θ, 1) and ρ1 = ρ1(θ1, δ∗) > 0. (Cf. also (2.2.5)–(2.2.11)). Then, for
all ϕ ∈ C1([0,∞)),(

e−βk − e−βk′
)(
ϕ(k)− ϕ(k′)

)Bβ(k, k′)

kk′
Φ(k, k′) ∈ L∞loc([0,∞)× [0,∞)),
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and if ϕ′(0) = 0,

(
e−βk − e−βk′

)(
ϕ(k)− ϕ(k′)

)Bβ(k, k′)

kk′
Φ(k, k′) ∈ C([0,∞)× [0,∞))

(cf. Lemma A.0.1, Lemma A.0.3 and (2.2.29)).
In the first part of this work, we then consider the problem

∂v

∂t
(t, k) =

∫
[0,∞)

qβ(v, v′)
Bβ(k, k′)Φ(k, k′)

kk′
dk′. (2.1.23)

We need the following notations:
C1
b ([0,∞)) is the space of bounded continuous functions, with continuous bounded

derivative, on [0,∞).
The space of nonnegative bounded Radon measures is denoted M+([0,∞)), and

M ρ
+([0,∞)) = {v ∈M+([0,∞)) : Mρ(v) <∞}, ∀ρ ∈ R,

Mρ(v) =

∫
[0,∞)

kρv(k)dk (moment of order ρ), (2.1.24)

Xρ(v) =

∫
[0,∞)

eρkv(k)dk. (2.1.25)

We use the notation
∫
v(k)dk instead of

∫
dv(k), even if the measure v is not abso-

lutely continuous with respect to the Lebesgue measure.
Unless stated otherwise, in M+([0,∞)) we consider the narrow topology. We

recall that the narrow topology is generated by the metric d0(µ, ν) = ‖µ − ν‖0,
where (cf. [15], Theorem 8.3.2),

‖µ‖0 = sup

{∫
[0,∞)

ϕdµ : ϕ ∈ Lip1([0,∞)), ‖ϕ‖∞ ≤ 1

}
, (2.1.26)

Lip1([0,∞)) = {ϕ : [0,∞)→ R : |ϕ(x)− ϕ(y)| ≤ |x− y|}. (2.1.27)

The following is an existence result for the problem (2.1.23).

Theorem 2.1.2. Given any v0 ∈M+([0,∞)) satisfying

Xη(v) <∞, (2.1.28)

for some η ∈
(

1−θ
2 , 1

2

)
, then there exists v ∈ C([0,∞),M+([0,∞))) weak solution of

(2.1.23), i.e., such that satisfies the following (i)-(ii):

(i) For all ϕ ∈ Cb([0,∞)),∫
[0,∞)

v(·, k)ϕ(k)dk ∈ C([0,∞);R), (2.1.29)∫
[0,∞)

v(0, k)ϕ(k)dk =

∫
[0,∞)

v0(k)ϕ(k)dk, (2.1.30)

(ii) For all ϕ ∈ C1
b ([0,∞)) with ϕ′(0) = 0,∫

[0,∞)
v(·, k)ϕ(k)dk ∈W 1,∞

loc ([0,∞);R), (2.1.31)
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and for almost every t > 0,

d

dt

∫
[0,∞)

v(t, k)ϕ(k)dk =
1

2

∫∫
[0,∞)2

ΦBβ
kk′

qβ(v, v′)(ϕ− ϕ′)dkdk′. (2.1.32)

The measure v(t) also satisfies, for all t ≥ 0,

M0(v(t)) = M0(v0) (2.1.33)

Xη(v(t)) ≤ eCηtXη(v0), (2.1.34)

where

Cη =
C∗
2θ2

(1− θ)
(1 + θ)

η(
1
2 − η

) , C∗ > 0. (2.1.35)

Remark 2.1.3. Theorem 2.1.2 does not precludes the formation, in finite time, of
a Dirac measure at the origin in the weak solutions of (2.1.23) with integrable initial
data. Such a possibility was actually considered for the solutions of the Kompaneets
equation (cf. [74, 75, 77] and others). It was proved in [28] and [29] that, for large
sets of initial data, this does not happen, neither in the Kompaneets equation, nor
in equation (2.1.15) with a very simplified kernel. But it is not known yet if it may
happen for the equation (2.1.15) with the kernel Φ(k, k′)Bβ(k, k′).

Given a weak solution {u(t)}t>0 of (2.1.23) whose Lebesgue decomposition is
u(t) = g(t) +G(t), with g(t) ∈ L1([0,∞)), the natural physical entropy is

H(u(t)) =

∫
(0,∞)

h(x, g(t, x))dx−
∫

(0,∞)
xG(t, x)dx, (2.1.36)

h(x, s) = (x2 + s) log(x2 + s)− s log s− x2 log x2 − sx. (2.1.37)

But the corresponding dissipation of entropy used, for example, in [29], is not defined

due to the singularity of the kernel
ΦBβ
kk′ at the origin. The study of the long time

behavior of the weak solutions obtained in Theorem 2.1.2 seems then to be more
involved than in [29], (cf. Section 2.4 also).

2.1.2 The simplified equation

In view of the exponential terms in (2.1.2), it is very natural to consider the scaled
variable βk = x, then scale the time variable too as β3t = τ , and the dependent
variable as β−1k2f(t, k) = u(τ, x) in order to let the total number of particles to be
unchanged (cf. Section B.1). When this is done, it appears that the linear term is
formally of lower order in β >> 1:

∂u

∂τ
(τ, x) =

∫ ∞
0

Bβ(x, y)

xy

(
e−x − e−y

)
u(τ, x)u(τ, y)dy+

+ β−3

∫ ∞
0

Bβ(x, y)

xy

(
u(τ, y)x2e−x − u(τ, x)y2e−y

)
dy, (2.1.38)

where Bβ(x, y) = β−1Bβ(k, k′).
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If only the quadratic term is kept in (2.1.23), the following equation is obtained

∂v

∂t
(t, k) = v(t, k)

∫
[0,∞)

v(t, k′)
(
e−βk − e−βk′

)Bβ(k, k′)Φ(k, k′)

kk′
dk′. (2.1.39)

Weak solutions u ∈ C([0,∞),M+([0,∞))) to (2.1.39) for all initial data u0 ∈
M+([0,∞)) satisfying (2.1.28) are proved to exist (cf. Theorem 2.5.1) with similar
arguments as for the complete equation.

But equation (2.1.39) also has solutions v ∈ C([0,∞), L1([0,∞))) for initial data
v0 ∈ L1([0,∞)) that are sufficiently flat around the origin. This “flatness” condition
happens then to be sufficient to prevent the finite time formation of a Dirac measure
at the origin in the solutions of (2.1.39).

Theorem 2.1.4. For any nonnegative initial data v0 ∈ L1([0,∞)) such that:

∀r > 0,

∫ ∞
0

v0(k)
(
e

r

k3/2 + eηk
)
dk <∞, (2.1.40)

for some η > (1− θ)/2, there exists a nonnegative global weak solution
v ∈ C([0,∞), L1([0,∞))) of (2.1.39) that also satisfies

v(t, k) = v0(k)e
∫ t
0

∫∞
0

(
e−βk−e−βk′

)Bβ(k,k′)Φ(k,k′)
kk′ v(s,k′) dk′ ds, (2.1.41)

for all t > 0, and a.e. k > 0. Moreover, for all t > 0,

‖v(t)‖1 = ‖v0‖1, (2.1.42)

v(t, k) ≤ v0(k)e
tC0

k3/2 , ∀t > 0, and a.e. k > 0, (2.1.43)

where C0 = ρ∗C∗√
θ(1+θ)

Xη(v0).

Remark 2.1.5. It follows from (2.1.43) that for the solution v obtained in Theorem
2.1.4, v(t) satisfies (2.1.40) for almost every t > 0. That property is then propagated
globally in time.

For a solution v to equation (2.1.39), the moment Mρ(v(t)) defined in (2.1.24)
is proved to be a Lyapunov function on [0,∞) for all ρ ≥ 1 (cf. Lemma 2.5.10).
With some abuse of language, we sometimes refer to Mρ(v) as an entropy functional
for equation (2.1.39). It is possible to characterize the nonnegative measures that
minimize Mρ(v) for ρ > 1, or satisfy Dρ(v) = 0, where

Dρ(v) =

∫∫
(0,∞)2

ΦBβ
kk′

(
e−βk − e−βk′

)
(kρ − k′ρ)v(k)v(k′)dkdk′. (2.1.44)

This question is solved, usually, at mass M and energy E fixed. Because of the
truncated kernel ΦBβ, it is also necessary to introduce the following property about
the support of the measure v in connection with the support of the kernel ΦBβ.

Given a measure v ∈M+([0,∞)), we denote {An(v)}n∈N the, at most, countable
collection of disjoint closed subsets of the support of v such that,

(k, k′) ∈ An×An for somen ∈ N, if and only if, Φ(k, k′) 6= 0 or

∃{kn}n∈N ⊂ [k, k′); k1 = k, lim
n→∞

kn = k′,Φ(kn, kn+1) 6= 0 ∀n ∈ N. (2.1.45)
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(cf. Section 2.5.3 for a precise definition of An(v)).
Let us define now, for any countable collection C = {Cn,Mn}n∈N of disjoint,

closed subsets Cn ⊂ [0,∞) enjoying the property (2.1.45), and positive real numbers
Mn, the following family of non negative measures,

FC,α =

{
v ∈M α

+([0,∞)) : Cn = An(v), Mn =

∫
An(v)

v(k)dk

}
.

Theorem 2.1.6. For any C and α > 1 as above, the following statements are
equivalent:

(i) v ∈ FC,α and Dα(v) = 0.

(ii) Mα(v) = min{Mα(v) : v ∈ FC,α}.

(iii) v =
∑∞

n=0Mnδkn, where kn = min{k ∈ An}.

Remark 2.1.7. For any sequence {xn}n∈N such that xn > 0, xn → 0 as n → ∞,
and Φ(xn, xm) = 0 for all n 6= m, the measure

u =
∞∑
n=0

αnδxn

satisfies the conditions (i)–(ii) in Theorem 2.1.6. Although 0 ∈ suppu, there is no
Dirac measure at the origin.

The long time behavior of the weak solutions of (2.1.39) is yet only partially
understood as shows the following Theorem,

Theorem 2.1.8. Let v be a weak solution of (2.1.39) constructed in Theorem 2.5.1
for an initial data v0 ∈M+([0,∞)) satisfying Xη(v0) <∞ for some η ≥ (1− θ)/2.

Then, as t→∞, v(t) converges in C([0,∞),M+([0,∞))) to the measure

µ =
∞∑
i=0

M ′iδk′i , (2.1.46)

where M ′i ≥ 0, k′i ≥ 0 satisfy the following properties:

1. k′i ∈ supp(v0) for all i ∈ N,

2. Φ(k′i, k
′
j) = 0 for all i 6= j,

3. If we define Jn={i ∈ N : k′i∈An(v0), M ′i > 0} for all n∈N,∑
i∈Jn

M ′i = Mn, (2.1.47)

4. For all n ∈ N, if kn = min{k ∈ An(v0)} > 0, then there exists k′i such that
k′i = kn.

Remark 2.1.9. If in Point 4 of Theorem 2.1.8, kn = min{k ∈ An(v0)} = 0 for some
n ∈ N, but v0 has no Dirac measure at k = 0, we do not know if k′i = 0 for some
i ∈ N, even if the origin belongs to the support of the limit measure µ (cf. Remark
2.1.7 for example).
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The measure µ is of course determined by the initial data v0, but its complete
description (i.e. the values of k′i and m′i) is not known, only the locations k′i of some
of the Dirac masses. For example, it is possible to have k′i = kn = min{k ∈ An(v0)}
and k′i < k′j ∈ An(v0) for some n, i, j in N, and k′i, k

′
j not seeing each other, i.e.,

Φ(k′i, k
′
j) = 0 (cf. Example 1, Section 2.5.4 ). The location of a Dirac measure at

k′i = xn is just given by the support of the initial data, but the appearance of a
Dirac measure at k′j is more difficult to be determined.

The long time behaviour that is proved in Theorem 2.1.8 for the solutions of the
simplified equation (2.1.39) can not be expected, of course, to hold for the solutions
of the complete equation (2.1.23). But in combination with the equation (2.1.38)
for β large, it could indicate that the solutions of the complete problem (2.1.23) also
undergo the formation of large an concentrated peaks, that could remain for some
long, although finite, time.

2.1.3 General comment

The main results of the article are stated in this Introduction in terms of the original
variables, t, k, and v(t, k) = k2f(t, k). However, in order to make clearly appear
some important aspects of the equation, it is useful to introduce τ , x, and u(τ, x),
variables scaled with the parameter β. This is a natural parameter since it is related
with the inverse of the temperature of the gas of electrons.. This scaling makes
clearly appear two features of the equation for β >> 1, namely, the fact that Bβ
is very much peaked along the diagonal, and the different scaling properties of the
quadratic and linear part of the collision integral in (2.1.15) (cf. Section B.1 for
details).

However, since in all this work the value of the parameter β remains fixed, it
is taken equal to one, without any loss of generality. Therefore, except in Section
B, we have τ ≡ t, x ≡ k and u ≡ v. In particular, for the sake of brevity, we do
not re-write again the main results in terms of the variables x and u, although the
proofs will be written in those terms.

The main results are actually proved for general kernels B satisfying some of the
properties that the truncated kernel Φ(k, k′)Bβ(k, k′) is proved to enjoy, and that
are sufficient for our purpose.

2.2 Existence of weak solutions.

In this Section we prove existence of weak solutions to the following problem:

∂u

∂t
(t, x) = Q(u, u) =

∫
[0,∞)

b(x, y)q(u, u)dy, (2.2.1)

u(0) = u0 ∈M+([0,∞)), (2.2.2)

where t > 0, x ≥ 0,

q(u, u) = u(t, y)(x2 + u(t, x))e−x − u(t, x)(y2 + u(t, y))e−y, (2.2.3)

b(x, y) =
B(x, y)

xy
, (2.2.4)
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under the following assumptions on the kernel B:

(i) B(x, y) ≥ 0 for all (x, y) ∈ [0,∞)2, (2.2.5)

(ii) B(x, y) = B(y, x) for all (x, y) ∈ [0,∞)2, (2.2.6)

(iii) B ∈ C([0,∞)2 \ {(0, 0)}), (2.2.7)

(iv) There exist θ ∈ (0, 1), δ∗ > 0 and ρ∗ = ρ∗(θ, δ∗) > 0 such that

supp(B) = Γ = Γ1 ∪ Γ2, (2.2.8)

Γ1 =
{

(x, y) ∈ [0,∞)2 \ [0, δ∗]
2 : θx ≤ y ≤ θ−1x

}
, (2.2.9)

Γ2 =
{

(x, y) ∈ [0, δ∗]
2 : |x− y| ≤ ρ∗

√
xy(x+ y)

}
(2.2.10)

(v) There exists a constant C∗ > 0 such that, for all (x, y) ∈ Γ,

B(x, y) ≤ B
(
x+ y

2
,
x+ y

2

)
≤ C∗e

x+y
2

x+ y
. (2.2.11)

Remark 2.2.1. The region Γ in (2.2.8)–(2.2.10) is such that:

Γ =
{

(x, y) ∈ [0,∞)2 : y ∈
(
γ1(x), γ2(x)

)}
, (2.2.12)

where

γ1(x) =


2x+ρ2

∗x
2−ρ∗x3/2

√
ρ2
∗x+8

2(1−ρ2
∗x)

if x ∈ [0, δ∗]

θx if x ∈ (δ∗,∞),
(2.2.13)

γ2(x) =


2x+ρ2

∗x
2+ρ∗x3/2

√
ρ2
∗x+8

2(1−ρ2
∗x)

if x ∈ [0, θδ∗]

θ−1x if x ∈ (θδ∗,∞).
(2.2.14)

In particular θx ≤ γ1(x) ≤ x ≤ γ2(x) ≤ θ−1x for all x ≥ 0. The value of ρ∗ =
ρ∗(θ, δ∗) is chosen so that γ1 and γ2 are continuous.

Definition 2.2.2. We say that a map u : [0,∞) →M+([0,∞)) is a weak solution
of (2.2.1)–(2.2.2) if

(i) ∀ϕ ∈ Cb([0,∞)),

∫
[0,∞)

u(·, x)ϕ(x)dx ∈ C([0,∞);R) (2.2.15)

and

∫
[0,∞)

u(0, x)ϕ(x)dx =

∫
[0,∞)

u0(x)ϕ(x)dx, (2.2.16)

(ii) ∀ϕ ∈ C1
b ([0,∞)), ϕ′(0) = 0, (2.2.17)∫

[0,∞)
u(·, x)ϕ(x)dx ∈W 1,∞

loc ([0,∞);R), (2.2.18)

d

dt

∫
[0,∞)

u(t, x)ϕ(x)dx =
1

2

∫∫
[0,∞)2

b(x, y)q(u, u)(ϕ(x)−ϕ(y))dydx. (2.2.19)

The existence of weak solutions for the problem (2.2.1), (2.2.2) was proved in [29]
under conditions on the kernel b not fulfilled in our case. In order to use that result
in [29], we first consider a regularised version of (2.2.1), with a truncated function
bn ∈ L∞([0,∞)× [0,∞)).

It is not possible to define the dissipation of entropy for the weak solutions of
(2.2.1) as in [29], for the same reason as for the equation (2.1.23). However, it
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may be defined for the solutions un of the regularised version of (2.2.1), with the
truncated kernel bn,

D(n)(un) =
1

2
D

(n)
1 (gn) +D

(n)
2 (gn, Gn) +

1

2
D

(n)
3 (Gn), (2.2.20)

D
(n)
1 (gn) =

∫∫
(0,∞)2

bn(x, y)j
(
(x2 + gn)e−xg′n, (y

2 + g′n)e−ygn
)
dydx, (2.2.21)

D
(n)
2 (gn, Gn) =

∫∫
(0,∞)2

bn(x, y)j
(
(x2 + gn)e−x, gne

−y)Gn(y)dydx, (2.2.22)

D
(n)
3 (Gn) =

∫∫
(0,∞)2

bn(x, y)j
(
e−x, e−y

)
Gn(y)Gn(x)dydx, (2.2.23)

j(a, b) = (a− b)(ln a− ln b), ∀a > 0, b > 0, (2.2.24)

where un = gn +Gn is the Lebesgue’s decomposition of un.

2.2.1 Regularised problem

For n ∈ N, let φn ∈ Cc((0,∞)) be such that 0 ≤ φn(x) ≤ x−1 for all x ≥ 0,
supp(φn) = [1/(n+1), n+1] and φn(x) = x−1 for x ∈ [1/n, n], so that limn→∞ φn(x) =
x−1. Then we define

bn(x, y) = B(x, y)φn(x)φn(y), (2.2.25)

and consider the problem

∂un
∂t

(t, x) = Qn(un, un) =

∫
[0,∞)

bn(x, y)q(un, un)dy, (2.2.26)

un(0) = u0 ∈M+([0,∞)). (2.2.27)

If we denote

Kϕ(u, u) =
1

2

∫∫
[0,∞)2

kϕ(x, y)u(t, x)u(t, y)dydx, (2.2.28)

kϕ(x, y) = b(x, y)(e−x − e−y)(ϕ(x)− ϕ(y)), (2.2.29)

Lϕ(u) =
1

2

∫
[0,∞)

Lϕ(x)u(t, x)dx, (2.2.30)

Lϕ(x) =

∫ ∞
0

`ϕ(x, y)dy, (2.2.31)

`ϕ(x, y) = b(x, y)y2e−y(ϕ(x)− ϕ(y)), (2.2.32)

then (2.2.19) reads

d

dt

∫
[0,∞)

ϕ(x)u(t, x) = Kϕ(u, u)− Lϕ(u), (2.2.33)

and the weak formulation of (2.2.26) reads

d

dt

∫
[0,∞)

ϕ(x)un(t, x) = Kϕ,n(un, un)− Lϕ,n(un), (2.2.34)
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where b is replaced by bn in the formulas (2.2.28)–(2.2.32). Since bn ∈ L∞([0,∞)2)
for all n ∈ N, Theorem 3 in [29] may be applied (cf. Proposition 2.2.4). For any
u ∈ M+([0,∞)), we denote u = ur + us the Lebesgue decomposition of u into an
absolutely continuous measure with respect to the Lebesgue measure, ur, and a
singular measure, us.

Remark 2.2.3. By symmetry and Lemma A.0.3, for all ϕ ∈ C1
b ([0,∞)),

Kϕ(u, u) =

∫
[0,∞)

∫
[0,x)

kϕ(x, y)u(t, x)u(t, y)dydx.

Proposition 2.2.4. For any n ∈ N and any initial data u0 = u0,r + u0,s ∈
M 1

+([0,∞)), there exists a unique weak solution un = un,r+un,s ∈ C([0,∞),M 1
+([0,∞)))

to (2.2.26), (2.2.27) that satisfies

M0(un(t)) = M0(u0) ∀t ≥ 0, (2.2.35)

supp(un,s(t)) ⊂ supp(u0,s) ∀t ≥ 0, (2.2.36)

and for all ϕ ∈ Cc([0,∞)× [0,∞)),∫
[0,∞)

ϕ(t, x)un(t, x)dx =

∫
[0,∞)

ϕ(0, x)u0(x)dx (2.2.37)

+

∫ t

0

∫
[0,∞)

ϕt(t, x)u(t, x)dxds+

∫ t

0

∫
[0,∞)

Qn(un, un)ϕ(s, x)dxds,

and for all t1 and t2 with t2 ≥ t1 ≥ 0,∫ t2

t1

D(n)(un(t))dt = H(un(t1))−H(un(t2)). (2.2.38)

Moreover, if u0 ∈ L1([0,∞)) then un ∈ C([0,∞), L1([0,∞))).

Proof. Theorem 3 in [29].

Remark 2.2.5. In Proposition 2.2.4, the space M 1
+([0,∞)) is endowed with the

total variation norm.

Corollary 2.2.6. Let un be as in Proposition 2.2.4 for n ∈ N. Then (2.2.34) holds
for all t > 0 and for all nonnegative ϕ ∈ C([0,∞)) such that

∫
[0,∞) ϕ(x)u0(x)dx <

∞.

Proof. Given a nonnegative function ϕ ∈ C([0,∞)) such that∫
[0,∞) ϕ(x)u0(x)dx < ∞, let {ϕk}k∈N ⊂ Cc([0,∞)) be such that ϕk(x) → ϕ(x) as

k → ∞ for all x ∈ [0,∞), and ϕk ≤ ϕk+1 ≤ ϕ for all k ∈ N. By (2.2.37) with test
function ϕk, and recalling that φn is compactly supported, it is easy to deduce using
Fubini’s theorem, the symmetry of B, and the antisymmetry of q(un, un), that for
all k ∈ N,∫

[0,∞)
ϕk(x)un(t, x)dx =

∫
[0,∞)

ϕk(x)u0(x)dx

+

∫ t

0

(
Iϕk,n(un, un)− Lϕk,n(un)

)
ds. (2.2.39)



36 On a Boltzmann equation for Compton scattering

Using again that φn is compactly supported, we can pass to the limit as k →∞ in
(2.2.39) by monotone and dominated convergence theorems to obtain (2.2.39) with
ϕ instead of ϕk.

Now, since un ∈ C([0,∞),M 1
+([0,∞))), where the topology on M 1

+([0,∞)) is
the total variation norm, it follows that the maps

t 7→ Kϕ,n(un(t), un(t)), t 7→ Lϕ,n(un(t))

are continuous for all n ∈ N and all t > 0. Then (2.2.34) follows from (2.2.39) with
ϕ istead of ϕk, by the fundamental theorem of calculus.

2.2.2 The limit n→∞

The goal now is to pass to the limit as n→∞ in (2.2.34) and obtain a weak solution
of (2.2.1)–(2.2.11). We start with the following uniform estimate.

Proposition 2.2.7. Let un and u0 be as in Proposition 2.2.4. If Xη(u0) < ∞ for
some η ∈ (0, 1/2), then for all t > 0 and all n ∈ N,

Xη(un(t)) ≤ eCηtXη(u0) (2.2.40)

where Cη is defined in (2.1.35).

Proof. Let η ∈ (0, 1/2) and take ϕ(x) = eηx in (2.2.34), which is allowed by Proposi-
tion 2.2.6. If we drop all the negative terms in (2.2.34), we use (A.0.2) in Appendix
A (for C1 functions instead of Lipschitz functions), and φn(x) ≤ x−1, then

d

dt

∫
[0,∞)

eηxun(t, x)dx ≤ 1

2

∫
[0,∞)

un(t, x)

∫ ∞
x
|`ϕ(x, y)|dydx

≤ C∗(1− θ)
2θ2(1 + θ)

∫
[0,∞)

un(t, x)e
x
2

∫ ∞
x

ϕ′(y)e−
y
2 dydx

≤ Cη
∫

[0,∞)
eηxun(t, x)dx,

from where (2.2.40) follows using Gronwall’s inequality.

We prove now the following pre-compactness result of {un(t)}n∈N for any fixed t > 0.

Proposition 2.2.8. Let un and u0 be as in Proposition 2.2.4. Then, for every fixed
t > 0, there exist a subsequence of {un(t)}n∈N (not relabelled) and U ∈M+([0,∞))
such that, for all ϕ ∈ C0([0,∞)),

lim
n→∞

∫
[0,∞)

ϕ(x)un(t, x)dx =

∫
[0,∞)

ϕ(x)U(x)dx. (2.2.41)

Moreover, if u0 satisfies Xη(u0) <∞ for some η ∈ (0, 1/2), then

Xη(U) ≤ eCηtXη(u0), (2.2.42)

where Cη is defined in (2.1.35), and (2.2.41) holds for all ϕ ∈ C([0,∞)) satisfying
the growth condition

|ϕ(x)| ≤ ceαx ∀x ∈ [0,∞), c > 0, 0 ≤ α < η. (2.2.43)



2.2 Existence of weak solutions. 37

Proof. By (2.2.35), the sequence {un(t)}n∈N is uniformly bounded in M+([0,∞)),
and thus has a subsequence, still denoted un(t), that converges to some U ∈M+([0,∞))
in σ(M ([0,∞)), C0([0,∞))) (the weak* topology), i.e., (2.2.41) holds for all ϕ ∈
C0([0,∞)). Moreover, if ζj ∈ Cc([0,∞)) is such that 0 ≤ ζj ≤ 1, ζj(x) = 1 for all
x ∈ [0, j] and ζj(x) = 0 for all x ≥ j+ 1, so that ζj → 1, then by weak* convergence
and (2.2.35),∫

[0,∞)
ζj(x)U(x)dx = lim

n→∞

∫
[0,∞)

ζj(x)un(t, x)dx

≤ lim
n→∞

∫
[0,∞)

un(t, x)dx =

∫
[0,∞)

u0(x)dx,

and then, as j →∞, ∫
[0,∞)

U(x)dx ≤
∫

[0,∞)
u0(x)dx. (2.2.44)

Suppose now that u0 satisfies (2.1.28) for some η ∈ (0, 1/2), and let ψ(x) = eηx

and ψj = ψζj , where ζj is as before. Then, by weak* convergence and Proposition
2.2.7,

∫
[0,∞)

ψj(x)U(x)dx = lim
n→∞

∫
[0,∞)

ψj(x)un(t, x)dx

≤ lim inf
n→∞

∫
[0,∞)

eηxun(t, x)dx ≤ eCηt
∫

[0,∞)
eηxu0(x)dx,

and letting j →∞, (2.2.42) holds.

Let now ϕ ∈ C([0,∞)) satisfying (2.2.43), and define ϕj = ϕζj , with ζj as before,
so that ϕj → ϕ pointwise as j →∞. Then, for all j ∈ N,∣∣∣∣ ∫

[0,∞)
ϕ(x)un(t, x)dx−

∫
[0,∞)

ϕ(x)U(x)dx

∣∣∣∣
≤
∣∣∣∣ ∫

[0,∞)
ϕj(x)un(t, x)dx−

∫
[0,∞)

ϕj(x)U(x)dx

∣∣∣∣ (2.2.45)

+

∫
[0,∞)

|ϕ(x)− ϕj(x)|un(t, x)dx+

∫
[0,∞)

|ϕ(x)− ϕj(x)|U(x)dx.

By (2.2.41), the first term in the right hand side above converges to zero as n→∞
for all j ∈ N. We just need to prove that the second and the third terms are
arbitrarly small (for j large enough). Both terms are treated in the same way. We
use that ϕj = ϕ on [0, j], (2.2.43), and Proposition 2.2.7 to obtain∫

[0,∞)
|ϕ(x)− ϕj(x)|un(t, x)dx =

∫
(j,∞)

|ϕ(x)− ϕj(x)|un(t, x)dx

≤ 2

∫
(j,∞)

|ϕ(x)|un(t, x)dx ≤ 2c

∫
(j,∞)

eαxun(t, x)dx

≤ 2ce(α−η)j

∫
(j,∞)

eηxun(t, x)dx ≤ 2ce(α−η)jeCηt
∫

[0,∞)
eηxu0(x)dx,
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and by similar estimates, and (2.2.42),∫
[0,∞)
|ϕ(x)− ϕj(x)|U(x)dx ≤ 2ce(α−η)jeCηt

∫
[0,∞)

eηxu0(x)dx.

Since α < η, both terms converges to zero as j →∞.

The equicontinuity of {un}n∈N in the narrow topology is proved in the following
Proposition.

Proposition 2.2.9. Let un and u0 be as in Proposition 2.2.4, and suppose that
Xη(u0) < ∞ for some η ∈

[
1−θ

2 , 1
2

)
. Then, for all n ∈ N, ϕ L-Lipschitz on [0,∞),

0 < T <∞ and t, t0 ∈ [0, T ],∣∣∣∣ ∫
[0,∞)

ϕ(x)un(t, x)dx−
∫

[0,∞)
ϕ(x)un(t0, x)dx

∣∣∣∣ ≤ C(u0, T )|t− t0|, (2.2.46)

where

C(u0, T ) = LC∗

[
AM0(u0) +

(1− θ)
2θ2(1 + θ)

]
e
TC (1−θ)

2 X (1−θ)
2

(u0),

and A is given in (A.0.1). In particular, the sequence {un}n∈N is equicontinuous
from [0,∞) into M+([0,∞) with the narrow topology.

Proof. Let ϕ be L-Lipschitz, 0 < T < ∞ and let t, t0 ∈ [0, T ] with t0 ≤ t. By
(2.2.34) ∣∣∣∣ ∫

[0,∞)
ϕ(x)un(t, x)dx−

∫
[0,∞)

ϕ(x)un(t0, x)dx

∣∣∣∣
≤
∫ t

t0

(
|Kϕ,n(un(s), un(s))|+ |Lϕ,n(un(s))|

)
ds. (2.2.47)

By (A.0.5), Remark A.0.5, (2.2.35), and Proposition 2.2.7,∫ t

t0

|Kϕ,n(un(s), un(s))|ds ≤ LC∗AM0(u0)

∫ t

t0

X (1−θ)
2

(un(s))ds

≤ LC∗AM0(u0)e
tC (1−θ)

2 X (1−θ)
2

(u0)(t− t0), (2.2.48)

and by (A.0.6) (positive part only), Remark A.0.5 and Proposition 2.2.7,∫ t

t0

|Lϕ,n(un(s))|ds ≤ LC∗(1− θ)
2θ2(1 + θ)

∫ t

t0

X (1−θ)
2

(un(s))ds

≤ LC∗(1− θ)
2θ2(1 + θ)

e
tC (1−θ)

2 X (1−θ)
2

(u0)(t− t0). (2.2.49)

Using (2.2.48) and (2.2.49) in (2.2.47), the estimate (2.2.46) follows. For the equicon-
tinuity, let ε > 0 and consider δ < ε/C(u0, T ). By (2.1.26), (2.1.27), if we take the
supremum on (2.2.46) among all ϕ ∈ Lip1([0,∞)) with ‖ϕ‖∞ ≤ 1, we deduce that
for all t ∈ [0, T ], t0 ∈ [0, T ] such that |t − t0| < δ, then d0(un(t), un(t0)) < ε for all
n ∈ N, that is, {un}n∈N is equicontinuous on [0, T ].

As a Corollary of Proposition 2.2.8 and Proposition 2.2.9, we obtain that a
subsequence of {un}n∈N converges to a limit u in the space C([0,∞),M+([0,∞))).
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Corollary 2.2.10. Let un and u0 be as in Proposition 2.2.4, and suppose that
Xη(u0) <∞ for some η ∈

[
1−θ

2 , 1
2

)
. Then there exist a subsequence of {un}n∈N (not

relabelled) and u ∈ C([0,∞),M+([0,∞))) such that

lim
n→∞

d0(un(t), u(t)) = 0 ∀t ≥ 0, (2.2.50)

and the convergence is uniform on the compact sets of [0,∞). Moreover,

Xη(u(t)) ≤ eCηtXη(u0) ∀t ≥ 0, (2.2.51)

where Cη is given in (2.1.35), and for all ϕ ∈ C([0,∞)) satisfying (2.2.43),

lim
n→∞

∫
[0,∞)

ϕ(x)un(t, x)dx =

∫
[0,∞)

ϕ(x)u(t, x)dx ∀t ≥ 0. (2.2.52)

Remark 2.2.11. (2.2.50) implies that, for every ϕ ∈ Cb([0,∞)),

lim
n→∞

sup
t1≤t≤t2

∣∣∣∣ ∫
[0,∞)

un(t, x)ϕ(x)dx−
∫

[0,∞)
u(t, x)ϕ(x)dx

∣∣∣∣ = 0. (2.2.53)

Proof. By Proposition 2.2.8, the sequence {un}n∈N is relatively compact on
(M+([0,∞)), d0), and by Proposition 2.2.9, the sequence {un}n∈N is equicontinuous
from [0,∞) into (M+([0,∞)), d0). Then, from Arzelà-Ascoli theorem, un converges
pointwise (for all t ≥ 0) to a continuous function u, and the convergence is uniform
on compact sets. Since the metric d0 generates the narrow topology, and the con-
vergence in (2.2.50) is uniform on compact sets, then (2.2.53) follows. The estimate
(2.2.51) and the limit (2.2.52) are obtained as in Proposition 2.2.8, since the time t
is fixed.

We prove now that the limit u of the sequence {un}n∈N is indeed a weak solution
of (2.2.1)–(2.2.2).

Corollary 2.2.12. Given any v0 ∈ M+([0,∞)) satisfying (2.1.28) for some η ∈(
1−θ

2 , 1
2

)
, there exists v ∈ C([0,∞),M+([0,∞))) weak solution of (2.2.1)–(2.2.2),

that also satisfies (2.1.33) and (2.1.34).

Proof. Let {un}n∈N be the sequence of solutions for the regularised problem (2.2.26),
(2.2.27). By Corollary 2.2.10, a subsequence of {un}n∈N converges to a limit u ∈
C([0,∞),M+([0,∞))). Since u is continuous from [0,∞) to (M+([0,∞)), d0) and d0

generates the narrow topology, then (2.2.15) holds. Next, we prove that u satisfies
(2.2.16)–(2.2.19). To this end, let ϕ ∈ C1

b ([0,∞)) with ϕ′(0) = 0. By (2.2.34), for
all n ∈ N and all t ≥ 0,∫

[0,∞)
ϕ(x)un(t, x)dx =

∫
[0,∞)

ϕ(x)u0(x)dx (2.2.54)

+

∫ t

0

(
Kϕ,n(un(s), un(s)) + Lϕ,n(un(s))

)
ds,

and our goal is now to pass to the limit as n → ∞ term by term. By (2.2.53), for
all t ≥ 0,

lim
n→∞

∫
[0,∞)

ϕ(x)un(t, x)dx =

∫
[0,∞)

ϕ(x)u(t, x)dx. (2.2.55)
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Let us prove that for all t ≥ 0,

lim
n→∞

Lϕ,n(un(t)) = Lϕ(u(t)), (2.2.56)

lim
n→∞

Kϕ,n(un(t), un(t)) = Kϕ(u(t), n(t)). (2.2.57)

Starting with (2.2.56), we have∣∣Lϕ(u)− Lϕ,n(un)
∣∣ ≤∣∣Lϕ(u)− Lϕ(un)

∣∣+ |Lϕ(un)− Lϕ,n(un)|. (2.2.58)

Since Lϕ ∈ C([0,∞)) and Lϕ satisfies the growth condition (2.2.43) with α =
(1− θ)/2, (cf. Lemma A.0.1), then by (2.2.52) the first term in the right hand side
of (2.2.58) converges to zero as n→∞. For the second term we have, for any R > 0,

|Lϕ(un)− Lϕ,n(un)| ≤
∫

[0,R]
|Lϕ(x)− Lϕ,n(x)|un(t, x)dx

+

∫
(R,∞)

|Lϕ(x)− Lϕ,n(x)|un(t, x)dx.

On the one hand, using (2.2.35),∫
[0,R]
|Lϕ(x)− Lϕ,n(x)|un(t, x)dx ≤M0(u0)‖Lϕ − Lϕ,n‖C([0,R]),

which converges to zero as n→∞ by Lemma A.0.6. On the other hand, by (A.0.3),∫
(R,∞)

|Lϕ(x)− Lϕ,n(x)|un(t, x)dx ≤ 2

∫
(R,∞)

|Lϕ(x)|un(t, x)dx

≤ C
∫

(R,∞)
e

(1−θ)x
2 un(t, x)dx ≤ CeR( 1−θ

2
−η)

∫
(R,∞)

eηxun(t, x)dx, (2.2.59)

where C = LC∗(1−θ)
θ2(1+θ)

, and by Proposition 2.2.7 we deduce that (2.2.59) converges to

zero as R→∞. That concludes the proof of (2.2.56).
In order to prove (2.2.57), we use

|Kϕ(u, u)−Kϕ,n(un, un)| ≤ |Kϕ(u, u)−Kϕ(un, un)|
+ |Kϕ(un, un)−Kϕ,n(un, un)|. (2.2.60)

Then, for the first term in the right hand side of (2.2.60), given R > 0, we use∫∫
[0,∞)2

kϕ(x, y)u(x)u(y)dydx

≤
(∫∫

[0,R]2
+

∫∫
[γ1(R),∞)2

−
∫∫

[γ1(R),R]

)
kϕ(x, y)u(x)u(y)dydx,

to deduce

|Kϕ(u, u)−Kϕ(un, un)| ≤ I1 + I2 + I3, (2.2.61)

I1 =

∣∣∣∣ ∫∫
[0,R]2

kϕu(x)u(y)dydx−
∫∫

[0,R]2
kϕun(x)un(y)dydx

∣∣∣∣,
I2 =

∣∣∣∣ ∫∫
[γ1(R),R]2

kϕu(x)u(y)dydx−
∫∫

[γ1(R),R]2
kϕun(x)un(y)dydx

∣∣∣∣,
I3 =

∣∣∣∣ ∫∫
[γ1(R),∞)2

kϕu(x)u(y)dydx−
∫∫

[γ1(R),∞)2

kϕun(x)un(y)dydx

∣∣∣∣.
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Since kϕ ∈ C([0,∞)2) (cf. Lemma A.0.3), then by Stone-Weierstrass theorem,
kϕ(x, y) can be approximated on any compact subset X ⊂ [0,∞)2 by functions of
the form ψ1(x)ψ2(y), with ψi ∈ C(X) for i = 1, 2. By Tietze extension theorem
we may assume that ψi ∈ C([0,∞)) for i = 1, 2. Then, using that un converges
narrowly to u, we deduce that for any ε > 0, R > 0, there exists n∗ ∈ N such that
for all n ≥ n∗

I1 < ε, I2 < ε. (2.2.62)

Then, for I3 we have the following.

I3 ≤
∫∫

[γ1(R),∞)2

kϕ(x, y)
(
u(x)u(y) + un(x)un(y)

)
dydx, (2.2.63)

and by (A.0.1), calling C = ‖ϕ′‖∞C∗A,∫∫
[γ1(R),∞)2

kϕu(t, x)u(t, y)dydx ≤ C
∫∫

[γ1(R),∞)2

e
|x−y|

2 u(t, x)u(t, y)dydx

≤ 2C

∫
[γ1(R),∞)

e
(1−θ)x

2 u(t, x)

∫
[γ1(R),x]

u(t, y)dydx

≤ 2CXη(u(t))

∫
[γ1(R),∞)

u(t, y)dy. (2.2.64)

We now use that for all x > 0, t > 0, there exists R > 0 such that∫
[γ1(R),x]

u(t, y)dy ≤ 1

γ1(R)

∫
[γ1(R),∞)

yu(t, y)dy

≤ 1

γ1(R)

∫
[γ1(R),∞)

eηyu(t, y)dy ≤ eCηtXη(u0)

γ1(R)
, (2.2.65)

where we have used (2.2.51). Using (2.2.65) in (2.2.64), and (2.2.51) again,∫∫
[γ1(R),∞)2

kϕu(t, x)u(t, y)dydx ≤ 2Ce2Cηt(Xη(u0))2

γ1(R)
,

and the same estimate holds when u is replaced by un. We then obtain from (2.2.63)
that, for any ε > 0, there exists R > 0 such that I3 < ε for all n ∈ N. Combining
this with (2.2.62), we then deduce from (2.2.61) that for all t > 0

lim
n→∞

|Kϕ(u(t), u(t))−Kϕ(un(t), un(t))| = 0. (2.2.66)

Now, for the second term in the right hand side of (2.2.60), we have

|Kϕ(un, un)−Kϕ,n(un, un)|

≤
∫

[0,∞)

∫
[0,x]
|kϕ(x, y)||1− xyφn(x)φn(y)|un(t, x)un(t, y)dydx,

and we decompose the integral above as follows:∫
[0,∞)

∫
[0,x]

=

∫ n

1
n

∫ x

1
n

+

∫ ∞
n

∫ x

0
+

∫ n

0

∫ min{x, 1
n
}

0
. (2.2.67)
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It plays no role in the argument whether the limits of integration are open or closed,
so we use the standard notation for integrals. By definition φn(x) = x−1 for all
x ∈ [1/n, n], and then∫ n

1
n

∫ x

1
n

|kϕ(x, y)||1− xyφn(x)φn(y)|un(t, x)un(t, y)dydx = 0.

Now, by (A.0.5) and (2.2.35),∫ ∞
n

∫ x

0
|kϕ(x, y)|un(t, x)un(t, y)dydx

≤ LC∗AM0(u0)

∫ ∞
n

e
(1−θ)x

2 un(t, x)dx

≤ LC∗AM0(u0)en(
1−θ

2
−η)

∫ ∞
n

eηxun(t, x)dx,

and from Proposition 2.2.7 we deduce that it converges to zero as n → ∞. For
the las term in the right hand side of (2.2.67), we argue as follows. Let us define
xn = γ2(1/n) and Dn = [0, xn] × [0, 1/n]. Notice that xn → 0 as n → ∞. Then by
(2.2.35) ∫ n

0

∫ min{x, 1
n
}

0
|kϕ(x, y)||1− xyφn(x)φn(y)|un(t, x)un(t, y)dydx

≤ max
(x,y)∈Dn

|kϕ(x, y)|M0(u0)2.

Since kϕ(0, 0) = 0 and kϕ is continuous (cf. Lemma A.0.3), then kϕ(x, y) → 0 for
all (x, y) ∈ Dn as n→∞. That concludes the proof of (2.2.57).

From the limits (2.2.56), (2.2.57), the uniform bounds (2.2.48), (2.2.49), domi-
nated convergence theorem and (2.2.55), we obtain∫

[0,∞)
ϕ(x)u(t, x)dx =

∫
[0,∞)

ϕ(x)u0(x)dx

+

∫ t

0

(
Kϕ(u(s), u(s)) + Lϕ(u(s))

)
ds. (2.2.68)

The identity (2.2.16) then follows from (2.2.68) for t = 0. It follows from Proposition
2.2.9, by passage to the limit as n→∞, that for any ϕ ∈ C1

b ([0,∞)) with ϕ′(0) = 0,
the map t 7→

∫
[0,∞) u(t, x)ϕ(x)dx is locally Lipschitz on [0,∞), i.e., (2.2.17) holds,

and then from (2.2.68), the weak formulation (2.2.19) follows. Taking ϕ = 1 in
(2.2.19), we obtain (2.1.33). The estimate (2.1.34) is just (2.2.51).

Remark 2.2.13. Because of the exponential growth of the kernel B, an exponential
moment is required on the initial data u0. This exponential moment is propagated
to the solution for all t > 0. Using that exponential it easily follows that for any
ρ ≥ 1, if M−ρ(u0) < ∞, there exists a constant C1 > 0, and a non negative locally
bounded C2(t) such that,

d

dt

∫
[0,∞)

u(t, x)x−ρdx ≤ C1

(∫
[0,∞)

u(t, x)x−ρdx

)2

+ C2(t),

from where it follows that M−ρ(u(t)) <∞ for t in a bounded interval.

Proof of Theorem 2.1.2 . Theorem 2.1.2 follows from Corollary 2.2.12 since the
function b(k, k′) =

ΦBβ
kk′ satisfies (2.2.5)–(2.2.11).
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2.3 The singular part of the solution.

If u is a weak solution of (2.2.1)–(2.2.11) obtained in Theorem 2.1.2, for all t > 0, the
measure u(t) may now be decomposed by the Lebesgue’s decomposition Theorem
as

u(t) = g(t) + α(t)δ0 +G(t) (2.3.1)

g(t) ∈ L1([0,∞)), α ≥ 0, G(t) ⊥ dx, G(t, {0}) = 0 (2.3.2)

In this Section we give some properties of u, α, and G.
We first notice that the weak solution u of (2.2.1)–(2.2.11) obtained in Theorem

2.1.2, satisfies the equation (2.2.1) in the sense of distributions. This follows from
the properties of the support of the function B and Fubini’s Theorem. A similar
argument may be used for slightly more general test functions ϕ. To be more precise,
let us define the set

C =
{
ϕ ∈ Cb([0,∞)) : sup

x≥0

|ϕ(x)|
x3/2

<∞
}
. (2.3.3)

Proposition 2.3.1. Let u be a solution of (2.2.1)–(2.2.11) obtained in Theorem
2.1.2. Then, for almost every t > 0, ∂u/∂t ∈ D ′((0,∞)), Q(u(t), u(t)) ∈ D ′((0,∞)),
and

∀ϕ ∈ Cc((0,∞)),
d

dt
〈u(t), ϕ〉 = 〈Q(u(t), u(t)), ϕ〉. (2.3.4)

Moreover,

∀ϕ ∈ C ,
d

dt
〈u(t), ϕ〉 = 〈Q(u(t), u(t)), ϕ〉, (2.3.5)

where

Q(u(t), u(t)) =

∫
[0,∞)

b(x, y)
[
(e−x − e−y)u(t, x)u(t, y)

− u(t, x)y2e−y + u(t, y)x2e−x
]
dy. (2.3.6)

Remark 2.3.2. Notice that in (2.3.6), the integral containing the factor (e−x−e−y)
is convergent near the origin even for test functions ϕ ∈ C \Cc((0,∞)). That is not
true anymore if we consider each of the terms e−x and e−y separately.

Proof. By (2.2.8)–(2.2.11) and (2.1.33),∫
[0,∞)

|ϕ(x)|
∫

[0,∞)

B(x, y)

xy
E(x, y)dydx <∞,

where E(x, y) is one the functions in{
u(y)x2e−x, u(x)y2e−y, u(x)u(y)e−x, u(x)u(y)e−y

}
when ϕ ∈ C1

c ((0,∞)), or, one of the functions in{
u(x)u(y)|e−x − e−y|, u(x)y2e−y, u(y)x2e−x

}
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when ϕ ∈ C ∩C1
b ([0,∞)). Since u is a weak solution and satisfies (2.2.19), we deduce

from Fubini’s Theorem the identity (2.3.4) for ϕ ∈ C1
c ((0,∞)), and the identities

(2.3.5)-(2.3.6) for ϕ ∈ C ∩ C1
b ([0,∞)). By a density argument the Proposition

follows.

We may prove now the following property of the singular measure G(t).

Theorem 2.3.3. Let u be a weak solution of (2.2.1)–(2.2.11) obtained in Theorem
2.1.2, and consider the decomposition (2.3.1), (2.3.2). If G(0) = 0 in D ′((0,∞)),
then G(t) = 0 in D ′((0,∞)) for all t > 0.

Proof. By (2.3.4), for a.e. t > 0 and for all ϕ ∈ Cc((0,∞)),

d

dt

∫
[0,∞)

u(t, x)ϕ(x)dx =

∫
[0,∞)

ϕ(x)Q(u(t), u(t))(x)dx,

and then, after integration in time:∫
[0,∞)

{
u(t, x)− u(0, x)−

∫ t

0
Q(u(s), u(s))(x)ds

}
ϕ(x)dx = 0

for a.e. t > 0. If we plug now u = g + αδ0 + G in this formula and use that
ϕ ∈ Cc((0,∞)), we obtain for a.e. t > 0,∫

[0,∞)

{
g(t) +G(t)− g(0)−G(0)−R(t)− S(t)

}
ϕ(x)dx = 0,

where

R(t, x) =

∫ t

0

(
g(s, x)W (s, x) + x2e−x

∫
[0,∞)

b(x, y)u(s, y)dy

)
ds, (2.3.7)

S(t, x) =

∫ t

0
G(s, x)W (s, x)ds, (2.3.8)

W (s, x) =

∫
[0,∞)

b(x, y)(e−x − e−y)u(s, y)dy −
∫

[0,∞)
b(x, y)y2e−ydy. (2.3.9)

It follows that, for a.e. t > 0,

g(t) +G(t)− g(0)−G(0)−R(t)− S(t) = 0 in D ′((0,∞)). (2.3.10)

Let us prove now that R(t, ·) ∈ L1
loc((0,∞)) for all t ≥ 0. To this end, we first show

that W (t, ·) ∈ L∞loc((0,∞)) for all t ≥ 0. Let then x be in a compact set [a, c], with
0 < a < c < ∞, and let t ≥ 0. Using that supp(b) = Γ ⊂ {(x, y) ∈ [0,∞)2 : θx ≤
y ≤ θ−1x}, the bound (2.2.11), and that x ∈ [a, c], it is easily proved that there
exists a constant 0 < C <∞ that depends only on a, c, θ and C∗, such that for all
(x, y) ∈ Γ with x ∈ [a, c],

b(x, y)|e−x − e−y| ≤ C and b(x, y) max{x2, y2} ≤ C. (2.3.11)

We then obtain from (2.3.9) that for all t ≥ 0, x ∈ [a, c],

|W (t, x)| ≤ C(M0(u(t)) + 1),
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and by the conservation of mass (2.1.33),

sup
t≥0
‖W (t, ·)‖L∞([a,c]) ≤ C(M0(u0) + 1). (2.3.12)

Using now (2.3.11), (2.3.12) and (2.1.33), we deduce from (2.3.7) that for all t ≥ 0,
x ∈ [a, c],

|R(t, x)| ≤ C(M0(u0) + 1)

∫ t

0
g(s, x)ds+ CM0(u0)t. (2.3.13)

Then, since supt≥0 ‖g(t, ·)‖L1([a,c]) ≤ supt≥0M0(u(t)) = M0(u0), it follows from
(2.3.13) that

‖R(t, ·)‖L1([a,c]) ≤ C(M0(u0) + 1)M0(u0)t+ (c− a)CM0(u0)t. (2.3.14)

On the other hand, using the Lebesgue decomposition Theorem, we have for all
t ≥ 0:

S(t) = Sac(t) + Ss(t), Sac(t) ∈ L1([0,∞)), Ss(t) ⊥ dx.

Using this decomposition in (2.3.10), we deduce that for a.e. t > 0,

g(t)− g(0)−R(t)− Sac(t) = −G(t) +G(0) + Ss(t) in D ′((0,∞)).

Since the left hand side is absolutely continuous with respect to the Lebesgue mea-
sure and the right hand side is singular, we then obtain for a.e. t > 0,

g(t) = g(0) +R(t) + Sac(t) in D ′((0,∞)),

G(t) = G(0) + Ss(t) in D ′((0,∞)).

Then, for all ϕ ∈ Cc((0,∞)) and a.e. t > 0,∫
[0,∞)

ϕ(x)G(t, x)dx =

∫
[0,∞)

ϕ(x)G(0, x)dx+

∫
[0,∞)

ϕ(x)Ss(t, x)dx. (2.3.15)

We use now that for all nonnegative ϕ ∈ Cc((0,∞)), t ≥ 0,∫
[0,∞)

ϕ(x)Ss(t, x)dx ≤
∫

[0,∞)
ϕ(x)|Ss(t, x)|dx ≤

∫
[0,∞)

ϕ(x)|S(t, x)|dx, (2.3.16)

where |Ss(t)| and |S(t)| are the total variation measures of Ss(t) and S(t) respec-
tively. Then, if ϕ ≥ 0 and supp(ϕ) ⊂ [a, c] for finite c > a > 0, we deduce from
(2.3.8), (2.3.12) and (2.3.16) that∫

[0,∞)
ϕ(x)Ss(t, x)dx ≤

∫ t

0
‖W (s, ·)‖L∞([a,c])

∫
[0,∞)

ϕ(x)G(s, x)dxds

≤ C(M0(u0) + 1)

∫ t

0

∫
[0,∞)

ϕ(x)G(s, x)dxds,

and then, we obtain from (2.3.15) that, for a.e. t > 0,∫
[0,∞)

ϕ(x)G(t, x)dx ≤
∫

[0,∞)
ϕ(x)G(0, x)dx

+ C(M0(u0) + 1)

∫ t

0

∫
[0,∞)

ϕ(x)G(s, x)dxds.
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Then by Gronwall’s Lemma,∫
[0,∞)

ϕ(x)G(t, x)dx ≤

≤
(∫

[0,∞)
ϕ(x)G(0, x)dx

)(
1 + C(M0(u0) + 1)teC(M0(u0)+1)t

)
.

We deduce that, if G(0) = 0, then
∫

[0,∞) ϕ(x)G(t, x)dx = 0 for every ϕ ∈ Cc((0,∞))

and then, G(t) = 0 in D ′((0,∞)) for a.e. t > 0.

Remark 2.3.4. If α(0) = 0, we do not know whether or not α(t) = 0 for a.e. t > 0.

2.3.1 An equation for the mass at the origin

We can obtain information of the measure at the origin u(t, {0}) from the weak
formulation (2.2.19), by choosing test functions like in the following Remark.

Remark 2.3.5. Let ϕ ∈ C1
b ([0,∞)) be nonincreasing with suppϕ = [0, 1], ϕ(0) = 1

and ϕ′(0) = 0. Then, let ϕε(x) = ϕ(x/ε) for ε > 0. It follows from (2.1.33) and
dominated convergence that for all t ≥ 0,

lim
ε→0

∫
[0,∞)

ϕε(x)u(t, x)dx = u(t, {0}). (2.3.17)

Proposition 2.3.6. Let u be a weak solution of (2.2.1)–(2.2.11) obtained in Theo-
rem 2.1.2, and denote α(t) = u(t, {0}). Then α is right continuous, nondecreasing
and a.e. differentiable on [0,∞). Moreover, for all t and t0 with t ≥ t0 ≥ 0, and all
ϕε as in Remark 2.3.5, the following limit exists:

lim
ε→0

∫ t

t0

Kϕε(u(s), u(s))ds, (2.3.18)

and

α(t) = α(t0) + lim
ε→0

∫ t

t0

Kϕε(u(s), u(s))ds. (2.3.19)

Proof. Let us prove first (2.3.19). Using ϕε in (2.2.33), we deduce by (2.3.17) that
for all t and t0 with t ≥ t0 ≥ 0, the following limit exists:

lim
ε→0

∫ t

t0

(
Kϕε(u(s), u(s))− Lϕε(u(s))

)
ds,

and moreover

α(t) = α(t0) + lim
ε→0

∫ t

t0

(
Kϕε(u(s), u(s))− Lϕε(u(s))

)
ds. (2.3.20)

We claim

lim
ε→0

∫ t

t0

Lϕε(u(s))ds = 0. (2.3.21)
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In order to prove (2.3.21), we first obtain an integrable majorant of Lϕε(u(s)), and
then we show

lim
ε→0

Lϕε(u(s)) = 0 ∀s ≥ 0. (2.3.22)

Taking into account Γ, the support of Ψε(x, y) = ϕε(x)−ϕε(y), and using Lϕε(0) = 0
(cf. Lemma A.0.1), we have

|Lϕε(u(s))| ≤
∫

(0,ε)
u(s, x)

∫ θ−1x

θx
|`ϕε(x, y)|dydx

+

∫
[ε, εθ ]

u(s, x)

∫ ε

θx
|`ϕε(x, y)|dydx. (2.3.23)

Since

ϕε(x)− ϕε(y) =

∫ x
ε

y
ε

ϕ′(z)dz ≤ ‖ϕ
′‖∞
ε
|x− y|,

then by (A.0.2)

|`ϕε(x, y)| ≤ c

ε
e
x−y

2 , c =
C∗(1− θ)
θ2(1 + θ)

‖ϕ′‖∞,

and from (2.3.23) we deduce

|Lϕε(u(s))| ≤ 2c

ε

[ ∫
(0,ε)

u(s, x)
(
e

(1−θ)x
2 − e

(1−θ−1x)
2

)
dx

+

∫
[ε, εθ ]

u(s, x)
(
e

(1−θ)x
2 − e

x−ε
2
)
dx

]
.

We now use e
(1−θ)x

2 − e
(1−θ−1x)

2 ≤ (θ−1−θ)x
2 e

(1−θ)x
2 , e

(1−θ)x
2 − e

x−ε
2 ≤ (ε−θx)

2 e
(1−θ)x

2 , and
(2.2.51) to obtain, for all ε > 0,

|Lϕε(u(s))| ≤ c(θ−1 − θ)
∫

(0,ε)
u(s, x)e

(1−θ)x
2 dx

+ c(1− θ)
∫

[ε, εθ ]
u(s, x)e

(1−θ)x
2 dx

≤ c(θ−1 − θ)
∫
(0, ε

θ ]
e

(1−θ)x
2 u(s, x)dx

≤ c(θ−1 − θ)esC(1−θ)/2

∫
[0,∞)

e
(1−θ)x

2 u0(x)dx. (2.3.24)

The right hand side above is independent of ε, and it is clearly integrable on [0, t],
for all t > 0.

Let us prove now (2.3.22). If we prove

lim
ε→0
Lϕε(x) = 0 ∀x ≥ 0, (2.3.25)

then by (2.3.24) and dominated convergence, (2.3.22) follows. Therefore we are left
to prove (2.3.25). On the one hand, since Lϕε(0) = 0 for all ε > 0 (cf. Lemma



48 On a Boltzmann equation for Compton scattering

A.0.1), then limε→0 Lϕε(0) = 0. On the other hand, for all x > 0 and y ∈ [0,∞),
the function `ϕε(x, y) is well defined and

lim
ε→0

`ϕε(x, y) = 0. (2.3.26)

Moreoever, by (2.2.11)

|`ϕε(x, y)| ≤ B(x, y)
y

x
e−y(ϕε(x) + ϕε(y)) ≤ 2C∗

ye
x−y

2

x(x+ y)
1Γ(x, y),

and then ∫ ∞
0
|`ϕε(x, y)|dy ≤ 2C∗e

(1−θ)x
2

1

x

∫ θ−1x

θx

y

x+ y
dy

= 2C∗e
(1−θ)x

2

∫ θ−1

θ

z

1 + z
dz < +∞. (2.3.27)

It follows from (2.3.26), (2.3.27) and dominated convergence that Lϕε(x) → 0 as
ε→ 0 for all x > 0, and then (2.3.25) holds. That proves (2.3.22), which combined
with (2.3.24) and dominated convergence, finally proves (2.3.21). Using (2.3.21) in
(2.3.20), then the limit in (2.3.18) exists and (2.3.19) holds.

Since Kϕε(u, u) ≥ 0 for all ε > 0, it follows from (2.3.19) that α is monotone
nondecreasing, and then a.e. differentiable by Lebesgue Theorem.

We are left to prove the right continuity of α. Since α is nondecreasing, we
already know

α(t) ≤ lim inf
h→0+

α(t+ h), (2.3.28)

so it is sufficient to prove

lim sup
h→0+

α(t+ h) ≤ α(t). (2.3.29)

To this end, let ϕε as in Remark 2.3.5. Using α(t + h) ≤
∫

[0,∞) ϕε(x)u(t + h, x)dx

and (2.2.33) with ϕε, we have

α(t+ h)≤
∫

[0,∞)
ϕε(x)u(t, x)dx+

∫ t+h

t

(
Kϕε(u(s), u(s)) + Lϕε(u(s))

)
ds.

From Proposition A.0.4 and (2.2.51), we deduce that Kϕε(u(s), u(s)) and Lϕε(u(s))
are locally integrable in time for every fixed ε > 0, so letting h→ 0 above, and then
ε → 0, we finally obtain (2.3.29). The right continuity then follows from (2.3.28)
and (2.3.29).

Remark 2.3.7. By a standard approximation argument, it is possible to use 1[0,ε) as
a test function in (2.2.33). Then, by similar arguments as in the proof of Proposition
2.3.6, it can be seen that equation (2.3.19) also holds when ϕε is replaced by 1[0,ε),
and then, for all t ≥ t0 ≥ 0,

α(t) = α(t0) + lim
ε→0

∫ t

t0

∫∫
Dε

B(x, y)

xy
(e−x − e−y)u(s, x)u(s, y)dydxds, (2.3.30)

where Dε = [ε, γ2(ε))× (γ1(x), ε).
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2.4 On entropy and entropy dissipation.

Suppose that u is the weak solution of (2.2.1) with initial data uin given by Theorem
2.1.2 and {un}n∈N is the sequence given by Proposition 2.2.4. Then, if H is the
entropy defined in (2.1.36) and D(n) are the functionals defined in (2.2.20), the
same calculations as in Section 2 and Section 6 of [29] yield∫ ∞

T
D(n)(un(t))dt ≤ H(UM ) + C1

∫
[0,∞)

(1 + x)uin(x)dx, ∀n ∈ N

where UM is the unique equilibrium with the same mass than uin, M = M0(uin).
Since the sequence of functions {bn}n∈N is increasing,∫ ∞

T
D(m)(un(t))dt ≤ H(UM ) + C1

∫
[0,∞)

(1 + x)uin(x)dx, ∀n > m.

Therefore, by the weak lower semi continuity of the function Dm (cf. Theorem 4.6
in [29]), and the weak convergence of un to u:∫ ∞

T
D(m)(u(t))dt ≤ H(UM ) + C1

∫
[0,∞)

(1 + x)uin(x)dx, ∀m ∈ N

However, it is only possible to obtain a partial characterization of the measures
u ∈M+([0,∞)) with total mass M and such that D(m)(u) = 0 for all m ∈ N.

Proposition 2.4.1. A measure u ∈ M+([0,∞)) with total mass M > 0, satisfies
D(m)(u) = 0 for all m ∈ N, if and only if, there exists µ ≤ 0 and α ≥ 0 such that
u = gµ + αδ0 and

∫∞
0 gµ(x)dx+ α = M , where

gµ(x) =
x2

ex−µ − 1
, x > 0. (2.4.1)

Proof. It is straightforward to check that if u = gµ +αδ0 for some µ ≤ 0 and α ≥ 0,
such that

∫∞
0 gµ(x)dx+α = M , then D(m)(u) = 0. On the other hand, if u = g+G

is the Lebesgue decomposition of u and D(m)(u) = 0, then D
(m)
1 (g) = D

(m)
2 (g,G) =

D
(m)
3 (G) = 0. From D

(m)
1 (g) = 0 it follows that, for a.e. (x, y) ∈ [0,∞)2,

bm(x, y)j
(
g′(x2 + g)e−x, g(y2 + g′)e−y

)
= 0. (2.4.2)

Since bm(x, y) > 0 for (x, y) ∈ Γε,m for all ε > 0 and all m ∈ N, where

Γε,m =
{

(x, y) ∈ Γ : d((x, y), ∂Γ) > ε, (x, y) ∈
(

1

m
,m

)
×
(

1

m
,m

)}
,

we deduce from (2.4.2),

g(x)ex

x2 + g(x)
=

g(y)ey

y2 + g(y)
a.e. (x, y) ∈ Γε,m,

and both terms must then be equal to a nonnegative constant, say γ. If γ = 0, then
g = 0 for a.e. x > ε. If γ > 0, then γ = eµ for some µ ∈ R and g = gµ for a.e. x > ε.
Letting ε→ 0 we obtain that either g = 0 or g = gµ a.e. in (0,∞) and, since g ≥ 0,
then µ ≤ 0.
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From D
(m)
3 (G) = 0 for all m ∈ N, we obtain that j(e−x, e−y) = (e−x − e−y)(x−

y) = 0 for G×G a.e. (x, y) ∈ Γε,m. Letting ε→ 0, we deduce that

G =
∞∑
i=0

αiδxi , (2.4.3)

for some αi ≥ 0, xi ≥ 0 with bm(xi, xj) = 0 for all i 6= j, and all m ∈ N.

From D
(m)
2 (g,G) = 0, g = gµ and G as in (2.4.3), we deduce that, for all m ∈ N,

D
(m)
2 (g,G) =

∞∑
i=0

αi(xi − µ)
(
e−µ − e−xi

) ∫ ∞
0

bm(x, xi)gµ(x)dx = 0,

and therefore, each of the terms in the sum above is zero. If αi > 0 and xi > 0 for
some i ∈ N, it then follows that µ = xi, which is a contradiction since µ ≤ 0. Hence
G = αδ0 for some α ≥ 0.

Remark 2.4.2. The measure u in the statement of Proposition 2.4.1 is not uniquely
determined because, since bm(x, 0) = 0 for all x > 0, it is possible to have µ < 0 and
α > 0.

2.5 A simplified equation.

There may be several reasons to consider the following simplified version of equation
(2.1.15), (2.1.16):

∂u

∂t
(t, x) = u(t, x)

∫ ∞
0

R(x, y)u(t, y)dy, (2.5.1)

R(x, y) = b(x, y)(e−x − e−y). (2.5.2)

Although the integral collision operator in (2.5.1) only contains the nonlinear terms
of the integral collision operator in (2.1.15), it may supposed to be the dominant
term when u is large. This was the underlying idea in [76] and [77], when such
approximation was suggested. Let us also recall that, as shown in Section B.1
in Appendix B, if the variables k, t and f are suitably scaled with the parameter
β to obtain the new variables x, τ and u (cf. (B.1.2) and (B.1.6)), the equation
(2.1.15), (2.1.16) yields equation (B.1.7), where the dependence on the parameter
β > 0 has been kept. Then, the reduced equation (2.5.1) appears as the lower order
approximation as β →∞.

Due to its simpler form, the study of (2.5.1) is slightly easier. The existence
of solutions u ∈ C([0,∞), L1([0,∞))), that do not form a Dirac mass at the origin
in finite time, is proved (cf. Section 2.5.2) and it is also possible to describe the
long time behaviour of the solutions. Both questions remain open for the equation
(2.1.15).

2.5.1 Existence and properties of weak solutions.

In this Section we prove the following result on the existence of weak solutions of
the equation (2.5.1), (2.5.2).
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Theorem 2.5.1. For any initial data u0 ∈M+([0,∞)) satisfying

Xη(u0) <∞ for some η >
1− θ

2
, (2.5.3)

there exists u ∈ C([0,∞),M+([0,∞))) such that:

(i) ∀ϕ ∈ Cb([0,∞)),

∫
[0,∞)

u(·, x)ϕ(x)dx ∈ C([0,∞);R) (2.5.4)

and

∫
[0,∞)

u(0, x)ϕ(x)dx =

∫
[0,∞)

u0(x)ϕ(x)dx,

(ii) ∀ϕ ∈ C1
b ([0,∞)), ϕ′(0) = 0,∫

[0,∞)
u(·, x)ϕ(x)dx ∈W 1,∞

loc ([0,∞);R), and for a.e. t > 0,

d

dt

∫
[0,∞)

u(t, x)ϕ(x)dx =
1

2

∫∫
[0,∞)2

R(x, y)u(t, x)u(t, y)(ϕ(x)− ϕ(y))dydx. (2.5.5)

(We will say that u is a weak solution of (2.5.1) with initial data u0). The solution
also satisfies,

M0(u(t)) = M0(u0) ∀t > 0, (2.5.6)

Xη(u(t)) ≤ Xη(u0) ∀t > 0. (2.5.7)

This result is similar to Theorem 2.1.2 for the equation (2.2.1)–(2.2.11), and its
proof uses similar arguments. The main difference is that Theorem 3 in [29] can not
be used to obtain approximate solutions, and this must be done using a classical
truncation argument. Let us then consider the following auxiliary problem:

∂un
∂t

(t, x) = un(t, x)

∫ ∞
0

Rn(x, y)un(t, y)dy, (2.5.8)

un(0, x) = uin(x) (2.5.9)

Rn(x, y) = bn(x, y)(e−x − e−y) (2.5.10)

where bn is defined in (2.2.25).

Proposition 2.5.2. For every n ∈ N and for every nonnegative initial data uin ∈
L1([0,∞)), there exists a nonnegative function

un ∈ C([0,∞), L1([0,∞))) ∩ C1((0,∞), L1([0,∞)))

that satisfies (2.5.8) and (2.5.9) in C((0,∞), L1([0,∞))) and L1([0,∞)) respectively
and is such that,

M0(un(t)) = M0(uin) ∀t ≥ 0. (2.5.11)

Moreover, for all ϕ, defined on [0,∞), measurable, non negative and non decreasing
function,∫

[0,∞)
un(t, x)ϕ(x)dx ≤

∫
[0,∞)

uin(x)ϕ(x)dx, ∀n ∈ N, ∀t > 0. (2.5.12)
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Proof. The proof uses a simple Banach fixed point argument. For any nonnegative
f ∈ C([0,∞), L1([0,∞))) we consider the solution u to the problem

∂u

∂t
(t, x) = u(t, x)

∫ ∞
0

Rn(x, y)f(t, y)dy x > 0, t > 0,

u(0, x) = uin(x), x > 0,

given by:

An(f) ≡ u(t, x) = uin(x)e
∫ t
0

∫∞
0 Rn(x,y)f(s,y)dyds.

Our goal is then to prove first that An is a contraction on Xρ,T for some ρ > 0 and
T > 0 where,

Xρ,T =

{
f ∈ C([0, T );L1([0,∞))); sup

0≤t≤T
‖f(t)‖1 ≤ ρ

}
.

For all T > 0, t ∈ [0, T ) and f ∈ Xρ,T ,

‖An(f)(t)‖1 ≤‖uin‖1eTρ‖Rn‖∞ ; (2.5.13)

and for all t1, t2 such that 0 ≤ t1 ≤ t2 ≤ T :

|An(f)(t1, x)−An(f)(t2, x)| =

= uin(x)
∣∣∣e∫ t10

∫∞
0 Rn(x,y)f(s,y)dyds − e

∫ t2
0

∫∞
0 Rn(x,y)f(s,y)dyds

∣∣∣
≤ uin(x)

∣∣∣∣∫ t2

t1

∫ ∞
0

Rn(x, y)f(s, y)dyds

∣∣∣∣×
× eθ

∫ t1
0

∫∞
0 Rn(x,y)f(s,y)dyds+(1−θ)

∫ t2
0

∫∞
0 Rn(x,y)f(s,y)dyds

≤ uin(x)ρ‖Rn‖∞|t1 − t2|eTρ‖Rn‖∞ .

It then follows that

‖An(f)(t1)−An(f)(t2)‖1 ≤ ‖uin‖1ρ‖Rn‖∞eρT‖Rn‖∞ |t1 − t2|. (2.5.14)

Let now f and g be in Xρ,T and denote v = An(g) and u = An(f). Arguing as
before,

‖u(t)− v(t)‖1 ≤ ‖uin‖1‖Rn‖∞‖f − g‖C([0,T ], L1([0,∞)))Te
ρT‖Rn‖∞ . (2.5.15)

By (2.5.13)–(2.5.15), if

‖uin‖1eTρ‖Rn‖∞ < ρ, and

‖uin‖1‖Rn‖∞TeρT‖Rn‖∞ < 1,

then An is a contraction on C([0, T ], L1([0,∞))), and has a fixed point un that
satisfies

un(x, t) = uin(x)e
∫ t
0

∫∞
0 Rn(x,y)un(s,y)dyds. (2.5.16)

This solution may then be extended to C([0, Tmax), L1([0,∞))). It immediately
follows from (2.5.16) that un ≥ 0.
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Moreover, since un ∈ C([0, Tmax), L1([0,∞))) and Rn is bounded, we deduce
from (2.5.16) that un ∈ C1([0, Tmax), L1([0,∞))) and, for every t ∈ (0, Tmax), the
equation (2.5.8) is satisfied in L1([0,∞)). For all T < Tmax and all t ∈ [0, T ],∣∣∣∣uin(·) d

dt

(
e
∫ t
0

∫∞
0 Rn(·,y)un(s,y)dy

)∣∣∣∣
≤ uin(·)‖Rn‖∞‖un‖C([0,T ],L1([0,∞)))e

T‖Rn‖∞‖un‖C([0,T ],L1([0,∞))) ∈ L1([0,∞)),

then if we multiply (2.5.16) by any ϕ ∈ L∞([0,∞)), we deduce that for all t < Tmax,

d

dt

∫ ∞
0

un(t, x)ϕ(x)dx =

∫ ∞
0

∫ ∞
0

Rn(x, y)un(t, x)un(t, y)ϕ(x)dydx.

Recalling the definition of Rn, then by the symmetry of bn and Fubini’s theorem,

d

dt

∫ ∞
0
un(t, x)ϕ(x)dx =

∫ ∞
0

∫ ∞
0

kψ,n(x, y)un(s, x)un(s, y)dydx, (2.5.17)

i.e. un is a weak solution of (2.5.8), (2.5.9) for t ∈ [0, T ). If we chose ϕ = 1 we deduce
that (2.5.11) holds for all t < Tmax. Then, by a classical argument, Tmax =∞.

In order to prove (2.5.12) let ψ be non negative and measurable function such
that

∫∞
0 u0(x)ψ(x)dx < ∞, and consider {ψk}k∈N the sequence of simple functions

that converges monotonically to ψ as k →∞. Since ψk ∈ L∞([0,∞)), then (2.5.17)
holds with ϕ = ψk for all k, and by Lebesgue’s and monotone convergence Theorems,∫ ∞

0
un(t, x)ψ(x)dx =

∫ ∞
0

uin(x)ψ(x)dx

+

∫ t

0

∫ ∞
0

∫ ∞
0

kψ,n(x, y)un(s, x)un(s, y)dydxds.

Using that un ∈ C([0,∞), L1([0,∞))), (2.5.11) and∫ ∞
0

∫ ∞
0
kψ,n(x, y)

∣∣un(t1, x)un(t1, y)− un(t2, x)un(t2, y)
∣∣dydx

≤ 2‖kψ,n‖∞M0(uin)‖un(t1)− un(t2)‖1,

so that t 7→
∫∞

0

∫∞
0 kψ,n(x, y)un(s, x)un(s, y)dydx is continuous, it follows by the

fundamental theorem of calculus that (2.5.17) holds for ψ. If, in addition, ϕ is
nondecreasing, then (e−x − e−y)(ϕ(x)− ϕ(y)) ≤ 0 for all (x, y) ∈ [0,∞)2, and then
(2.5.12) follows.

Proof of Theorem 2.5.1 . Consider first a initial data u0 ∈ L1([0,∞)). Let
{un}n∈N be the sequence of solutions to (2.5.8)–(2.5.9) constructed in Proposition
2.5.2 for n ∈ N. As in the proof of Theorem 2.1.2, the result follows from the precom-
pactness (given by the conservation of M0(u)) and the equicontinuity of {un}n∈N.
These properties follow as in the proof of Proposition 2.2.8 and Proposition 2.2.9
respectively. The existence of the solution u follows using the same arguments as in
Corollary 2.2.10 and the end of the Proof of Theorem 2.1.2.

Property (2.5.7) for u follows from (2.5.12), the lower semicontinuity of the non
negative function eηx, and the weak convergence to u of un.



54 On a Boltzmann equation for Compton scattering

For a general initial data u0 ∈M+([0,∞)), by Corollary 8.6 in [24] there exists
a sequence {u0,n}n∈N ⊂ L1([0,∞)) such that

lim
n→∞

∫ ∞
0

ϕ(x)u0,n(x)dx =

∫
[0,∞)

ϕ(x)u0(x)dx ∀ϕ ∈ Cb([0,∞)). (2.5.18)

Since u0,n ∈ L1([0,∞)), using the previous step there exists a weak solution un that
satisfies (2.5.4)–(2.5.7). By (2.5.6) and (2.5.7), the sequence {un}n∈N is precompact
in C([0,∞),M+([0,∞))). Arguing as in Proposition 2.2.9, we deduce that it is also
equicontinuous. Therefore, using the same arguments as in the end of the Proof
of Theorem 2.1.2, we deduce the existence of a subsequence, still denoted {un}n∈N,
and a weak solution of (2.5.1), u ∈ C([0,∞),M+([0,∞))), satisfying (2.5.4)–(2.5.7).

The property (2.5.7) is obtained using first in the weak formulation (2.5.5) a
sequence of monotone non decreasing test functions {ϕk}k∈N ⊂ C1

b ([0,∞) such that
ϕ′k(0) = 0 and ϕk(x)→ eηx for all x ≥ 0, to obtain:∫

[0,∞)
u(t, x)ϕk(x)dx ≤

∫
[0,∞)

u0(x)ϕk(x)dx, (2.5.19)

and then pass to the limit as k →∞.

Remark 2.5.3. In Theorem 2.1.2, the initial data is required to satisfy Xη(u0) <∞
for some η ∈

(
1−θ

2 , 1
2

)
. On the one hand, the condition η > 1−θ

2 is sufficient in order
to have boundedness of the operators Kϕ(u, u) and Lϕ(u). On the other hand, the
condition η < 1/2 comes from the estimate (2.2.40). In Theorem 2.5.1, however,
that last condition is not needed, thanks to the estimate (2.5.12).

We show now that the support of u(t) is constant in time.

Proposition 2.5.4. Let u be a weak solution of (2.5.1) constructed in Theorem 2.5.1
for an initial data u0 ∈ M+([0,∞)) satisfying (2.5.3). The following statements
hold:

(i) For all r > 0, t0 and t with 0 ≤ t0 ≤ t, and ϕ ∈ C1
c ((0,∞)) nonnegative such

that supp(ϕ) ⊂ [r, L] for some L > r,∫
[0,∞)

ϕ(x)u(t, x)dx ≥ e−(t−t0)C1

∫
[0,∞)

ϕ(x)u(t0, x)dx, (2.5.20)∫
[0,∞)

ϕ(x)u(t, x)dx ≤ e(t−t0)C2

∫
[0,∞)

ϕ(x)u(t0, x)dx, (2.5.21)

where

C1 =
C∗ρ∗M0(u0)√

θ(1 + θ)

e
(1−θ)L

2

r3/2
, C2 =

C∗ρ∗M0(u0)√
2

e
(1−θ)L

2θ

r3/2
. (2.5.22)

(ii) For all r > 0, t0 and t with 0 ≤ t0 ≤ t,∫
[0,r)

u(t0, x)dx ≤
∫

[0,r)
u(t, x)dx ≤ e(t−t0)Cr

∫
[0,r)

u(t0, x)dx, (2.5.23)

where Cr =
C∗ρ∗M0(u0)√

θ(1 + θ)

e
(1−θ)r

2θ

r3/2
. (2.5.24)
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(iii) supp(u(t)) = supp(u0) for all t > 0.

Proof. Proof of (i). Since there are no integrability issues near the origin because
supp(ϕ) ⊂ [r, L], then by Fubini’s theorem

1

2

∫∫
[0,∞)2

R(x, y)(ϕ(x)− ϕ(y))u(t, x)u(t, y)dydx

=

∫
[0,∞)

ϕ(x)u(t, x)

∫
[0,∞)

R(x, y)u(t, y)dydx.

Let us prove the lower bound (2.5.20). Using (2.2.8)–(2.2.11), for all (x, y) ∈ Γ,
y ≤ x,

|R(x, y)| ≤ C∗e
x−y

2 (x− y)

xy(x+ y)
≤ C∗ e

(1−θ)x
2

x3/2
, C∗ =

C∗ρ∗√
θ(1 + θ)

, (2.5.25)

and taking into account the support of ϕ, we deduce that∫
[0,∞)

ϕ(x)u(t, x)

∫
[0,∞)

R(x, y)u(t, y)dydx

≥
∫ L

r
ϕ(x)u(t, x)

∫ x

0
R(x, y)u(t, y)dydx

≥ −C
∗e

(1−θ)L
2

r3/2

∫ L

r
ϕ(x)u(t, x)

∫ x

0
u(t, y)dydx

≥ −C1

∫ L

r
ϕ(x)u(t, x)dx,

and then, from the weak formulation, we obtain that for all t > 0,

d

dt

∫ L

r
ϕ(x)u(t, x)dx ≥ −C1

∫ L

r
ϕ(x)u(t, x)dx,

and (2.5.20) follows by Gronwall’s Lemma.
We now prove the upper bound (2.5.21) by similar arguments. Since R(x, y) ≤ 0

for y ≤ x, then ∫
[0,∞)

ϕ(x)u(t, x)

∫
[0,∞)

R(x, y)u(t, y)dydx

≤
∫ L

r
ϕ(x)u(t, x)

∫ ∞
x

R(x, y)u(t, y)dydx,

and since for all (x, y) ∈ Γ, x ≤ y,

R(x, y) ≤ C∗e
y−x

2 (y − x)

xy(x+ y)
≤ C ′ e

(1−θ)x
2θ

x3/2
, C ′ =

C∗ρ∗√
2
,

we deduce from the weak formulation that for all t > 0,

d

dt

∫ L

r
ϕ(x)u(t, x)dx ≤ C ′e

(1−θ)L
2θ

r3/2

∫ L

r
ϕ(x)u(t, x)

∫ ∞
x

u(t, y)dydx

≤ C2

∫ L

r
ϕ(x)u(t, x)dx,
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and then (2.5.21) follows by Gronwall’s Lemma.

Proof of (ii). We first prove the lower bound in (2.5.23). Given r > 0, let 0 <
r∗ < r, and ϕ ∈ C1

c ([0,∞)) be nonnegative, nonincreasing, and such that ϕ(x) = 1
for all x ∈ [0, r∗] and ϕ(x) = 0 for all x ≥ r. Since (e−x − e−y)(ϕ(x)− ϕ(y)) ≥ 0 for
all 0 ≤ y ≤ x, it follows from the weak formulation

d

dt

∫
[0,r)

ϕ(x)u(t, x)dx ≥ 0 ∀t > 0,

hence ∫
[0,r)

ϕ(x)u(t, x)dx ≥
∫

[0,r)
ϕ(x)u(t0, x)dx ∀t ≥ t0 ≥ 0,

and then the lower bound in (2.5.23) follows by taking the supremum over all ϕ as
above, i.e., letting r∗ → r.

Let us prove now the upper bound in (2.5.23). Given r > 0, let r∗ and ϕ be as
before. Keeping only the positive terms in the weak formulation and taking Γ into
account, we deduce

d

dt

∫
[0,r)

ϕ(x)u(t, x)dx ≤
∫ r

θ

r∗

∫ min{x,r}

θx
|R(x, y)|ϕ(y)u(t, x)u(t, y)dydx,

and by (2.5.25) we obtain

d

dt

∫
[0,r)

ϕ(x)u(t, x)dx ≤ C∗e
(1−θ)r

2θ

r
3/2
∗

∫ r
θ

r∗

u(t, x)

∫ min{x,r}

θx
ϕ(y)u(t, y)dydx

≤ Cr∗
∫

[0,r)
ϕ(y)u(t, y)dy,

where

Cr∗ =
C∗e

(1−θ)r
2θ

r
3/2
∗

M0(u0),

and then it follows from Gronwall’s Lemma∫
[0,r)

ϕ(x)u(t, x)dx ≤ e(t−t0)Cr∗

∫
[0,r)

ϕ(x)u(t0, x)dx ∀t ≥ t0 ≥ 0.

The upper bound in (2.5.23) then follows by letting r∗ tend to r..

Proof of (iii). We recall the following characterization of the support of a Radon
measure µ (see [35], Chapter 7): x ∈ supp(µ) if and only if

∫
[0,∞) ϕdµ > 0 for all

ϕ ∈ Cc([0,∞)) with 0 ≤ ϕ ≤ 1 such that ϕ(x) > 0.

Then, from (2.5.20) and (2.5.21) for t0 = 0, we deduce that

(0,∞) ∩ supp(u0) = (0,∞) ∩ supp(u(t)) ∀t > 0,

and from (2.5.23) for t0 = 0, we deduce that for all t > 0,

0 ∈ supp(u0) if and only if 0 ∈ supp(u(t)),

which completes the proof.
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The queues of the weak solutions are decreasing in time, as proved in the following
Proposition.

Proposition 2.5.5. Let u be the weak solution of (2.5.1) constructed in Theorem
2.5.1 for an initial data u0 ∈M+([0,∞)) satisfying (2.5.3). Then

(i) For all r ≥ 0, the map t 7→
∫

[r,∞) u(t, x)dx is nonincreasing on [0,∞).

(ii) For all r > 0, if

∃x0 ∈ [r, γ2(r)) ∩ supp(u0), ∃y0 ∈ (γ1(r), r) ∩ supp(u0),

such that B(x0, y0) > 0, (2.5.26)

then the map t 7→
∫

[r,∞) u(t, x)dx is strictly decreasing on [0,∞).

Remark 2.5.6. Condition (2.5.26) holds, for instance, if r is an interior point of
the support of u0.

Proof. Proof of (i). For r = 0, the result follows from the conservation of mass
(2.5.6). For r > 0, let ε ∈ (0, r) and ϕε ∈ C1

b ([0,∞)) be an increasing function such
that ϕε(x) = 1 for all x ≥ r, ϕε(x) = 0 for all x ∈ [0, r− ε]. Using the monotonicity
of ϕε, we deduce from the weak formulation (2.5.5) that for all t ≥ 0,

d

dt

∫
[0,∞)

ϕε(x)u(t, x)dx ≤ 0,

and then the map t 7→
∫

[0,∞) ϕε(x)u(t, x)dx is nonincreasing. The result then follows
by letting ε→ 0.

Proof of (ii). Since (2.5.5) is invariant under time translations, it suffices to prove
that for all r > 0, ∫

[r,∞)
u(t, x)dx <

∫
[r,∞)

u0(x)dx ∀t > 0,

provided (2.5.26) holds. To this end, consider ϕε as in part (i). By (2.5.5)∫
[0,∞)

ϕε(x)u(t, x)dx =

∫
[0,∞)

ϕε(x)u0(x)dx

+

∫ t

0

∫ ∞
0

∫ x

0
kϕε(x, y)u(s, x)u(s, y)dydxds.

Then, since limε→0 kϕε(x, y) = kϕ(x, y) for all (x, y) ∈ [0,∞)2, where ϕ(x) =
1[r,∞)(x), and for all ε small enough,∫ ∞

0

∫ x

0
|kϕε(x, y)|u(s, x)u(s, y)dydx

=

∫ ∞
r−ε

∫ x

θx
|kϕε(x, y)|u(s, x)u(s, y)dydx

≤ 2C∗ρ∗

∫ ∞
r−ε

∫ x

θx

e
x−y

2√
xy(x+ y)

u(s, x)u(s, y)dydx

≤ 2C∗ρ∗√
θ(1 + θ)(r − ε)3/2

∫ ∞
r−ε

e
(1−θ)x

2 u(s, x)

∫ x

θx
u(s, y)dydx

≤ 4C∗ρ∗M0(u0)√
θ(1 + θ)r3/2

∫ ∞
0

e
(1−θ)x

2 u0(x)dx <∞,
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we deduce from dominated convergence Theorem∫
[r,∞)

u(t, x)dx =

∫
[r,∞)

u0(x)dx

+

∫ t

0

∫
[r,∞)

∫
[0,r)

R(x, y)u(s, x)u(s, y)dydxds. (2.5.27)

Taking Γ into account, we observe that∫
[r,∞)

∫
[0,r)

R(x, y)u(s, x)u(s, y)dydxds

=

∫
[r,γ2(r))

∫
(γ1(x),r)

R(x, y)u(s, x)u(s, y)dydxds ≤ 0. (2.5.28)

The goal is to show that the integral above is, indeed, strictly negative for all s ∈
[0, t]. By (2.5.26) and Proposition 2.5.4 (iii), there exists an open rectangle G = G1×
G2 centered around (x0, y0) and contained in {(x, y) ∈ [0,∞)2 : x ∈ [r, γ2(r)), y ∈
(γ1(x), r)} such that ∫

Gi

u(t, x)dx > 0 ∀t > 0, i = 1, 2.

We then obtain ∫
[r,γ2(r))

∫
(γ1(x),r)

R(x, y)u(s, x)u(s, y)dydxds

≤ max
(x,y)∈G

R(x, y)

∫
G1

u(t, x)dx

∫
G2

u(t, y)dy < 0,

and the result then follows from (2.5.27) and (2.5.28).

2.5.2 Global “regular” solutions.

We prove in this section Theorem 2.1.4 for initial data u0 sufficiently flat around the
origin. This condition on u0 is sufficient to prevent the formation of a Dirac mass
in finite time. We do not know if it is necessary. We prove first the following,

Proposition 2.5.7. For all v0 ∈ L1([0,∞)), v0 ≥ 0, satisfying (2.1.40) for some
η > (1−θ)/2, there exists a nonnegative global weak solution v ∈ C([0,∞), L1([0,∞)))
of (2.5.1), (2.5.2) such that

u(t, x) = u0(x)e
∫ t
0

∫∞
0 R(x,y)u(s,y)dyds ∀t > 0, a.e. x > 0, (2.5.29)

and also satisfies v(0) = v0, (2.1.42), (2.1.43).

Proof of Proposition 2.5.7. The proof has two steps.
Step 1. We consider first a compactly supported initial data, say suppu0 ⊂ [0, L],
L > 0. We first prove that the operator

A(f)(t, x) = u0(x)e
∫ t
0

∫∞
0 R(x,y)f(s,y)dyds (2.5.30)
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is a contraction on Yρ,T for some ρ > 0 and T > 0, where

Yρ,T =
{
f ∈ C([0, T ), L1([0,∞), ωdx)) : ‖f‖T ≤ ρ

}
,

‖f‖T = sup
0≤t<T

∫ ∞
0

ω(x)|f(t, x)|dx = sup
0≤t<T

‖f(t)‖ω,

ω(x) = (1 + x−3/2).

Using (2.2.8)–(2.2.11), for all (x, y) ∈ Γ, x ≤ L,

|R(x, y)| ≤ C∗ρ∗e
|x−y|

2√
xy(x+ y)

≤ C∗ρ∗√
θ(1 + θ)

e
(1−θ)x

2θ

y3/2
≤ CLω(y),

where CL = C∗ρ∗e
(1−θ)L

2θ√
θ(1+θ)

. Then, for all nonnegative f ∈ Yρ,T , x ∈ [0, L], and t ∈
[0, T ), ∫ t

0

∫ ∞
0
|R(x, y)|f(s, y)dyds ≤ CLρT,

and then

A(f)(t, x) ≤ u0(x)eCLρT ,

‖A(f)‖T ≤ ‖u0‖ωeCLρT . (2.5.31)

Notice that ‖u0‖ω <∞ by the hypothesis (2.1.40). Let now t1 and t2 be such that
0 ≤ t1 ≤ t2 < T . Then, for all x ∈ [0, L],

|A(f)(t1, x)−A(f)(t2, x)| =

= u0(x)
∣∣∣e∫ t10

∫∞
0 R(x,y)f(s,y)dyds − e

∫ t2
0

∫∞
0 R(x,y)f(s,y)dyds

∣∣∣
≤ u0(x)eCLρTCLρ|t1 − t2|,

and therefore

‖A(f)(t1)−A(f)(t2)‖ω ≤ ‖u0‖ωeCLρTCLρ|t1 − t2|,

from where it follows that A ∈ C([0, T ), L1([0,∞), ωdx)). On the other hand, if we
chose ρ = 2‖u0‖ω and T > 0 such that eCLρT ≤ 2, we deduce from (2.5.31) that
‖A(f)‖T ≤ ρ, i.e., A(f) ∈ Yρ,T .

Let now f and g be in Yρ,T . By similar computations as before,

‖A(f)−A(g)‖T ≤ ‖u0‖ωeCLρTCLT‖f − g‖T ,

and if T is such that

‖u0‖ωeCLρTCLT < 1,

then A is a contraction on Yρ,T , and has then a fixed point u that satisfies (2.5.29)
for all t ∈ (0, T ) and a.e. x > 0. It then follows in particular that u ≥ 0. Let us
denote

Tmax = sup
{
T > 0;∃ ρ > 0, ∃u ∈ Yρ,T satisfying (2.5.29), ∀t ∈ [0, T )

}
.
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We claim that if Tmax <∞, then lim supt→Tmax
‖u(t)‖ω =∞. Suppose that Tmax <

∞ and lim supt→Tmax
‖u(t)‖ω = ` < ∞, and let tn → Tmax. For every n ∈ N we

define ρn = 2‖u(tn)‖ω, and the map

An(f)(t, x) = u(tn, x)e
∫ t
0

∫∞
0 R(x,y)f(s,y)dyds,

for f ∈ C([0, T ), L1([0,∞), ωdx)), T > 0. For every T > 0, t ∈ [0, T ), x ∈ [0, L], and
f ∈ Yρn,T ,

An(f)(t, x) ≤ u(tn, x)eCLρnT ,

‖An(f)‖T ≤ ‖u(tn)‖ωeCLρnT ,

and for all T such that T ≤ (ln 2)/(CLρn) = Tn, it follows that An(f) ∈ Yρn,T .
Notice that by hypothesis, ρn ≤ 2` for all n, and then

Tn ≥
ln 2

CL2`
:= τ1 ∀n ∈ N.

Now let f and g be in Yρn,T for T > 0. Arguing as before

‖An(f)−An(g)‖T ≤ ‖u(tn)‖ωeCL2`TCLT‖f − g‖T ,

and since

u(tn, x) ≤ u0(x)eCL2`Tmax , ∀n ∈ N,

then

‖An(f)−An(g)‖T ≤ ‖u0‖ωeCL2`(T+Tmax)CLT‖f − g‖T .

If we chose τ2 > 0 such that

‖u0‖ωeCL2`(τ2+Tmax)CLτ2 < 1,

and we let τ∗ = min{τ1, τ2}, then An is a contraction from Yρn,τ∗ into itself, and has
then a fixed point, say vn. The function vn satisfies

vn(t, x) = u(tn, x)e
∫ t
0

∫∞
0 R(x,y) vn(t,y) dy, ∀t ∈ [0, τ∗), a.e. x ∈ [0,∞).

Therefore, the function wn defined as

wn(t, x) =

{
u(t, x) if t ∈ [0, tn)

vn(t− tn, x), if t ∈ [tn, tn + τ∗)

satisfies the integral equation:

wn(t, x) = u0(x)e
∫ t
0

∫∞
0 R(x,y)wn(s,y)dyds, ∀t ∈ [0, tn + τ∗).

Since tn → Tmax, then tn + τ∗ > Tmax for n large enough, and this contradicts the
definition of Tmax. We deduce that, either Tmax =∞, and the solution is said to be
global, or lim supt→Tmax

‖u(t)‖ω = ∞ and the solution is said to blow up in finite
time, at Tmax.
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Since for all T < Tmax, t ∈ [0, T ] and a.e. x ∈ [0, L],∣∣∣∣ ddt (u0(x)ϕ(x)e
∫ t
0

∫∞
0 R(x,y)u(s,y)dyds

)∣∣∣∣
≤ u0(x)|ϕ(x)|eCLT‖u‖TCLT‖u‖T (integrable in x),

we may then multiply both sides of the equation (2.5.29) by a function ϕ ∈ Cb([0,∞))
and integrate on [0,∞):

d

dt

∫ ∞
0

u(t, x)ϕ(x)dx =

∫ ∞
0

u(t, x)ϕ(x)

(∫ ∞
0

R(x, y)u(t, y)dy

)
dx,

and since

|u(t, ·)u(t, ·)ϕ(t, ·)R(·, ·)| ∈ L1([0,∞)× [0,∞)) ∀t ∈ [0, Tmax),

by Fubini’s Theorem and the antysimmetry of R(x, y),

d

dt

∫ ∞
0
u(t, x)ϕ(x)dx =

∫ ∞
0

∫ ∞
0

ϕ(x)R(x, y)u(t, x)u(t, y)dxdy

=
1

2

∫ ∞
0

∫ ∞
0

(ϕ(x)− ϕ(y))R(x, y)u(t, x)u(t, y)dxdy. (2.5.32)

This shows that u is a weak solution of (2.5.1), (2.5.2) . If ϕ = 1:

d

dt

∫ ∞
0

u(t, x)dx = 0,

and then ‖u(t)‖1 = ‖u0‖1 for all t > 0. Then, since∫ ∞
0

R(x, y)u(s, y)dx ≤ CL‖u0‖1
x3/2

,

we obtain from (2.5.29)

u(t, x) ≤ u0(x)e
tCL‖u0‖1
x3/2 ,

and then

‖u(t)‖ω ≤
∫ ∞

0
ω(x)e

tCL‖u0‖1
x3/2 u0(x)dx. (2.5.33)

Notice that (2.1.40) implies

∀r > 0,

∫ 1

0
u0(x)

e
r

x3/2

x3/2
dx <∞. (2.5.34)

Indeed, if we write x−3/2 = e−
3
2

lnx, then for all r > 0,∫ 1

0
u0(x)

e
r

x3/2

x3/2
dx =

∫ 1

0
u0(x)e

r

x3/2
− 3

2
lnx
dx ≤

∫ 1

0
u0(x)e

r′

x3/2 dx <∞,
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where

r′ = r + e−1 = max
x∈[0,1]

(
r − 3

2
x3/2 lnx

)
.

We then obtain from (2.5.33), (2.5.34) that

‖u(t)‖ω ≤
∫ ∞

0
ω(x)e

tCL‖u0‖1
x3/2 u0(x)dx <∞ ∀t ∈ [0, Tmax), (2.5.35)

therefore limt→Tmax ‖u(t)‖ω <∞ if Tmax <∞, and then by the alternative, Tmax =
∞.

Step 2. For a general initial data u0, let u0,n(x) = u0(x)1[0,n](x), and un be the
weak solution constructed in Step 1 for the initial data u0,n that satisfies

un(t, x) = u0,n(x)e
∫ t
0

∫∞
0 R(x,y)un(s,y)dyds, (2.5.36)

and ‖un(t)‖1 = ‖u0,n‖1 ≤ ‖u0‖1 for all t > 0 and all n ∈ N. Then, arguing as in
the proof of Theroem 2.1.2, a subsequence of {un}n∈N (not relabelled) converges to
some u ∈ C([0,∞),M+([0,∞))) in the space C([0,∞),M+([0,∞))). On the other
hand, since for all n ∈ N,∫ ∞

0
R(x, y)un(s, y)dy ≤ C∗

x3/2

∫ ∞
x

e
(1−θ)y

2 un(s, y)ds ≤ C0

x3/2
, (2.5.37)

where C0 = C∗
∫∞

0 eηyu0(y)dy, it follows from (2.1.40) that for all ε > 0 there exists
δ > 0 such that for all E ⊂ [0,∞) mesasurable with |E| < δ,∫

E
un(t, x)dx ≤

∫
E
u0(x)e

C0t

x3/2 dx < ε ∀n ∈ N, ∀t > 0. (2.5.38)

Moreover, for all ε > 0 there exists M > 0 such that∫ ∞
M

un(t, x)dx ≤ e−ηM
∫ ∞
M

eηxun(t, x)dx

≤ e−ηM
∫ ∞

0
eηxu0(x)dx < ε ∀n ∈ N, ∀t > 0. (2.5.39)

It then follows from (2.5.38)–(2.5.39) and Dunford-Pettis Theorem, that for all t > 0,
a subsequence of un(t) (not relabelled) converges to a function U(t) ∈ L1([0,∞)) in
the weak topology σ(L1, L∞). Therefore we deduce that for all t > 0,∫ ∞

0
ϕ(x)U(t, x)dx =

∫
[0,∞)

ϕ(x)u(t, x)dx∀ϕ ∈ Cb([0,∞)),

i.e., the measure u(t) is absolutely continuous with respect to the Lebesgue measure,
with density U(t). With some abuse of notation we identify u and U . The goal now
is to pass to the limit in (2.5.36) as n → ∞. Since R(x, ·) ∈ L∞([0,∞)) for a.e.
x > 0 and all t > 0, and∫ ∞

0
|R(x, y)|un(s, y)dy ≤ C∗

x3/2

(∫ x

0
e
x−y

2 un(s, y)dy+ (2.5.40)

+

∫ ∞
x

e
y−x

2 un(s, y)dy

)
≤ C∗

x3/2

(
eηx‖u0‖1 +

∫ ∞
0

eηyu0(y)dy

)
, ∀n ∈ N, (2.5.41)
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it follows by the weak convergence un(t) ⇀ u(t) and dominated convergence, that
for all t > 0, a.e. x > 0,

lim
n→∞

∫ t

0

∫ ∞
0

R(x, y)un(s, y)dyds =

∫ t

0

∫ ∞
0

R(x, y)u(s, y)dyds,

and then, using that u0,n → u0 a.e., (2.5.37), and dominated convergence,

lim
n→∞

∫ ∞
0

u0,n(x)e
∫ t
0

∫∞
0 R(x,y)un(s,y)dydsdx

=

∫ ∞
0

u0(x)e
∫ t
0

∫∞
0 R(x,y)u(s,y)dydsdx.

Therefore, u satisfies (2.5.29) for all t > 0 and a.e. x > 0.
Arguing as in (2.5.37) we obtain (2.1.43), and arguing as in Step 1 we obtain

(2.1.42).
We now claim that

u ∈ C([0,∞), L1((0,∞))). (2.5.42)

For all T > 0, t1 and t2 with 0 ≤ t1 ≤ t2 ≤ T , we have by (2.5.40),

‖u(t1)− u(t2)‖1

≤
∫ ∞

0
u0(x)

∣∣∣e∫ t10

∫∞
0 R(x,y)u(s,y)dyds − e

∫ t2
0

∫∞
0 R(x,y)u(s,y)dyds

∣∣∣ dx
≤
∫ ∞

0
u0(x)e

TC0

x3/2

(∫ t2

t1

∫ ∞
0
|R(x, y)|u(s, y)dyds

)
dx

≤ |t1 − t2|
∫ ∞

0
u0(x)e

TC0

x3/2
C∗

x3/2

(
eηx‖u0‖1 +

∫ ∞
0

eηyu0(y)dy

)
dx,

and then (2.5.42) follows using (2.1.40). Arguing as in Step 1 we deduce that u is a
weak solution of (2.5.1), (2.5.2).

Proof of Theorem 2.1.4. Theorem 2.1.4 follows from Proposition 2.5.7 since the
function b(k, k′) =

ΦBβ
kk′ satisfies (2.2.5)–(2.2.11).

Remark 2.5.8. The same proof shows that Theorem 2.1.4 is still true for the
equation

∂v

∂t
(t, k) = v(t, k)

∫
[0,∞)

v(t, k′)
(
e−βk − e−βk′

)Bβ(k, k′)

kk′
dk′. (2.5.43)

where the redistribution function Bβ is kept without truncation. This is possible
because the property (2.1.40) is also propagated by the weak solutions of (2.5.43)
such that

v(t, k) = v0(k)e
∫ t
0

∫∞
0

(
e−βk−e−βk′

)Bβ(k,k′)
kk′ v(s,k′) dk′ ds. (2.5.44)

Notice in particular that the integral term in the exponential is well defined when
v(t) satisfies (2.1.40).
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Remark 2.5.9. Let u and v be two solutions of (2.1.39), with a compactly supported
initial data u0 ∈ L1([0,∞)) satisfying (2.1.40) and such that supp(u0) ⊂ [0, L],
L > 0. It follows from the representation(2.5.29) that, for all t > 0 and a.e. x > 0,

|u(t, x)− v(t, x)| ≤ u0(x)e
tCL‖u0‖1
x3/2

CL
x3/2

∫ t

0

∫ ∞
0
|u(s, y − v(s, y)|dyds,

and then, by Gronwall’s Lemma, u = v for a.e. t > 0 and a.e. x > 0.

2.5.3 Mα as Lyapunov functional.

The goal of this Section is the study of the functionals Mα(u(t)), defined in (2.1.24),
and Dα(u(t)), defined in (2.1.44), acting on the weak solutions of problem (2.5.1),
and to prove, in particular, Theorem 2.1.6.

Let us start with the following simple lemma, that establishes a monotonicity
property for the moments of a solution to (2.5.1).

Lemma 2.5.10. Let u be the weak solution of (2.5.1) given by Theorem 2.5.1 for an
initial data u0 ∈ M+([0,∞)) satisfying (2.5.3). Then (2.5.5) holds for ϕ(x) = xα

for all α ≥ 1. Moreover, for all t0 ≥ 0,

Mα(u(t)) ≤Mα(u(t0)) ∀t ≥ t0 (2.5.45)

Proof. Let α ≥ 1 and ϕ(x) = xα. We first notice from (2.5.3) and (2.5.7) that
Mα(u(t)) <∞ for all t ≥ 0. Then, consider an approximation {ϕk}k∈N ⊂ C1

b ([0,∞))
such that ϕk is nondecreasing, ϕ′k(0) = 0, ϕ′k ≤ ϕ′ for all k ∈ N, and ϕk → ϕ
pointwise as k →∞. Using the definite sign of the right hand side of (2.5.5) for the
test function ϕk, we obtain

d

dt

∫
[0,∞)

ϕk(x)u(t, x)dx ≤ 0 ∀t > 0, ∀k ∈ N,

from where, for all t0 ≥ 0,
∫

[0,∞) ϕk(x)u(t, x)dx ≤
∫

[0,∞) ϕk(x)u(t0, x)dx for all t ≥ t0
and all k ∈ N, and then (2.5.45) follows from dominated convergence theorem, by
letting k →∞.

Let us prove now that (2.5.5) holds for ϕ(x) = xα. From (2.5.5) for the test
function ϕk, ∫

[0,∞)
ϕk(x)u(t, x)dx =

∫
[0,∞)

ϕk(x)u0(x)dx

+

∫ t

0

∫∫
[0,∞)2

kϕk(x, y)u(s, x)u(s, y)dydxds. (2.5.46)

Using that ϕ′k ≤ ϕ′ for all k ∈ N, we obtain from (A.0.4) that for all (x, y) ∈ Γ,

|kϕk(x, y)| ≤ Cαmax{x, y}α−1e
|x−y|

2 , C = max

{
(1− θ)2

θδ∗(1 + θ)
, ρ∗

}
,

and, since |x− y| ≤ (1− θ) max{x, y} and max{x, y} ≤ θ−1 min{x, y} for all (x, y) ∈
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Γ, we then deduce using also (2.5.7) and (2.5.45), that for all t ≥ 0 and k ∈ N,∫∫
[0,∞)2

|kϕk(x, y)|u(t, x)u(t, y)dydx

≤ Cα

θα−1

∫∫
[0,∞)2

min{x, y}α−1e
(1−θ)

2
max{x,y}u(t, x)u(t, y)dydx

≤ 2Cα

θα−1

(∫
[0,∞)

e
(1−θ)x

2 u(t, x)dx

)(∫
[0,∞)

yα−1u(t, y)dy

)
≤ 2Cα

θα−1

(∫
[0,∞)

eηxu0(x)dx

)(∫
[0,∞)

yα−1u0(y)dy

)
.

On the other hand, kϕk(x, y)→ kϕ(x, y) for all (x, y) ∈ [0,∞)2 as k →∞. Passing to
the limit as k →∞ in (2.5.46), it then follows from dominated convergence theorem
that for all t ≥ 0,∫

[0,∞)
ϕ(x)u(t, x)dx =

∫
[0,∞)

ϕ(x)u0(x)dx

+

∫ t

0

∫∫
[0,∞)2

kϕ(x, y)u(s, x)u(s, y)dydxds, (2.5.47)

and then (2.5.5) holds.

If u is a weak solution to (2.5.1) given by Theorem 2.5.1, then by Lemma 2.5.10
the following identity holds,

d

dt
Mα(u(t)) =

1

2
Dα(u(t)) ∀t > 0. (2.5.48)

Since Dα(u(t)) ≤ 0 for all t > 0, this shows that Mα is a Lyapunov functional on
these solutions. The identity (2.5.48) is reminiscent of the usual entropy - dissipation
of entropy identity.

As already observed in the Introduction, since the support of the function B is
contained in the region Γ ⊂ [0,∞)2, if a > 0 and b > 0 are such that (a, b) 6∈ Γ (they
do not see each other) then, for all ϕ ∈ C1

b ([0,∞)) such that ϕ′(0) = 0,∫∫
[0,∞)2

δ(x− a)δ(y − b)R(x, y)(ϕ(x)− ϕ(y))dxdy = 0.

Let us then see some of the consequences of this simple observation.

Definition 2.5.11. We say that two points a and c on [0,∞) are Γ-disjoint if (a, c) 6∈
Γ. We say that two sets A and C on [0,∞) are Γ-disjoint if for all (a, c) ∈ A × C,
(a, c) 6∈ Γ, i.e., if A× C ⊂ [0,∞)2 \ Γ̊.

Since the support of any given measure u ∈M+([0,∞)) is, by definition, a closed
subset of [0,∞), then

(supp(u))c =

∞⋃
k=0

Ik, Ik open interval , Ik ∩ Ij = ∅ if k 6= j. (2.5.49)
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We may write Ik = (ak, bk) for 0 ≤ ak < bk for all k ∈ N, except if suppu ⊂ [r,∞),
r > 0, for which Ik = [0 = ak, bk) for some k. We now define

I = {Ik : γ1(bk) ≥ ak},

and denote {Ck}k∈J the connected components of
(⋃

I∈I I
)c

. Notice that, in gen-
eral, J could be uncountable. Finally define, for all u ∈M+([0,∞))

Ak(u) = Ck ∩ supp(u), ∀k ∈ J . (2.5.50)

Notice by (2.5.50) that Ak(u) is a closed subset of [0,∞) for all k ∈ N, since it is
the intersection of two closed sets.

We write Ak(u) = Ak when no confusion is possible.

Lemma 2.5.12. J is a countable set.

Proof. Given two elements of I, there is at most a finite number of elements of I
between them. More precisely, we claim that, for any given Ii ∈ I, Ij ∈ I, with
Ii = (ai, bi), Ij = (aj , bj), 0 < bi ≤ aj , then: card({Ik = (ak, bk) ∈ I : bi ≤ ak <
bk ≤ aj}) <∞. The proof of this fact start with this trivial remark: if Ik ∈ I, then
|Ik| = bk − ak ≥ bk − γ1(bk). Using that, if we consider the decreasing sequence
bj , γ1(bj), γ

2
1(bj) = γ1(γ1(bj)), γ

3
1(bj),..., then γm1 (bj) < bi for some integer m, and

therefore there could be only m elements of I between Ii and Ij .

For the sake of the argument, let us say that given two elements Ii = (ai, bi)
and Ij = (aj , bj) of I, there are 2 more elements I1 = (a1, b1) and I2 = (a2, b2) of I
between them, i.e.,

ai < bi ≤ a1 < b1 ≤ a2 < b2 ≤ aj < bj.

Then, there are 3 connected components in (ai, bj) \
(
Ii ∪ I1 ∪ I2 ∪ Ij

)
, namely

[bi, a1], [b1, a2] and [b2, aj ]. With this idea, it can be proved that the number of
connected components of [0,∞) \

(⋃
I∈I I

)
, i.e., the collection {Ck}k∈J , is at most

countable.

We prove now several useful properties of the collection {Ak}k∈N.

Lemma 2.5.13. Let u ∈ M+([0,∞)) and consider the collection {Ak}k∈N con-
structed above. Then Ai and Aj are Γ-disjoint if and only if i 6= j, and

supp(u) =

∞⋃
k=0

Ak. (2.5.51)

Proof. It is clear that Ai and Ai are not Γ-disjoint, since Ai × Ai contains points
on the diagonal, and therefore on Γ̊. Now, if i 6= j, we first observe that Ai and
Aj are disjoint. Indeed, by definition Ai ⊂ Ci and Aj ⊂ Cj , where Ci and Cj are
different connected components of [0,∞) \

(⋃
I∈I I

)
, therefore disjoint. We now

prove that Ai and Aj are in fact Γ-disjoint. Let us assume that Ai is on the left of
Aj , i.e., supAi < inf Aj . It follows from the construction that there exists at least
one Ik = (ak, bk) ∈ I between Ai and Aj , i.e., such that

supAi ≤ ak < bk ≤ inf Aj .
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By definition of I, the points ak and bk are Γ-disjoint, and then, for all (ai, aj) ∈
Ai ×Aj ,

γ1(aj) ≥ γ1(bk) ≥ ak ≥ ai,

hence ai and aj are Γ-disjoint. Finally, (2.5.51) follows from the construction. In-
deed, since by definition Ak = Ck ∩ supp(u), then ∪k∈NAk ⊂ suppu. On the other
hand, by definition ∪k∈NCk = [0,∞) \

(
∪I∈I I

)
, and then by (2.5.49)

supp(u) =
⋂
k∈N

Ick ⊂
⋃
k∈N

Ck,

from where the inclusion supp(u) ⊂ ∪k∈NAk follows.

In the remaining part of the section we will use several times the following simple
remark.

Remark 2.5.14. Consider the function z(x) = x− γ1(x), x ≥ 0, where γ1 is given
by (2.2.13) in Remark 2.2.1. Then, z is a continuous and strictly increasing function
on [0,∞), with z(0) = 0.

In the next Lemma we prove that any two sets Ai and Aj of the collection
{Ak}k∈N are separated from each other by a positive distance, given by the function
z(x) of Remark 2.5.14 .

Lemma 2.5.15. Let u ∈ M+([0,∞)) and consider the collection A = {Ak}k∈N
constructed above. Suppose that card(A) ≥ 2. For any k ∈ N, let us denote xk =
minAk and yk = supAk. Given two elements Ai, Aj in A, suppose that yi < xj.
Then,

dist(Ai, Aj) ≥ xj − γ1(xj) > 0. (2.5.52)

Moreover, for every ε > 0, let

Aε = {Ak ∈ A : Ak ⊂ (ε,∞)}. (2.5.53)

If Aε 6= ∅ and card(Aε) ≥ 2, then

dist(Ai, Aj) > ε− γ1(ε) > 0 ∀Ai, Aj ∈ Aε, i 6= j. (2.5.54)

Proof. Since Ai and Aj are closed sets and yi < xj , it follows that dist(Ai, Aj) =
xj − yi. By Lemma 2.5.13, the closed sets Ai and Aj are Γ-disjoint and then, by
Definition 2.5.11,

yi ≤ γ1(xj).

Therefore dist(Ai, Aj) ≥ xj−γ1(xj) and, since xj > 0, (2.5.52) follows from Remark
2.5.14.

Let now ε > 0 be fixed and consider Ai and Aj in Aε. Without loss of generality,
we may assume that yi < xj . Using Remark 2.5.14, it then follows from (2.5.52)
and (2.5.53) that

dist(Ai, Aj) ≥ z(xj) > z(ε) > 0.
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Lemma 2.5.16. Let u be the weak solution of (2.5.1) constructed in Theorem 2.5.1
for an initial data u0 ∈ M+([0,∞)) satisfying (2.5.3), and consider the collection
A = {Ak(u0)}k∈N constructed above. Then∫

Ak

u(t, x)dx =

∫
Ak

u0(x)dx ∀t > 0, ∀k ∈ N. (2.5.55)

Proof. In the trivial case Ak = supp(u0) for all k ∈ N, then (2.5.55) is just the con-
servation of mass (2.5.6). Suppose then that card(A) ≥ 2. We consider separately
two different cases.

(i) Suppose that there exists ε > 0 such that [0, ε] ⊂ supp(u0). Then, since [0, ε]
can not intersect Ak for two different values of k, there exists k0 ∈ N such that
[0, ε] ⊂ Ak0 . In particular Ak0 6∈ Aε. Let us see that

A = Aε ∪ {Ak0}. (2.5.56)

Arguing by contradiction, suppose that for some ` 6= k0 we have A` ∈ A \ Aε.
Since [0, ε] ⊂ Ak0 and Ak0 ∩ A` = ∅, then x` = minA` > ε. Therefore A` ∈ Aε,
which is a contradiction.

We wish now to estimate from below the distances dist(Ai, Aj) for all Ai ∈ A,
Aj ∈ A, i 6= j. By (2.5.54) and (2.5.56),

dist(Ai, Aj) > ε− γ1(ε) > 0 ∀i 6= k0,∀j 6= k0, i 6= j. (2.5.57)

On the other hand, for all i 6= k0, xi = minAi > ε by (2.5.56) and then, by (2.5.52)
and Remark 2.5.14,

dist(Ai, Ak0) ≥ xi − γ1(xi) = z(xi) > z(ε). (2.5.58)

By (2.5.56), (2.5.57) and (2.5.58) we have then:

dist(Ai, Aj) > z(ε) > 0, ∀Aj ∈ A, ∀Ai ∈ A. (2.5.59)

For any fixed k ∈ N, we now claim that, since Ai is closed for every i ∈ N, by
(2.5.59) the set

Dk =
⋃

i∈N,i 6=k
Ai (2.5.60)

is a closed subset of [0,∞). In order to prove that property, let us assume, by
contradiction, that there exists a point x∗ ∈ Dk \ Dk. Let {xn}n∈N ⊂ Dk be a
sequence such that converges to x∗. In particular {xn}n∈N is a Cauchy sequence.
Therefore, by (2.5.59), there exists k∗ ∈ N \ {k} such that, for some n∗ sufficiently
large:

xn ∈ Ak∗ , ∀n ≥ n∗.

Since Ak∗ is a closed set, it follows that x∗ ∈ Ak∗ ⊂ Dk, and this is a contradiction.

By (2.5.59), Dk and Ak are disjoint subsets of [0,∞). Therefore, by Urysohn’s
lemma, there exists a function ϕ ∈ Cb([0,∞)) such that

ϕ(x) = 1 ∀x ∈ Ak and ϕ(x) = 0 ∀x ∈ Dk.
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Using (2.5.59) and a density argument, we may assume that ϕ ∈ C1
b ([0,∞)). Then,

since supp(u(t)) = supp(u0) (cf. Proposition 2.5.4 (iii)), it follows from (2.5.51)∫
[0,∞)

ϕ(x)u(t, x)dx =

∫
Ak

u(t, x)dx,

and since Ai and Aj are Γ-disjoint for i 6= j (cf. Lemma 2.5.13), then by construction
of ϕ, ∫∫

[0,∞)2

R(x, y)(ϕ(x)− ϕ(y))u(t, x)u(t, y)dydx

=

∞∑
i=0

∫∫
Ai×Ai

R(x, y)(ϕ(x)− ϕ(y))u(t, x)u(t, y)dydx

=

∫∫
Ak×Ak

R(x, y)(ϕ(x)− ϕ(y))u(t, x)u(t, y)dydx = 0,

from where (2.5.55) follows by the weak formulation.
(ii) Suppose that the assumption of part (i) does not hold. In this case, there

exists a strictly decreasing sequence {xn}n∈N with xn → 0 as n → ∞ such that
xn /∈ supp(u0) for all n ∈ N. Moreover, since supp(u0) is a closed set, for each n ∈ N
there exists δn > 0 such that

(xn − δn, xn + δn) ⊂ (supp(u0))c.

For every n ∈ N and k ∈ N fixed such that

Ak ∈ Axn , (2.5.61)

where Axn is defined in (2.5.53), we consider the set:

Dk,n =
⋃

Ai∈Axn
Ai 6=Ak

Ai

Using now (2.5.54) for ε = xn we deduce that Dk,n is a closed set by the same
argument as for Dk in (2.5.60). By Urysohn’s lemma again, we can then construct
a test function ϕ ∈ C1

b ([0,∞)) such that

ϕ(x) = 1 ∀x ∈ Ak and ϕ(x) = 0 ∀x ∈ [0, xn] ∪Dk,n.

Arguing as in part (i), we then deduce that∫
Ak

u(t, x)dx =

∫
Ak

u0(x)dx ∀t > 0, ∀Ak ∈ Axn . (2.5.62)

We use now that

A =

( ⋃
n∈N
Axn

)⋃{
Ai ∈ A : Ai 6⊂ (0,∞)

}
because ⋃

n∈N
Axn = {Aj ∈ A : Aj ⊂ (0,∞)} .
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But, if Ai 6⊂ (0,∞), then 0 ∈ Ai. Therefore, if 0 6∈ supp(u0) there is no such Ai. If
0 ∈ supp(u0), since the sets Ak are pairwise disjoint, such subset Ai is unique. It
follows that there exists at most a unique k0 ∈ N such that:

A =

( ⋃
n∈N
Axn

)⋃{
Ak0

}
. (2.5.63)

The equality (2.5.55) then follows from (2.5.62), (2.5.63) and the conservation of
mass (2.5.6).

We may prove now the main result of this Section.

Proof of Theorem 2.1.6. Let us prove (i) =⇒ (iii). Suppose that Dα(u) = 0,
and let, for ε > 0,

Γε = {(x, y) ∈ Γ : d((x, y), ∂Γ) > ε, |x− y| > ε}.

Since b(x, y)(e−x − e−y)(xα − yα) < 0 for all (x, y) ∈ Γε, it follows from (i) that
supp(u× u) ⊂ Γcε. Letting ε→ 0, we deduce that

supp(u× u) ⊂ ∆ ∪ (̊Γ)c, ∆ = {(x, x) : x ≥ 0}. (2.5.64)

Notice that any two points y < x in the support of u have to be at distance, namely,
x − y ≥ x − γ1(x). Otherwise γ1(x) < y and then (x, y) ∈ Γ̊ \ ∆, in contradiction
with (2.5.64). Moreover, since the map z(x) = x − γ1(x) is continuous and strictly
increasing on [0,∞), with z(0) = 0, it follows that the support of u consists, at
most, on a countable number of points, where the only possible accumulation point
is x = 0. Therefore Ak = {xk} for all k ∈ N, and then (iii) holds.

Let us prove (iii) =⇒ (i). If u is as in (iii), then supp(u×u) = {(xi, xj) : i, j ∈
N}, and then

Dα(u) =
∑
i≤j

χ(i, j)αiαjb(xi, xj)(e
−xi − e−xj )(xαi − xαj ) = 0,

where χ(i, j) = 2 if i 6= j and χ(i, j) = 1 if i = j. Indeed, the terms with i = j
vanish due to the factor (e−xi−e−xj )(xαi −xαj ), and for those terms with i 6= j, then
b(xi, xj) = 0 since (xi, xj) /∈ Γ.

We now prove (iii) =⇒ (ii). Using (2.5.51) in Lemma 2.5.13 and the definition
of xk, for any v ∈ F ,

Mα(v) =
∞∑
k=0

∫
Ak

xαv(x)dx ≥
∞∑
k=0

xαkmk = Mα(u),

and since u ∈ F , u is indeed the minimizer of Mα.

We finally prove (ii) =⇒ (iii). Let u be a minimizer of Mα and let v =∑∞
k=0mkδxk . We already know by the previous case that v is also a minimizer of

Mα, hence Mα(u) = Mα(v). Since moreover

Mα(v) =

∞∑
k=0

xαkmk =

∞∑
k=0

xαk

∫
Ak

u(x)dx,
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it follows that

∞∑
k=0

∫
Ak

(xα − xαk )u(x)dx = 0.

By definition of xk, all the terms in the sum above are nonnegative, and therefore∫
Ak

(xα − xαk )u(x)dx = 0 ∀k ∈ N,

which implies that Ak = {xk} for all k ∈ N, and therefore u = v.

2.5.4 Long time behavior.

This Section is devoted to he proof of Theorem 2.1.8, that we have divided in several
steps. For a given increasing sequence tn →∞ as n→∞, let us define

un(t) = u(t+ tn), t ≥ 0, n ∈ N, (2.5.65)

where u is the weak solution of (2.5.1) constructed in Theorem 2.5.1 for an initial
data u0 ∈ M+([0,∞)) satisfying (2.5.3). We first notice by (2.5.48) and Lemma
2.5.5 that for all α > 1 and t > 0,

1

2

∫ t

0
|Dα(u(s))|ds = Mα(u0)−Mα(u(t)) ≤Mα(u0),

so by letting t→∞ we deduce Dα(u) ∈ L1([0,∞)). Since moreover∫ t

0
Dα(un(s))ds =

∫ tn+t

tn

Dα(u(s))ds, ∀t ≥ 0,

it follows that

lim
n→∞

∫ t

0
Dα(un(s))ds = 0 ∀t ≥ 0. (2.5.66)

Proposition 2.5.17. Let u be the weak solution of (2.5.1) constructed in Theorem
2.5.1 for an initial data u0 ∈ M+([0,∞)) satisfying (2.5.3). For every sequence
{tn}n∈N such that tn →∞, there exist a subsequence, still denoted {tn}n∈N, and

U ∈ C([0,∞),M+([0,∞))) (2.5.67)

such that for all ϕ ∈ C([0,∞)) satisfying (2.2.43), and all t > 0,

lim
n→∞

∫
[0,∞)

ϕ(x)u(t+ tn, x)dx =

∫
[0,∞)

ϕ(x)U(t, x)dx. (2.5.68)

Moreover, U is a weak solution of (2.5.1) such that M0(U(t)) = M0(u0) for all t > 0.

Proof. The proof is the same as the first part of the proof of Theorem 2.1.2 for
equation (2.2.1).

Lemma 2.5.18. Let u, u0 and U be as in Proposition 2.5.17. Then

supp(U(t)) = supp(U(0)) ⊂ supp(u0) ∀t ≥ 0. (2.5.69)



72 On a Boltzmann equation for Compton scattering

Proof. On the one hand, since U is a weak solution of (2.5.1), then by Proposition
2.5.4 it follows that supp(U(t)) = supp(U(0)) for all t > 0, where U(0) is given
by (2.5.68) for t = 0. On the other hand, again by Proposition 2.5.4 we have, in
particular, that supp(un(0)) = supp(u0) for all n ∈ N. The result then follows
from the convergence of un(0) towards U(0) in the sense of (2.5.68). Indeed, let
x0 ∈ suppU(0). We use the characterization of the support of a measure given in
the proof of part (iii) of Proposition 2.5.4. Then

ρϕ =

∫
[0,∞)

ϕ(x)U(0, x)dx > 0,

for all ϕ ∈ Cc([0,∞)) such that 0 ≤ ϕ ≤ 1 and ϕ(x0) > 0. Using then (2.5.68) for
t = 0, we deduce that for all ϕ as before, there exists n∗ ∈ N, such that∫

[0,∞)
ϕ(x)un(0, x)dx ≥ ρϕ

2
> 0 ∀n ≥ n∗,

and then x0 ∈ supp(un(0)) = supp(u0).

A partial identification of the limit U is given in our next Proposition.

Proposition 2.5.19. Let u, u0 and U be as in Proposition 2.5.17. Then

U(t) = µ ∀t ≥ 0, (2.5.70)

where µ is the measure defined in (2.1.46).

Proof. We first prove that Dα(U(t)) = 0 for a.e. t > 0 and for all α > 1. Indeed,
if we define as in proof of Theorem 2.1.2, un(t) = u(t+ tn), we deduce by the same
arguments

lim
n→∞

∫ t

0
Dα(un(s))ds =

∫ t

0
Dα(U(s))ds = 0 ∀t ≥ 0,

hence Dα(U(t)) = 0 for a.e. t ≥ 0.
Then by Theorem 2.1.6 , there exist mj(t) ≥ 0, xj(t) ≥ 0 such that,

U(t) =
∞∑
j=0

mj(t)δxj(t), (2.5.71)

xi(t), xj(t) are Γ-disjoint ∀i 6= j. (2.5.72)

By (2.5.69) in Proposition 2.5.18,

xj(t) = xj(0) := x′j ∈ supp(u0) ∀t ≥ 0, ∀j ∈ N. (2.5.73)

Furthermore, since by Proposition 2.5.17, U is a weak solution of (2.5.1), it follows
from Lemma 2.5.16 that for all t ≥ 0, j ∈ N,

mj(t) =

∫
{xj(t)}

U(t, x)dx =

∫
{xj(0)}

U(0, x)dx = mj(0) := m′j ,

and then by (2.5.71) we conclude that U is independent of t
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Let us prove now that U satisfies Properties 1-4. Properties 1 and 2 are already
proved in (2.5.72) and (2.5.73). In order to prove 3, let k ∈ N and ϕ ∈ C1

c ([0,∞)) be
such that ϕ(x) = 1 for all x ∈ Ak and ϕ(x) = 0 for all x ∈ ∪i 6=kAi. This construction
is possible by Uryshon’s Lemma. Then, by (2.5.55) in Lemma 2.5.16,∫

[0,∞)
ϕ(x)un(t, x)dx =

∫
Ak

un(t, x)dx = mk, ∀n ∈ N,

and then by (2.5.68) in Proposition 2.5.17,∫
[0,∞)

ϕ(x)U(x)dx = mk.

Since supp(U) ⊂ supp(u0) by Lemma 2.5.18, we then deduce∫
[0,∞)

ϕ(x)U(x)dx =

∫
Ak

U(x)dx =
∑
j∈Jk

m′j ,

and thus Property 3 holds.
Let us prove Property 4. Let k ∈ N and suppose that xk = min{x ∈ Ak} > 0. By

(2.1.47) in Property 3, the set Jk in non empty. Let then x′j ∈ Jk. If x′j = xk, there
is nothing left to prove. Suppose then x′j 6= xk, which by definition of xk implies
x′j > xk. We first notice that between xk and x′j , there can only be a finite number
of elements in Jk. This is because xk > 0 and the points in Jk are pairwise Γ-
disjoint, thus, the only possible accumulation point for any sequence in Jk is x = 0.
Consequently, the point x′j0 = min{x ∈ Jk} is well define. Again, if x′j0 = xk, there
is nothing left to prove. Suppose then x′j0 > xk, and let 0 < ε < (x′j0 − xk)/2. On
the one hand, ∫

[xk,x
′
j0
−ε]

U(x)dx = 0. (2.5.74)

On the other hand, let us show that the integral in (2.5.74) is strictly positive, which
will be a contradiction. Since Ak ⊂ supp(u0), in particular

δ =

∫
[xk,x

′
j0
−ε)

u0(x)dx > 0, and

∫
Ak∩[x′j0

−ε,∞)
u0(x)dx > 0,

and then by Proposition 2.5.5,∫
[0,x′j0

−ε)
u(t, x)dx >

∫
[0,x′j0

−ε)
u0(x)dx ∀t > 0.

We now deduce from Lemma 2.5.16 that∫
{x<xk}

u(t, x)dx =

∫
{x<xk}

u0(x)dx ∀t > 0,

and then we obtain∫
[xk,x

′
j0
−ε)

u(t, x)dx >

∫
[xk,x

′
j0
−ε)

u0(x)dx = δ ∀t > 0.



74 On a Boltzmann equation for Compton scattering

It then follows from (2.5.68) that∫
[xk,x

′
j0
−ε]

U(x)dx ≥ lim sup
n→∞

∫
[xk,x

′
j0
−ε]

un(t, x)dx > δ > 0,

in contradiction with (2.5.74).

Proof of Theorem 2.1.8. By Proposition 2.5.17, Lemma 2.5.18, and Proposition
2.5.19, there exists a sequence, {tn}n∈N such that, if un(t) = u(t + tn) for all t > 0
and n ∈ N, then un converges in C([0,∞),M+([0,∞))) to the measure µ defined in
(2.1.46).

Let us assume that for some other sequence {sm}m∈N, the sequence ωm(t) =
u(t + sm) is such that ωm converges in C([0,∞),M+([0,∞))) to a measure W ∈
C([0,∞),M+([0,∞))).

Arguing as before, there exists a subsequence of {ωm}m∈N, still denoted {ωm}m∈N,
such that, {ωm(t)}m∈N converges narrowly to a measure W ∈M+([0,∞)) for every
t ≥ 0 as m→∞. Moreover, the limit W is of the form

W =
∞∑
j=0

cjδyj ,

and satisfies the properties 1-4 in Theorem 2.1.8. We claim that W = U .
By Point (i) of Proposition 2.5.5, for any x ≥ 0, the map t 7→

∫
[x,∞) u(t, y)dy is

monotone nonincreasing on [0,∞). Therefore the following limit exists:

F (x) = lim
t→∞

∫
[x,∞)

u(t, y)dy, x ≥ 0.

From, ∫
[x,∞)

u(t, y)dy ≥
∫

[x,∞)
ωm(t, y)dy, ∀m ∈ N,

we first deduce that, ∫
[x,∞)

u(t, y)dy ≥
∫

[x,∞)
W (y)dy.

On the other hand, it follows from the narrow convergence,∫
[x,∞)

W (y)dy ≥ lim sup
m→∞

∫
[x,∞)

wm(t, y)dy,

and then

F (x) =

∫
[x,∞)

W (y)dy.

The same argument yields

F (x) =

∫
[x,∞)

µ(y)dy,

and then, using that M0(W ) = M0(u0) = M0(µ), it follows that W and µ have the
same (cumulative) distribution function, and therefore W = µ (cf. [48], Example
1.44, pg.20).
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We describe in the following example the behavior of a particularly simple solu-
tion of the reduced equation for which, although the sequence {Ak(u0)}k∈N has only
one element, the asymptotic limit µ has two Dirac measures.

Example 1. Let 0 < a < b < c be such that B(a, b) > 0, B(b, c) > 0, and
B(a, c) = 0, and let x0 > 0, y0 > 0 and z0 > 0 be such that x0 + y0 + z0 = 1. If we
define

u0 = x0δa + y0δb + z0δc,

it follows from the choice of the constant a, b, c thatA0(u0) = {a, b, c} andAk(u0) = ∅
for all k > 0. On the other hand, by Proposition 2.5.4, (iii) the weak solution u of
(2.5.1) given by Theorem 2.5.1 is of the form,

u(t) = x(t)δa + y(t)δb + z(t)δc, ∀t > 0,

where, in addition, x(t) + y(t) + z(t) = 1 for all t > 0. Using the weak formulation
(2.5.5) for the test functions 1[b,∞), 1[c,∞), and the conservation of mass, we obtain
the following system of equations:

x′(t) = R(a, b)x(t)y(t), x(0) = x0

y′(t) = −R(a, b)x(t)y(t) +R(b, c)y(t)z(t), y(0) = y0

z′(t) = −R(b, c)y(t)z(t), z(0) = z0.

Since x′(t) ≥ 0 for all t and x(t) ∈ (x0, 1),

lim
t→∞

x(t) = x∞ ∈ [x0, 1].

Moreover, for all t > 0,

y(t) = y0e
∫ t
0

(
R(b,c)z(s)−R(a,b)x(s)

)
ds

z(t) = z0e
−R(b,c)

∫ t
0 y(s)ds,

and, by the conservation of mass,

y(t)

z(t)
=
y0

z0
e
∫ t
0

(
R(b,c)−x(s)(R(a,b)+R(b,c))

)
ds ≤ y0

z0
eCt, (2.5.75)

C =
(
R(b, c)− x0(R(a, b) +R(b, c))

)
.

If we suppose that

x0 >
R(b, c)

R(a, b) +R(b, c)
,

then C < 0 and, by (2.5.75),

lim
t→∞

y(t)

z(t)
= 0.

Using that for all t > 0, z(t) ≤ z0, we also have, using again (2.5.75), y(t) ≤ y0e
Ct,

and then limt→∞ y(t) = 0. However, since for all t > 0,

z′(t) = −R(b, c)z(t)y(t) ≥ −R(b, c)z(t)y0e
Ct,
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we have,

z(t) ≥ z0 exp

(
R(b, c)y0(1− eCt)

C

)
.

Then, since z′(t) < 0,

z∞ = lim
t→∞

z(t) ≥ z0 exp

(
R(b, c)y0

C

)
> 0,

and the measure µ is,
µ = x∞δa + z∞δc.



Chapter 3

On a system of two coupled
equations for the normal fluid -
condensate interaction in a Bose
gas

3.1 Introduction

We consider the existence and properties of radially symmetric weak solutions to
the following system of differential equations:

∂F

∂t
(t, p) = n(t)I3(F (t))(p) t > 0, p ∈ R3,

n′(t) = −n(t)

∫
R3

I3(F (t))(p)dp t > 0,

(3.1.1)

(3.1.2)

where

I3(F (t))(p) =

∫∫
(R3)2

[
R(p, p1, p2)−R(p1, p, p2)−R(p2, p1, p)

]
dp1dp2, (3.1.3)

R(p, p1, p2) =
[
δ(|p|2 − |p1|2 − |p2|2)δ(p− p1 − p2)

]
×

× [F1F2(1 + F )− (1 + F1)(1 + F2)F ] , (3.1.4)

and we denote F = F (t, p) and F` = F (t, p`) for ` = 1, 2.

The system (3.1.1), (3.1.2) is motivated by the mathematical description of a
weakly interacting dilute gas of bosons. Given such a gas at equilibrium, if its
temperature is below the so-called critical temperature Tc, a macroscopic density
of bosons, called a condensate, appears at the lowest quantum state (cf.[52]). A
description of the system of particles out of equilibrium at zero temperature has
also been rigorously obtained ([27]). The system (3.1.1), (3.1.2) is more directly
related to a gas out of equilibrium and at non zero temperature. The equations
that, in the physic’s literature, describe a gas in such a situation have not been
the object of a mathematical proof; they have rather been deduced on the basis
of physical arguments (cf. [37], [40, 73], [69] for example). We are particularly
interested in the kinetic description of the interaction between the condensate and

77
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the particles in the dilute gas, when most of the particles are still in the gas, and so
when the system is at a temperature close to Tc.

3.1.1 The Nordheim equation

The kinetic equation consistently used to describe the evolution of the distribution
function for a spatially homogeneous, weakly interacting dilute gas of bosons of
momentum p1 is

∂F

∂t
(t, p1) = I4(F (t))(p1) t > 0, p1 ∈ R3, (3.1.5)

where

I4(F (t))(p1) =

∫∫∫
(R3)3

q(F )dν(p2, p3, p4), (3.1.6)

q(F ) = F3F4(1 + F1)(1 + F2)− F1F2(1 + F3)(1 + F4), (3.1.7)

dν(p1, p2, p3) = 2a2π−3δ (p1 + p2 − p3 − p4)×
δ (E(p1) + E(p2)− E(p3)− E(p4)) dp2dp3dp4. (3.1.8)

sometimes called Nordheim equation ([58]), (cf. for example [37], [40], [69]). We are
assuming that the particles have mass m = 1/2 and E(p) denotes the energy of a
particle of momentum p. The constant a is the scattering length that parametrizes
the Fermi pseudopotential of scattering. In the absence of condensate, the energy
of the particles is taken to be E(p) = |p|2.

For a condensed Bose gas, it is necessary to include the collisions involving the
condensate. A kinetic equation is derived in [26] and [47] describing such processes.
More recently, [73] extended the treatment to a trapped Bose gas by including
Hartree-Fock corrections to the energy of the excitations, and have derived coupled
kinetic equations for the distribution functions of the normal and superfluid compo-
nents. Later on the results where generalized to low temperatures in [41] using the
Bogoliubov-Popov approximation to describe the energy particle. The system is as
follows

∂F

∂t
(t, p) = I4(F (t))(p) + 32a2n(t)Ĩ3(F (t))(p) t > 0, p ∈ R3,

n′(t) = −n(t)

∫
R3

Ĩ3(F (t))(p)dp t > 0.

(3.1.9)

(3.1.10)

(cf. [26], [40], [47] for a deduction based on physic’s arguments). The term I4(F )
is exactly as in (3.1.6) and the constant 32a2 comes from the approximation of
the transition probability: |M(p, p1, p2)|2 ≈ 32a2n(t). The integral collision Ĩ3 is
given by an expression similar to (3.1.3), (3.1.4) but where the corresponding terms
R̃(p, p1, p2) are as follows,

R̃(p, p1, p2) = [δ(E(p)− E(p1)− E(p2))δ(p− p1 − p2)] ×
× [F (p1)F (p2)(1 + F (p))− (1 + F (p1))(1 + F (p2))F (p)] . (3.1.11)

In presence of a condensate, the energy E(t, p) of the particles at time t is now
taken as E(t, p) =

√
|p|4 + 16an(t)|p|2, where n(t) is the condensate density ([14],

[40]). Once equation (3.1.9) has been obtained, the equation (3.1.10) is just what is
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needed in order to ensure that the total number of particles n(t) +
∫
R3 F (t, p)dp in

the system is constant in time.
We are particularly interested in a situation where most of the particles are in

the gas, and the condensate density n is very small. The energy of the particles is
then usually approximated as E(t, p) ≈ |p|2 + 4aπn(t) (cf.[40]). In all what follows
we need the strongest simplification E(t, p) ≈ |p|2 to have the collision integral I3 in
(3.1.3).

Moreover, in the problem (3.1.1), (3.1.2) only the term that in the equation
(3.1.9) describes the interactions involving one particle of the condensate has been
kept. The term I4, the same as in equation (3.1.5), that only considers interactions
between particles in the gas, has been dropped. The term I4 has been studied
with detail to prove the existence of solutions to the Nordheim equation (3.1.5)
and describe some of their properties. The problem (3.1.1), (3.1.2) only takes into
account the collision processes involving a particle of the condensate.

Since we are only concerned with radial solutions (F, n) of (3.1.1), (3.1.2), a
very natural independent variable is x = |p|2. But this introduces a jacobian and
then, the most suitable quantity is not always f(x) = F (p) but may be sometimes√
xf(x).

3.1.2 The term I4 and the Nordheim equation

The local existence of bounded solutions for Nordheim equation (3.1.5) was proved
in [16]. Global existence of bounded solutions has been proved in [51] for bounded
and suitably small initial data. The existence of radially symmetric weak solutions
was first proved in [53] for all initial data f0 in the space of nonnegative radially
symmetric measures on [0,∞).

For radially symmetric solutions F (p) = f(x), x = |p|2, the expression of the
Nordheim equation simplifies because it is possible to perform the angular variables
in the collision integral. After rescaling the time variable t (in order to absorb some
constants), the Nordheim equation reads:

∂f

∂t
(t, x1) = J4(f(t))(x1), t > 0, x1 ≥ 0, (3.1.12)

where

J4(f)(x1) =

∫∫
[0,∞)2

w(x1, x2, x3)
√
x1

q(f)(x1, x2, x3)dx2dx3, (3.1.13)

q(f) = (1 + f1)(1 + f2)f3f4 − (1 + f3)(1 + f4)f1f2, (3.1.14)

w(x1, x2, x3) = min {
√
x1,
√
x2,
√
x3,
√
x4} , x4 = (x1 + x2 − x3)+. (3.1.15)

The factor w√
x1

in the collision integral comes from the angular integration of

the Dirac’s delta of the energies |p`|2.
If we denote M+([0,∞)) the space of positive and finite Radon measures on

[0,∞), and define for all α ∈ R

M α
+([0,∞)) = {G ∈M+([0,∞)) : Mα(G) <∞} , (3.1.16)

Mα(G) =

∫
[0,∞)

xαG(x)dx (moment of order α), (3.1.17)

the definition of weak solution introduced in [53] is the following.
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Definition 3.1.1 (Weak radial solutions of (3.1.5)). Let G be a map from [0,∞)
into M 1

+([0,∞)) and consider f defined as
√
xf(t) = G(t). We say that f is a weak

radial solution of (3.1.5) if G satisfies:

∀t > 0 : G(t) ∈M 1
+([0,∞)), (3.1.18)

∀T > 0 : sup
0≤t<T

∫
[0,∞)

(1 + x)G(t, x)dx <∞, (3.1.19)

∀ϕ ∈ C1,1
b ([0,∞)) :

∫
[0,∞)

ϕ(x)G(t, x)dx ∈ C1([0,∞)), (3.1.20)

d

dt

∫
[0,∞)

ϕ(t, x)G(t, x)dx = Q4(ϕ,G(t)), (3.1.21)

Q4(ϕ,G) =

∫∫∫
[0,∞)3

G1G2G3√
x1x2x3

w∆ϕ dx1dx2dx3+

+
1

2

∫∫∫
[0,∞)3

G1G2√
x1x2

w∆ϕ dx1dx2dx3 (3.1.22)

∆ϕ(x1, x2, x3) = ϕ(x4) + ϕ(x3)− ϕ(x2)− ϕ(x1), (3.1.23)

w(x1, x2, x3) = min{
√
x1,
√
x2,
√
x3,
√
x4}, x4 = (x1 + x2 − x3)+. (3.1.24)

For all initial data f0 such that G0 =
√
xf0 ∈ M 1

+([0,∞)), the existence of a
weak solution was proved in [53]. The moments of order zero and one of G where
shown to be constant in time. It was shown in [55] that a definition equivalent to
Definition 3.1.1 would be to impose ϕ(0) = 0 to the test functions in Definition 3.1.1
and impose the conservation of mass on G(t) for all t > 0. Further properties of the
solutions, such as the gain of moments, asymptotic behavior, where obtained in a
series of articles [53, 54, 55, 56]

It is proved in Proposition 3.2.1 below that if the measure G is written as G(t) =
n(t)δ0 +g(t), where n(t) = G(t, {0}), then for all ϕ ∈ C1,1

b ([0,∞)) the term Q4(ϕ,G)
may be decomposed as follows:

Q4(ϕ,G(t)) = Q4(ϕ, g(t)) + n(t)Q3(ϕ, g(t)), (3.1.25)

where

Q4(ϕ, g) =

∫∫∫
(0,∞)3

g1g2g3√
x1x2x3

w∆ϕ dx1dx2dx3

+
1

2

∫∫∫
(0,∞)3

g1g2√
x1x2

w∆ϕ dx1dx2dx3, (3.1.26)

Q3(ϕ, g) = Q
(2)
3 (ϕ, g)−Q

(1)
3 (ϕ, g), (3.1.27)

Q
(2)
3 (ϕ, g) =

∫∫
(0,∞)2

Λ(ϕ)(x, y)
√
xy

g(x)g(y)dxdy, (3.1.28)

Q
(1)
3 (ϕ, g) =

∫
(0,∞)

L0(ϕ)(x)√
x

g(x)dx, (3.1.29)

Λ(ϕ)(x, y) = ϕ(x+ y) + ϕ(|x− y|)− 2ϕ(max{x, y}), (3.1.30)

L0(ϕ)(x) = x
(
ϕ(0) + ϕ(x)

)
− 2

∫ x

0
ϕ(y)dy. (3.1.31)
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It was also proved in [53] that as t → ∞, the measure G converges in the weak
sense of measures to one of the measures:

Gβ,µ,C =

√
x

eβx−µ − 1
+ Cδ0, β > 0, µ ≤ 0, C ≥ 0 (3.1.32)

where the constants C and µ are such that Cµ = 0.
When C = 0 and µ ≤ 0, the function Fβ,µ,0(p) = |p|−1Gβ,µ,0(|p|2) is an equi-

librium of the Nordheim equation (3.1.5) because q(Fβ,µ,0)dν ≡ 0. When C > 0
and µ = 0, then Fβ,0,C(p) = |p|−1Gβ,0,C(|p|2) is an equilibria of (3.1.9) because
q(fβ,0,0) ≡ 0 and R(p, p′, p′′) ≡ 0 for all (p, p′, p′′) ∈ (R3)3 for fβ,0,0, where R(p, p′, p′′)
is defined in (3.1.4). It was proved in [53] that Fβ,µ,C is a weak solution of the Nord-
heim equation (3.1.12) if and only if µC = 0.

On the other hand, it was proved in [33] that, given any N > 0, E > 0 there
exists initial data f0 ∈ L∞ (R+; (1 + x)γ) with γ > 3, satisfying∫

R+

f0(x)
√
xdx = N,

∫
R+

f0(x)
√
x3dx = E,

and such that there exists a global weak solution f and positive times 0 < T∗ < T ∗

such that:

sup
0<t≤T∗

‖f (t, ·)‖L∞(R+) <∞, sup
T∗<t≤T ∗

∫
{0}

√
xf (t, x) dx > 0. (3.1.33)

Property (3.1.33) shows that the solution G =
√
xf of (3.1.18)–(3.1.24) is a bounded

function on the time interval [0, T ∗) and a Dirac mass is formed at the origin at
some time T0 between T∗ and T ∗. After that time T0, the solution G is such that
G(t, {0}) > 0.

In the simplified description of the physical system of particles that we are us-
ing, where only the radial density G of particles of momentum p is considered, the
description of the physical Bose-Einstein condensate can just be given by a Dirac
measure at the origin.

Notwithstanding the similarity of these two phenomena, the extent to which the
first one is a truthful mathematical description of the second is not clear. Never-
theless, we refer to the term n(t)δ0 that appears in finite time in some of the weak
solutions of the Nordheim equation as “condensate”, with some abuse of language.

3.1.3 The term I3 in radial variables.

The results briefly presented in the previous sub Section describe some of the prop-
erties of the weak solutions to the Nordheim equation in terms of the measure G.
In particular, the weak convergence of G to the measures defined in (3.1.32) shows
what is the limit of G(t, {0}) as t → ∞. To understand better the dynamics of
G(t, {0})δ0 and its interaction with G(t) − G(t, {0})δ0 it seems suitable to write
G(t) = G(t, {0})δ0 + g(t) and consider the system (3.1.9), (3.1.10).

For radially symmetric functions F (p) = f(x), x = |p2|, the system (3.1.1),
(3.1.2) reads, after a suitable time rescaling to absorb some constants:

∂f

∂t
(t, x) =

n(t)√
x
J3(f(t))(x) t > 0, x > 0,

n′(t) = −n(t)

∫ ∞
0

J3(f(t))(x)dx t > 0,

(3.1.34)

(3.1.35)
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where

J3(f)(x) =

∫ x

0

(
f(x− y)f(y)− f(x)

[
1 + f(x− y) + f(y)

])
dy+

+ 2

∫ ∞
x

(
f(y)

[
1 + f(y − x) + f(x)

]
− f(y − x)f(x)

)
dy. (3.1.36)

(cf. [65] and [70] for the isotropic system that also contains the term J4(f), that
comes from I4 in (3.1.9)). Notice that∫ ∞

0
J3(f(t))(x)dx

=

∫ ∞
0

∫ ∞
0

(
f(t, x)f(t, y)− f(t, x+ y)

[
1 + f(t, x) + f(t, y)

])
dxdy (3.1.37)

whenever the integral in the right hand side is finite, for example, if f ∈ L1
(
R+, (1+

x)dx
)
. In that case we also have,∫ ∞

0
J3(f(t))(x)dx = M1(f(t)). (3.1.38)

The factor x−1/2 in the right hand side of (3.1.34) comes from the angular in-
tegration of the Dirac’s measure of energies of I3, just as the w√

x1
term of (3.1.13)

in I4. But since w√
x1

is a bounded function, it appears that the operator I3 is more

singular than I4 for small values of x.

If we denote F (t, p) = f(t, |p|2) = |p|−1g(t, |p|2) and x = |p2|, from the original
motivation of the Nordheim equation it is very natural to expect∫

R3

F (t, p)dp = 2π

∫ ∞
0

f(t, x)
√
xdx = 2π

∫ ∞
0

g(t, x)dx <∞,

(that corresponds to the number of particles in the normal fluid), and∫
R3

F (t, p)|p|2dp = 2π

∫ ∞
0

f(t, x)x3/2dx = 2π

∫ ∞
0

g(t, x)xdx <∞,

(corresponding to the total energy in the system). But there is no particular reason
to expect ∫

R3

F (t, p)
dp

|p|
= 2π

∫ ∞
0

f(t, x)dx = 2π

∫ ∞
0

g(t, x)
dx√
x
<∞.

Without that last condition, the convergence of the integrals in the term I3(F (t))
(cf. (3.1.3), (3.1.4)), or in (3.1.34), (3.1.36), is delicate. That difficulty is usually
avoided using a suitable weak formulation.

If we suppose that f = x−1/2g ∈ L1
(
R+, (1 + x)dx

)
, and multiply the equation

(3.1.34) by
√
xϕ, we obtain by Fubini’s Theorem,

d

dt

∫
[0,∞)

ϕ(x)g(t, x)dx = n(t)Q̃3(ϕ, g(t)) ∀ϕ ∈ C1
b ([0,∞)), (3.1.39)
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where

Q̃3(ϕ, g) = Q
(2)
3 (ϕ, g)− Q̃

(1)
3 (ϕ, g), (3.1.40)

Q̃
(1)
3 (ϕ, g) =

∫
(0,∞)

L(ϕ)(x)√
x

g(x)dx, (3.1.41)

L(ϕ)(x) = xϕ(x)− 2

∫ x

0
ϕ(y)dy. (3.1.42)

Notice that, by (3.1.27),

Q3(ϕ, g) = Q̃3(ϕ, g)− ϕ(0)M1/2(g). (3.1.43)

A natural weak formulation for G = n(t)δ0+g is then obtained by adding (3.1.35)
to (3.1.39). We then define a weak radially symmetric solution of the Problem
(3.1.1), (3.1.2) as follows.

Definition 3.1.2 (Weak radial solution of (3.1.1), (3.1.2)). Consider a map G :
[0, T )→M 1

+([0,∞)) for some T ∈ (0,∞], that we decompose as follows:

∀t ∈ [0, T ) : G(t) = n(t)δ0 + g(t), where n(t) = G(t, {0});

and define F (t, p) = |p|−1g(t, |p|2) for all t > 0 and p ∈ R3. We say that (F, n) is a
weak radial solution of (3.1.1), (3.1.2) on (0, T ) if:

∀T ′ ∈ (0, T ] : sup
0≤t<T ′

∫
[0,∞)

(1 + x)G(t, x)dx <∞, (3.1.44)

∀ϕ ∈ C1
b ([0,∞)) : t 7→

∫
[0,∞)

ϕ(x)G(t, x)dx ∈W 1,∞
loc ([0, T )), (3.1.45)

and for a.e. t ∈ (0, T )

d

dt

∫
[0,∞)

ϕ(x)G(t, x)dx = n(t)Q3(ϕ, g(t)) ∀ϕ ∈ C1
b ([0,∞)), (3.1.46)

where Q3(ϕ, g) is defined by (3.1.27)-(3.1.29).

We show in Proposition 3.2.1 that the Definition 3.1.2 substantially coincides
with the Definition 3.1.1 of radial weak solution of (3.1.5) when the term Q4(ϕ, g)
in (3.2.1) is dropped (cf. Remark 3.2.2). As a consequence, the measures fβ,0,C(p)
defined above are weak radial solutions of (3.1.1), (3.1.2) (cf. Proposition 3.2.3).

3.1.4 Main results

The existence of weak radial solutions for the Cauchy problem associated with the
system (3.1.1), (3.1.2) is given in the following Theorem.

Theorem 3.1.3 (Existence result). Suppose that G0 ∈M 1
+([0,∞)) satisfies G0({0}) >

0, and define F0(p) = |p|−1g0(|p|2), where g0 = G0 − G0({0})δ0. Then, there ex-
ists a weak radial solution (F, n) of (3.1.1), (3.1.2) on (0,∞) such that F (t, p) =
|p|−1g(t, |p|2), where G = nδ0 + g satisfies:

G ∈ C
(
[0,∞),M 1

+([0,∞))
)
, G(0) = G0 (3.1.47)

and:
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(i) G conserves the total number of particles N and energy E:

M0(G(t)) = M0(G0) = N ∀t ≥ 0, (3.1.48)

M1(G(t)) = M1(G0) = E ∀t ≥ 0. (3.1.49)

(ii) For all α ≥ 3, if Mα(G0) <∞, then G ∈ C
(
(0,∞),M α

+([0,∞))
)

and

Mα(G(t)) ≤
(
Mα(G0)

2
α−1 + α2α−1E

α+1
α−1 τ(t)

)α−1
2 ∀t > 0, (3.1.50)

where τ(t) =

∫ t

0
G(s, {0})ds. (3.1.51)

(iii) For all α ≥ 3,

Mα(G(t)) ≤ C(α,E)

(
1

1− e−γ(α,E)τ(t)

)2(α−1)

∀t > 0, (3.1.52)

where τ(t) is given by (3.1.51), and the constants C(α,E) and γ(α,E) are
defined in Theorem 3.3.1.

(iv) If α ∈ (1, 3] and

E > C(α)N5/3, (3.1.53)

where C(α) =


(

(2α−2)(α+1)
(α−1)

) 2
3

if α ∈ (1, 2],(
α(α+ 1)

) 2
3 if α ∈ (2, 3],

(3.1.54)

then Mα(G(t)) is a decreasing function on (0,∞).

The next result is a property satisfied by all the weak radial solutions of (3.1.1),
(3.1.2).

Theorem 3.1.4. Let G0 be as in Theorem 3.1.3, and G a weak radial solution of
(3.1.1), (3.1.2). Then for all T > 0, R > 0 and α ∈

(
−1

2 ,∞
)
,∫ T

0
G(t, {0})

∫
(0,R]

xαG(t, x)dxdt ≤

≤ 2R
1
2

+α

1−
(

2
3

) 1
2

+α

(∫ T

0
G(t, {0})dt

) 1
2

(√
E

2

∫ T

0
G(t, {0})dt+

√
N

)
. (3.1.55)

The only possible algebraic behavior for such a measure G near the origin is then
x−1/2.

Remark 3.1.5. The functions Fβ,0,C defined above are weak radial solutions of
(3.1.1), (3.1.2) for all β > 0 and C ≥ 0 (cf. Proposition 3.2.3). Since∫

(0,∞)
xαGβ,0,C dx <∞ ⇐⇒ α > −1/2,

the estimate (3.1.55) can not hold for all radial weak solutions if α ≤ −1/2.
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In the next two results we describe the evolution of the measure at the origin
n(t) = G(t, {0}) by taking the limit ε→ 0 in the weak formulation (3.1.46) for test
functions ϕε as follows:

Remark 3.1.6. Given ϕ ∈ C1
b ([0,∞)) nonnegative, convex, with ϕ(0) = 1 and

limx→∞
√
xϕ(x) = 0, denote ϕε(x) = ϕ(x/ε) for ε > 0. Notice that for any G ∈

M+([0,∞)),

G({0}) = lim
ε→0

∫
[0,∞)

ϕε(x)dG(x). (3.1.56)

The standard example is ϕε(x) = (1− x/ε)2
+.

Theorem 3.1.7. Let G be the solution of (3.1.46) obtained in Theorem 3.1.3, with
initial data G0 ∈ M 1

+([0,∞)) such that N = M0(G0) > 0, E = M1(G0) > 0 and
G0({0}) > 0. Denote G(t) = n(t)δ0 + g(t), with n(t) = G(t, {0}). Then n is
right continuous and a.e. differentiable on [0,∞). Moreover, there exists a positive
measure µ on [0,∞) whose cumulative distribution function is given by

µ((0, t]) = lim
ε→0

∫ t

0
n(s)Q

(2)
3 (ϕε, g(s))ds (3.1.57)

for any ϕε as in Remark 3.1.6, and such that:

n(t)− n(0) +

∫ t

0
n(s)M1/2(g(s))ds = µ((0, t]) ∀t > 0. (3.1.58)

Theorem 3.1.8. Let G and µ be as in Theorem 3.1.7. Then

0 < µ((0, t])) <∞ ∀t > 0. (3.1.59)

The measure µ in (3.1.57) depends on the atomic part of g, and on the behaviour
of g at the origin (it seems to be actually related with its moment of order −1/2 c.f.
Proposition 3.6.4 and Remark 3.6.5). This measure µ appears as a source term in
the equation (3.1.58) for n. Given the function n, the equation (3.1.34) satisfied by
g on (0,∞) has also a natural weak formulation by itself. In terms of g(t), where
g(t) = G(t)−G(t, {0})δ0 and

√
xf(t, x) = g(t, x) it reads

d

dt

∫
[0,∞)
ϕ(x)g(t, x)dx = n(t)Q3(ϕ, g(t)), ∀ϕ ∈ C1

b ([0,∞)), ϕ(0) = 0. (3.1.60)

In the next result we describe the relation between a weak solution (F, n) of
(3.1.1), (3.1.2), where F (t, p) = |p|−1g(t, |p|2), G(t) = n(t)δ0 +g(t), n(t) = G(t, {0}),
and a pair (g, n) where g is a weak radial solution of the equation (3.1.1) and n
satisfies (3.1.2).

Theorem 3.1.9. Suppose that G ∈ C
(
[0,∞),M+([0,∞))

)
is such that G(0) = G0 ∈

M 1
+([0,∞)) with G0({0}) > 0, and denote G(t) = n(t)δ0+g(t) with n(t) = G(t, {0}).

(i) If (F, n) is a weak radial solution of (3.1.1), (3.1.2) and F (t, p) = |p|−1g(t, |p|2),
then n is given by (3.1.58), (3.1.57), and g satisfies (3.1.60) for a.e. t > 0.
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(ii) On the other hand, if g satisfies (3.1.44), (3.1.45) and (3.1.60) for some non-
negative bounded function n, then the limit in (3.1.57) exists. If n also satisfies

n(t) = n(0) + lim
ε→0

∫ t

0
n(s)Q

(2)
3 (ϕε, g(s))ds−

∫ t

0
n(s)M1/2(g(s))ds (3.1.61)

and F (t, p) = |p|−1g(t, |p|2), then (F, n) is a weak radial solution of (3.1.1), (3.1.2).

If in the Definition 3.1.2 only test functions satisfying ϕ(0) = 0 are taken, it
becomes necessary to introduce some other condition to the system. Otherwise the
system would be reduced to find g satisfying (3.1.45)–(3.1.46) for a given function
n(t) and for test functions such that ϕ(0) = 0. If we impose just the conservation
of mass, we prove below (Corollary 3.1.10) that we recover a solution that satisfies
the Definition 3.1.2.

Corollary 3.1.10. If g satisfies (3.1.44), (3.1.45) and (3.1.60) for some nonnega-
tive bounded function n = n(t) such that

n(t) +

∫
(0,∞)

g(t, x)dx = constant (3.1.62)

and F (t, p) = |p|−1g(t, |p|2), then (F, n) is a weak radial solution of (3.1.1), (3.1.2).

In our last result we show that, under some sufficient conditions, the condensate
density n(t) tends to zero as t→∞, fast enough to be integrable.

Theorem 3.1.11. Suppose that G0 ∈ M 1
+([0,∞)) satisfies G0({0}) > 0 and let

(F, n) be the weak radial solution of (3.1.1), (3.1.2) obtained in Theorem 3.1.3. Let
us call N = M0(G0) and E = M1(G0). If condition (3.1.53), (3.1.54) hold for some
α ∈ (1, 3], then, for all t0 > 0,∫ ∞

t0

n(t)dt ≤Mα(G(t0))C(N,E, α) (3.1.63)

for some explicit constant C(N,E, α) given in (3.7.1), and

lim
t→∞

n(t) = 0. (3.1.64)

Remark 3.1.12. The quantity E/N5/3 has a very precise interpretation in physical
terms. Suppose that T is the temperature of a system of particles at equilibrium
with total number of particles N and total energy E. And denote Tc the critical tem-
perature, that is the temperature at which the ground state of the system becomes
macroscopically occupied. Then:

E

N5/3
= b

T

Tc
, where b =

3

(2π)
1
3

ζ(5/2)

ζ(3/2)5/3
.

and condition (3.1.53) implies

T

Tc
=

1

b

E

N5/3
>
C(α)

b
.

The function C(α)/b is continuous and strictly increasing on [1, 3] and its limit
as α → 1+ is log(16)2/3/b ≈ 4.48403. Condition (3.1.53) means that, when at
equilibrium, the system of particles would be at a temperature clearly above the
critical temperature. Anyway, the solution F of the problem (3.1.1), (3.1.2) may be
far from any real distribution of particles of the original system of particles.
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3.1.5 Some arguments of the proofs.

It is very natural to make the following change of variables in problem (3.1.46).
Given G(t) = n(t)δ0 + g(t), where n(t) = G(t, {0}), we define

H(τ) = G(t), where τ =

∫ t

0
n(s)ds. (3.1.65)

In terms of H, (3.1.46) reads

d

dτ

∫
[0,∞)

ϕ(x)H(τ, x)dx = Q3(ϕ,H(τ)) ∀ϕ ∈ C1
b ([0,∞)). (3.1.66)

To obtain a measure H that satisfies (3.1.66), we first find h satisfying

d

dτ

∫
[0,∞)

ϕ(x)h(τ, x)dx = Q̃3(ϕ, h(τ)) ∀ϕ ∈ C1
b ([0,∞)), (3.1.67)

where Q̃3 is given in (3.1.40)–(3.1.42). Then we define H as

H(τ) = h(τ)−
(∫ τ

0
M1/2(h(σ))dσ

)
δ0. (3.1.68)

By (3.1.43), the measure H will satisfy (3.1.66).
As it will be seen in Section 3.3, all the arguments are much simpler and clear

in the equation for H than in the equation for G. In particular, the measure λ, that
corresponds to the measure µ of Theorem 3.1.7, appears as the Lebesgue-Stieltjes
measure associated to m(τ) = h(τ, {0}).

The proofs of Theorem 3.1.3 and Theorem 3.1.4 make great use of the change
of variables (3.1.65). Several of our arguments will need the measure h(τ) to satisfy
only one inequality in (3.1.67). This requires the following:

Definition 3.1.13. A function h : [0,∞) → M+([0,∞)) is said to be a super
solution of (3.1.67) if

∀ϕ ∈ C1
b ([0,∞)) nonnegative, convex and decreasing :

d

dτ

∫
[0,∞)

ϕ(x)h(τ, x)dx ≥ Q
(2)
3 (ϕ, h(τ)) a.e. τ > 0. (3.1.69)

The operator Q
(2)
3 is considered in [44] and [45], where a problem similar to

(3.1.67) is studied, with Q̃3 replaced by Q
(2)
3 and for which, the property of in-

stantaneous condensation is proved. We extend this result to the solutions h of
the problem (3.1.67) with the whole Q̃3, using similar arguments (monotonicity,
convexity of test functions) and taking care of the linear term.

Theorem 3.1.3 is deduced from the corresponding existence result of h, that is
proved using very classical arguments: regularization of the problem, fixed point, a
priori estimates and passage to the limit. Then, the delicate point is to invert the
change of variables (3.1.65) in order to obtain a global in time nonnegative solution
G.

The Plan of the article is the following. In Section 3.2 we prove Proposition 3.2.1.
Section 3.3 is devoted to the proof of the existence of the measure H. In Section
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3.4 we obtain several properties of h(τ, {0}). In Section 3.5 we prove Theorem 3.1.3
(existence for the measure G) and Theorem 3.1.4. The contents of Section 3.6 are the
proofs of Theorem 3.1.7, Theorem 3.1.8, Theorem 3.1.9 and Corollary 3.1.10. Finally
in Section 3.7 we prove Theorem 3.1.11. Several technical results are presented in
an Appendix.

3.2 On weak formulations.

We deduce first a detailed expression of the weak formulation of (3.1.12) for a radial
measure G.

Proposition 3.2.1. Let G satisfy (3.1.18)–(3.1.24) for some T > 0, and write
G(t) = n(t)δ0 + g(t), where n(t) = G(t, {0}). Then, for all ϕ ∈ C1,1

b ([0,∞)) and for
all t ∈ (0, T ):

d

dt

∫
[0,∞)

ϕ(x)G(t, x)dx = Q4(ϕ, g(t)) + n(t)Q3(ϕ, g(t)), (3.2.1)

where Q4(ϕ, g) and Q3(ϕ, g) are defined in (3.1.26)–(3.1.31).

Remark 3.2.2. If the term Q4(ϕ, g) in (3.2.1) is dropped, we recover the equation
(3.1.46) that defines a radial weak solution of (3.1.1), (3.1.2).

Proof of Proposition 3.2.1. We may rewrite Q4(ϕ,G) in (3.1.22) as

Q4(ϕ,G) =

∫∫∫
[0,∞)3

Φϕ dG1dG2dG3 +
1

2

∫∫∫
[0,∞)3

√
x3Φϕ dG1dG2dx3,

where Φϕ is as in Lemma C.2.23, and we have used notation dG instead of Gdx.
Then we decompose [0,∞)3 = (0,∞)3 ∪A ∪ P , where, for {i, j, k} = {1, 2, 3},

A = {(x1, x2, x3) ∈ ∂[0,∞)3 : xi = xj = 0, xk > 0} ∪ {(0, 0, 0)},
P = {(x1, x2, x3) ∈ ∂[0,∞)3 : xi = 0, (xj , xk) ∈ (0,∞)2}.

Let ϕ ∈ C1.1
b ([0,∞). By (C.2.34) in Lemma C.2.22 and the definition (C.2.35) of

W , it follows that Φϕ ≡ 0 on A. Hence, recalling the definition (3.1.26) of Q4(ϕ, g)
and the definition of Φϕ in Lemma C.2.22, we have

Q4(ϕ,G) = Q4(ϕ, g) +

∫∫∫
P

Φϕ dG1dG2dG3 +
1

2

∫∫∫
P

√
x3Φϕ dG1dG2dx3.

(3.2.2)

We now study the integral over P for the cubic and the quadratic terms in (3.2.2).
(a) The cubic term. Since Φϕ is symmetric in the x1, x2 variables, and Φϕ is
uniformly continuous on [0,∞)3 by Lemma C.2.23, then∫∫∫

P
Φϕ dG1dG2dG3 =2

∫∫∫
{x2=0, x1>0, x3>0}

Φϕ dG1dG2dG3

+

∫∫∫
{x3=0, x1>0, x2>0}

Φϕ dG1dG2dG3

=2G(t, {0})
∫∫

(0,∞)2

Φϕ(x1, 0, x3) dG1dG3

+G(t, {0})
∫∫

(0,∞)2

Φϕ(x1, x2, 0) dG1dG2. (3.2.3)
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Using now the definition of Φϕ, we have

2

∫∫
(0,∞)2

Φϕ(x1, 0, x3) dG1dG3 (3.2.4)

= 2

∫∫
{x1>x3>0}

[
ϕ(x1 − x3) + ϕ(x3)− ϕ(0)− ϕ(x1)

]dG1dG3√
x1x3

=

∫∫
(0,∞)2

[
ϕ(|x1 − x3|) + ϕ(min{x1, x3})− ϕ(0)− ϕ(max{x1, x3})

]dG1dG3√
x1x3

.

and ∫∫
(0,∞)2

Φϕ(x1, x2, 0) dG1dG2 (3.2.5)

=

∫∫
(0,∞)2

[
ϕ(x1 + x2) + ϕ(0)− ϕ(min{x1, x2})− ϕ(max{x1, x2})

]dG1dG2√
x1x2

.

Notice in (3.2.4) that ϕ(|x1−x3|) +ϕ(min{x1, x3})−ϕ(0)−ϕ(max{x1, x3}) = 0 on
the diagonal {x1 = x3 > 0}. Then, using (3.2.4) (changing the labels x3 by x2) and
(3.2.5) in (3.2.3), and recalling the definition (3.1.30) of Λ(ϕ), we obtain∫∫∫

P
Φϕ dG1dG2dG3 = G(t, {0})

∫∫
(0,∞)2

Λ(ϕ)(x1, x2)
√
x1x2

dG1dG2. (3.2.6)

(b) The quadratic term. Again, by the symmetry of Φϕ in x1, x2, and the continuity
of Φϕ on [0,∞)3, we obtain

1

2

∫∫∫
P

√
x3 Φϕ dG1dG2dx3 =

∫∫∫
{x2=0, x1>0, x3>0}

√
x3 Φϕ dG1dG2dx3

= G(t, {0})
∫∫

(0,∞)2

√
x3 Φϕ(x1, 0, x3) dG1dx3

= G(t, {0})
∫∫
{x1>x3>0}

∆ϕ(x1, 0, x3)
√
x1

dG1dx3

= −G(t, {0})
∫

(0,∞)

L0(ϕ)(x1)
√
x1

dG1, (3.2.7)

where L0(ϕ) is given in (3.1.31). Using (3.2.6) and (3.2.7) in (3.2.2), the result
follows.

Proposition 3.2.3. For all C > 0 and all β > 0, the measure fβ,0,C is a radial
weak solutions of (3.1.1),(3.1.2).

Proof. By Proposition 3.2.1,

Q4(ϕ,Gβ,0,C) = Q4(ϕ,Gβ,0,0) + CQ3(ϕ,Gβ,0,0).

We already know by Theorem 5 of [53] thatQ4(ϕ,Gβ,0,C) = 0 for all ϕ ∈ C1,1([0,∞)).
Since Q4(ϕ,Gβ,0,0) ≡ Q4(ϕ,Gβ,0,0), we deduce Q4(ϕ,Gβ,0,0) = 0 for all ϕ ∈ C1,1([0,∞)).
Then, since C > 0,

Q3(ϕ,Gβ,0,0) = 0 ∀ϕ ∈ C1,1([0,∞)).
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3.3 Existence of solutions H to (3.1.66)

The main result of this Section is the following,

Theorem 3.3.1. Let h0 ∈M 1
+([0,∞)) with N = M0(h0) > 0 and E = M1(h0) > 0.

Then, there exists h ∈ C
(
(0,∞),M α

+([0,∞))
)

for any α ≥ 1, that satisfies the
following properties: for all ϕ ∈ C1

b ([0,∞)

(i) τ 7→
∫

[0,∞)
ϕ(x)h(τ, x)dx ∈W 1,∞

loc ([0,∞)), (3.3.1)

(ii)
d

dτ

∫
[0,∞)

ϕ(x)h(τ, x) dx = Q̃3(ϕ, h(τ)) a.e. τ > 0, (3.3.2)

(iii) h(0) = h0, (3.3.3)

(iv) M0(h(τ)) ≤
(√

E

2
τ +
√
N

)2

∀τ ≥ 0, (3.3.4)

(v) M1(h(τ)) = E ∀τ ≥ 0, (3.3.5)

(vi) For all α ≥ 3, if Mα(h0) <∞, then

Mα(h(τ)) ≤
(
Mα(h0)

2
α−1 + α2α−1E

α+1
α−1 τ

)α−1
2 ∀τ ≥ 0, (3.3.6)

(vii) Mα(h(τ)) ≤ C(α,E)

(
1

1− e−γ(α,E)τ

)2(α−1)

∀α ≥ 3, ∀τ > 0, (3.3.7)

where C = C(α,E) is the unique positive root of the algebraic equation

2α−2(α+ 1)E
2α+3

2(α−1) (1 + C) = C
2α−1

2(α−1) , (3.3.8)

and γ = γ(α,E):

γ =
1

2(α+ 1)

(
C

E

) 1
2(α−1)

. (3.3.9)

The proof of Theorem 3.3.1 is in three steps. In the first, a regularized problem
is solved (Theorem 3.3.6). Then, using an approximation argument, a solution
is obtained that satisfies (3.3.1)–(3.3.6) but not yet (3.3.7) (Theorem 3.3.4). The
Theorem 3.3.1 is proved with a second approximation argument on the initial data.

As a Corollary, we obtain the measure H (not necessarily positive).

Corollary 3.3.2. Suppose that h0 ∈ M 1
+([0,∞)) with N = M0(h0) > 0 and E =

M1(h0) > 0, consider h given by Theorem 3.3.1, and define, for τ ≥ 0

H(τ) = h(τ)−
(∫ τ

0
M1/2(h(σ))dσ

)
δ0. (3.3.10)
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Then H ∈ C
(
[0,∞),M 1([0,∞))

)
and for all τ ∈ [0,∞) and ϕ ∈ C1

b ([0,∞)):

(i) τ 7→
∫

[0,∞)
ϕ(x)H(τ, x)dx ∈W 1,∞

loc ([0,∞)), (3.3.11)

(ii)
d

dτ

∫
[0,∞)

ϕ(x)H(τ, x) dx = Q3(ϕ,H(τ)) a.e. τ > 0, (3.3.12)

(iii) H(0) = h0, (3.3.13)

(iv) M0(H(τ)) = N ∀τ ≥ 0, (3.3.14)

(v) M1(H(τ)) = E ∀τ ≥ 0, (3.3.15)

(vi) ∀α ≥ 3, if Mα(h0) <∞ then, for all τ > 0,

Mα(H(τ)) ≤
(
Mα(h0)

2
α−1 + α2α−1E

α+1
α−1 τ

)α−1
2
, (3.3.16)

(vii) Mα(H(τ)) ≤ C(α,E)

(
1

1− e−γ(α,E)τ

)2(α−1)

, ∀α ≥ 3, (3.3.17)

where the constants C(α,E) and γ(α,E) are defined in Theorem 3.3.1.

Remark 3.3.3. Under the hypothesis that all the moments of the initial data h0

are bounded it is easy to obtain the estimate (3.3.7) using the weak formulation
(3.3.2). However, it is not so easy using the regularized weak formulation (3.3.21)
below. For that reason, we first want to obtain a solution h satisfying (3.3.2) with
an initial data with bounded moments of all order.

3.3.1 A first result.

Theorem 3.3.4. For any h0 ∈ M 1
+([0,∞)) with N = M0(h0) and E = M1(h0),

there exists h ∈ C
(
[0,∞),M 1

+([0,∞))
)

that satisfies (3.3.1)–(3.3.6).

The proof of Theorem 3.3.4 is made in two steps. We first solve a regularised
version of (3.3.2). Then, in a second step, we use an approximation argument. More
precisely, we consider the following cutoff:

Cutoff 3.3.5. For every n ∈ N let φn ∈ Cc([0,∞)) be such that suppφn = [0, n+1],
φn(x) ≤ x−1/2 for all x > 0 and φn(x) = x−1/2 for all x ∈

(
1
n , n

)
, in such a way that:

∀x > 0 lim
n→∞

φn(x) =
1√
x
. (3.3.18)

3.3.2 Regularised problem

We now solve in Theorem 3.3.6 a regularised version of (3.3.2) with the operator
Q̃3,n defined in (C.1.14)–(C.1.16). The solution hn is obtained as a mild solution to
the equation

∂hn
∂τ

(τ, x) = J3,n(hn(τ))(x), (3.3.19)

where J3,n is defined in (C.1.17)-(C.1.20), and corresponds to a regularised version
of the term J3 defined in (3.1.36). Namely, J3,n(h) = J3(hφn), where φn is as in
Cutoff 3.3.5.
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Theorem 3.3.6. For any n ∈ N and any nonnegative function h0 ∈ Cc([0,∞)),
there exists a unique nonnegative function hn ∈ C

(
[0,∞), L∞(R+) ∩ L1

x(R+)
)

such
that for all τ ∈ [0,∞) and all ϕ ∈ L1

loc(R+):

τ 7→
∫

[0,∞)
ϕ(x)h(τ, x)dx ∈W 1,∞

loc ([0,∞)) (3.3.20)

d

dτ

∫ ∞
0

ϕ(x)hn(τ, x)dx = Q̃3,n(ϕ, hn(τ)). (3.3.21)

hn(0, x) = h0(x) (3.3.22)

Moreover, if we denote by N = M0(h0) and E = M1(h0), then for every τ ∈ [0,∞)
and α ≥ 3:

M0(hn(τ)) ≤
(
E

2
τ +
√
N

)2

, (3.3.23)

M1(hn(τ)) = E, (3.3.24)

Mα(hn(τ)) ≤
(
Mα(h0)

2
α−1 + α2α−1E

α+1
α−1 τ

)α−1
2
. (3.3.25)

Furthermore, there exist two positive constants C1,n and C2,n depending on n and
‖h0‖L∞∩L1

x
such that for all τ > 0:

‖hn(τ)‖∞ ≤ C1,ne
C2,n(τ2+τ). (3.3.26)

Proof. Using (C.1.17) we write equation (3.3.19) as

∂hn
∂τ

+ hnAn(hn) = Kn(hn) + Ln(hn), (3.3.27)

and the solution hn is obtained as a fixed point of the operator:

Rn(hn)(τ, x) =h0(x)Sn(0, τ ;x)

+

∫ τ

0
Sn(σ, τ ;x)

(
Kn(hn)(σ, x) + Ln(hn)(σ, x)

)
dσ, (3.3.28)

Sn(σ, τ ;x) =e−
∫ τ
σ An(hn)(σ,x)dσ (3.3.29)

on

B(T ) :=
{
h ∈ C

(
[0, T ], L∞(R+) ∩ L1

x(R+)
)

: h ≥ 0 and

sup
τ∈[0,T ]

‖h(τ)‖L∞∩L1
x
≤ 2‖h0‖L∞∩L1

x

}
. (3.3.30)

Let us show first that Rn sends B(T ) into itself. Let r0 := ‖h0‖L∞∩L1
x

and for an
arbitrary T > 0, let h ∈ B(T ). By Proposition C.1.21 with ρ(x) = x,

Rn(h)(τ, x) ≥ 0 ∀τ ∈ [0, T ], ∀x ∈ R+,

Rn(h) ∈ C
(
[0, T ], L∞(R+) ∩ L1

x(R+)
)
.

Moreover, using (C.1.28) and (C.1.29):

sup
τ∈[0,T ]

‖Rn(h)(τ)‖L∞∩L1
x
≤ r0 + T C(n)(4r2

0 + 2r0).
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If T satisfies:

T ≤ 1

C(n)(4r0 + 2)
(3.3.31)

then Rn(h) ∈ B(T ).
To prove that Rn is a contraction, let h1 ∈ B(T ), h2 ∈ B(T ) and write:

∣∣Rn(h1)(τ, x)−Rn(h2)(τ, x)
∣∣ ≤ h0(x) |S1(0, τ ;x)− S2(0, τ ;x)|+

+

∫ τ

0
|S1(σ, τ ;x)− S2(σ, τ ;x)|

(
Kn(h1)(σ, x) + Ln(h1)(σ, x)

)
dσ

+

∫ τ

0

∣∣Kn(h1)(σ, x)−Kn(h2)(σ, x)
∣∣dσ

+

∫ τ

0

∣∣Ln(h1)(σ, x)− Ln(h2)(σ, x)
∣∣dσ.

By (C.1.31), for all σ ≥ 0 and τ ≥ 0

|S1(σ, τ ;x)− S2(σ, τ ;x)| ≤
∫ τ

0
|An(h1)(σ, x)−An(h2)(σ, x)|dσ

≤ C(n) τ sup
τ∈[0,T ]

‖h1(τ)− h2(τ)‖∞. (3.3.32)

Using now (3.3.32) and (C.1.28)–(C.1.31), we deduce:

‖Rn(h1)(τ)−Rn(h2)(τ)‖L∞∩L1
x
≤ C1 sup

τ∈[0,T ]
‖h1(τ)− h2(τ)‖∞,

C1 ≡ C1(n, T, r0) = C(n)T (1 + 3r0 + 2Tr0(1 + 2r0)) .

If (3.3.31) holds and

C(n)T (1 + 3r0 + 2Tr0(1 + 2r0)) < 1,

Rn will be a contraction from B(T ) into itself. This is achieved, for example, as
soon as:

T < min

{
1

2r0(1 + 2r0)
,

1

2C(n)(1 + 2r0)

}
= κr0 .

The fixed point hn of Rn in B(T ) is then a mild solution of (3.3.19), that can be
extended to a maximal interval of existence [0, Tn,max).

We claim now that hn satisfies (3.3.20), (3.3.21). Since hn is a mild solution of
(3.3.19):

hn(τ, x) = h0(x)Sn(0, τ ;x) +

∫ τ

0
Sn(σ, τ ;x)

(
Kn(hn)(σ, x) + Ln(hn)(σ, x)

)
dσ

(3.3.33)
We multiply this equation by ϕ ∈ L1

loc(R+) and integrate on (0,∞):∫ ∞
0
hn(τ, x)ϕ(x)dx =

∫ ∞
0

h0(x)Sn(0, τ ;x)ϕ(x)dx+

+

∫ τ

0

∫ ∞
0

Sn(σ, τ ;x)
(
Kn(hn)(σ, x) + Ln(hn)(σ, x)

)
ϕ(x)dxdσ.
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Using Lemma C.1.21 and h0 ∈ Cc([0,∞)), it follows that the integrals above are well
define. It also follows from Lemma C.1.21 and (3.3.29) that τ 7→

∫∞
0 hn(τ, x)ϕ(x)dx

is locally Lipschitz on (0, Tn,max), and:

d

dt

∫ ∞
0
hn(τ, x)ϕ(x)dx =

∫ ∞
0

h0(x)(Sn(0, τ ;x))τϕ(x)dx+

+

∫ ∞
0

(
Kn(hn)(τ, x) + Ln(hn)(τ, x)

)
ϕ(x)dx+

+

∫ τ

0

∫ ∞
0

(Sn(σ, τ ;x))τ
(
Kn(hn)(σ, x) + Ln(hn)(σ, x)

)
ϕ(x)dxdσ.

We use now that (Sn(σ, τ ;x))τ = −An(hn)(τ, x)Sn(σ, τ ;x) and the identity (3.3.33)
to deduce:

d

dt

∫ ∞
0

hn(τ, x)ϕ(x)dx =

∫ ∞
0

(
Kn(hn)(τ, x) + Ln(hn)(τ, x)

)
ϕ(x)dx−

−
∫ ∞

0
An(hn)hn(τ, x)ϕ(τ, x)dx,

that is (3.3.21).
Suppose now that Tn,max <∞ and

sup
τ∈[0,Tn,max)

‖hn(τ)‖L∞∩L1
x
<∞.

Then there is an increasing sequence τj → Tn,max as j →∞ and L > 0 such that

sup
j
‖hn(τj)‖L∞∩L1

x
≤ L <∞.

Fix δ > 0 such that δ < κr0+1. Starting with the initial value h(τj) we have a mild
solution hj defined on [0, δ]. Gluing together h with hj we obtain a mild solution
on [0, tj + δ]. For j large enough, tj + δ > Tn,max, and this is a contradiction.
Therefore, either Tn,max =∞ or, if Tn,max =∞, then lim sup ‖hn(τ)‖L∞∩L1

x
=∞ as

τ → Tn,max.
Let us prove now the estimates (3.3.23), (3.3.24) and (3.3.26), first for all τ ∈

(0, Tn,max). Then, the property Tn,max = ∞ will follow. We start proving (3.3.24).
To this end we use (3.3.21) with ϕ = x. Since in that case Λ(ϕ)(x, y) = 0 and
L(ϕ)(x) = 0, (3.3.24) is immediate. To prove (3.3.23), we use (3.3.21) with ϕ = 1.
Then, Λ(ϕ)(x, y) = 0 and L(ϕ)(x) = −x and then, using φn ≤ x−1/2, Hölder
inequality and (3.3.24):

d

dτ

(∫ ∞
0

hn(τ, x)dx

)1/2

≤
√
E

2
,

from where (3.3.23) follows.
In order to prove (3.3.26) we use (3.3.23):

‖Kn(hn)(σ)‖∞ ≤ ‖φn‖2∞‖hn(σ)‖1‖hn(σ)‖∞

≤ ‖φn‖2∞
(√

E

2
σ +
√
N

)2

‖hn(σ)‖∞,
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which combined with the estimate ‖Ln(hn)(σ)‖∞ ≤ 2‖φn‖1‖hn(σ)‖∞, gives

‖hn(τ)‖∞ ≤ ‖h0‖∞ +

∫ τ

0

(
‖Kn(hn)(σ)‖∞ + ‖Ln(hn)(σ)‖∞

)
dσ

≤ ‖h0‖∞ + C(n, h0)

∫ τ

0
(σ2 + 1)‖hn(σ)‖∞dσ.

where

C(n, h0) = max

{
‖φn‖1‖φn‖2∞‖h0‖1,

‖φn‖2∞
4
‖h0‖L1

x

}
.

Then (3.3.26) follows from Gronwall’s inequality.

For the proof of (3.3.25) we use (3.3.21) with ϕ(x) = xα for α ≥ 3:

d

dτ
Mα(hn(τ)) = Q̃3,n(ϕ, hn(τ)). (3.3.34)

Since:

L(ϕ)(x) =

(
α− 1

α+ 1

)
xα+1 ≥ 0, (3.3.35)

we have,

d

dτ
Mα(hn(τ)) ≤ 2

∫ ∞
0

∫ x

0
Λ(ϕ)(x, y)φn(x)φn(y)hn(τ, x)hn(τ, x)dydx.

Then, we write Λ(ϕ)(x, y) = xα
(
(1 + z)α + (1 − z)α − 2

)
, where z = y/x, and by

Taylor’s expansion around z = 0:

u(z) ≤ ‖u
′′‖∞
2

z2 ≤ α(α− 1)2α−3z2.

Hence for all 0 ≤ y ≤ x:

Λ(ϕ)(x, y) ≤ Cαxα−2y2, where Cα = α(α− 1)2α−3, (3.3.36)

and then, using φn(x)φn(y) ≤ y−1 and (3.3.24),

d

dτ
Mα(hn(τ) ≤ 2CαMα−2(hn(τ))E.

Since by Holder’s inequality and (3.3.24)

Mα−2(hn(τ)) ≤ E
2

α−1Mα(hn(τ))
α−3
α−1 ,

we deduce

d

dτ

(
Mα(hn(τ))

2
α−1

)
≤ 4Cα
α− 1

E
α+1
α−1 ,

and (3.3.25) follows.
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3.3.3 Proof of Theorem 3.3.4.

The solution h whose existence is claimed in Theorem 3.3.4 is obtained as the limit of
a subsequence of solutions (hn)n∈N to the regularized problems obtained in Theorem
3.3.6. We first prove the following Lemma.

Lemma 3.3.7. Let h0 ∈ Cc([0,∞)) be nonnegative with N = M0(h0) > 0 and
E = M1(h0) > 0, and consider (hn)n∈N the sequence of functions given by Theorem
3.3.6. Then for every τ ∈ [0,∞) there exists a subsequence, still denoted (hn(τ))n∈N,
and a measure h(τ) ∈M 1

+([0,∞)) such that, as n→∞, hn(τ) converges to h(τ) in
the following sense:

∀ϕ ∈ C([0,∞)); ∃θ ∈ [0, 1) : sup
x≥0

ϕ(x)

1 + xθ
<∞, (3.3.37)

lim
n→∞

∫
[0,∞)

ϕ(x)hn(τ, x)dx =

∫
[0,∞)

ϕ(x)h(τ, x)dx. (3.3.38)

Moreover, for every τ ∈ [0,∞):

M0(h(τ)) ≤
(√

E

2
τ +
√
N

)2

, (3.3.39)

M1(h(τ)) ≤ E. (3.3.40)

Proof. Let us prove first the convergence for a subsequence of (hn(τ))n∈N. For every
τ ≥ 0 we have by (3.3.23) that

sup
n∈N

∫ ∞
0

hn(τ, x)dx ≤
(√

E

2
τ +
√
N

)2

.

Therefore, there exists a subsequence, still denoted (hn(τ))n∈N, and a measure h(τ)
such that (hn(τ))n∈N converges to h(τ) in the weak* topology of M ([0,∞)), as
n→∞:

lim
n→∞

∫
[0,∞)

ϕ(x)hn(τ, x)dx =

∫
[0,∞)

ϕ(x)h(τ, x)dx, ∀ϕ ∈ C0([0,∞)). (3.3.41)

Since for all n ∈ N, hn(τ) is nonnegative, then h(τ) is a positive measure. Also by
weak* convergence and (3.3.23) we deduce that h(τ) is a finite measure:∫

[0,∞)
h(τ, x)dx ≤ lim inf

n→∞

∫ ∞
0

hn(τ, x)dx ≤
(√

E

2
τ +
√
N

)2

. (3.3.42)

Moreover, by (3.3.24) we also have that the sequence (hn(τ))n∈N is bounded in
L1
x(R+). Hence there exists a subsequence (not relabelled) that converges to a

measure ν(τ) in the weak* topology of M ([0,∞)), i.e., such that

lim
n→∞

∫ ∞
0

ϕ(x)xhn(τ, x)dx =

∫
[0,∞)

ϕ(x)ν(τ, x)dx, ∀ϕ ∈ C0([0,∞)). (3.3.43)

Again, since hn(τ) is nonnegative for all n ∈ N then ν(τ) is a positive measure. Also
by weak* convergence and (3.3.24) we have∫

[0,∞)
ν(τ, x)dx ≤ lim inf

n→∞

∫ ∞
0

xhn(τ, x)dx = E. (3.3.44)
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Let us show now that ν(τ) = xh(τ). This will follow from

∀ϕ ∈ C0([0,∞)) :

∫
[0,∞)

ϕ(x)ν(τ, x)dx =

∫
[0,∞)

ϕ(x)xh(τ, x)dx (3.3.45)

In a first step we show that (3.3.45) holds for ϕ ∈ Cc([0,∞)) and then we use a
density argument. Let ε > 0 and ϕ ∈ Cc([0,∞)). Using (3.3.43) with test function
ϕ, and (3.3.41) with test function xϕ(x), we deduce that∣∣∣∣ ∫

[0,∞)
ϕ(x)ν(τ, x)dx−

∫
[0,∞)

ϕ(x)xh(τ, x)dx

∣∣∣∣
≤
∣∣∣∣ ∫ ∞

0
ϕ(x)ν(τ, x)dx−

∫
[0,∞)

ϕ(x)xhn(τ, x)dx

∣∣∣∣
+

∣∣∣∣ ∫ ∞
0

ϕ(x)xhn(τ, x)dx−
∫

[0,∞)
ϕ(x)xh(τ, x)dx

∣∣∣∣ < ε

for n large enough. Hence (3.3.45) holds for all ϕ ∈ Cc([0,∞)). Now let ϕ ∈
C0([0,∞)) and consider a sequence (ϕk)k∈N ⊂ Cc([0,∞)) such that
‖ϕk − ϕ‖∞ → 0 as k → ∞. Using (3.3.45) with ϕk and the bounds (3.3.42) and
(3.3.44), we deduce that∣∣∣∣ ∫

[0,∞)
ϕ(x)ν(τ, x)dx−

∫
[0,∞)

ϕ(x)xh(τ, x)dx

∣∣∣∣
≤
∫

[0,∞)

∣∣ϕ(x)− ϕk(x)
∣∣ν(τ, x)dx

+

∣∣∣∣ ∫
[0,∞)

ϕk(x)ν(τ, x)dx−
∫

[0,∞)
ϕk(x)xh(τ, x)dx

∣∣∣∣
+

∫
[0,∞)

∣∣ϕk(x)− ϕ(x)
∣∣xh(τ, x)dx < ε

for k large enough. Therefore (3.3.45) holds for all ϕ ∈ C0([0,∞)), i.e., ν(τ) =
xh(τ). Hence we rewrite (3.3.43) as

lim
n→∞

∫ ∞
0

ϕ(x)xhn(τ, x)dx =

∫
[0,∞)
ϕ(x)xh(τ, x)dx, ∀ϕ ∈ C0([0,∞)). (3.3.46)

Let us show now (3.3.37), (3.3.38). Let then ϕ ∈ C([0,∞)) be any nonnegative test
function that satisfies (3.3.37). We denote (ζj)j∈N a sequence of nonnegative and
nonincreasing functions of C∞c ([0,∞)) such that:

ζj(x) = 1 if x ∈ [0, j), ζj(x) = 0 if x > j + 1,

and define ϕj = ϕ ζj . Then for every n, j ∈ N:∣∣∣∣ ∫ ∞
0
ϕ(x)hn(τ, x)dx−

∫
[0,∞)

ϕ(x)h(τ, x)dx

∣∣∣∣ (3.3.47)

≤
∫ ∞

0

∣∣ϕ(x)− ϕj(x)
∣∣hn(τ, x)dx

+

∣∣∣∣ ∫ ∞
0

ϕj(x)hn(τ, x)dx−
∫

[0,∞)
ϕj(x)h(τ, x)dx

∣∣∣∣
+

∫
[0,∞)

∣∣ϕj(x)− ϕ(x)
∣∣h(τ, x)dx
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Since ϕj ∈ C0([0,∞)), using (3.3.43), the second term in the right hand side of
(3.3.47) converges to zero as n→∞ for every j ∈ N. The first and the third term in
the right hand side of (3.3.47) are treated in the same way, using that ϕj(x) = ϕ(x)
for all x ∈ [0, j). For instance, in the first term:∫ ∞

0

∣∣ϕ(x)− ϕj(x)
∣∣hn(τ, x)dx =

∫ ∞
j

∣∣ϕ(x)− ϕj(x)
∣∣hn(τ, x)dx

≤ 2

∫ ∞
j
|ϕ(x)|hn(τ, x)dx ≤ 2C

∫ ∞
j

(1 + xθ)hn(τ, x)dx

≤ 2C

(
1 + jθ

j

)∫ ∞
j

xhn(τ, x)dx ≤ 2C

(
1 + jθ

j

)
E.

Therefore this term is small provided j is large enough. In conclusion, the difference
in (3.3.47) is less than ε for n sufficiently large, i.e., (3.3.38) holds.

Remark 3.3.8. The so-called narrow topology σ(M ([0,∞)), Cb([0,∞))) on M+([0,∞))
is generated by the metric d(µ, ν) = ‖µ− ν‖0, where

‖µ‖0 = sup

{∫
[0,∞)

ϕdµ : ϕ ∈ Lip1([0,∞)), ‖ϕ‖∞ ≤ 1

}
,

(cf. [15] Theorem 8.3.2).

Using this Remark, Lemma 3.3.7 and the Arzelà-Ascoli’s Theorem we prove now
the following:

Proposition 3.3.9. Let h0 and (hn)n∈N be as in Lemma 3.3.7. Then there exist a
subsequence (not relabelled) and h ∈ C

(
[0,∞),M+([0,∞))

)
such that

hn −−−→
n→∞

h in C
(
[0,∞),M+([0,∞))

)
. (3.3.48)

Moreover, if we denote by N = M0(h0) and E = M1(h0), then for all τ ≥ 0

M0(h(τ)) ≤
(√

E

2
τ +
√
N

)2

, (3.3.49)

M1(h(τ)) ≤ E, (3.3.50)

and for all ϕ ∈ C([0,∞)) satisfying the growth condition (3.3.37):

lim
n→∞

∫ ∞
0

ϕ(x)hn(τ, x)dx =

∫
[0,∞)

ϕ(x)h(τ, x)dx. (3.3.51)

Proof of Proposition 3.3.9. By Lemma 3.3.7 the sequence (hn(τ))n∈N is rela-
tively compact in M ([0,∞)) for every τ ∈ [0,∞). Let us show now that (hn)n∈N is
also equicontinuous. To this end let τ2 ≥ τ1 ≥ 0, and consider ϕ as in Remark 3.3.8,
i.e., ϕ ∈ Lip([0,∞)) with Lipschitz constant Lip(ϕ) ≤ 1, and ‖ϕ‖∞ ≤ 1. Then,
using φn(x) ≤ x−1/2, (C.1.2) and (C.1.4) in Lemma C.1.15, we have∣∣∣∣ ∫ ∞

0
ϕ(x)hn(τ1, x)dx−

∫ ∞
0

ϕ(x)hn(τ2, x)dx

∣∣∣∣
≤
∫ τ2

τ1

∣∣Q̃3,n(ϕ, hn(σ))
∣∣dσ ≤ 2

∫ τ2

τ1

(∫ ∞
0

hn(σ, x)dx

)2

dσ

+ 4

∫ τ2

τ1

∫ ∞
0

√
xhn(σ, x)dxdσ. (3.3.52)
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Using Hölder’s inequality and the estimates (3.3.23) and (3.3.24) in (3.3.52), it
follows that∣∣∣∣ ∫ ∞

0
ϕ(x)hn(τ1, x)dx−

∫ ∞
0

ϕ(x)hn(τ2, x)dx

∣∣∣∣
≤ 2

∫ τ2

τ1

(√
E

2
σ +
√
N

)4

dσ + 4
√
E

∫ τ2

τ1

(√
E

2
σ +
√
N

)
dσ ∀n ∈ N.

We then deduce using Remark 3.3.8 that (hn)n∈N is equicontinuous. It then fol-
lows from Arzelà-Ascoli’s Theorem (cf. for example [63]) that there exists h ∈
C
(
[0,∞),M+([0,∞))

)
such that hn → h in C

(
[0, T ],M+([0,∞))

)
, for every T > 0,

as n→∞.

The estimates (3.3.49), (3.3.50) and the convergence (3.3.51) are deduced in the
same way as in the Proof of Lemma 3.3.7.

Proof of Theorem 3.3.4. By Corollary C.1.18, there exists a sequence of nonneg-
ative function (h0,n)n∈N ∈ Cc([0,∞)) that approximate h0 in the weak* topology
of the space Cb([0,∞))∗. Let then (hn)n∈N ⊂ C

(
[0,∞),M+([0,∞))

)
be the se-

quence of solutions to (3.3.20), (3.3.21) obtained by Theorem 3.3.6 with the initial
data h0,n. By Proposition 3.3.9 there exists a subsequence, still denoted (hn)n∈N,
and h ∈ C

(
[0,∞),M+([0,∞))

)
such that hn converges to h in the topology of

C
(
[0,∞),M+([0,∞))

)
.

By (3.3.21) and (3.3.22), for all ϕ ∈ C1
b ([0,∞)) and τ > 0:∫ ∞

0
ϕ(x)hn(τ, x)dx−

∫ ∞
0

ϕ(x)h0,n(x)dx =

∫ τ

0
Q̃3,n(ϕ, hn(σ))dσ. (3.3.53)

By construction, for every ϕ ∈ C1
b ([0,∞)) and every τ ∈ [0,∞):

lim
n→∞

∫ ∞
0

ϕ(x)hn(τ, x)dx =

∫
[0,∞)

ϕ(x)h(τ, x)dx. (3.3.54)

We prove now the convergence of the linear term: for all ϕ ∈ C1
b ([0,∞)) and τ ∈

[0,∞)

lim
n→∞

Q̃
(1)
3,n(ϕ, hn(τ)) = Q̃

(1)
3 (ϕ, hn(τ)). (3.3.55)

By definition: ∣∣∣Q̃(1)
3 (ϕ, h(τ))− Q̃

(1)
3,n(ϕ, hn(τ))

∣∣∣
≤
∣∣∣∣ ∫ ∞

0

L(ϕ)(x)√
x

h(τ, x)dx−
∫ ∞

0

L(ϕ)(x)√
x

hn(τ, x)dx

∣∣∣∣
+

∫ ∞
0

∣∣∣∣L(ϕ)(x)φn(x)− L(ϕ)(x)√
x

∣∣∣∣hn(τ, x)dx. (3.3.56)

From Lemma C.1.15 (iii) and (3.3.51):

lim
n→∞

∣∣∣∣ ∫ ∞
0

L(ϕ)(x)√
x

h(τ, x)dx−
∫ ∞

0

L(ϕ)(x)√
x

hn(τ, x)dx

∣∣∣∣ = 0 (3.3.57)
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For the second term in the right hand side of (3.3.56) we split the integral
∫∞

0 in

two:
∫ R

0 and
∫∞
R for R > 0, and apply (C.1.4). We obtain:∫ ∞

0

∣∣∣∣L(ϕ)(x)φn(x)− L(ϕ)(x)√
x

∣∣∣∣hn(τ, x)dx (3.3.58)

≤
∥∥∥∥L(ϕ)(x)φn(x)− L(ϕ)(x)√

x

∥∥∥∥
C([0,R])

∫ R

0
hn(τ, x)dx+

+ 4‖ϕ‖∞
∫ ∞
R

√
x hn(τ, x)dx.

By (3.3.24), for any ε > 0 and R > (E/ε)2:∫ ∞
R

√
x hn(τ, x)dx ≤ E√

R
< ε ∀n ∈ N.

Then by Lemma C.1.16 and (3.3.23), the part on [0, R] converges to zero as n→∞.
Since R > 0 is arbitrary we finally deduce that (3.3.58) converges to zero as n→∞.
Therefore (3.3.55) holds.

Let us prove now the convergence of the quadratic term: for all ϕ ∈ C1
b ([0,∞))

and all τ ∈ [0,∞):

lim
n→∞

Q
(2)
3,n(ϕ, hn(τ)) = Q

(2)
3 (ϕ, hn(τ)). (3.3.59)

As before∣∣∣∣Q(2)
3 (ϕ, h(τ))−Q

(2)
3,n(ϕ, hn(τ))

∣∣∣∣ (3.3.60)

≤
∣∣∣∣Q(2)

3 (ϕ, h(τ))−
∫ ∞

0

∫ ∞
0

Λ(ϕ)(x, y)
√
xy

hn(τ, x)hn(τ, y)dxdy

∣∣∣∣
+

∫ ∞
0

∫ ∞
0

∣∣∣∣Λ(ϕ)(x, y)φn(x)φn(y)− Λ(ϕ)(x, y)
√
xy

∣∣∣∣hn(τ, x)hn(τ, y)dxdy.

It follows from Lemma C.1.15 (ii) and (3.3.51) that the first term in the right hand
side above converges to zero as n→∞. For the second term we proceed as before.
For any R > 0 we split the double integral:∫ ∞

0

∫ ∞
0

∣∣∣∣Λ(ϕ)(x, y)φn(x)φn(y)− Λ(ϕ)(x, y)
√
xy

∣∣∣∣hn(τ, x)hn(τ, y)dxdy

≤
∥∥∥∥Λ(ϕ)(x, y)φn(x)φn(y)− Λ(ϕ)(x, y)

√
xy

∥∥∥∥
C([0,R]2)

(∫ R

0
hn(τ, x)dx

)2

+

∫∫
(0,∞)2\(0,R)2

∣∣∣∣Λ(ϕ)(x, y)φn(x)φn(y)− Λ(ϕ)(x, y)
√
xy

∣∣∣∣hn(τ, x)hn(τ, y)dxdy

= I1 + I2.

By Lemma C.1.16 and (3.3.23), I1 converges to zero as n→∞. For the term I2 we
use (C.1.2) in Lemma C.1.15 and the estimates (3.3.24) and (3.3.23):∫ ∞

R

∫ ∞
R

∣∣∣∣Λ(ϕ)(x, y)φn(x)φn(y)− Λ(ϕ)(x, y)
√
xy

∣∣∣∣hn(τ, x)hn(τ, y)dxdy

≤ 4‖ϕ′‖∞
(∫ ∞

R
hn(τ, x)dx

)2

≤ 4‖ϕ′‖∞E2

R2
∀n ∈ N
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and

2

∫ ∞
R

∫ R

0

∣∣∣∣Λ(ϕ)(x)φn(x)φn(y)− Λ(ϕ)(x)
√
xy

∣∣∣∣hn(τ, x)hn(τ, y)dxdy

≤ 4‖ϕ′‖∞
∫ ∞
R

∫ R

0
hn(τ, x)hn(τ, y)dxdy ≤ 4‖ϕ′‖∞E

R

(√
E

2
τ +
√
N

)2

.

Since R > 0 is arbitrary we deduce that I2 also converges to zero as n → ∞. We
then conclude that (3.3.59) holds.

Combining (3.3.55) and (3.3.59) it follows that for all ϕ ∈ C1
b ([0,∞)) and all

τ ∈ [0,∞):

lim
n→∞

Q̃3,n(ϕ, hn(τ)) = Q̃3(ϕ, h(τ)). (3.3.61)

Moreover, using φn(x) ≤ x−1/2, (C.1.2) and (C.1.4) in Lemma C.1.15, and the
estimates (3.3.23) and (3.3.24), we have for all ϕ ∈ C1

b ([0,∞)), all τ ∈ [0,∞) and
all n ∈ N:

∣∣∣Q̃3,n(ϕ, hn(τ))
∣∣∣ ≤

≤ 2‖ϕ′‖∞
(∫ ∞

0
hn(τ, x)dx

)2

+ 4‖ϕ‖∞
∫ ∞

0

√
xhn(τ, x)dx

≤ 2‖ϕ′‖∞
(√

E

2
τ +
√
N

)4

+ 4‖ϕ‖∞
√
E

(√
E

2
τ +
√
N

)
.

By (3.3.61) and the dominated convergence Theorem:

lim
n→∞

∫ τ

0
Q̃3,n(ϕ, hn(σ))dσ =

∫ τ

0
Q̃3(ϕ, h(σ))dσ. (3.3.62)

Using now (3.3.54) and (3.3.62), we may pass to the limit as n→∞ in (3.3.53) for
all ϕ ∈ C1

b ([0,∞)) and all τ ∈ [0,∞) to obtain:∫
[0,∞)

ϕ(x)h(τ, x)dx =

∫
[0,∞)

ϕ(x)h0(x)dx+

∫ τ

0
Q̃3(ϕ, h(σ))dσ. (3.3.63)

The map τ 7→
∫

[0,∞) ϕ(x)h(τ, x)dx is then locally Lipschitz on [0,∞), and h satisfies

(3.3.1), (3.3.2) for all ϕ ∈ C1
b ([0,∞)) and for a.e. τ ∈ [0,∞). It also follows from

(3.3.63) that h(0) = h0 in M+.
The property (3.3.4) follows from (3.3.49). The conservation of energy (3.3.5)

is obtained as follows. We already know by (3.3.50) that M1(h(τ)) ≤ E. On the
other hand, let ϕk ∈ C1

b ([0,∞)) be a concave test function such that ϕk(x) = x
for x ∈ [0, k) and ϕk(x) = k + 1 for x ≥ k + 2. Notice that there exists a positive
constant C such that

sup
k∈N
‖ϕ′k‖∞ ≤ C. (3.3.64)

By Remark C.1.14, Q̃
(1)
3 (ϕk, h) ≤ 0 and Q

(2)
3 (ϕk, h) ≤ 0 for all k ∈ N, and then,

from (3.3.63):∫
[0,∞)

ϕk(x)h(τ, x)dx ≥
∫

[0,∞)
ϕk(x)h0(x)dx+

∫ τ

0
Q

(2)
3 (ϕk, h(σ))dσ. (3.3.65)
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We now prove that for all τ ∈ [0,∞):

lim
k→∞

∫ τ

0
Q

(2)
3 (ϕk, h(σ))dσ = 0. (3.3.66)

Notice that Λ(ϕk)(x, y) → 0 as k → ∞, since ϕk(x) → x. Then, using (C.1.2) in
Lemma C.1.15, (3.3.64) and (3.3.23), we deduce for all τ ∈ [0,∞) and σ ∈ (0, τ):

lim
k→∞

Q
(2)
3 (ϕk, h(σ)) = 0 (3.3.67)∣∣∣Q(2)

3 (ϕk, h(τ))
∣∣∣ ≤ 2C

(√
E

2
τ +
√
N

)4

∀k ∈ N. (3.3.68)

and (3.3.66) follows from the dominated convergence Theorem. We take now limits
in (3.3.65) as k → ∞. By (3.3.66) and the monotone convergence Theorem we
obtain that M1(h(τ)) ≥ E and then M1(h(τ)) = E for all τ > 0.

We assume now that Mα(h0) <∞ for some α ≥ 3 and prove (3.3.6). By (3.3.25)
and (C.1.10) in Corollary C.1.18:

Mα(h(τ)) ≤ lim inf
n→∞

(
Mα(h0,n)

2
α−1 + α2α−1M1(h0,n)

α+1
α−1 τ

)α−1
2

≤
(
Mα(h0)

2
α−1 + α2α−1E

α+1
α−1 τ

)α−1
2
.

3.3.4 Proof of Theorem 3.3.1

Proof of Theorem 3.3.1. Consider again the sequence of initial data h0,n used in
the proof of Theorem 3.3.4 and the sequence of solutions hn obtained by Theorem
3.3.4. Using (3.3.25) we know that Mα(hn(τ)) <∞ for τ > 0 and n ∈ N.

Our first step is to prove that (3.3.2) holds also true for ϕ(x) = xα. Notice that
hn solves now the equation (3.3.2), with the operator Q̃3 in the right-hand side,
whose kernel is not compactly supported and the argument in the proof of (3.3.25)
must be slightly modified.

In order to use (3.3.2) we consider a sequence (ϕk) ⊂ C1
b ([0,∞)) such that:

ϕk → ϕ as k →∞ (3.3.69)

ϕk ≤ ϕk+1 ≤ ϕ (3.3.70)

ϕ′ ≥ ϕ′k ≥ 0. (3.3.71)

Let us prove by the dominated convergence Theorem that for all τ ≥ 0:

(i) Q̃3(ϕ, hn) ∈ L1(0, τ), (3.3.72)

(ii) lim
k→∞

∫ τ

0
Q̃3(ϕk, hn(σ))dσ =

∫ τ

0
Q̃3(ϕ, hn(σ))dσ. (3.3.73)

To this end we first observe that, for x ≥ y > 0:

lim
k→∞

Λ(ϕk)(x, y) = Λ(ϕ) and lim
n→∞

L(ϕk) = L(ϕ)(x) (3.3.74)
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and, by the mean value Theorem:

Λ(ϕk)(x, y)
√
xy

≤ ϕ′k(ξ1)− ϕ′k(ξ2)

for some ξ1 ∈ (x, x+ y) and ξ2 ∈ (x− y, x). Using then (3.3.71):

|Λ(ϕk)(x, y)|
√
xy

≤ α
(
2α−1 + 1

)
xα−1 ∀k ∈ N, (3.3.75)

and by (3.3.70):

|L(ϕk)(x)|√
x

≤
(
α+ 3

α+ 1

)
xα+ 1

2 ∀k ∈ N.

Since by Theorem 3.3.4: Mα−1(hn(τ)) < ∞ and Mα+1/2(hn(τ)) < ∞, for ev-
ery fixed n we may apply the Lebesgue’s convergence Theorem to the sequences{

Λ(ϕk)(x,y)√
xy hn(σ, x)hn(σ, y)

}
k∈N

and
{
L(ϕk)(x)√

x
hn(σ, x)

}
k∈N

and obtain (3.3.72), (3.3.73).

We use now ϕk in (3.3.2) and take the limit k → ∞. We obtain from (3.3.69),
(3.3.70), (3.3.73) and monotone convergence:

Mα(hn(τ)) = Mα(h0,n) +

∫ τ

0
Q̃3(ϕ, hn(σ))dσ ∀τ ≥ 0, (3.3.76)

and then, using (3.3.72):

d

dτ
Mα(hn(τ)) = Q̃3(ϕ, hn(τ)) a.e. τ > 0. (3.3.77)

If we use (3.3.35) and (3.3.36) in the right hand side of (3.3.77), we obtain

d

dτ
Mα(hn) ≤ 2α−2α(α− 1)EnMα−2(hn)−

(
α− 1

α+ 1

)
Mα+ 1

2
(hn),

where En = M1(h0,n). Now by Hölder’s inequality:

Mα−2(hn) ≤ E2/(α−1)
n Mα(hn)(α−3)/(α−1)

Mα(hn) ≤ E1/(2α−1)
n Mα+ 1

2
(hn)2(α−1)/(2α−1).

Then we obtain

d

dτ
Mα(hn) ≤ 2α−2α(α− 1)E1+2/(α−1)

n Mα(hn)(α−3)/(α−1)

−
(
α− 1

α+ 1

)
E−1/(2(α−1))
n Mα(hn)(2α−1)/(2(α−1)).

Since (α− 3)/(α− 1) ∈ [0, 1) then

Mα(hn)(α−3)/(α−1) ≤ 1 +Mα(hn),

and :

d

dτ
Mα(hn) ≤ 2α−2α(α− 1)E1+2/(α−1)

n

(
1 +Mα(hn)

)
(3.3.78)

−
(
α− 1

α+ 1

)
E−1/(2(α−1))
n Mα(hn)(2α−1)/(2(α−1)),
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where (2α− 1)/(2(α− 1)) > 1. If we define:

u(σ) = Mα(hn(τ)), σ = C1τ, q = 2(α− 1),

C1 = 2α−2α(α− 1)E1+2/(α−1)

C2 =

(
α− 1

α+ 1

)
E−1/(2(α−1)), C =

C2

C1
.

We deduce from (3.3.78) that

u′ ≤ 1 + u− Cu1+1/q, (3.3.79)

and then by Lemma 6.3 in [13], for every n ∈ N:

Mα(hn(τ)) ≤ C(α,En)

(
1

1− e−γ(α,En)τ

)2(α−1)

, (3.3.80)

where the constants C(α,En) and γ(α,En) are defined as in Theorem 3.3.1. We may
argue now as in the proof of Theorem 3.3.4 and pass to the limit along a subsequence
to obtain a limit h ∈ C

(
[0,∞),M+([0,∞))

)
satisfying (3.3.1)–(3.3.5) and (3.3.7).

Using (3.3.7) and h ∈ C
(
[0,∞),M+([0,∞))

)
we deduce as in the proof of Theorem

3.3.4 that h ∈ C
(
(0,∞),M α

+([0,∞))
)

for all α ≥ 1.

Proof of Corollary 3.3.2. We first observe that the map τ 7→ M1/2(h(τ)) is lo-
cally bounded. Indeed by Hölder’s inequality, (3.3.4) and (3.3.5):

M1/2(h(τ)) ≤
√
M1(h(τ))M0(h(τ)) ≤

√
E

(√
E

2
τ +
√
N

)
.

Then by (3.3.1) it follows (3.3.11). Now for all ϕ ∈ C1
b ([0,∞)) and for a.e. τ > 0,

we deduce from (3.3.2):

d

dτ

∫
[0,∞)

ϕ(x)H(τ, x)dx = Q̃3(ϕ, h(τ))− ϕ(0)M1/2(h(τ))

= Q3(ϕ, h(τ)).

Since H = h on (0,∞) then Q3(ϕ,H) ≡ Q3(ϕ, h), and therefore (3.3.12) holds.
Now for the initial data: H(0) = h(0) = h0. The conservation of mass (3.3.14)

follows from (3.3.12) for ϕ = 1, since Λ(ϕ) = 0 = L0(ϕ). The conservation of energy
(3.3.15) follows directly from (3.3.5) since H = h on (0,∞).

3.4 Properties of h(τ, {0}).
In all this Section we denote

m(τ) = h(τ, {0}). (3.4.1)

The main result of this Section is the following.

Theorem 3.4.1. Suppose that h ∈ C([0,∞); M 1
+([0,∞)) is a solution of (3.1.67)

with h(0) = h0 ∈ M 1
+([0,∞)), N = M0(h0) > 0 and E = M1(h0) > 0. Then m is

right continuous, a.e. differentiable and strictly increasing on [0,∞).
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We begin with the following properties of the function m defined in (3.4.1).

Lemma 3.4.2. The function m is nondecreasing, a.e. differentiable and right con-
tinuous on [0,∞).

Proof. Given any ϕε as in Remark 3.1.6, then for all τ ≥ 0

m(τ) = lim
ε→0

∫
[0,∞)

ϕε(x)h(τ, x)dx, (3.4.2)

and by (3.1.67)-(3.1.40)

d

dτ

∫
[0,∞)

ϕε(x)h(τ, x)dx = Q
(2)
3 (ϕε, h(τ))− Q̃

(1)
3 (ϕε, h(τ)). (3.4.3)

Since ϕε is convex, nonnegative and decreasing, it follows from Lemma C.1.13 that

Q
(2)
3 (ϕε, h) ≥ 0 and Q̃

(1)
3 (ϕε, h) ≤ 0 for all ε > 0. Then by (3.4.3)∫

[0,∞)
ϕε(x)h(τ2, x)dx ≥

∫
[0,∞)

ϕε(x)h(τ1, x)dx ∀τ2 ≥ τ1 ≥ 0.

Letting ε→ 0 it follows from (3.4.2) that m is nondecreasing on [0,∞) and, for any
τ ≥ 0 and δ > 0,

lim inf
δ→0+

m(τ + δ) ≥ m(τ). (3.4.4)

Using Lebesgue’s Theorem (cf. [63]), m is a.e. differentiable on [0,∞). On the other

hand, if in (3.4.3) the term Q̃
(1)
3 (ϕε, h) is dropped,∫

[0,∞)
ϕε(x)h(τ + δ, x)dx ≤

∫
[0,∞)

ϕε(x)h(τ, x)dx+

∫ τ+δ

τ
Q

(2)
3 (ϕε, h(σ))dσ.

Using 1{0} ≤ ϕε for all ε > 0, and the bound (C.1.2), we deduce

m(τ + δ) ≤
∫

[0,∞)
ϕε(x)h(τ, x)dx+

2δ

ε
(M0(h(τ)))2.

If we take now superior limits as δ → 0+ at ε > 0 fixed,

lim sup
δ→0+

m(τ + δ) ≤
∫

[0,∞)
ϕε(x)h(τ, x)dx ∀ε > 0.

We may pass now to the limit as ε→ 0 in the right hand side above and use (3.4.2)
to get,

lim sup
δ→0+

m(τ + δ) ≤ m(τ). (3.4.5)

The right continuity then follows from (3.4.4) and (3.4.5).

Corollary 3.4.3. The map τ 7→ H(τ, {0}), defined for all τ ≥ 0, is right continuous
on [0,∞) and

lim sup
δ→0+

H(τ − δ, {0}) ≤ H(τ, {0}) ∀τ > 0. (3.4.6)
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Proof. By construction (cf.(3.1.68)) it follows

H(τ, {0}) = m(τ)−
∫ τ

0
M1/2(h(σ))dσ.

Since M1/2(h) ∈ L1
loc(R+) then τ 7→

∫ τ
0 M1/2(h(σ))dσ is absolutely continuous, and

since m is right continuous by Lemma 3.4.2, it follows that τ 7→ H(τ, {0}) is also
right continuous. To prove (3.4.6) we use the continuity of τ 7→

∫ τ
0 M1/2(h(σ))dσ

and the monotonicity of h(τ, {0}): for all τ > 0 and δ ∈ (0, τ),

lim sup
δ→0+

H(τ − δ, {0}) = lim sup
δ→0+

m(τ − δ)−
∫ τ

0
M1/2(h(σ))dσ

≤ m(τ)−
∫ τ

0
M1/2(h(σ))dσ = H(τ, {0}).

Remark 3.4.4. We do not know if the map τ 7→ H(τ, {0}) is continuous. By
property (3.4.6) however, H(τ, {0}) does not decrease through the possible discon-
tinuities.

The proof of Theorem 3.4.1 closely follows the proof of Proposition 1.21 in [45]
(see also [44], Ch. 3), where the authors proved the same result for the equation

without the linear term Q̃
(1)
3 . The main arguments in the proof are, on the one

hand, the invariance of the problem (3.1.67) with respect to time translation and
under a suitable scaling transformation. On the other hand, the fact that Λ(ϕ) ≥ 0

on R2
+ for convex test functions ϕ, and that the map τ 7→ Q

(2)
3 (ϕ, h(τ)) is locally

integrable on [0, T ). When the linear term Q̃
(1)
3 is added, a slight modification of

these argument still leads to the proof. Since by Lemma C.1.13, for all nonnega-

tive, convex decreasing test function ϕ ∈ C1
b ([0,∞)), we have Q̃

(1)
3 (ϕ, h) ≤ 0, then

solutions h to (3.1.67) are also super solutions (cf. Definition 3.1.13).

Proposition 3.4.5. Let h be a super solution of (3.1.67). Then for any R > 0 and
θ ∈ (0, 1)∫

[0,R]
h(τ, x)dx ≥ (1− θ)

∫
[0,θR]

h(τ0, x)dx ∀τ ≥ τ0 ≥ 0. (3.4.7)

Proof. Chose ϕR(x) = (1− x/R)+ for R > 0, and consider a sequence (ϕR,n)n∈N ⊂
C1
b ([0,∞)) such that ϕR,n → ϕR, ϕR,n ≤ ϕR and ϕR,n(0) = 1 for all n ∈ N. Since

by convexity Q
(2)
3 (ϕR,n, h) ≥ 0, then for all τ and τ0 with τ ≥ τ0 ≥ 0,∫

[0,∞)
ϕR,n(x)h(τ, x)dx ≥

∫
[0,∞)

ϕR,n(x)h(τ0, x)dx

≥
∫

[0,θR]
ϕR,n(x)h(τ0, x)dx ≥ ϕR,n(θR)

∫
[0,θR]

h(τ0, x)dx,

and (3.4.7) follows since, if we let n→∞,∫
[0,R]

h(τ, x)dx ≥
∫

[0,∞)
ϕR(x)h(τ, x)dx ≥ ϕR(θR)

∫
[0,θR]

h(τ0, x)dx.
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Lemma 3.4.6. Let h be a super solution of (3.1.67). Let R > 0 and consider a
sequence R := a0 < a1 < a2 < ... < an < ... such that |ai − ai−1| ≤ R

2 for all
i ∈ {1, 2, 3, ...}. Then for all τ ≥ τ0 ≥ 0 there holds∫

[0,R]
h(τ, x)dx ≥

∞∑
i=1

1

2ai

∫ τ

τ0

(∫
(ai−1,ai]

h(σ, x)dx

)2

dσ. (3.4.8)

Proof. We chose ϕR and ϕR,n as in the proof of Proposition 3.4.5 above. Since h is
a super solution of (3.1.67), then for all n ∈ N,

d

dτ

∫
[0,∞)

h(τ, x)ϕR,n(x)dx ≥ Q
(2)
3 (ϕR,n, h(τ)).

We have now:

Q
(2)
3 (ϕR,n, h(τ)) ≥

∫∫
(R,∞)2

h(τ, x)h(τ, y)
ϕR,n(|x− y|)
√
xy

dxdy

≥
∞∑
i=1

ϕR,n(R/2)

ai

∫∫
(ai−1,ai]2

h(τ, x)h(τ, y)dxdy

=
∞∑
i=1

ϕR,n(R/2)

ai

(∫
(ai−1,ai]

h(τ, x)dx

)2

.

Estimate (3.4.8) follows in the limit n→∞, since ϕR,n(R/2)→ 1/2.

Proposition 3.4.7. Let h be a super solution of (3.1.67) with initial data h0 ∈
M 1

+([0,∞)), and denote N = M0(h0) and E = M1(h0). Then for all R > 0,
α ∈

(
−1

2 ,∞
)
, and τ1 and τ2 with 0 ≤ τ1 ≤ τ2:∫ τ2

τ1

∫
(0,R]

xαh(τ, x)dxdτ ≤ 2R
1
2

+α√τ2 − τ1

1−
(

2
3

) 1
2

+α

(√
E

2
τ2 +

√
N

)
. (3.4.9)

Proof. Since h is a super solution of (3.1.67), if we chose ϕ(x) = (1 − x/r)2
+ for

r > 0, then ∫
[0,∞)

ϕ(x)h(τ2, x)dx ≥
∫ τ2

τ1

Q
(2)
3 (ϕ, h(τ))dτ. (3.4.10)

Since supp Λ(ϕ) = {(x, y) ∈ [0,∞)2 : |x− y| ≤ r} and Λ(ϕ)(x, y) = ϕ(|x− y|) for all
(x, y) ∈ [r,∞)2, then for all τ ≥ 0:

Q
(2)
3 (ϕ, h(τ)) ≥

∫∫
(r, 3r2 ]

2

ϕ(|x− y|)
√
xy

h(τ, x)h(τ, y)dxdy

≥ 1

4

(∫
(r, 3r2 ]

h(τ, x)√
x

dx

)2

.

If we use that ϕ ≤ 1 in the left hand side of (3.4.10), and the estimate above in the
right hand side, then∫ τ2

τ1

(∫
(r, 3r2 ]

h(τ, x)√
x

dx

)2

dτ ≤ 4M0(h(τ2)).
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Since for any α ∈ (−1/2,∞)∫
(r, 3r2 ]

h(τ, x)√
x

dx ≥
(

3r

2

)−α− 1
2
∫

(r, 3r2 ]
xαh(τ, x)dx,

we then obtain∫ τ2

τ1

(∫
(r, 3r2 ]

xαh(τ, x)dx

)2

dτ ≤ 4M0(h(τ2))

(
3r

2

)1+2α

. (3.4.11)

For any given R > 0, using the decomposition

(0, R] =
∞⋃
k=0

(ak+1, ak], ak =

(
2

3

)k
R,

and Cauchy-Schwarz inequality we obtain∫ τ2

τ1

∫
(0,R]

xαh(τ, x)dxdτ ≤
√
τ2 − τ1

∞∑
k=0

(∫ τ2

τ1

(∫
(ak+1,ak]

xαh(τ, x)dx

)2

dτ

) 1
2

.

If we chose r = ak+1 so that (ak+1, ak] = (r, (3/2)r] for every k ∈ N, then by (3.4.11)
we deduce ∫ τ2

τ1

∫
(0,R]

xαh(τ, x)dxdτ ≤ 2
√

(τ2 − τ1)M0(h(τ2))

∞∑
k=0

a
1
2

+α

k .

Using the estimate (3.3.4) for M0(h(τ2)) and

∞∑
k=0

a
1
2

+α

k =
R

1
2

+α

1−
(

2
3

) 1
2

+α
,

we finally obtain (3.4.9).

Lemma 3.4.8. Let h be a super solution of (3.1.67). Then for all r > 0, τ ≥ τ0 ≥ 0
and n ∈ N: ∫

[0,r]
h(τ, x)dx ≥ 1

4n+1r

∫ τ

τ0

(∫
(r,r2n]

h(σ, x)dx

)2

dσ. (3.4.12)

Proof. Consider the decomposition

(r, 2nr] =

2n+1⋃
i=3

(r
2

(i− 1),
r

2
i
]
.

Then by Lemma 3.4.6, and Lemma 3.12 in [45], we have∫
[0,r]

h(τ, x)dx ≥
∫ τ

τ0

2n+1∑
i=3

1

ri

(∫
( r2 (i−1), r

2
i]
h(σ, x)dx

)2

dσ

≥
∫ τ

τ0

1

r

(
2n+1∑
i=3

i

)−1(∫
(r,r2n]

h(σ, x)dx

)2

dσ

≥ 1

(2n − 1)(2n+1 + 3)r

∫ τ

τ0

(∫
(r,r2n]

h(σ, x)dx

)2

dσ.

Notice that (2n − 1)(2n+1 + 3) ≤ 4n+1.
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The next Lemma takes into account the linear term Q̃
(1)
3 .

Lemma 3.4.9. Let h be a solution of (3.1.67) with initial data h0 ∈ M 1
+([0,∞))

satisfying

m0 =

∫
(0,∞)

h0(x)dx > 0. (3.4.13)

Then, for any τ0 ≥ 0 there exist R1 > 0, C1 > 0 such that∫
[0,r]

h(τ, x)dx ≥ C1 r ∀r ∈ [0, R1], ∀τ ≥ τ0. (3.4.14)

Proof. By (3.4.13), there exist 0 < a ≤ b <∞ such that∫
(a,b]

h0(x)dx >
m0

2
. (3.4.15)

We prove now

∃T ′ > 0; ∀τ ∈ [0, T ′) :

∫
(a2 ,2b]

h(τ, x)dx ≥ m0

4
. (3.4.16)

To this end we use (3.1.67) with a test function ϕ ∈ C1
c ([0,∞)) such that 0 ≤ ϕ ≤ 1,

ϕ = 1 on (a, b] and ϕ = 0 on [0,∞) \
(
a
2 , 2b

]
and (3.4.15) to obtain:∫

(a2 ,2b]
h(τ, x)dx ≥ m0

2
+

∫ τ

0
Q̃3(ϕ, h(σ))dσ. (3.4.17)

Now using (C.1.2) and (3.3.4) we deduce∣∣∣Q(2)
3 (ϕ, h(σ))

∣∣∣ ≤ 2‖ϕ′‖∞
(√

M1(h0)

2
σ +

√
M0(h0)

)4

.

Using now |L(ϕ)(x)|√
x

≤ 3‖ϕ‖∞
√
x and M1/2(h) ≤

√
M0(h)M1(h), we have by the

conservation of energy and the mass inequality∣∣∣Q̃(1)
3 (ϕ, h(σ))

∣∣∣ ≤ 2‖ϕ‖∞
√
M1(h0)

(
M1(h0)

2
σ +

√
M0(h0)

)
.

It follows that Q̃3(ϕ, h) ∈ L1
loc(R+) and we deduce (3.4.16) from (3.4.17).

By Lemma 3.4.8 and (3.4.16), for any r ∈
(
0, a2
]

and n ∈ N such that r2n ∈
(2b, 3b] we have∫

[0,r]
h(τ, x)dx ≥

∫ τ

0

1

4n+1r

(∫
(a2 ,2b]

h(σ, x)dx

)2

dσ

≥ τ

4n+1r

(m0

4

)2
≥ m2

0

43(3b)2
τ r ∀τ ∈ [0, T ′]. (3.4.18)

where
(
a
2 , 2b

]
⊂ (r, r2n] has been used.

For any given τ0 ≥ 0 define τ ′ = min{τ0, T
′}. Then by (3.4.7) in Proposition

3.4.5 with θ = 1
2 and R = 2r, we deduce from (3.4.18):∫

[0,2r]
h(τ, x)dx ≥ Cτ ′

2
r ∀τ ≥ τ ′. (3.4.19)

and this proves the Lemma, where R1 = a/2 and C1 = Cτ ′/4.
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Proposition 3.4.10. Let h and h0 be as in Lemma 3.4.9. For all L > 0 and every
τ1 > 0 there exists R0 = R0(h, L, τ1) > 0 such that∫

[0,R0]
h(τ, x)dx ≥ LR0 ∀τ ≥ τ1. (3.4.20)

Proof. By Lemma 3.4.9 for τ0 = τ1
2

∃C1 > 0, ∃R1 > 0;

∫
[0,r]

h(τ, x)dx ≥ C1r, ∀r ∈ [0, R1], ∀τ ≥ τ1

2
. (3.4.21)

Now fix an integer p ≥ 2 such that C1p ≥ 8L. We divide the proof in two parts.
Assume first :

∃r′ ∈ (0, R1], ∃τ ′ ∈
[τ1

2
, τ1

]
:

∫
[
0, r
′
p

] h(τ ′, x)dx ≥ C1r
′

2
. (3.4.22)

It follows from lemma 3.4.5 with θ = 1
2 and R = 2r′

p that∫
[
0, 2r

′
p

] h(τ, x)dx ≥ C1r
′

4
∀τ ≥ τ ′,

If we take R0 := 2r′

p , we have, by our choice of p,∫
[0,R0]

h(τ, x)dx ≥ C1p

8
R0 ≥ LR0 ∀τ ≥ τ ′,

so (3.4.20) holds.
Assume now that (3.4.22) does not hold, then, by (3.4.21):∫

(
r
p
,r
] h(τ, x)dx ≥ C1r

2
∀r ∈ (0, R1], ∀τ ∈

[τ1

2
, τ1

]
. (3.4.23)

Take now any r ∈
(

0, R1
p

]
, let n ∈ N be the largest integer such that rpn ∈

(
R1
p , R1

]
,

and consider now the following decomposition

(r, rpn] =

pn+1⋃
i=p+1

(
r

p
(i− 1),

r

p
i

]
=

n⋃
k=1

pk+1⋃
i=pk+1

(
r

p
(i− 1),

r

p
i

]
.

By lemma 3.4.6 on (τ1/2, τ1) with ai = ri/p, i = p+ 1, · · · , pn+1:

∫
[0,r]

h(τ1, x)dx ≥
∫ τ1

τ1
2

 p

2r

pn+1∑
i=p+1

1

i

(∫
(
r
p

(i−1), r
p
i
] h(σ, x)dx

)2
 dσ

=

∫ τ1

τ1
2

 p

2r

n∑
k=1

pk+1∑
i=pk+1

1

i

(∫
(
r
p

(i−1), r
p
i
] h(σ, x)dx

)2
 dσ

≥
∫ τ1

τ1
2

 1

2r

n∑
k=1

1

pk

pk+1∑
i=pk+1

(∫
(
r
p

(i−1), r
p
i
] h(σ, x)dx

)2
 dσ. (3.4.24)
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We use now Lemma 3.12 in [45]

pk+1∑
i=pk+1

(∫
(
r
p

(i−1), r
p
i
] h(σ, x)dx

)2

≥ 1

pk(p− 1)
×

×

 pk+1∑
i=pk+1

∫
(
r
p

(i−1), r
p
i
] h(σ, x)dx

2

≥ 1

pk+1

(∫
(rpk−1,rpk]

h(σ, x)dx

)2

and deduce∫
[0,r]

h(τ1, x)dx ≥
∫ τ1

τ1
2

 1

2r

n∑
k=1

1

p2k+1

(∫
(rpk−1,rpk]

h(σ, x)dx

)2
 dσ.

Due to the choice of the integer n, rpk ∈ (0, R1] for all k = 1, · · · , n, and we can use
(3.4.23) on each interval (rpk−1, rpk] to obtain:∫

[0,r]
h(τ1, x)dx ≥

∫ τ1

τ1
2

[
1

2r

n∑
k=1

1

p2k+1

(
C1rp

k

2

)2
]
dσ =

τ1C
2
1n

16p
r.

It then follows from lemma 3.4.5 with θ = 1
2 and R = 2r that∫

[0,2r]
h(τ, x)dx ≥ τ1C

2
1n

32p
r ∀τ ≥ τ1. (3.4.25)

Since rpn ∈
(
R1
p , R1

]
, then n ≥

log
(
R1
rp

)
log(p) , and we chose r > 0 small enough in order

to have r ∈ (0, R1/p) and

τ1C
2
1

64p

log
(
R1
rp

)
log p

≥ L;

and set R0 := 2r. The result then follows from (3.4.25).

Lemma 3.4.11. Let h be a solution of (3.1.67) and, for any κ > 0 and λ > 0,
consider the rescaled measure hκ,λ defined as:∫

[0,∞)
hκ,λ(τ, x)ϕ(x)dx = κ

∫
[0,∞)

h(κλτ, x)ϕ
(x
λ

)
dx, ∀ϕ ∈ Cb([0,∞)). (3.4.26)

Then hκ,λ is a super solution of (3.1.67).

Proof. Let ϕ ∈ C1
b ([0,∞)) be nonnegative, convex and decreasing, ψ(x) = ϕ(x/λ),

and η = κλτ . By Lemma C.1.13, Q̃
(1)
3 (ψ, h) ≤ 0, and by (3.1.67)

d

dη

∫
[0,∞)

ψ(x)h(η, x)dx ≥ Q
(2)
3 (ψ, h(η)).

Since Q
(2)
3 (ψ, h(η)) = κ−2λ−1Q

(2)
3 (ϕ, hκ,λ(τ)), then

d

dτ

∫
[0,∞)

ϕ(x)hκ,λ(τ, x)dx = κ2λ
d

dη

∫
[0,∞)

ψ(x)h(η, x)dx ≥ Q
(2)
3 (ϕ, hκ,λ(τ)).
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Lemma 3.4.12. Let h be a super solution of (3.1.67). Suppose that there exists
τ ′ > 0 such that ∫

[0,1]
h(τ, x)dx ≥ 1 ∀τ ≥ τ ′. (3.4.27)

Then for any given δ > 0 there exist τ0 such that

τ ′ ≤ τ0 ≤ τ ′ + T0(δ), T0(δ) =
64

δ3

(
1− δ

2

)
(3.4.28)

and

∫
[0, δ4 ]

h(τ0, x)dx ≥ 1− δ

2
. (3.4.29)

Proof. The statement of the Lemma is equivalent to show that the following set

A :=

{
τ ∈ [τ ′, τ ′ + T0(δ)] :

∫
[0, δ4 ]

h(τ, x)dx ≥ 1− δ

2

}
.

is non empty, where T0(δ) is defined in (3.4.28). To this end we first apply Lemma
3.4.6 with a0 = δ

4 , ai = δ
4

(
1 + i

2

)
for i ∈ {1, ..., n− 1} and an = 1. The number n is

chosen to be the largest integer such that an−1 < 1, which implies

1

n+ 1
>
δ

8
. (3.4.30)

Then, using ai
−1 ≥ 1 for all i ∈ {1, ..., n}:∫

[0, δ4 ]
h(τ, x)dx ≥ 1

2

∫ τ

τ ′

n∑
i=1

(∫
(ai−1,ai]

h(σ, x)dx

)2

dσ, ∀τ > τ ′.

Since by Lemma 3.12 in [45] and (3.4.30):

n∑
i=1

(∫
(ai−1,ai]

h(σ, x)dx

)2

≥ δ

8

(∫
( δ4 ,1]

h(σ, x)dx

)2

,

we obtain, for all τ > τ ′∫
[0, δ4 ]

h(τ, x)dx ≥ δ

16

∫ τ

τ ′

(∫
( δ4 ,1]

h(σ, x)dx

)2

dσ. (3.4.31)

Arguing by contradiction suppose that A = ∅:∫
(0, δ

4 ]
h(τ, x)dx < 1− δ

2
∀τ ∈ [τ ′, τ ′ + T0(δ)]

and by (3.4.27): ∫
( δ4 ,1]

h(τ, x)dx ≥ δ

2
∀τ ∈ [τ ′, τ ′ + T0(δ)].

It follows from (3.4.31) that 1− δ
2 >

δ3

64(τ − τ ′) for all τ ∈ [τ ′, τ ′ + T0(δ)] which is a
contradiction for τ = τ ′ + T0(δ).
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Proposition 3.4.13. Let h be a solution of (3.1.67). Suppose that there exist m,
R > 0 such that ∫

[0,R]
h(τ, x)dx ≥ m ∀τ ∈ [0,∞). (3.4.32)

Then given any α ∈ (0, 1) there exists T∗ = T∗(α) > 0 such that∫
[0,r]

h(τ, x)dx ≥ m

(2R)α
rα ∀r ∈ [0, R], ∀τ ∈

[
RT∗
m

,∞
)
. (3.4.33)

Proof. We argue by induction and define first the scaled measure h1 = hκ1,λ1 , defined
as in (3.4.26), that satisfies condition (3.4.27) for κ1 = 1

m , λ1 = R. From Lemma
3.4.11, and Lemma 3.4.12 with τ ′ = 0, we deduce that for all δ ∈ (0, 1) there exists
τ1 > 0 such that:

0 ≤ τ1 ≤ T0(δ),

∫
[0, δ4 ]

h1(τ1, x)dx ≥ 1− δ

2
.

Then from Lemma 3.4.11, and Proposition 3.4.5 with θ = δ/2 and R = 1/2,∫
[0, 12 ]

h1(τ, x)dx ≥
(

1− δ

2

)2

, ∀τ ≥ T0(δ),∫
[0,R2 ]

h (τ, x) dx ≥ m (1− δ) , ∀τ ≥ R

m
T0(δ). (3.4.34)

Exactly as before we now define h2 = hκ2,λ2 as in (3.4.26), that satisfies condition
(3.4.27) for κ2 = 1

m(1−δ)2 , λ2 = R
2 , τ

′ = 2(1 − δ)T0(δ). The same argument gives

then: ∫
[0,R4 ]

h (τ, x) dx ≥ m (1− δ)2 , ∀τ ≥ RT0(δ)

m

(
1 +

1

2(1− δ)

)
. (3.4.35)

We deduce after n iterations∫
[0, R2n ]

h (τ, x) dx ≥ m (1− δ)n , ∀τ ≥ RT0(δ)

m

n−1∑
k=0

1

2k(1− δ)k
(3.4.36)

If we chose δ = 1− 2−α, for any 0 < α < 1, we may define

T∗ = T0(δ)
∞∑
k=0

2−(1−α)k =
T0(δ)

1− 2−(1−α)
. (3.4.37)

Since for any r ∈ (0, R) there exists n ∈ N such that r ∈
(
R
2n ,

R
2n−1

]
,∫

[0,r]
h (τ, x) dx ≥ m2−αn, ∀τ > RT∗

m

and using 2−n > r/2R, (3.4.33) follows.

Proposition 3.4.14. Let h be a solution of (3.1.67). Then, for all τ0 > 0 and for
any α ∈ (0, 1) there exists R∗ = R∗(h, τ0, α) > 0 such that∫

[0,r]
h(τ, x)dx ≥ C rα ∀r ∈ [0, R∗] ∀τ ∈ [τ0,∞), (3.4.38)

where C = T∗(α)
τ0

(2R∗)
1−α, and T∗(α) is given by Proposition 3.4.13.
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Proof. By Proposition 3.4.10 with L > 0 and for τ1 = τ0/2, there existsR0(h, L, τ1) >
0 such that ∫

[0,R0]
h(τ, x)dx ≥ LR0 ∀τ ≥ τ0

2
.

Then by Proposition 3.4.13, with m = LR0 and R = R0, we obtain that for any
given α ∈ (0, 1) there exists T∗ = T∗(α) > 0 such that∫

[0,r]
h(τ, x)dx ≥ LR0

(2R0)α
rα ∀r ∈ [0, R0], ∀τ ∈

[
τ0

2
+
T∗
L
,∞
)
.

If we chose L = 2T∗/τ0, then the Proposition follows with R∗ = R0.

Proof of Theorem 3.4.1. By Lemma 3.4.2 the map τ 7→ h(τ, {0}) is right contin-
uous, nondecreasing and a.e. differentiable on [0,∞). It remains to prove that it is
actually strictly increasing. We first suppose that h0 is such that∫

{0}
h0(x)dx = 0,

∫
(0,∞)

h0(x)dx > 0, (3.4.39)

and prove
h(τ, {0}) > 0 ∀τ > 0. (3.4.40)

Arguing by contradiction, if we suppose that there exists τ0 > 0 such that h(τ0, {0}) =
0, by monotonicity h(τ, {0}) = 0 for all τ ∈ [0, τ0]. In particular∫ τ0

τ0
2

∫
[0,r]

h(σ, x)dxdσ =

∫ τ0

τ0
2

∫
(0,r]

h(σ, x)dxdσ (3.4.41)

for all r > 0. Now using Proposition 3.4.7 with α = 0, and Proposition 3.4.14, we
deduce that, for any α ∈ (0, 1/2), there exists R∗ = R∗(h, τ0/2, α) such that

C2 r
α ≤

∫ τ0

τ0
2

∫
(0,r]

h(σ, x)dxdσ ≤ C1

√
r, ∀r ∈ [0, R∗];

C1 = 8

√
τ0

2

(√
M1(h0)

2
τ0 +

√
M0(h0)

)
, C2 =

T∗(α)

2
(2R∗)

1−α,

and that leads to a contradiction for r small enough.
Consider now a general initial data h0 such that

∫
{0} h0(x)dx > 0. Let h be a

solution of (3.1.67) with initial data h0 and define

h̃(τ) = h(τ)− h0({0})δ0.

Then, on the one hand, the initial data of h̃ satisfies h̃(0, {0}) = 0. On the other
hand we claim that h̃ is still a solution of (3.1.67). Notice indeed that h̃τ ≡ hτ and,
moreover, Q̃3(ϕ, h(τ)) = Q̃3(ϕ, h̃(τ)). Using the previous case∫

{0}
h̃(τ, x)dx > 0, ∀τ > 0,

and then ∫
{0}

h(τ, x)dx >

∫
{0}

h0(x)dx, ∀τ > 0.

The Theorem follows using now the time translation invariance of the equation.
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The last result of this section describes the relation between the Lebesgue-
Stieltjes measure associated to the (right continuous and strictly increasing) function
m(τ) = h(τ, {0}), and the equation for h (3.1.67).

Proposition 3.4.15. Let h be a solution of (3.1.67) for a initial data h0 ∈M 1
+([0,∞))

with N = M0(h0) > 0 and E = M1(h0) > 0. If we denote m(τ) = h(τ, {0}) and λ is
the Lebesgue-Stieltjes measure associated to m, then for all ϕε as in Remark 3.1.6
and for all τ1 and τ2 with 0 ≤ τ1 < τ2:

m(τ2)−m(τ1) = λ((τ1, τ2]), (3.4.42)

λ((τ1, τ2]) = lim
ε→0

∫ τ2

τ1

Q
(2)
3 (ϕε, h(τ))dτ, (3.4.43)

and 0 < λ((τ1, τ2])) <∞. (3.4.44)

Furthermore, for all ϕε as in Remark 3.1.6

lim
ε→0

Q
(2)
3 (ϕε, h) ∈ D ′(0,∞), (3.4.45)

and if we denote m′ the derivative in the sense of Distributions of m, then

m′ = λ = lim
ε→0

Q
(2)
3 (ϕε, h) in D ′(0,∞). (3.4.46)

Proof. By Lemma 3.4.2, m is right continuous and nondecreasing on [0,∞). Then
it has a Lebesgue-Stieltjes measure associated to it, λ, that satisfies (3.4.42) (c.f. [?]
Ch.1).

On the other hand, since h is a solution of (3.1.67), using ϕε as in Remark 3.1.6
and taking the limit ε→ 0, it follows from (C.1.25) in Lemma C.1.20 that for all τ1

and τ2 with 0 ≤ τ1 < τ2:

m(τ2)−m(τ1) = lim
ε→0

∫ τ2

τ1

Q
(2)
3 (ϕε, h(σ))dσ, (3.4.47)

and then (3.4.43) follows from (3.4.42). Moreover, since by Theorem 3.4.1 m is
strictly increasing, then (3.4.44) holds.

Notice that the limit in (3.4.47) is independent of the choice of the test function
ϕε. Indeed, if ψε is another test function as in Remark 3.1.6, since for all τ ≥ 0

lim
ε→0

∫
[0,∞)

ψε(x)h(τ, x)dx = m(τ) = lim
ε→0

∫
[0,∞)

ϕε(x)h(τ, x)dx,

it follows from (3.4.47) that for all 0 ≤ τ1 ≤ τ2

lim
ε→0

∫ τ2

τ1

Q
(2)
3 (ψε, h(σ))dσ = lim

ε→0

∫ τ2

τ1

Q
(2)
3 (ϕε, h(σ))dσ.

Now, for all ϕε as in Remark 3.1.6, consider the absolutely continuous function

θε(τ) =

∫
[0,∞)

ϕε(x)h(τ, x)dx.
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Then the equation in (3.3.2) reads θ′ε(τ) = Q̃3(ϕε, h(τ)). Using integration by parts
we deduce that for all ε > 0:

−
∫ ∞

0
φ′(τ)θε(τ)dτ =

∫ ∞
0

φ(τ)Q̃3(ϕε, h(τ))dτ ∀φ ∈ C∞c (0,∞).

Taking the limit ε→ 0 it then follows from Lemma C.1.20 that

−
∫ ∞

0
φ′(τ)m(τ)dτ = lim

ε→0

∫ ∞
0

φ(τ)Q
(2)
3 (ϕε, h(τ))dτ,

hence, m′ = limε→0 Q
(2)
3 (ϕε, h). On the other hand, by Fubini’s theorem∫ ∞

0
φ(τ)dλ(τ) =

∫ ∞
0

∫ τ

0
φ′(σ)dσdλ(τ) = −

∫ ∞
0

φ′(σ)m(σ)dσ

for all φ ∈ C∞c (0,∞) (cf. [64], Example 6.14), thus m′ = λ.

3.5 Existence of solutions G, proof of Theorem 3.1.3.

Given a initial data G0 ∈ M 1
+ as in Theorem 3.1.3, let h ∈ C

(
[0,∞),M+([0,∞))

)
satisfy (3.3.1)–(3.3.5), (3.3.7), given by (3.3.2) and H defined by (3.3.10) and sat-
isfying (3.3.11)–(3.3.15), (3.3.17) by Corollary 3.3.2. It is natural, in view of the
change of variables (3.1.65) to define now,

G(t) = H(τ), τ =

∫ t

0
G(s, {0})ds. (3.5.1)

Notice nevertheless that since G(s, {0}) is still unknown, (3.5.1) does not define G(t)
actually. What we know is rather, given τ > 0, what would be the value of t such
that

t =

∫ τ

0

dσ

H(σ, {0})
, (3.5.2)

since we expect to have G(s, {0}) = H(σ, {0}) for s and σ such that

σ =

∫ s

0
G(r, {0})dr, or s =

∫ σ

0

dρ

H(ρ, {0})
.

If G is going to be defined in that way it is then necessary first to check that the
range of values taken by the variable t in (3.5.2) is all of [0,∞). By definition
(3.3.10),

H(τ, {0}) = h(τ, {0})−
∫ τ

0
M1/2(h(σ))dσ. (3.5.3)

Since both terms in the right hand side are nonnegative, H(τ, {0}) has no a priori
definite sign. We must then consider that question in some detail. Our first step is
to prove the following

Lemma 3.5.1. If G0({0}) > 0, then

τ∗ = inf{τ > 0 : H(τ, {0}) = 0} > 0, (3.5.4)

H(τ∗, {0}) = 0, (3.5.5)

H(τ, {0}) > 0 ∀τ ∈ [0, τ∗). (3.5.6)
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Proof. H(0) = G0 by (3.3.13), and then, using ϕε as in Remark 3.1.6, we deduce
H(0, {0}) = G0({0}), which is strictly positive by hypothesis. Then (3.5.4) follows
from the right continuity of H(τ, {0}) (cf. Corollary 3.4.3).

In order to prove (3.5.5) we use a minimizing sequence (τn)n∈N, i.e., τn ≥ τ∗,
H(τn, {0}) = 0 for every n ∈ N, and τn → τ∗ as n → ∞. Then from the right
continuity (3.5.5) holds.

Let us prove now (3.5.6). If H(τ0, {0}) < 0 for some τ0 ∈ (0, τ∗), then τ0 must
be a left discontinuity point of H(τ, {0}) and

lim sup
δ→0+

H(τ0 − δ, {0}) > H(τ0, {0}),

and this would contradict (3.4.6). That proves (3.5.6).

It follows from Lemma 3.5.1 that the function:

t = ξ(τ) =

∫ τ

0

dσ

H(σ, {0})
(3.5.7)

introduced in (3.5.2) is well defined, monotone nondecreasing and continuous on the
interval [0, τ∗). We then define,

∀t ∈ [0, ξ(τ∗)) : G(t) = H(ξ−1(t)). (3.5.8)

By (3.5.8) and (3.5.3), if G(t) = G(t, {0})δ0 + g(t) and H(τ) = H(τ, {0})δ0 + h̃(τ),
then

G(t, {0}) = H(τ, {0}), (3.5.9)

h̃(τ) = h(τ)− h(τ, {0})δ0, (3.5.10)

g(t) = h̃(τ). (3.5.11)

Remark 3.5.2. Formula (3.5.8) defines the function G at time t ∈ (0, ξ(τ∗)) from
the knowledge of the function H(τ) for τ > 0 such that τ = ξ−1(t). Moreover,

∀t ∈ (0, ξ(τ∗)) : ξ−1(t) =

∫ t

0
G(s, {0})ds. (3.5.12)

We have now,

Proposition 3.5.3. The function G defined by (3.5.8) is such that

G ∈ C
(
[0, ξ(τ∗)),M

1
+([0,∞))

)
, G(0) = G0 (3.5.13)

and satisfies (3.1.45), (3.1.46), (3.1.48) and (3.1.49) on the time interval [0, ξ(τ∗)).

Proof. We first prove that G(t) is a positive measure for all t ∈ [0, ξ(τ∗)). By (3.5.6)
and (3.5.9) we have G(t, {0}) > 0 for all t ∈ [0, ξ(τ∗)). Then, since h(τ) is a positive
measure for all τ ∈ [0,∞), we deduce from (3.5.11) and (3.5.10) that g(t) is a positive
measure for all t ∈ [0, ξ(τ∗)). Hence G(t) = G(t, {0})δ0 + g(t) is also positive.

All the properties of G(t) at t ∈ [0, ξ(τ∗)) fixed follow from the corresponding
property of H(τ) with t = ξ(τ). The only property where t is not fixed are (3.1.44)
and (3.1.45). Since∣∣∣∣∂G(t)

∂t

∣∣∣∣ =

∣∣∣∣∂τ∂t ∂H(τ)

∂τ

∣∣∣∣ ≤ |H(τ, {0})|
∣∣∣∣∂H(τ)

∂τ

∣∣∣∣
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By definition,

|H(τ, {0})| ≤ |h(τ, {0})|+
∫ τ

0
M1/2(h(σ))dσ.

Since h ∈ C([0,∞),M 1
+) it follows using also (3.3.4), (3.3.5) and Hölder inequality

that H(τ, {0}) ∈ L∞loc([0,∞)).Then, by (3.3.1), G(t) is locally Lipschitz on [0, ξ(τ∗))
and satisfies (3.1.45). Since H satisfies (3.3.2) the change of variables ensures that
G satisfies (3.1.46).

We prove now the following property of the function G defined in (3.5.8).

Proposition 3.5.4. Let G be the function defined in (3.5.8) for t ∈ (0, ξ(τ∗)).
Then the map t 7→ G(t, {0}) is right continuous and differentiable for almost every
t ∈ [0, ξ(τ∗)) and, for all t0 ∈ (0, ξ(τ∗))

G(t, {0}) ≥ G(t0, {0})e
−
∫ t
t0
M1/2(g(s))ds ∀t ∈ (t0, ξ(τ∗)). (3.5.14)

In particular, if G(0, {0}) > 0, then G(t, {0}) > 0 for all t ∈ (0, ξ(τ∗)).

Proof. Using (3.1.46) and (3.1.43) with ϕε as in Remark 3.1.6, we have

d

dt

∫
[0,∞)

ϕε(x)G(t, x)dx+G(t, {0})M1/2(G(t)) = G(t, {0})Q̃3(ϕε, G(t)). (3.5.15)

We use now that for all ε > 0:

G(t, {0}) ≤
∫

[0,∞)
ϕε(x)G(t, x)dx, (3.5.16)

and we deduce from (3.5.15), using J(t) = exp
(∫ t

0 M1/2(G(s))ds
)

,

d

dt

(
J(t)

∫
[0,∞)

ϕε(x)G(t, x)dx

)
≥ G(t, {0})J(t)Q̃3(ϕε, G(t)). (3.5.17)

By Lemma C.1.13 the right hand side of (3.5.17) is nonnegative, and we deduce

J(t)

∫
[0,∞)

ϕε(x)G(t, x)dx ≥ J(t0)

∫
[0,∞)

ϕε(x)G(t0, x)dx

for all t ∈ (t0, ξ(τ∗)) and all ε > 0. If we pass now to the limit as ε→ 0:

J(t)G(t, {0}) ≥ J(t0)G(t0, {0}), (3.5.18)

and this proves the estimate (3.5.14). It also follows from Lebesgue’s Theorem that
J(t)G(t, {0}) is differentiable for almost every t ∈ (0, ξ(τ∗)) (cf. [63], Theorem 2).
On the other hand, since J(t) is a.e differentiable and J(t) > 0 for all t ∈ [0, ξ(τ∗)),
we deduce that G(t, {0}) is also differentiable for almost every t ∈ [0, ξ(τ∗)).

We prove now the right continuity of G(t, {0}). It follows from (3.5.18),

J(t+ δ)G(t+ δ, {0}) ≥ J(t)G(t, {0}), ∀δ > 0 ∀t > 0.
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If we take inferior limits and use that J is continuous and strictly positive we obtain,

lim inf
δ→0

G(t+ δ, {0}) ≥ G(t, {0}), ∀t > 0. (3.5.19)

Since L0(ϕε) ≥ 0 by convexity (cf. Lemma C.1.13), we deduce

d

dt

∫
[0,∞)

ϕε(x)G(t, x)dx ≤ G(t, {0})
∫∫

(0,∞)2

Λ(ϕε)(x, y)
√
xy

G(t, x)G(t, y)dxdy,

and the argument follows now as in the proof of the right continuity of H. From
the inequality (3.5.16), the bound (C.1.2) and the conservation of mass, we deduce
for all t ∈ [0, ξ(τ∗)) fixed and δ ∈ [0, ξ(τ∗)− t),

G(t+ δ, {0}) ≤
∫

[0,∞)
ϕε(x)G(t, x)dx+

2N2δ

ε

∫ t

0
G(s, {0})ds.

If we take superior limits as δ → 0, and then let ε→ 0 we obtain, using (3.4.2) with
G instead of H:

lim sup
δ→0

G(t+ δ, {0}) ≤ G(t, {0}).

and this combined with (3.5.19) proves thatG(t, {0}) is right continuous on [0, ξ(τ∗)).

In the next Lemma we prove that the function G defined by (3.5.8) is actually
well defined for all t > 0.

Lemma 3.5.5.
lim
τ→τ−∗

ξ(τ) =∞. (3.5.20)

Proof. Since the function ξ(τ) is monotone nondecreasing and continuous on [0, τ∗),
its limit as τ → τ−∗ exists in R+. Let us call it ` and suppose ` ∈ R+. Now, from
(3.5.14) and the fact that G satisfies : 0 ≤M1/2(G(s)) ≤

√
NE, we deduce

lim sup
t→`−

G(t, {0}) ≥ e−
√
NE`G(0, {0}) > 0, (3.5.21)

and by (3.4.6)

H(τ∗, {0}) ≥ lim sup
τ→τ−∗

H(τ, {0}) = lim sup
t→`−

G(t, {0}) > 0,

and this contradicts (3.5.5). This proves that ` =∞.

Proof of Theorem 3.1.3. By Lemma 3.5.5 the function G is defined for all t > 0.
As we have seen in the proof of Lemma 3.5.5, G(t) ∈ M+([0,∞)) for all t > 0. It
then follows from Proposition 3.5.3 that G satisfies now all the conditions (3.1.44)–
(3.1.46) and (3.1.47)–(3.1.49). Property (3.1.50) follows from the corresponding
estimate (3.3.6) for h. Similarly, property (3.1.52) follows from the property (3.3.7)
of h. We prove now the point (iv). Suppose then α ∈ (1, 3] and condition (3.1.53).
For ϕ(x) = xα we have,

Q
(1)
3 (ϕ,G(t)) =

(
α− 1

α+ 1

)
Mα+ 1

2
(G(t)).
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On the other hand, for 0 ≤ y ≤ x,

Λ(ϕ)(x, y) = xα
((

1 + z
)α

+
(
1− z

)α − 2
)
, z =

y

x
∈ [0, 1],

If α ∈ (1, 2], for all x ≥ y > 0,

Λ(ϕ)(x, y)
√
xy

≤ (2α − 2)xα−
3
2 y

1
2 ≤ (2α − 2)(xy)

α−1
2 .

We deduce

Q
(2)
3 (ϕ,G(t)) ≤ (2α − 2)

(
Mα−1

2
(G(t))

)2
.

and obtain

d

dt
Mα(G(t)) ≤ G(t, {0})

[
C1,1

(
Mα−1

2
(G(t))

)2
− C2Mα+ 1

2
(G(t))

]
,

where C1,1 = 2α − 2 and C2 = (α− 1)/(α+ 1). Using Hölder’s inequality

d

dt
Mα(G(t)) ≤ G(t, {0})

[
C1,1N

3−αEα−1 − C2E
(2α+1)/2N (1−2α)/2

]
. (3.5.22)

By (3.1.53), the right hand side of (3.5.22) is negative, and then Mα(G(t)) is de-
creasing on (0,∞).

For α ∈ [2, 3] we use the estimate (3.3.36) with C1,2 = α(α − 1) instead of Cα.
Then we proceed as in the previous case to obtain

d

dt
Mα(G(t)) ≤ G(t, {0})

[
C1,2N

3−αEα−1 − C2E
(2α+1)/2N (1−2α)/2

]
. (3.5.23)

As before, (3.1.53) implies that the right hand side of (3.5.23) is negative, and then
Mα(G(t)) is decreasing.

Proof of Theorem 3.1.4. By construction

G(t) = H(τ) = h(τ)−
(∫ τ

0
M1/2(h(σ))dσ

)
δ0,

where τ and t are related by

t = ξ(τ) =

∫ τ

0

dσ

H(σ, {0})
; τ = ξ−1(t) =

∫ t

0
G(s, {0})ds. (3.5.24)

Therefore G(t, x) = h(τ, x) for x ∈ (0,∞), and∫ T

0
G(t, {0})

∫
(0,∞)

xαG(t, x)dxdt =

∫ ξ−1(T )

0

∫
(0,∞)

xαh(τ, x)dxdτ.

The result then follows from Proposition 3.4.7.

Remark 3.5.6. One could try to directly solve the system (3.1.34), (3.1.35), written
in (g, n) variables. First, to obtain a sequence of solutions (gk, nk) of an approxi-
mated system where the factor x−1/2 is modified by truncation and regularization,
and then pass to the limit. However, the limit obtained in that way, say (g, n) is
not a solution of (3.1.34), (3.1.35). The reason is that all the solutions gk of the ap-
proximated system will be functions with a bounded moment of order −1/2. Then,
the right hand side of the equation (3.1.37) is equal to M1/2(gk) and by passage to
the limit the equation for n will be n′(t) = −n(t)M1/2(g(t)), and the total mass will
not be conserved.
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3.6 Proofs of Theorems 3.1.7, 3.1.8 and 3.1.9.

We first prove Theorem 3.1.7.

Proof of Theorem 3.1.7 . We already know by Proposition 3.5.4 and Lemma
3.5.5 that n is right continuous and a.e. differentiable on [0,∞). Then, by con-
struction

G(t) = H(τ) = h(τ)−
(∫ τ

0
M1/2(h(σ))dσ

)
δ0,

where τ ∈ [0, τ∗) and t ∈ [0,∞) are related by (3.5.24). Hence

n(t) = m(τ)−
∫ τ

0
M1/2(h(σ))dσ = m(τ)−

∫ t

0
n(s)M1/2(g(s))ds. (3.6.1)

Since n(0) = m(0), it then follows from Proposition 3.4.15 that for all t > 0:

n(t)− n(0) +

∫ t

0
n(s)M1/2(g(s))ds = λ((0, τ ]), (3.6.2)

and using (3.5.24)

λ((0, τ ]) = lim
ε→0

∫ t

0
n(s)Q

(2)
3 (ϕε, g(s))ds. (3.6.3)

If we denote µ = ξ#λ (c.f. [2], Ch. 5), i.e., the push-forward of λ through the
function ξ : [0, τ∗)→ [0,∞) in (3.5.24), then from the definition of µ we obtain

µ((0, t]) = λ((0, τ ]) ∀t > 0. (3.6.4)

Then (3.1.58) and (3.1.57) follows from (3.6.2), (3.6.3) and (3.6.4). Moreover,
(3.1.59) follows from (3.4.44) in Proposition 3.4.15.

The following properties of n(t) follows by the same arguments used in the proofs
of properties (3.4.45) and (3.4.46) of Proposition 3.4.15

Proposition 3.6.1. Let G, g, and n(t) be as in Theorem 3.1.7. Then, for all ϕε as
in Remark 3.1.6, the following limit exists in D ′(0,∞):

lim
ε→0

nQ
(2)
3 (ϕε, g) = T (G), (3.6.5)

and n′ + nM1/2(g) = T (G) in D ′(0,∞). (3.6.6)

Proof. Consider, for all ϕε as in Remark 3.1.6, the absolutely continuous functions

ηε(t) =

∫
[0,∞)

ϕε(x)G(t, x)dx. (3.6.7)

Then equation (3.1.46) becomes η′ε = nQ3(ϕε, g). Using integration by parts,

−
∫ ∞

0
φ′(t)ηε(t)dt =

∫ ∞
0

φ(t)n(t)Q3(ϕε, g(t))dt ∀φ ∈ C∞c (0,∞).



122 On a system of two coupled equations for the interactions in a Bose gas

Taking the limit ε→ 0 we deduce, using Lemma C.1.20, that

−
∫ ∞

0
φ′(t)n(t)dt = lim

ε→0

∫ ∞
0

φ(t)n(t)Q
(2)
3 (ϕε, g(t))dt

−
∫ ∞

0
φ(t)n(t)M1/2(g(t))dt,

and then (3.6.5), (3.6.6) follows.

Remark 3.6.2. If we take distributional derivatives in both sides of (3.1.58) we
obtain:

n′ + nM1/2(g) = µ in D ′(0,∞),

and by (3.6.6), µ = T (G).

Proof of Theorem 3.1.8. The statement of the Theorem follows from (3.4.44) in
Proposition 3.4.15 and (3.6.4).

Proof of Theorem 3.1.9. Proof of part (i). By Theorem 3.1.7, n is given by
(3.1.58) and (3.1.57). On the other hand, since G satisfies (3.1.46), and for all
ϕ ∈ C1

b ([0,∞)) such that ϕ(0) = 0:∫
[0,∞)

ϕ(x)G(t, x)dx =

∫
[0,∞)

ϕ(x)g(t, x)dx, (3.6.8)

then g satisfies (3.1.60). In order to prove part (ii) we first show the existence of
the limit in (3.1.57). To this end we write ϕε = (1− ψε), where ψε is as in Remark
3.1.6. Then ϕε(0) = 0, and by (3.1.60) and (3.1.43), using that Q3(1 − ψε, g) =
Q3(1, g)−Q3(ψε, g), and Q3(1, g) = 0, we deduce∫ t

0
n(s)Q̃3(ψε, g(s))ds =

∫
(0,∞)

ϕε(x) (g(0, x)− g(t, x)) dx

+

∫ t

0
n(s)M1/2(g(s))ds. (3.6.9)

The existence of the limit in (3.1.57) follows and, if we pass to the limit,

lim
ε→0

∫ t

0
n(s)Q

(2)
3 (ψε, g(s))ds =

∫
(0,∞)

(g(0, x)− g(t, x))dx

+

∫ t

0
n(s)M1/2(g(s))ds. (3.6.10)

We now check that, if n satisfies the equation (3.1.61) then G satisfies equation
(3.1.46) for a.e. t > 0 and for every ϕ ∈ C1

b ([0,∞)). If ϕ(0) = 0 this follows from
(3.1.60) and (3.6.8).

For ϕ(0) 6= 0 we may assume without loss of generality that ϕ(0) = 1, and write
ϕ = (ϕ − ψε) + ψε, where ψε is as in Remark 3.1.6. Since (ϕ − ψε)(0) = 0, using
(3.1.60) and (3.1.45)∫

[0,∞)
(ϕ− ψε)(x)g(t, x)dx =

∫
[0,∞)

(ϕ− ψε)(x)g(0, x)dx

+

∫ t

0
n(s)Q̃3((ϕ− ψε), g(s))ds. (3.6.11)
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In order to pas to the limit as ε → 0, we first use Q̃3((ϕ − ψε), g) = Q̃3(ϕ, g) −
Q̃3(ψε, g). Then, since for all t ≥ 0

lim
ε→0

∫
[0,∞)

ψε(x)g(t, x)dx = 0, (3.6.12)

and n satisfies (3.1.61), we deduce from (3.6.11) and Lemma C.1.20:∫
[0,∞)

ϕ(x)g(t, x)dx =

∫
[0,∞)

ϕ(x)g(0, x)dx+

∫ t

0
n(s)Q̃3(ϕ, g(s))ds

+ n(0)− n(t)−
∫ t

0
n(s)M1/2(g(s))ds.

Since Q̃3(ϕ,G)−M1/2(g) = Q3(ϕ,G), it follows that G satisfies∫
[0,∞)

ϕ(x)G(t, x)dx =

∫
[0,∞)

ϕ(x)G(0, x)dx+

∫ t

0
n(s)Q3(ϕ, g(s))ds,

thus (3.1.46) holds for a.e. t > 0.

In order to check that G satisfies (3.1.44) we first use (3.1.46) with ϕ = 1 ∈
C1
b ([0,∞)). For that choice of ϕ we have Λ(ϕ) = L0(ϕ) ≡ 0 and then:∫

[0,∞)
G(t, x)dx =

∫
[0,∞)

G0(x)dx.

Because: ∫
[0,∞)

xG(t, x)dx =

∫
[0,∞)

x g(t, x)dx,

G satisfies (3.1.44) since by hypothesis so does g.

Remark 3.6.3. IfG is a weak radial solution of (3.1.1), (3.1.2), we know by Theorem
3.1.9 that g satisfies (3.1.60). It is straightforward to check that it also satisfies,

d

dt

∫
(0,∞)

ϕ(x)g(t, x)dx = n(t)Q̃3(ϕ, g(t))− ϕ(0)
d

dt
µ((0, t]),

where µ is as in Theorem 3.1.7, and Q̃3 is defined in (3.1.40)–(3.1.42).

Proof of Corollary 3.1.10. If we prove that n satisfies (3.1.61), the conclusion of
the Corollary will follow from part (ii) of Theorem 3.1.9. By the hypothesis and
part (ii) of Theorem 3.1.9, the limit in (3.1.57) exists, and (3.6.10) holds, that we
write:

lim
ε→0

∫ t

0
n(s)Q

(2)
3 (ψε, g(s))ds−

∫ t

0
n(s)M1/2(g(s))ds =

=

∫
[0,∞)

(G(0, x)−G(t, x))dx+ n(t)− n(0).

Using the conservation of mass (3.1.62) it follows that n satisfies equation (3.1.61).
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Proposition 3.6.4. (i) Let G ∈ M+([0,∞)). If G has no atoms on (0,∞) and∫
(0,∞)

G(x)√
x
dx <∞, then, for all ϕε as in Remarrk 3.1.6,

T (G) = lim
ε→0

Q
(2)
3 (ϕε, G) = 0. (3.6.13)

(ii) Let T > 0 and F : [0, T ] → M+([0,∞)) be such that F (t) has no atoms on
(0,∞) for all t ∈ [0, T ] and

ρ(T ) = sup
t∈[0,T ]

∫
(0,∞)

F (t, x)√
x

dx <∞. (3.6.14)

Then, for any bounded measurable function η : [0, T ]→ [0,∞),

lim
ε→0

∫ t

0
η(s)Q

(2)
3 (ϕε, F (s))ds = 0 ∀t ∈ [0, T ]. (3.6.15)

Proof. Let us prove (i). By definition

T (G) = lim
ε→0

∫∫
(0,∞)2

Λ(ϕε)(x, y)
√
xy

G(x)G(y)dxdy,

Since Λ(ϕε) ≤ 1 for all ε > 0 and

lim
ε→0

Λ(ϕε)(x, y) = 1{x=y>0}(x, y) ∀(x, y) ∈ (0,∞)2,

and
∫

(0,∞)
G(x)√
x
dx <∞, then by dominated convergence

T (G) =

∫∫
{x=y>0}

G(x)G(y)
√
xy

dxdy.

Since G has no atoms on (0,∞), i.e., G({x}) = 0 for all x > 0, by Fubini’s theorem∫∫
{x=y>0}

G(x)G(y)
√
xy

dxdy =

∫
(0,∞)

G(x)

x
G({x})dx = 0.

That proves (3.6.13).
Let us prove now (ii) using part (i) and dominated convergence Theorem. We

first consider a bounded measurable function η ≥ 0 defined on [0, T ]. By part (i),

lim
ε→0

η(t)Q
(2)
3 (ϕε, F (t)) = 0 ∀t ∈ [0, T ]. (3.6.16)

On the other hand, using again that Λ(ϕε) ≤ 1 for all ε > 0, we deduce∣∣∣η(t)Q
(2)
3 (ϕε, F (t))

∣∣∣ ≤ ‖η‖∞ρ(T ) <∞ ∀ε > 0, ∀t ∈ [0, T ]. (3.6.17)

Identity (3.6.15) then follows from (3.6.16), (3.6.17) and dominated convergence
Theorem.

Remark 3.6.5. From Proposition 3.6.4, if M−1/2(g) <∞ and g has no atoms, then
µ((0, t]) = 0 for all t > 0. If g ∈ L1(0,∞) and x = 0 is a Lebesgue point of g then
T (g) = 0 (cf. [60]) and again µ((0, t]) = 0 for all t > 0. If g(x) = x−1/2, then
T (g) = π2/6, (cf. [55]), and a similar result holds if limx→0

√
xg(x) = C > 0 (cf.

[67]). In that case, µ((0, t]) = π2/6
∫ t

0 n(s)ds.
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3.7 Proof of Theorem 3.1.11

Proof. By (3.5.22) and (3.5.23), we deduce that for all t > t0 > 0:∫ t

t0

G(s, {0})ds ≤
(
Mα(G(t0))−Mα(G(t))

)
C(N,E, α)

C(N,E, α) =

[(
α− 1

α+ 1

)
E(2α+1)/2N (1−2α)/2 − C1N

3−αEα−1

]−1

, (3.7.1)

where C1 = 2α − 2 for α ∈ (1, 2] and C1 = α(α− 1) for α ∈ [2, 3]. Since by part (i),
0 ≤ Mα(G(t0)) −Mα(G(t)) ≤ Mα(G(t0)) for every t > t0, we immediately deduce
(3.1.63).

We prove now (3.1.64). Since, as we have seen in (3.5.18), the function n(t)J(t)
is monotone nondecreasing, from where, for all t > 0 and s ∈ (0, t):

n(t) ≥ e−
∫ t
s M1/2(g(r))drn(s).

As we have M1/2(g(r)) ≤
√
NE for all r ≥ 0,

n(t) ≥ e−
√
NE(t−s)n(s). (3.7.2)

By (3.1.63) we already have a sequence of times θk such that θk →∞ and n(θk)→ 0
as k → ∞. Suppose that there exists, for some ρ > 0, an increasing sequence of
times (sk)k∈N such that sk →∞ as k →∞ and :

∀k, n(sk) ≥ ρ and sk+1 − sk >
log 2√
NE

.

Then, if we denote tk = sk + log 2√
NE

, we deduce from (3.7.2) that for all t ∈ (sk, tk):

n(t) ≥ e−
√
NE(t−sk)n(sk) ≥ e−

√
NE(tk−sk)ρ =

ρ

2
.

This would imply ∫ ∞
0

n(t)dt ≥
∞∑
k=0

∫ tk

sk

n(t)dt =∞,

and this contradiction proves (3.1.64).
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Appendix A

Some useful estimates

Lemma A.0.1. If B satisfies (2.2.5)–(2.2.10), and ϕ is L-Lipschitz on [0,∞), then
for all (x, y) ∈ Γ:

|kϕ(x, y)| ≤ LC∗Ae
|x−y|

2 , A = max

{
(1− θ)2

θδ(1 + θ)
, ρ∗

}
, (A.0.1)

|`ϕ(x, y)| ≤ LC∗(1− θ)
θ2(1 + θ)

e
x−y

2 . (A.0.2)

Moreover, the function Lϕ given in (2.2.31) is continuous on [0,∞) and for all
x ∈ [0,∞),

|Lϕ(x)| ≤ LC∗(1− θ)
θ2(1 + θ)

(
e
x−γ1(x)

2 − e
x−γ2(x)

2
)
. (A.0.3)

In particular, Lϕ(0) = 0.

Proof. We first prove (A.0.1). Let (x, y) ∈ supp(B) = Γ, and assume, by the
symmetry of kϕ, that 0 ≤ y ≤ x. By the mean value theorem, |e−x − e−y| ≤
e−y(x− y), and from (2.2.11) and the Lipschitz condition,

|kϕ(x, y)| ≤ LC∗e
x−y

2
(x− y)2

(x+ y)xy
.

Then by (2.2.8)–(2.2.10)

(x− y)2

(x+ y)xy
≤


(1−θ)2

θδ∗(1+θ) if (x, y) ∈ Γ1,

ρ∗ if (x, y) ∈ Γ2,

and (A.0.1) follows.
In order to prove (A.0.2) we use (2.2.11) and the Lipschitz condition to have, for

all (x, y) ∈ Γ,

|`ϕ(x, y)| ≤ LC∗e
x−y

2
y|x− y|
x(x+ y)

.

Using that Γ ⊂ {(x, y) ∈ [0,∞)2 : θx ≤ y ≤ θ−1x}, then

y|x− y|
x(x+ y)

≤ (1− θ)
θ2(1 + θ)

,
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and (A.0.2) follows. We obtain (A.0.3) directly from (A.0.2) and Remark 2.2.1.
We finally prove the continuity of Lϕ on [0,∞). By (2.2.7)–(2.2.10), Lϕ(x) is

continuous for all x > 0, so we only need to prove Lϕ(x)→ 0 as x→ 0. This follows
from (A.0.3) and the mean value theorem, using γ2(x)− γ1(x) ≤ (θ−1 − θ)x.

Remark A.0.2. Under the hypothesis of Lemma A.0.1, the function kϕ could not be
continuous at the origin (x, y) = (0, 0), since we do not know if lim(x,y)→(0,0) kϕ(x, y) =
0. However we have the following.

Lemma A.0.3. If B satisfies (2.2.5)–(2.2.10), then kϕ ∈ C([0,∞)2) for all ϕ ∈
C1([0,∞)) with ϕ′(0) = 0, and kϕ(0, 0) = 0.

Proof. By definition and (2.2.7), it is clear that kϕ ∈ C([0,∞)2 \ {0}). If we prove
that lim(x,y)→(0,0) kϕ(x, y) = 0, the continuity at the origin follows. To this end
we mimic the proof of (A.0.1) using ϕ(x) − ϕ(y) = ϕ′(ξ)(x − y) for some ξ ∈
(min{x, y},max{x, y}) instead of the Lipschitz condition, and we obtain

|kϕ(x, y)| ≤ max

{
(1− θ)2

θδ(1 + θ)
, ρ

}
|ϕ′(ξ)|e

|x−y|
2 (A.0.4)

for all (x, y) ∈ Γ and all ϕ ∈ C1([0,∞)). If ϕ′(0) = 0, it follows from (A.0.4) that
lim(x,y)→(0,0) kϕ(x, y) = 0.

Proposition A.0.4. Suppose that B satisfies (2.2.5)–(2.2.10), ϕ is L-Lipschitz on
[0,∞), and u ∈M+([0,∞)). Then

|Kϕ(u, u)| ≤ LC∗A
(∫

[0,∞)
e
x−γ1(x)

2 u(x)dx

)(∫
[0,∞)

u(y)dy

)
, (A.0.5)

|Lϕ(u)| ≤ LC∗(1− θ)
2θ2(1 + θ)

∫
[0,∞)

(
e
x−γ1(x)

2 − e
x−γ2(x)

2
)
u(x)dx, (A.0.6)

where A is given in (A.0.1).

Proof. In order to prove (A.0.5), we use Remark 2.2.1, Remark 2.2.3 and (A.0.1):

|Kϕ(u, u)| ≤ LC∗A
∫ ∞

0
e
x
2 u(x)

∫ x

γ1(x)
e−

y
2u(y)dydx

≤ LC∗A
∫ ∞

0
e
x−γ1(x)

2 u(x)

∫ x

γ1(x)
u(y)dydx,

from where (A.0.5) follows. The estimate (A.0.6) follows directly from (A.0.3).

Let us define now

Kϕ,n(u, u) =
1

2

∫∫
[0,∞)2

kϕ,n(x, y)u(t, x)u(t, y)dydx, (A.0.7)

kϕ,n(x, y) = bn(x, y)(e−x − e−y)(ϕ(x)− ϕ(y)), (A.0.8)

Lϕ,n(un) =
1

2

∫
[0,∞)

Lϕ,n(x)u(t, x)dx, (A.0.9)

Lϕ,n(x) =

∫ ∞
0

`ϕ,n(x, y)dy (A.0.10)

`ϕ,n(x, y) = bn(x, y)y2e−y(ϕ(x)− ϕ(y)). (A.0.11)
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Remark A.0.5. Since φn ≤ x−1, the estimates (A.0.1), (A.0.2) and (A.0.3) in
Lemma A.0.1 hold for kϕ,n, `ϕ,n and Lϕ,n respectively, and estimates (A.0.5) and
(A.0.6) in Lemma A.0.4 hold for Kϕ,n(u, u) and Lϕ,n(u) respectively, for all n ∈ N.

Lemma A.0.6. Lϕ,n → Lϕ as n→∞ uniformly on the compact sets of [0,∞) for
all ϕ L-Lipschitz on [0,∞).

Proof. Let R > 0 and x ∈ [0, R]. On the one hand, if x ∈ [0, 1/n], we have
|Lϕ(x)−Lϕ,n(x)| ≤ 2|Lϕ(x)| → 0 as n→∞, since Lϕ(0) = 0 (cf. Lemma A.0.1). On
the other hand, if x ∈ [1/n,R] and y ∈ [1/n, n], by definition φn(x)φn(y) = (xy)−1,
and then

|Lϕ(x)− Lϕ,n(x)| ≤
∫ 1

n

0
|`ϕ(x, y)− `ϕ,n(x, y)|dy

+

∫ ∞
n
|`ϕ(x, y)− `ϕ,n(x, y)|dy.

The two integrals in the right hand side above are treated in the same way. Using
|`ϕ(x, y)− `ϕ,n(x, y)| ≤ |`ϕ(x, y)| and (A.0.2),∫ 1

n

0
|`ϕ(x, y)|dy ≤ LC∗(1− θ)

θ2(1 + θ)
e
R
2

∫ 1
n

0
e−

y
2 dy −−−→

n→∞
0,∫ ∞

n
|`ϕ(x, y)|dy ≤ LC∗(1− θ)

θ2(1 + θ)
e
R
2

∫ ∞
n

e−
y
2 dy −−−→

n→∞
0,

and the result follows.
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Appendix B

The function Bβ, properties and
scalings

In this Section, we describe several properties of the function Bβ. First, the parame-
ter β is used to scale the variables, in such a way that the total mass of the solution
is conserved. In the scaled equation, the linear term appears as a lower order term
for β large. Then, for each β > 0 fixed, the behavior of Bβ(k, k′) is studied when k
and k′ are varying on (0,∞).

B.1 β-scalings of Bβ.

It looks natural from (2.1.2) to introduce the scaled variable

x = β k, (B.1.1)

and define

F (τ, x) = β−3f(t, k), τ = β3t, x = βk. (B.1.2)

The scaling (B.1.2) preserves the total number of particles:∫ ∞
0

x2F (τ, x)dx =

∫ ∞
0

k2f(t, k)dk =

∫ ∞
0

k2f(0, k)dk ∀τ > 0.

In terms of F ,

k2∂f

∂t
(t, k) = β4x2∂F

∂τ
(τ, x),

q̃(f, f ′) = β6FF ′
(
e−x − e−x′

)
+ β3

(
F ′e−x − Fe−x′

)
,

and if we define

Bβ(x, x′) = β−1Bβ(k, k′), (B.1.3)

that is,

Bβ(x, x′) =
√
βe

(x′+x)
2

∫ π

0

(1 + cos2 θ)

|x′ − x|
e
−β

m(x−x′)2+
|x′−x|4

4mβ2

2|x′−x|2 d cos θ, (B.1.4)
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the equation (2.1.1)–(2.1.2) then reads

x2∂F

∂τ
(τ, x) =

∫ ∞
0

Bβ(x, x′)FF ′
(
e−x − e−x′

)
xx′dx′+

+ β−3

∫ ∞
0

Bβ(x, x′)
(
F ′e−x − Fe−x′

)
xx′dx′. (B.1.5)

If we now define
u(τ, x) = x2F (τ, x) (B.1.6)

then from (B.1.5) we finally obtain

∂u

∂τ
(τ, x) =

∫ ∞
0

Bβ(x, x′)

xx′
(
e−x − e−x′

)
uu′dx′+

+ β−3

∫ ∞
0

Bβ(x, x′)

xx′
(
u′x2e−x − ux′2e−x′

)
dx′, (B.1.7)

The second term in the right hand side of (B.1.7) seems then negligible when β →∞,
but no rigorous result on that direction is known.
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B.2 The function Bβ(x, x
′) for β fixed.

In this Section we show some properties of the kernel Bβ defined in (B.1.4).

1
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Figure B.1: The kernel Bβ(x, y) for β = 100, m = 1, (x, y) ∈ [0.1, 4]2.
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Figure B.2: From left to right, the kernel Bβ(x, y) for m = 1, (x, y) ∈
[0.1, 4]2 and β = 10, β = 50 and β = 200.
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Figure B.3: Sections of Bβ for β = 50 and m = 1. The horizontal axis
corresponds to the variable ξ = (x−y)/

√
2. The vertical axis corresponds

to Bβ(x, y) for x+ y = constant. In blue, x+ y = 0.3, in red x+ y = 0.5
and in yellow, x+ y = 1.

Proposition B.2.7. For all β > 0, x > 0 and x′ > 0,

Bβ(x, x′) ≤
√
β

4
(
10 max2{x, x′}+ min2{x, x′}

)
15 max3{x, x′}

e
(x′+x)

2 , (B.2.8)

and for all x > 0, x′ > 0 with x 6= x′,

lim
β→∞

Bβ(x, x′) = 0. (B.2.9)
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Proof. For all x > 0 and x′ > 0,

e−
(x+x′)

2

√
β

Bβ(x, x′) ≤
∫ π

0

(1 + cos2 θ)

|x′ − x|
d cos θ =

∫ 1

−1

(1 + t2)√
x2 + x′2 − 2xx′t

dt

=
4
(
10 max2{x, x′}+ min2{x, x′}

)
15 max3{x, x′}

, (B.2.10)

and then (B.2.8) holds. If x′ 6= x, we have first

lim
β→∞

e
−β

m(x−x′)2+
|x′−x|4

4mβ2

2|x′−x|2 = 0 ∀θ ∈ [0, π],

and since

(1 + cos2 θ)

|x′ − x|
e
−β

(x−x′)2+
|x′−x|4

β2

2m|x′−x|2 ≤ (1 + cos2 θ)

|x′ − x|
∈ L1(d cos θ) ∀β > 0,

then (B.2.9) follows from Lebesgue’s convergence Theorem.

Proposition B.2.8.

Bβ(x, x) =
√
β

(
2
√

2πmβ

x2
+O

(
1

x

)3
)
ex as x→∞, (B.2.11)

Bβ(x, x) =
√
β

44

15

(
1

x
+ 1

)
+O(x) as x→ 0. (B.2.12)

Proof. By definition, for all x > 0,

Bβ(x, x) =

√
β

2

ex

x

∫ π

0

(1 + cos2 θ)√
1− cos θ

e
−x

2(1−cos θ)
4mβ d cos θ

=
√
β

2ex
√
βm

x6

(√
2π
(
6β2m2 − 2βmx2 + x4

)
Erf

(
x√

2βm

)
−

− 12e
− x2

2βm (βm)3/2x
)
,

and the result follows.

The function Bβ is exponentially decreasing in the direction orthogonal to the
first diagonal, as shown in the next two Propositions.

Proposition B.2.9. For all β > 0,

∇Bβ(x, x′) · (1,−1) > 0 if x′ > x > 0, (B.2.13)

∇Bβ(x, x′) · (1,−1) < 0 if x > x′ > 0. (B.2.14)

Proof. It is only a straightforward calculation. With the help of Mathematica,
using the change of variables t = cos θ,

∂Bβ
∂x

(x, x′) =
e

(x′+x)
2

4m
√
β

∫ 1

−1

(1 + t2)

|x′ − x|5
e
−β

m(x−x′)2+
|x′−x|4

4mβ2

2|x′−x|2 Θ(x, x′, t)dt, (B.2.15)

Θ(x, x′, t) = 4(βm)2(t− 1)x′(x− x′)(x+ x′)− (x− tx′)|x′ − x|4+

+ 2βm
(
x′2 − 2tx′(x− 1) + (x− 2)x

)
|x′ − x|2. (B.2.16)
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The expression of
∂Bβ
∂x′ is obtained from (B.2.15) and (B.2.16) using the permutation

x↔ x′. Then,

∇Bβ(x, x′) · (1,−1) =
e

(x′+x)
2

4m
√
β

∫ 1

−1

(1 + t2)

|x′ − x|5
e
−β

m(x−x′)2+
|x′−x|4

4mβ2

2|x′−x|2 ×

×
(
Θ(x, x′, t)−Θ(x′, x, t)

)
dt, (B.2.17)

Θ(x, x′, t)−Θ(x′, x, t) = (x′ − x)
[
4(βm)2(1− t)(x+ x′)2

+ 4βm(1 + t)|x′ − x|2 + (1 + t)|x′ − x|4
]
,

and the result follows.

Proposition B.2.10. For all β > 0, x > 0 and x′ > 0,

Bβ(x, x′) ≤ Bβ(x, x′), (B.2.18)

where

Bβ(x, x′) =
√
βe
−β

m(x−x′)2+
(x−x′)4

4mβ2

2(x+x′)2 N(x+ x′, |x− x′|), (B.2.19)

N(p, q) =
8 e

p
2

(
10(p+ q)2 + (p− q)2

)
15(p+ q)3

, ∀p > 0, ∀q > 0. (B.2.20)

Proof. For all x ∈ R3 and x′ ∈ R3 such that |x| = x, |x′| = x′,

|x− x′| ≤ |x− x′| ≤ x+ x′.

Therefore,

Bβ(x, x′) ≤
√
βe

(x′+x)
2 e

−β
m(x−x′)2+

(x−x′)4

4mβ2

2(x+x′)2

∫ π

0

(1 + cos2 θ)

|x′ − x|
d cos θ,

and the result follows using (B.2.10).

Corollary B.2.11.

∀x > 0, x′ > 0 : Bβ(x, x′) ≤ Bβ
(
x+ x′

2
,
x+ x′

2

)
, (B.2.21)

Bβ

(
x+ x′

2
,
x+ x′

2

)
=
√
β

(
2
√

2πmβ

(x+ x′)2
+O

(
1

x+ x′

)3
)
e
x+x′

2 , x+ x′ →∞,

Bβ

(
x+ x′

2
,
x+ x′

2

)
=

44
√
β

15

(
1

x+ x′
+ 1

)
+O(x+ x′), x+ x′ → 0.

If x+ x′ →∞, and |x− x′| ≤ θx:

|e−x − e−x′ |Bβ(x, x′) ≤ 2
√
β

(
2
√

2πmβ

(x+ x′)2
+O

(
1

x+ x′

)3
)∣∣∣∣ sinh

(
θx

2

)∣∣∣∣ . (B.2.22)

For all ρ > 0 fixed and x > 0, x′ > 0 such that x+ x′ = ρ,

Bβ(x, x′) ≤
√
β e
−β (x−x′)2

2mρ2 Φ(ρ, |x− x′|). (B.2.23)
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Proof. By Proposition B.2.9, the function Bβ is strictly decreasing in the direction
orthogonal to the first diagonal, and then property (B.2.21) follows. In order to
prove (B.2.22) we have first, when x+ x′ →∞,

|e−x − e−x′ |Bβ(x, x′) ≤ 2

(
2
√

2πmβ

(x+ x′)2
+O

(
1

x+ x′

)3
)∣∣∣∣ sinh

(
x′ − x

2

)∣∣∣∣
If moreover, 0 ≤ x′ − x ≤ θx then

0 ≤ (e−x − e−x′)Bβ(x, x′) ≤ 2

(
2
√

2πmβ

(x+ x′)2
+O

(
1

x+ x′

)3
)

sinh

(
θx

2

)
If −θx ≤ x′ − x ≤ 0 then,

0 ≤ − sinh

(
x′ − x

2

)
= sinh

(
x− x′

2

)
≤ sinh

(
θx

2

)
,

and (B.2.22) follows.

Proposition B.2.12. For all ϕ ∈ Cc((0,∞)× (0,∞)):

lim
β→∞

∫∫
(0,∞)2

ϕ(x, y)Φβ(x, y)Bβ(x, y)dxdy =

=
88

15

√
mπ

2
erf(1)

∫
(0,∞)

ϕ
(z

2
,
z

2

)
e
z
2 dz (B.2.24)

Proof. Define the new variables

ξ = x− y, ζ = x+ y, ψ(ξ, ζ) = ϕ

(
ξ + ζ

2
,
ζ − ξ

2

)
and denote Ψβ(ξ, ζ) = Φβ(x, y). Then,

I =

∫∫
(0,∞)2

ϕ(x, y)Φβ(x, y)Bβ(x, y)dxdy =

=

∫∫
D
e
−β

2ξ2+ξ4

2mβζ2 Ψβ(ξ, ζ)Bβ

(
ξ + ζ

2
,
ζ − ξ

2

)
ψ(ξ, ζ)dξdζ

where D = {(ζ, ξ) ∈ R2 : ζ > 0, −ζ < ξ < ζ}. We write now,

β2ξ2 + ξ4

2mβζ2
=

βξ2

2mζ2

(
1 +

ξ2

β2

)
and the change of variables:√

β

2m

ξ

ζ
= z1, ζ = z2; ξ =

√
2m

β
z1z2, ζ = z2

whose Jacobian is
√

2m/β z2 and,

I =

∫∫
Ω
e
−z2

1

(
1+

2mz21z
2
2

β

)
Bβ (Z1, Z2)×

×Ψ

(
β−1

√
2m

β
z1z2, β

−1z2,

)
ψ

(√
2m

β
z1z2, z2

)√
2m/β z2dz1dz2

Z1 =
1

2

(
z2 +

√
2m

β
z1z2

)
, Z2 =

1

2

(
z2 −

√
2m

β
z1z2

)
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Due to the cut off function Φβ(x, y), the actual domain of integration Ωβ is:

Ωβ =
{

(z1, z2) ∈ R× R+;
√

2m| z1| ≤ θz1/2
2

(
1− 2m

β
z2

1

)1/2 }
where Ω is the domain where z2 > 0, z1 ∈ (−1, 1). As β →∞,

lim
β→∞

e
−z2

1

(
1+

2mz21z
2
2

β

)
ψ

(√
2m

β
z1z2, z2

)
= e−z

2
1ψ (0, z2) .

On the other hand, using (B.2.12), for all z1, z2,

lim
β→∞

Bβ (Z1, Z2)

β
=

44 e
z2
2

15z2
(B.2.25)

By definition of Ψ, for all z1 ∈ R and z2 > 0 fixed, if β is sufficiently large,

Ψ

(
β−1

√
2m

β
z1z2, β

−1z2,

)
= 1

Then,

lim
β→∞

I =
44

15

√
2m

∫∫
Ω
e−z

2
1e

z2
2 ψ (0, z2) dz1dz2

=
44

15

√
mπ

2
erf(1)

∫
(0,∞)

ϕ
(z2

2
,
z2

2

)
e
z2
2 dz2

The function Bβ(x, y) ≥ 0 coincides with Bβ(x, y) for x = y and is below that
function, that tends to a Dirac measure along the first diagonal as β → ∞. From
properties (B.2.9) and (B.2.24), the truncation of Bβ may then be seen as reasonable.
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Appendix C

Appendix

We have gathered in this Appendix several results that are important and useful,
but not directly related to the main results of Chapter 3. For the sake of clarity, we
present them in two different sections. In the first one, we find results that are used
all along Chapter 3, perhaps several times. In the second, we present results that
are needed in Section 3.2.

C.1 A1

Lemma C.1.13 (Convex-positivity). Let ϕ ∈ C([0,∞)). If ϕ is convex then
Λ(ϕ)(x, y) ≥ 0 for all (x, y) ∈ [0,∞)2 and L0(ϕ)(x) ≥ 0 for all x ∈ [0,∞). If
ϕ is nonnegative and nonincreasing, then L(ϕ)(x) ≤ 0 for all x ∈ [0,∞).

Proof. Since Λ(ϕ)(x, y) is symmetric we may reduce the proof to the case 0 ≤ y ≤ x.
Putting x = x+y

2 + x−y
2 , then by the very definition of convexity

ϕ(x) ≤ ϕ(x+ y)

2
+
ϕ(x− y)

2
,

therefore Λ(ϕ)(x, y) ≥ 0.
The positivity of L0(ϕ) is equivalent to prove

1

x

∫ x

0
ϕ(y)dy ≤ ϕ(0) + ϕ(x)

2
∀x ∈ [0,∞). (C.1.1)

Since for any 0 ≤ y ≤ x we may trivially write y =
(
1− y

x

)
0+ y

x x, then by convexity
ϕ(y) ≤

(
1− y

x

)
ϕ(0) + y

xϕ(x), which implies (C.1.1).
If ϕ is nonnegative and nonincreasing, then L(ϕ)(x) ≤ −xϕ(x) ≤ 0 for all x ∈
[0,∞).

Remark C.1.14. By linearity and Lemma C.1.13, it follows that for all ϕ ∈
C([0,∞)) concave, Λ(ϕ)(x, y) ≤ 0 for all (x, y) ∈ [0,∞)2 and L0(ϕ)(x) ≤ 0 for
all x ∈ [0,∞).

Lemma C.1.15. Consider the operators Λ(·), L0(·) and L(·) given in (3.1.30),
(3.1.31) and (3.1.42) respectively. Then

(i) If ϕ ∈ Lip([0,∞)) with Lipschitz constant L, then

|Λ(ϕ)(x, y)|
√
xy

≤ 2L ∀(x, y) ∈ [0,∞)2. (C.1.2)
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(ii) If ϕ ∈ C1([0,∞)), then the map (x, y) 7→ Λ(ϕ)(x,y)√
xy belongs to C([0,∞)2) and

Λ(ϕ)(x, y)
√
xy

= 0 ∀(x, y) ∈ ∂[0,∞)2. (C.1.3)

(iii) If ϕ ∈ C([0,∞)) then the maps x 7→ L0(ϕ)(x)√
x

and x 7→ L(ϕ)(x)√
x

belong to

C([0,∞)) and L0(ϕ)(x)√
x

= L(ϕ)(x)√
x

= 0 at x = 0. If in addition ϕ is bounded,

then

|L0(ϕ)(x)|√
x

≤ 4‖ϕ‖∞
√
x ∀x ∈ [0,∞), (C.1.4)

|L(ϕ)(x)|√
x

≤ 3‖ϕ‖∞
√
x ∀x ∈ [0,∞). (C.1.5)

Proof. (i) By the symmetry of Λ(ϕ) we can assume that 0 ≤ y ≤ x, and directly
from the Lipschitz continuity

|Λ(ϕ)(x, y)| ≤ |ϕ(x+ y)− ϕ(x)|+ |ϕ(x− y)− ϕ(x)| ≤ 2Ly,

which implies (C.1.2).
(ii) The only possible problem for the continuity is on the boundary of [0,∞)2.
Again by the symmetry of Λ(ϕ) we can assume 0 ≤ y ≤ x. Then by the mean value
theorem Λ(ϕ)(x, y) = y (ϕ′(ξ1)−ϕ′(ξ2)) for some ξ1 ∈ (x, x+ y) and ξ2 ∈ (x− y, x).
Hence

Λ(ϕ)(x, y)
√
xy

≤ ϕ′(ξ1)− ϕ′(ξ2),

and the continuity of Λ(ϕ)(x,y)√
xy on [0,∞)2 and (C.1.3) follow from the continuity of ϕ′.

(iii) The continuity of L0(ϕ)(x)√
x

and L(ϕ)(x)√
x

are clear for x > 0. Using that 1
x

∫ x
0 ϕ(y)dy →

ϕ(0) as x → 0 by Lebesgue differentiation Theorem, it follows the continuity at

x = 0 and that L0(ϕ)(x)√
x

= L(ϕ)(x)√
x

= 0 for x = 0. The bounds (C.1.4) and (C.1.5)

are straightforward for ϕ ∈ Cb([0,∞)).

Lemma C.1.16. Consider the operators Λ(·) and L0(·) given in (3.1.30) and (3.1.31),
and a sequence (φn)n∈N ⊂ Cc([0,∞)) as in Cutoff 3.3.5.

(i) If ϕ ∈ C1([0,∞)) then Λ(ϕ)(x, y)φn(x)φn(y) −−−→
n→∞

Λ(ϕ)(x,y)√
xy uniformly on the

compact sets of [0,∞)2.

(ii) If ϕ ∈ C([0,∞)) then L(ϕ)(x)φn(x) −−−→
n→∞

L(ϕ)(x)√
x

uniformly on the compact

sets of [0,∞).

Proof. (i) The pointwise convergence on [0,∞)2 is trivial since φn(x) → x−1/2 as
n → ∞. Then, let ε > 0 and R > 0. For n ≥ R there holds φn(x) = x−1/2 for
all x ∈ [1/n,R], so we only need to show the uniform convergence on the regions
(x, y) ∈ [0, R]× [0, 1/n] and (x, y) ∈ [0, 1/n]× [0, R]. By the symmetry of Λ(ϕ), we
may study only one region.
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Using that Λ(ϕ)(x,y)√
xy is continuous (hence uniformly continuous on compacts) and

vanishes when (x, y) ∈ ∂[0,∞)2 (c.f. Lemma C.1.15), there holds for all (x, y) ∈
[0, R]× [0, 1/n] that, for n large enough,∣∣∣∣Λ(ϕ)(x, y)

√
xy

− Λ(ϕ)(x, y)φn(x)φn(y)

∣∣∣∣ ≤ |Λ(ϕ)(x, y)|
√
xy

≤ ε

(ii) Let ε > 0 and R > 0. Since for n ≥ R there holds φn(x) = x−1/2 for all
x ∈ [1/n,R], we only need to prove the uniform convergence on the region [0, 1/n].

Using that L(ϕ)(x)√
x

is continuous (hence uniformly continuous on compacts) and

vanishes when x→ 0 (cf. Lemma C.1.15), we have∣∣∣∣L(ϕ)(x)√
x
− L(ϕ)(x)φn(x)

∣∣∣∣ ≤ |L(ϕ)(x)|√
x

≤ ε ∀x ∈ [0, 1/n]

for n large enough.

The following Lemma is about the approximation of a measure by continuous
functions. It is a simplified version of Lemma 4 in [53].

Lemma C.1.17. Let ν ∈M α
+([0,∞)) for some α ≥ 0. Then, there exists a sequence

of functions (νn)n∈N ⊂ C([0,∞)) ∩ L1
(
R+, (1 + xα)dx

)
such that

∀ϕ ∈ C([0,∞)) : sup
x≥0

|ϕ(x)|
1 + xα

<∞, (C.1.6)

lim
n→∞

∫ ∞
0

ϕ(x)νn(x)dx =

∫
[0,∞)

ϕ(x)dν(x). (C.1.7)

Proof. Let J(x) = e−x
2

√
π

for x ≥ 0 and define, for n ∈ N, x ≥ 0,

νn(x) = en
∫

[0,∞)
J
(
en|x− y(1− e−n)|

)
dν(y).

In order to prove that νn is a continuous function on [0,∞), let x ≥ 0 and (xk)k∈N ⊂
[0,∞) be such that xk → x as k →∞. Since J is a bounded continuous function on
[0,∞) and M0(ν) < ∞, it is easily deduced using dominated convergence theorem
that, for all n ∈ N, νn(xk)→ νn(x) as k →∞, and therefore νn ∈ C([0,∞)).

Let us prove now that νn ∈ L1
(
R+, (1 + xα)dx

)
. To this end, let Fn(x, y) =

(1+xα)enJ (en|x− y(1− e−n)|). Using the change of variables z = en(y(1−e−n)−x)
we deduce that for all y ≥ 0, n ∈ N,∫ ∞

0
|Fn(x, y)|dx =

∫ y(en−1)

0

(
1 + [y(1− e−n)− e−nz]α

)
J(z)dz

+

∫ ∞
0

(
1 + [y(1− e−n) + e−nz]α

)
J(z)dz.

Since

1 + [y(1− e−n)− e−nz]α ≤ 1 + [y(1− e−n) + e−nz]α ≤ 1 + 2α(yα + zα)

≤ 2α(1 + yα)(1 + zα), (C.1.8)
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and ν ∈M α
+([0,∞)), then for all n ∈ N,∫

[0,∞)

∫ ∞
0
|Fn(x, y)|dxdν(y) ≤ 2α+1

∫
[0,∞)

(1 + yα)dν(y)

∫ ∞
0

(1 + zα)J(z)dz <∞,

which implies, by Fubini’s theorem, that νn ∈ L1
(
R+, (1 + xα)dx

)
.

Now, for any ϕ ∈ C([0,∞)) satisfying (C.1.6), using Fubini’s theorem and the
change of variables z = en

(
x− y(1− e−n)

)
:∫ ∞

0
ϕ(x)νn(x)dx =

∫
[0,∞)

In(ϕ)(y)dν(y), (C.1.9)

In(ϕ)(y) =

∫ y(en−1)

0
ϕ
(
y(1− e−n)− ze−n

)
J(z)dz∫ ∞

0
ϕ
(
y(1− e−n) + ze−n

)
J(z)dz.

By a similar estimate as in (C.1.8), using (C.1.6) we obtain that for some constant
C > 0,

max
{∣∣ϕ(y(1− e−n)− ze−n

)∣∣, ∣∣ϕ(y(1− e−n) + ze−n
)∣∣} ≤ C(1 + yα

)(
1 + zα

)
,

and |In(ϕ)(y)| ≤ C(1 + yα). We then deduce, using dominated convergence, that

lim
n→∞

In(ϕ)(y) = 2ϕ(y)

∫ ∞
0

J(z)dz = ϕ(y), ∀y ≥ 0,

and

lim
n→∞

∫
[0,∞)

In(ϕ)(y)dν(y) =

∫
[0,∞)

ϕ(y)dν(y),

which completes the proof, in view of (C.1.9).

Corollary C.1.18. Let ν ∈ M α
+([0,∞)) for some α ≥ 1. Then, there exists a

sequence of nonnegative functions (fn)n∈N ⊂ Cc([0,∞)) such that

lim sup
n→∞

Mα(fn) ≤Mα(ν), (C.1.10)

and for all ϕ ∈ Cb([0,∞)),

lim
n→∞

∫ ∞
0

ϕ(x)fn(x)dx =

∫
[0,∞)

ϕ(x)dν(x). (C.1.11)

Proof. We consider the sequence (νn)n∈N given by Lemma C.1.17 and a smooth
cutoff ζn ∈ C([0,∞)) such that 0 ≤ ζn ≤ 1, ζn(x) = 1 for x ∈ [0, n] and ζn(x) = 0
for x ≥ n+ 1. Then we define for all n ∈ N:

fn(x) = νn(x)ζn(x). (C.1.12)

It then follows that fn is a nonnegative continuous function on [0,∞) with compact
support. Since fn ≤ νn, the property (C.1.10) directly follows from (C.1.7) in Lemma
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C.1.17. Now let ϕ ∈ Cb([0,∞)). Since νn satisfies (C.1.7), in order to prove (C.1.11)
it is sufficient to prove

lim
n→∞

∣∣∣∣ ∫ ∞
0

ϕ(x)fn(x)dx−
∫ ∞

0
ϕ(x)νn(x)(x)dx

∣∣∣∣ = 0, (C.1.13)

and (C.1.13) follows from

lim
n→∞

∫ ∞
n

ϕ(x)νn(x)dx ≤ lim
n→∞

‖ϕ‖∞M1(νn)

n
= 0,

where we have used that M1(νn)→M1(ν) <∞ as n→∞.

Definition C.1.19. Let h, φn and ϕ be real-valued functions with domain R+.
Then, let

Q̃3,n(ϕ, h) = Q
(2)
3,n(ϕ, h)− Q̃

(1)
3,n(ϕ, h), (C.1.14)

where

Q
(2)
3,n(ϕ, h) =

∫ ∞
0

∫ ∞
0

Λ(ϕ)(x, y)φn(x)φn(y)h(x)h(y)dxdy, (C.1.15)

Q̃
(1)
3,n(ϕ, h) =

∫ ∞
0
L(ϕ)(x)φn(x)h(x)dx, (C.1.16)

and let, for x ∈ R+:

J3,n(h)(x) = Kn(h)(x) + Ln(h)(x)− h(x)An(h)(x), (C.1.17)

where

Kn(h)(x) =

∫ x

0
h(x− y)h(y)φn(x− y)φn(y)dy

+ 2

∫ ∞
x

h(y)h(y − x)φn(y)φn(y − x)dy, (C.1.18)

Ln(h)(x) = 2

∫ ∞
x

h(y)φn(y)dy, (C.1.19)

An(h)(x) = φn(x)
(
x+ 4

∫ x

0
h(y)φn(y)dy

)
. (C.1.20)

Lemma C.1.20. Let G ∈M+([0,∞)), ϕε as in Remark 3.1.6, and φn as in Cutoff
3.3.5. Then

G({0}) = lim
ε→0

∫
[0,∞)

ϕε(x)G(x)dx, (C.1.21)

lim
ε→0

Q̃
(1)
3,n(ϕε, G) = 0 ∀n ∈ N. (C.1.22)

If in addition G has no singular part in (0,∞), then

lim
ε→0

Q
(2)
3,n(ϕε, G) = 0 ∀n ∈ N. (C.1.23)
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Furthermore, if G ∈M
1/2
+ ([0,∞)), then

lim
ε→0

Q
(1)
3 (ϕε, G) = M1/2(G), (C.1.24)

lim
ε→0

Q̃
(1)
3 (ϕε, G) = 0, (C.1.25)

where Q
(1)
3 and Q̃

(1)
3 are defined in (3.1.29) and (3.1.41) respectively.

Proof. The proof only uses dominated convergence. Since ϕε ≤ 1 for all ε > 0, and
M0(G) < ∞, and ϕε → 1{0} as ε → 0, then (C.1.21) holds. Then, since for all
x ∈ [0,∞) it follows from dominated convergence that

lim
ε→0
L0(ϕε)(x) = x and lim

ε→0
L(ϕε)(x) = 0, (C.1.26)

and φn is compactly supported, then (C.1.22) follows. Also, since for all (x, y) ∈
[0,∞)2, Λ(ϕε)(x, y) ≤ 1 for all ε > 0, and

lim
ε→0

Λ(ϕε)(x, y) = 1{x=y>0}(x, y),

then

lim
ε→0

Q
(2)
3,n(ϕε, G) =

∫∫
{x=y>0}

φn(x)φn(y)G(x)G(y)dxdy,

Using that G has no singular part on (0,∞), (C.1.23) follows.

Lastly, since

Q̃
(1)
3 (ϕε, G) ≤ Q

(1)
3 (ϕε, G) =

∫
(0,∞)

L0(ϕε)(x)√
x

G(x)dx, (C.1.27)

and by (C.1.4) ∫
(0,∞)

|L0(ϕε)(x)|√
x

G(x)dx ≤ 4M1/2(G) ∀ε > 0.

then (C.1.24) and (C.1.25) follows from (C.1.26) and dominated convergence.

Lemma C.1.21. Consider n ∈ N, φn ∈ Cc([0,∞)) nonnegative and ρ ∈ L1
loc(R+)

nonnegative. Then for every nonnegative functions h, h1 and h2 in L∞(R+), the
functions Kn(h), Ln(h), An(h) and hAn(h) are also nonnegative, belong to L∞(R+)∩
L1
ρ(R+), and there exists a positive constant C(n, ρ) such that:

‖Kn(h1)−Kn(h2)‖L∞∩L1
ρ
≤ C(n, ρ)‖h1‖∞‖h1 − h2‖∞ (C.1.28)

‖Ln(h)‖L∞∩L1
ρ
≤ C(n, ρ)‖h‖∞ (C.1.29)

‖An(h)‖L∞∩L1
ρ
≤ C(n, ρ)

(
1 + ‖h‖∞

)
(C.1.30)

‖An(h1)−An(h2)‖L∞∩L1
ρ
≤ C(n, ρ)‖h1 − h2‖∞. (C.1.31)

Moreover J3,n(h) ∈ L∞(R+) ∩ L1
ρ(R+). (C.1.32)
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Proof. The positivity of the operators is clear from their definitions. Notice that
since φn is bounded and compactly supported on R+ and ρ ∈ L1

loc(R+), there exist
two positive constants C(n) and C(n, ρ) such that

sup
x≥0

∫ ∞
0

φn(|x− y|)φn(y)dy ≤ C(n),∫ ∞
0

∫ ∞
0

ρ(x)φn(|x− y|)φn(y)dydx ≤ C(n, ρ).

1. Estimates for Kn. For all x ≥ 0:

Kn(h)(x) ≤ 3‖h‖2∞
∫ ∞

0
φn(|x− y|)φn(y)dy ≤ 3‖h‖2∞C(n),

and

‖Kn(h)‖L1
ρ
≤ 3‖h‖2∞

∫ ∞
0

∫ ∞
0

ρ(x)φn(|x− y|)φn(y)dydx ≤ 3‖h‖2∞C(n, ρ).

Then for all x ≥ 0:∣∣Kn(h1)(x)−Kn(h2)(x)
∣∣ (C.1.33)

≤ 3

∫ ∞
0

φn(|x− y|)φn(y)
∣∣h1(|x− y|)h1(y)− h2(|x− y|)h2(y)

∣∣dy.
Without loss of generality we assume that ‖h1‖∞ ≥ ‖h2‖∞. Using∣∣h1(|x− y|)h1(y)− h2(|x− y|)h2(y)

∣∣ ≤ 2‖h1‖∞‖h1 − h2‖∞

in (C.1.33) then (C.1.28) follows.
2. Estimates for Ln. Since φn is bounded and compactly supported and ρ ∈
L1
loc(R+), there exist two positive constants C(n) and C(n, ρ) such that∫ ∞

0
φn(x)dx ≤ C(n) and

∫ ∞
0

ρ(x)

∫ ∞
x

φn(y)dydx ≤ C(n, ρ)

and (C.1.29) follows.
3. Estimates for An. The estimate (C.1.30) follows from

‖An(h)‖∞ ≤ ‖xφn(x)‖∞ + 4‖φn‖2∞‖h‖∞| supp(φn)| ≤ C(n)(1 + ‖h‖∞),

and

‖An(h)‖L1
ρ
≤
∫ ∞

0
ρ(x)xφn(x)dx+ 4 ‖h‖∞

∫ ∞
0

ρ(x)φn(x)

∫ x

0
φn(y)dydx

≤ C(n, ρ)(1 + ‖h‖∞).

For all x ≥ 0,

|An(h1)(x)−An(h2)(x)| ≤ 4‖h1 − h2‖∞φn(x)

∫ x

0
φn(y)dy

≤ C(n)‖h1 − h2‖∞.
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We also have,

‖An(h1)−An(h2)‖L1
ρ
≤ 4‖h1 − h2‖∞

∫ ∞
0

ρ(x)φn(x)

∫ x

0
φn(y)dydx

≤ C(n, ρ) ‖h1 − h2‖∞,

and then, (C.1.31) follows.
4. Since h ∈ L∞(R+) and An(h) ∈ L∞(R+) ∩ L1

ρ(R+), then hAn(h) ∈ L∞(R+) ∩
L1
ρ(R+).

5. It also follows from points 1 to 4 that J3,n(h) has the desired regularity.
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Lemma C.2.22. Let ϕ ∈ C1.1([0,∞)). Then, for all (x1, x2, x3) ∈ [0,∞)3 such that
x1 + x2 ≥ x3:

∆ϕ(x1, x2, x3) = (x1 − x3)(x2 − x3)×

×
∫ 1

0

∫ 1

0
ϕ′′
(
x3 + t(x1 − x3) + s(x2 − x3)

)
dsdt.

Moreover, if ϕ ∈ C1.1
b ([0,∞)), then for all (x1, x2, x3) ∈ [0,∞)3

|∆ϕ(x1, x2, x3)| ≤ min {A,B,C,D} . (C.2.34)

where A = 4‖ϕ‖∞, B = 2‖ϕ′‖∞|x1 − x3|, C = 2‖ϕ′‖∞|x2 − x3|,
D = ‖ϕ′′‖∞|x1 − x3||x2 − x3|.

Proof. Let (x1, x2, x3) ∈ [0,∞)3 be such that x1 + x2 ≥ x3. By the fundamental
Theorem of calculus

∆ϕ(x1, x2, x3) =
[
ϕ(x4)− ϕ(x2)

]
−
[
ϕ(x1)− ϕ(x3)

]
=

∫ 1

0

d

dt
ϕ
(
x2 + t(x1 − x3)

)
dt−

∫ 1

0

d

dt
ϕ
(
x3 + t(x1 − x3)

)
dt

= (x1 − x3)

∫ 1

0

[
ϕ′
(
x2 + t(x1 − x3)

)
− ϕ′

(
x3 + t(x1 − x3)

)]
dt

= (x1 − x3)

∫ 1

0

∫ 1

0

d

ds
ϕ′
(
x3 + t(x1 − x3) + s(x2 − x3)

)
dsdt

= (x1 − x3)(x2 − x3)

∫ 1

0

∫ 1

0
ϕ′′
(
x3 + t(x1 − x3) + s(x2 − x3)

)
dsdt.

Assume now that ϕ ∈ C1.1
b ([0,∞)). Using the first, the third, and the fifth line

above, estimate (C.2.34) follows.

We now consider the function w given in (3.1.24) and define

W (x1, x2, x3) =



w(x1,x2,x3)√
x1x2x3

if (x1, x2, x3) ∈ (0,∞)3

1√
x1x2

if x3 = 0, (x1, x2) ∈ (0,∞)2

1√
xix3

if xj = 0, xi > x3 > 0; {i, j} = {1, 2}

0 otherwise.

(C.2.35)

We then have:
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Lemma C.2.23. Consider the function Φϕ = W∆ϕ, where ∆ϕ and W are defined
in (3.1.23) and (C.2.35) respectively.

(i) If ϕ ∈ C1.1([0,∞)) then Φϕ ∈ C([0,∞)3).

(ii) If ϕ ∈ C1.1
b ([0,∞)) then Φϕ ∈ C0([0,∞)3). In particular Φϕ is uniformly

continuous on [0,∞)3.

Proof. Proof of (i). By definition Φϕ ∈ C((0,∞)3). Therefore it only remains to
study the behaviour of Φϕ in a neighborhood of the boundary ∂[0,∞)3 of [0,∞)3.
First we show that Φϕ is continuous on ∂[0,∞)3.
Thanks to the symmetry of Φϕ in the x1, x2 variables, we just need to prove:
(i)for all (x1, x2) ∈ (0,∞)2,

Φϕ(x1, x2, 0) =
∆ϕ(x1, x2, 0)
√
x1x2

−→ 0 (C.2.36)

whenever x1 → 0 or x2 → 0 or (x1, x2)→ (0, 0), and
(ii) for all x1 > x3 > 0,

Φϕ(x1, 0, x3) =
∆ϕ(x1, 0, x3)
√
x1x3

−→ 0 (C.2.37)

whenever x1 → x3 or x3 → 0 or (x1, x3)→ (0, 0).
By (C.2.34) |∆ϕ(x1, x2, 0)| ≤ ‖ϕ′′‖∞x1x2 for all (x1, x2) ∈ (0,∞)2, which implies

(C.2.36). Also |∆ϕ(x1, 0, x3)| ≤ ‖ϕ′′‖∞x3(x1 − x3) for all x1 > x3 > 0. Hence

|∆ϕ(x1, 0, x3)|
√
x1x3

≤ ‖ϕ′′‖∞
√
x3

x1
(x1 − x3) ≤ ‖ϕ′′‖∞(x1 − x3),

which implies (C.2.37).
Then we prove that for any x ∈ ∂[0,∞)3 and for any (xn)n∈N ⊂ (0,∞)3 such

that xn → x, then Φϕ(xn)→ Φϕ(x) as n→∞. Let us denote

Ω = {(x1, x2, x3) ∈ (0,∞)3 : x1 + x2 ≤ x3}.

Since x4 is defined as x4 = (x1 + x2 − x3)+, then for all (x1, x2, x3) ∈ (0,∞)3,

(x1, x2, x3) ∈ Ω if and only if x4 = 0.

It might happen that the sequence (xn)n∈N “jumps” from Ω to Ωc. If in every
neighbourhood of x the sequence has points in both regions, then we may con-
sider two subsequences, each one contained in one region only. For the sequel,
the main estimate is the following: if we denote xn = (xn1 , x

n
2 , x

n
3 ) and w(xn) =

min
{√

xn1 ,
√
xn2 ,
√
xn3 ,
√
xn4
}

, then by (C.2.34)

|Φϕ(xn)| ≤ ‖ϕ′′‖∞
w(xn)√
xn1x

n
2x

n
3

∣∣xn1 − xn3 ∣∣∣∣xn2 − xn3 ∣∣. (C.2.38)

We study case by case depending on where x lies.
Case x = (0, 0, 0). If (xn) ⊂ Ω then xn4 = 0, w(xn) =

√
xn4 = 0 and thus

Φϕ(xn) = 0 = Φϕ(x).
If {xn} ⊂ Ωc then xn4 > 0 and we study case by case depending on the relative order
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of xn1 , xn2 , and xn3 . Since Φϕ is symmetric in the x1, x2 variables, we may assume
without loss of generality that xn1 ≤ xn2 . Note by (C.2.38) that we also may assume
xn3 6= xn1 , xn3 6= xn2 ; otherwise the result follows directly.

If xn1 ≤ xn2 < xn3 , then w(xn) =
√
xn4 and by (C.2.38)

|Φϕ(xn)| ≤ ‖ϕ′′‖∞
√
xn4√

xn1x
n
2x

n
3

(
xn3 − xn1

)(
xn3 − xn2

)
≤ ‖ϕ′′‖∞

(√
xn4
(
xn3
)3/2√

xn1x
n
2

+

√
xn4x

n
1x

n
2√

xn3

)

≤ ‖ϕ′′‖∞

((
xn3
)3/2√
xn2

+
√
xn1x

n
2

)
.

Since xn → x = 0, then
√
xn1x

n
2 → 0. Moreover, since xn ∈ Ωc and xn1 ≤ xn2 , then

xn3 < 2xn2 , and so (
xn3
)3/2√
xn2

≤ 23/2xn2 −→ 0 as n→∞.

If xn1 < xn3 < xn2 , then w(xn) =
√
xn1 and by (C.2.38)

|Φϕ(xn)| ≤ ‖ϕ′′‖∞
(xn2 − xn3 )(xn3 − xn1 )√

xn2x
n
3

≤ ‖ϕ′′‖∞

(√
xn2x

n
3 +

xn1
√
xn3√
xn2

)
≤ ‖ϕ′′‖∞

(√
xn2x

n
3 +

√
xn1x

n
3

)
−→ 0 as n→∞.

Lastly, if xn3 < xn1 ≤ xn2 , then w(xn) =
√
xn3 and by (C.2.38)

|Φϕ(xn)| ≤ ‖ϕ′′‖∞
(xn1 − xn3 )(xn2 − xn3 )√

xn1x
n
2

≤ ‖ϕ′′‖∞

(√
xn1x

n
2 +

(
xn3
)2√

xn1x
n
2

)
≤ 2‖ϕ′′‖∞

(√
xn1x

n
2 + x1

)
−→ 0 as n→∞.

Hence, in the three cases above Φϕ(xn)→ 0 = Φϕ(x).
Case x = (x1, 0, 0) with x1 > 0. Then w(xn) = min

{√
xn2 ,
√
xn3
}

for n large
enough. On the other hand∣∣xn2 − xn3 ∣∣ =

(√
xn2 +

√
xn3
)∣∣√xn2 −√xn3 ∣∣

≤ 2 max
{√

xn2 ,
√
xn3

} ∣∣√xn2 −√xn3 ∣∣.
Since min

{√
xn2 ,
√
xn3
}

max
{√

xn2 ,
√
xn3
}

=
√
xn2x

n
3 , then by (C.2.38)

|Φϕ(xn)| ≤ 2‖ϕ′′‖∞

∣∣xn1 − xn3 ∣∣√
xn1

∣∣√xn2 −√xn3 ∣∣
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for n large enough. It then follows Φϕ(xn)→ 0 = Φϕ(x) as n→∞.
The case x = (0, x2, 0) with x2 > 0 is analogous to the previous one thanks to

the symmetry of Φϕ in the x1, x2 variables.
Case x = (0, 0, x3) with x3 > 0. Then xn ∈ Ω for n large enough, xn4 = 0 and

w(xn) =
√
xn4 = 0. Thus Φϕ(xn) = 0 = Φϕ(x) for n large enough.

Case x = (0, x2, x3) with x2 > 0 and x3 > 0. If x2 > x3 then w(xn) =
√
xn1 for

n large enough and

|Φϕ(xn)− Φϕ(x)| =

∣∣∣∣∣ 1√
xn2x

n
3

∆ϕ(xn1 , x
n
2 , x

n
3 )− 1

√
x2x3

∆ϕ(0, x2, x3)

∣∣∣∣∣ ,
which clearly goes to zero as n→∞. If x2 < x3 then xn4 = 0 for n large enough and
w(xn) =

√
xn4 = 0, thus Φϕ(xn) = 0 = Φϕ(x). If x2 = x3 and (xn) ⊂ Ω for n large

enough, then xn4 = 0, thus Φϕ(xn) = 0 = Φϕ(x).
If x2 = x3 and (xn) ⊂ Ωc for n large enough, then w(xn) = min

{√
xn1 ,
√
xn4
}

, and
by (C.2.38)

|Φϕ(xn)| ≤ ‖ϕ′′‖∞
min

{√
xn1 ,
√
xn4
}√

xn1x
n
2x

n
3

∣∣xn1 − xn3 ∣∣∣∣xn2 − xn3 ∣∣.
On the one hand ∣∣xn1 − xn3 ∣∣ ≤ 2 max

{√
xn1 ,
√
xn3

} ∣∣√xn1 −√xn3 ∣∣.
On the other hand min

{√
xn1 ,
√
xn4
}
≤ min

{√
xn1 ,
√
xn3
}

for n large enough. Since
min

{√
xn1 ,
√
xn3
}

max
{√

xn1 ,
√
xn3
}

=
√
xn1x

n
3 , then

|Φϕ(xn)| ≤ 2‖ϕ′′‖∞

∣∣xn2 − xn3 ∣∣√
xn2

∣∣√xn1 −√xn3 ∣∣,
which goes to zero as n→∞ since x2 = x3. Thus Φϕ(xn)→ 0 = Φϕ(x).

The case x = (x1, 0, x3) with x1 > 0 and x3 > 0 is analogous to the previous one
thanks to the symmetry of Φϕ in the x1, x2 variables.

Case x = (x1, x2, 0) with (x1, x2) ∈ (0,∞)2. Then w(xn) =
√
xn3 for n large

enough and

|Φϕ(xn)− Φϕ(x)| =

∣∣∣∣∣ 1√
xn1x

n
2

∆ϕ(xn1 , x
n
2 , x

n
3 )− 1

√
x1x2

∆ϕ(x1, x2, 0)

∣∣∣∣∣ ,
which clearly goes to zero as n→∞.

Proof of (ii). By part (i) Φϕ ∈ C([0,∞)3). Let us show now that for any given
ε > 0 there exists R(ε) > 0 such that |Φϕ(x)| ≤ ε for all x ∈ [0,∞)3 \ [0, R(ε)]3.

Given R > 0 and α > 0, let (x1, x2, x3) ∈ [0,∞)3 \ [0, R]3 and denote xi =
min{x1, x2, x3}, xk = max{x1, x2, x3} and xj neither xi nor xk. Notice that xk > R
and the function W defined in (C.2.35) satisfies W (x1, x2, x3) ≤ 1√

xjxk
. If xi > α or

xj > α then by (C.2.34)

|Φϕ(x1, x2, x3)| ≤ |∆ϕ(x1, x2, x3)|
√
xjxk

≤ 4‖ϕ‖∞√
αR

≤ ε,
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provided R ≥ 16‖ϕ‖2∞
αε2

. If xi ≤ α and xj ≤ α we study case by case depending on
the relative position of x1, x2, x3. Since Φϕ is symmetric in variables x1 and x2, we
may assume without loss of generality that x2 ≤ x1. If xk = x1, using (C.2.34)

|Φϕ(x1, x2, x3)| ≤ 2‖ϕ′‖∞(xj − xi)√
x1xj

≤
2‖ϕ′‖∞

√
xj√

x1
≤ 2‖ϕ′‖∞

√
α√

R
≤ ε,

provided R ≥ 4‖ϕ′‖2∞α
ε2

. If xk = x3 and x ∈ Ω then x4 = 0 and Φϕ(x) = 0. If xk = x3

and x ∈ Ωc, then x1 ≥ R/2 and

|Φϕ(x1, x2, x3)| ≤ 4‖ϕ‖∞√
x1x3

≤ 4
√

2‖ϕ‖∞
R

≤ ε,

provided R ≥ 4
√

2‖ϕ‖∞
ε .

Finally, if we chose R ≥ max
{

16‖ϕ‖2∞
αε2

, 4‖ϕ′‖2∞α
ε2

, 4
√

2‖ϕ‖∞
ε

}
then Φϕ ∈ C0([0,∞)3)

and in particular, Φϕ is uniformly continuous in [0,∞)3.
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