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Abstract

In this thesis, we present a mathematical study of three problems arising in the
kinetic theory of quantum gases.

In the first part, we consider a Boltzmann equation that is used to describe the
time evolution of the particle density of a homogeneous and isotropic photon gas,
that interacts through Compton scattering with a low-density electron gas at non-
relativistic equilibrium. The kernel in the kinetic equation is highly singular, and we
introduce a truncation motivated by the very-peaked shape of the kernel along the
diagonal. With this modified kernel, the global existence of measure-valued weak
solutions is established for a large set of initial data.

We also study a simplified version of this equation, that appears at very low
temperatures of the electron gas, where only the quadratic terms are kept. The
global existence of measure-valued weak solutions is proved for a large set of initial
data, as well as the global existence of L' solutions for initial data that satisfy a
strong integrability condition near the origin. The long time asymptotic behavior of
weak solutions for this simplified equation is also described.

In the second part of the thesis, we consider a system of two coupled kinetic
equations related to a simplified model for the time evolution of the particle density
of the normal and superfluid components in a homogeneous and isotropic weakly
interacting dilute Bose gas. We establish the global existence of measure-valued
weak solutions for a large class of initial data. The conservation of mass and energy
and the production of moments of all positive order is also proved. Finally, we study
some of the properties of the condensate density and establish an integral equation
that describes its time evolution.



vi

Abstract




Contents

|Acknowledgements| iii
[Abstract] v
1__Introductionl 7
1.1 On a Boltzmann equation for Compton scattering with a low-density |

| electron gas at non-relativistic equilibrium| . . . . . . ... ... 11
[1.2  On a system of two coupled equations for the normal fluid - condensate |

| interaction in a Bose gas| . . . . . .. ... oo 17
(1.3 Conclusions . . . . . . . .. . L 21

2 On a Boltzmann equation for Compton scattering with a low- |
| density electron gas at non-relativistic equilibrium| 23
2.1 Introductionl . . . .. .. .. 23
[2.1.1 The function Bg(k, k). Weak formulation|. . . . . ... ... 26

.12 The simplified equation] . . . . . . ... ... ... ...... 29

2.1.3  General comment|. . . . .. ... ... L. 32

2.2 PExistence of weak solutions.) . . . . . . .. ... oL 32
[2.2.1 Regularised problem| . . . . . . .. ... ... 000 34

222 Thelmitn—o0. ... ... .. .. .. .. ... .. 36

[2.3  The singular part of the solution. . . . . . . .. ... ... ... ... 43
[2.3.1 An equation for the mass at the origin| . . . . . . .. ... .. 46

[2.4  On entropy and entropy dissipation.| . . . . . .. .. ... ...... 49
2.5 A simplified equation.| . . . . . ... o oo 50
[2.5.1  Existence and properties of weak solutions.|. . . . . . . . .. 50

[2.5.2  Global “regular” solutions| . . . . . .. ... ... ... .. 58

2.5.3 M, as Lyapunov functional. |. . . . . . ... ... ... ... 64

[2.5.4  Long time behavior.| . . . . .. ... ... ... ... ..... 71

I3 On a system of two coupled equations for the normal fluid - con- |

| densate interaction in a Bose gas| 77
3.1 Introduction|. . . . . . . .. .. Lo 77
[3.1.1  The Nordheim equation| . . . . . . . ... ... ... ..... 78

[3.1.2  The term I, and the Nordheim equation|. . . . . . . .. . .. 79

13.1.3 The term [3 in radial variables.|. . . . . . . .. ... ... .. 81

B.14 Mainresults. . . . . . ... o 83

[3.1.5 Some arguments of the proots.| . . . ... ... ... ... 87

3.2 On weak formulations] . . . . ... .. ... oL 88

vii



viii CONTENTS

[3.3 Existence of solutions H to (3.1.66). . . . . . .. ... ... ..... 90
B31 Afirstresult] . .. ... ... o 91

[3.3.2  Regularised problem| . . . . .. ... ... .. 0000 91

B33 Proof of TheoremBB.3 4 . . . . . ... ... ... ... .... 96

8.34  Proof of Theorem33.11 . . . . ... ... ... ... ..... 102

[3.4 Properties of A(7,{O}).|. . . . . . . ... 104
[3.5  Existence of solutions G, proot of Theorem [3.1.3[] . . . . . . ... .. 116
[3.6  Proofs of Theorems|[3.1.7, [3.1.8and [3.1.9}} . . . . . . ... ... ... 121
B.7 Proof of Theorem B. 1111 . . . . . . . . ... ... ... ... ... 125

A ppend 125
[A__Some useful estimates| 127
(B The function 53, properties and scalings| 131
1 P-scalingsot Bg.| . . . ... ... 131

B.2 The function Bg(z,2’) for ffixed.| . . . .. .. ... 0L 133

|IC Appendix| 139
(C.T ATl . . . 139
(C.2 A2l . . . e 146

IBibliography| 156




Resumen

En esta tesis, se consideran tres problemas relacionados con la teoria cinética de
gases para particulas cudnticas.

En el primer problema, se estudian las soluciones débiles de la siguiente ecuacién
integro-diferencial:

gzz (t,z) = /000 b(x,y) {u(t, Y) (x2 + u(t, :U))efx —u(t,x) (y2 + u(t, y))efy} dy, (1)

para t > 0, z > 0. El nicleo b(z,y) > 0 es una funcién continua y simétrica en
[0,00)2\ {(0,0)}, singular en el origen (z,y) = (0,0), con el soporte contenido en un
entorno de la diagonal {z =y > 0}.

En el segundo problema, se considera una versién simplificada de la ecuacién ,
donde solo aparecen los términos cuadraticos:

St =uta) [ban(ET -ty 120020 @)

En el tercer y ultimo problema, se considera el siguiente sistema de dos ecuaciones
acopladas:

ag(t 2) =nt)Q(g)(t,x)  t>0, x>0, (3)

ot
/ Qg)(t,z)d t >0, (4)

QUo)(t,x) = /O " @)tz )y — 2 / " 40t v, 2)dy, (5)

g(t,(l)—y) g(tay) _ g(t,l’) g(tax_y) g(tvy)
T-y VY Ve (H =y >

y se estudian sus soluciones débiles en términos de la medida G(t,-) definida por

G(t7 ) = n(t)50() + g(t7 ')a t >0, (7)

donde dy(-) el la delta de Dirac en z = 0.

Aunque con un nicleo distinto, que denotaremos en esta seccién por K (zx,y), la
ecuacion aparece en la literatura como un modelo simplificado para describir la
evolucién en tiempo de la la densidad de particulas de un gas de fotones, homogéneo
e isotropico, que interactia unicamente mediante el efecto Compton con un gas
diluido de electrones en equilibrio no relativista (cf. [25], [49], [72], [42]). La funcién
u(t,x) > 0 representa la densidad de fotones con energia z > 0 en el gas a tiempo

q(9)(t, z,y) =

1
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t > 0. El nucleo b(x, y) que se considera en es una aproximacion de K (z,y), cuya
expresion explicita se conoce (ver [57] para una deduccién detallada).

La ecuacién aparece ya en en el articulo de Kompaneets [49], de 1957. Una
deduccién de la ecuacion, siguiendo un argumento de tipo Boltzmann, puede verse
en [25]. En [23] se deriva, mediante un método tipo BBGKY, una ecuacién de trans-
porte mas general que describe un sistema homogéneo e isotrépico de fotones y de
particulas cargadas. También se obtienen los resultados de [25] y se incorporan térmi-
nos de correccion que representan efectos de correlacion. Teorias cinéticas efectivas
y generales para describir las dindmicas de quasiparticulas en plasmas relativistas
pueden consultarse en [12] y en [§].

En cuanto a la literatura matematica, la ecuacion ha sido estudiada bajo
distintas condiciones sobre el nicleo b. En [29] se prueba la existencia de soluciones
para nucleos acotados y para nucleos con un determinado crecimiento exponencial.
La ecuacién con el nicleo fisico K(x,y) ha sido estudiada por M. Chane-Yook
y A. Nouri en [22], y E. Ferrari y A. Nouri en [34]. En [34] se prueba que, si bien
el problema de Cauchy tiene soluciones débiles globalmente definidas en tiempo
para cualquier dato inicial no negativo ug € L'(R ) acotado superiormente por la
distribucién de Planck en casi todo punto, i.e., tal que ug(z) < z2(e® — 1)~! para
casi todo x > 0, no existe solucién, ni siquiera definda localmente en tiempo, si
ug(r) > 2%(e® — 1)~! para casi todo z > 0.

La ecuacién simplificada se introduce en [70] [77] para estudiar la evolucién
de la distribucion de fotones a temperatura muy baja, pero finita. A pesar de que
es una aproximacion de un tanto basta, ciertas propiedades qualitativas de
sus soluciones podrian guardar semejanzas con las de .

El sistema f es una cierta aproximacién de un modelo simplificado que
describe la evolucion de un gas diluido de bosones, homogéneo e isotrépico, en pre-
sencia de un condensado, donde solo se consideran aquellas interacciones en las que
interviene el condensado (cf. [26], [47], [73], [66]). En [I] y en [3, 4] se estudian pro-
blemas similares para distintas aproximaciones. La funcién ¢(t,z) > 0 representa la
densidad de bosones con energia z > 0 del gas a tiempo t > 0, y n(t) > 0 representa
la densidad de condensado a tiempo ¢ > 0.

El sistema f puede deducirse de ecuaciones mas generales y complicadas
para particulas cudnticas (cf. [73], [68], [T1], [62]), de donde se obtienen ecuaciones de
tipo Boltzmann, como la ecuacién de Nordheim ([58]). Estas ecuaciones se conside-
ran para el caso en que la matriz de transicion de probabilidad se toma proporcional
a \/n(t) y la energia E(p) de una particula con momento p € R? y masa m se toma
como E(p) = |p|?/(2m). Para distribuciones espacialmente homogéneas y radial-
mente simétricas, todas las integrales angulares pueden resolverse explicitamente y
se obtienen las ecuaciones f.

El sistema f también puede deducirse de la ecuacién de Nordheim, teniendo
en cuenta tinicamente el término de la integral de colisién que involucra al condensa-
do (cf. [67], [66] y Proposition[3.2.1]). Es posible que las soluciones del sistema (3))—(4)
guarden por tanto ciertas similitudes con las soluciones de la ecuacién de Nordheim.
La teoria sobre soluciones débiles globales para la ecuacion homogénea de Norhdeim
ha sido desarrollada por X. Lu en [53] 54, 55 [56], y mds recientemente, por X. Lu
y W. Li en [51]. Por otro lado, en [32] y [33] se estudia, para el caso isotrépico, el
comportamiento singular de algunas soluciones. Varios resultados de existencia en el
caso no homogéneo han sido obtenidos recientemente por L. Arkeryd y A. Nouri en
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[5, 16, [7]. El problema de Cauchy para una modificacién del sistema f ha sido
considerado por A. Nouri en [60]. Si en la ecuacién (3)) se tiran los términos lineales,
se obtiene la aproximacién de turbulencia débil, que ha sido estudiada en detalle,
para n(t) = 1, por A. H. M. Kierkels y J. J. L. Veldzquez en [45] [46]. En el Capitulo
3 adaptaremos algunos de los resultados que aparecen en [45].

Por consideraciones fisicas, se espera que las soluciones de los tres problemas
. . ) vy . . 4)) satisfagan las siguientes leyes de conservacién. En (1)) y en . la
conservacion del niimero total de particulas, que en ambos casos se escribe como

oo
/ u(t, z)dr = constante V¢ > 0,
0

y en el sistema 7, tanto la conservacién del ntmero total de particulas como
la energia total, que se escriben, respectivamente,

o
n(t) + / g(t, z)dx = constante vt >0,
0

o0
/ x g(t,x)dz = constante vt > 0.
0

Sin embargo, los argumentos matematicos para derivar estas leyes de conserva-
cién sulen involucrar el teorema de Fubini, cuyas hipdtesis no se satisfacen necesa-
riamente en todos los casos, debido a las singularidades de los nicleos que aparecen
en (@) y en (§)-()-

Aunque la interaccién de particulas que se consideran (esferas duras, seccién de
corte Thomson) en la derivacién de y de f no son singulares, cuando las
ecuaciones se escriben para distribuciones radialmente simétricas, si que aparecen
nucleos singulares debido a los factores geométricos. Con estas singularidades, las
integrales de colisién en , , y en f@ no estan bien definidas en un entorno
del origen bajo la hipétesis de que u(t,-) y g(t,-) sean funciones integrables.

Es posible, aun asi, considerar las siguientes formulaciones débiles de los proble-
mas , , y f. Para toda ¢ € C}([0,00)), la formulacién débil de se

escribe:
% Ooocp(q:)u(t, z)dr = ;/OOO/OO% (x,y)u(t, z)u(t,y)dydx — / L, (x)u(t, z)dz,
(8)
ko(z,y) = b(z,y)(e™" — e ) (p(z) — 0(y)),
0= [ W o) - el

y para el problema (|2 ,

% Oooép(l“)U(t,x)dm _ % /0 Oo/oook;w(x,y)u(t,x)u(t,y)dydx. (9)

Por tltimo, en términos de la medida G(t, -) definida en , la formulacion débil del
sistema f se escribe:

d

pn o(2)G(t,x)dx = (10)

[0,00)

= G(t,{0}) [//[0 VG(t, )G (t,y)dxdy — Po(x)G(t, x)dz |,

[0,00)
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bplz.) = —= (o + 1)+ (|lz = yl) — 2e(miix{z.y}) )

1
N
o) = VE((0) + () — } [ etwyan

Para ¢ € C}([0,00)), el lado derecho de tiene perfecto sentido si u(t,-) es
una funcién integrable con un momento exponencial finito. Sin embargo, en [29]
se prueba que, de entre todas las distribuciones con el mismo ntimero de particlas
M > 0, los maximos de la entropia H para el problema vienen dados en términos
de las distribuciones de Bose-Einstein:

2
un(2) = ado(@) + (@), @) = o

[o.¢]
<0, a>0, au=0, Mzoz—i—/ uy(x)de.
0

Vamos entonces a considerar soluciones u del problema tales que u(t,-) es una
medida no negativa en [0, 00). Es necesario entonces que las funciones k, y £, en
sean continuas en [0, 00)2 y [0, 00) respectivamente, lo que se consigue para funciones
test ¢ € C}([0,00)) que satisfagan la condicién ¢'(0) = 0.

En la ecuacién simplificada consideraremos tanto soluciones débiles medida
como soluciones con valores en L.

Por otra parte, si ¢ € C}([0,00)), las funciones ¢, y ¥, en son continuas en
[0,00)2 y [0, 00) respectivamente, y el lado derecho de estd bien definido para
medidas no negativas G(t, ) finitas, con un momento de orden 1/2 finito.

Soluciones con valores en espacios de medida han sido consideradas por otros
autores en problemas relacionados (cf., por ejemplo, [29], [45] y [53, B4, 55 56]).

Pasemos ahora a describir brevemente algunos de los contenidos principales de
la tesis. La existencia global de soluciones débiles para los problemas de valor inicial
asociados a , y f se prueba para datos iniciales generales, y se obtienen
estimaciones para algunos de sus momentos. Para ello se utilizan técnicas clasicas,
si bien es importante usarlas en la formulacién débil expresada en las variables ade-
cuadas. Primero, se considera una sucesién de problemas aproximados para ntcleos
acotados, y se prueba la existencia de soluciones por medio de un argumento de pun-
to fijo. Después, se obtienen soluciones débiles por paso al limite. La compacidad de
la, sucesién de soluciones aproximadas se obtiene de las cotas uniformes dadas por
las leyes de conservacién.

Otro de los temas principales de esta tesis, para el cual se han obtenido resultados
parciales, consiste en estudiar la evolucién de las funciones

u(t, {0}) = / u(t, z)dx y G(t,{0}) = G(t,z)dz.
{0} {0}

Este problema estd motivado por la posible relacion de y — con las distribu-
ciones de Bose-Einstein. La prueba de los resultados obtenidos involucra el estudio
detallado de las integrales

/[0700) o(z)u(t,r)de vy /[O,oo) o(z)G(t, x)dx



CONTENTS 5

para ciertas clases de funciones test ¢ (funciones mondtonas en (1) y en (2), y
funciones convexas en —).

Sobre la ecuacién simplificada , también se prueba la existencia global de
soluciones con valores en L' bajo fuertes condiciones de integrabilidad sobre el da-
to inicial. Por 1ltimo, se describe el comportamiento asintético en tiempo de las
soluciones débiles con valores medida del problema que se han obtenido.

La estructura de la tesis es la siguiente. En el Capitulo 1 se introducen los tres

problemas principales , , y f. Las ecuaciones y (2)) se estudian en el
Capitulo 2, y el sistema — en el Capitulo 3. Los resultados técnicos del Capitulo
2 se presentan en los Apéndices A y B, y los del Capitulo 3, en el Apéndice C.
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Chapter 1

Introduction

In this thesis, we consider three nonlinear problems related to the kinetic theory of
quantum gases.

In the first problem, we study the weak solutions of the following integro-
differential equation:

ng (t,z) = /000 b(x,y) [u(t, ) (2 +ult,2))e ™ —u(t,z) (y* +ult, y))efy] dy (1.0.1)

for t > 0, x > 0. The kernel b(x,y) > 0 is a continuous symmetric function on
[0,00)2\ {(0,0)} with a singularity at the origin (z,y) = (0,0) and supported in a
neighbourhood of the diagonal {z =y > 0}.

In the second problem, we study a simplified version of in which the linear
terms are neglected and we consider the quadratic part only:

ou

a(t,m) = u(t, ) /000 b(z,y)(e™™ — e ¥)u(t,y)dy t>0, z>0. (1.0.2)

In the third and last problem, we consider the following system of two coupled
equations:

gj (t,z) =n()Q(g)(t,x)  t>0, x>0, (1.0.3)

/ Q(9)(t, x) t>0, (1.0.4)

Qg)(t, x) = /OI a(g)(t, z, y)dy — 2 /OO a(9)(t,y, z)dy, (1.0.5)
_gtz—y)glty) gt =) gtz —y) gty

q(g)(t,z,y) = = v 7 (1 T + N >, (1.0.6)

and study their weak solutions in terms of the measure-valued function G defined
by
G(t,-) =n(t)d(-) +9(t,), t>0, (1.0.7)

where d(+) is the Dirac delta in z = 0.

The equation ({1 is related to a simplified description for the time evolution
of the particle densaty of a homogeneous and isotropic photon gas that interacts
through Compton scattering with a dilute electron gas at nonrelativistic equilibrium

7



8 Introduction

(cf. [25], [49], [72], [42]). Up to a constant, the function u(t,z) > 0 represents the
particle density of photons with energy x > 0 at time ¢ > 0. The kernel b(z,y) that
we consider in is a certain approximation of the kernel that appears in the
literature, denoted in this section by K(z,y). An explicit expression for K(z,y) is
known and a derivation is given in [57].

The equation (1.0.1)) may already be found in Kompaneets’s paper [49], in 1957.
A detailed deduction of , using a strictly Boltzmann approach, may be found
in [25]. A transport equation to describe a homogeneous isotropic system of charged
particles and photons is derived in [23] by means of a BBGKY type method. In
that paper, similar results as in [25] are obtained, with the addition of correction
terms that represent correlation effects. General effective kinetic theories describing
quasiparticle dynamics in relativistic plasmas may be found in [12] and []].

In the mathematical literature, the equation has already been studied
under different conditions on the kernel b. The existence of solutions for the Cauchy
problem was proved in [29] for bounded kernels and for kernels with an exponential
growth at infinity. The equation with the physical kernel K (z,y) has been
considered by M. Chane-Yook and A. Nouri in [22], and E. Ferrari and A. Nouri in
[34]. 1t is proved in [34] that the Cauchy problem has a global weak solution for all
nonnegative initial data ug € L'(Ry) that are bounded from above by the Planck
distribution at almost every point, i.e., such that ug(z) < z2(e® — 1)~ ! ae. o > 0,
but that there is no weak solution, even local in time, if ug(z) > z%(e® — 1) a.e.
x > 0.

The simplified equation was introduced in [76] [77] in order to analyze, at
low but finite temperature of the electron gas, the evolution of the particle density
of photons at low energies. Although is a coarse approximation of ,
certain qualitative properties of its solutions could bear a resemblance with those of
(T.0.1).

The system ((1.0.3)—(1.0.4) is an approximation of a simplified model that de-
scribes the evolution of a homogeneous and isotropic dilute Bose gas in presence of

a condensate, where only the interactions involving the condensate are taken into
account (cf. [26], [47], [73], [66]). Similar problems, where different approximations
are considered, may be found in [I] and [3, [4]. The function g(¢,x) > 0 represents,
up to a constant, the particle density of bosons with energy x > 0 at time ¢t > 0,
and n(t) > 0 stands for the condensate density at time ¢ > 0. The problem (1.0.3)-
(1.0.4)) may be derived from more general and complicated equations for quantum
particles (cf. [73], [68], [T1], [62]). In the derivation procedure, general Boltzmann
equations for quantum particles are obtained, as the so-called Nordheim equation
(cf. [58]). These kinetic equations are then considered for probability transition
matrices proportional to \/n(t), and for a certain approximation of the energy of a
particle. Then, for radially symmetric and spatially homogeneous density functions,
all the angular integrals can be performed explicitly and the equations f
are obtained.

The system f may also be formally deduced from the Nordheim
equation, keeping only the collision integral that corresponds to the interactions
involving the condensate (cf. [67], [66], and Proposition [3.2.1). It may then be
possible for the solutions to f to share some similarities with those of
the Nordheim equation. The existence of global weak solutions for the homogeneous
Nordheim equation and some of its qualitative properties has been developed by X.



Lu in [53, 54, 55, [56], and more recently by X. Lu and W. Li in [51]. Singular isotropic
solutions of the Nordheim equation are described in [32] and [33]. Some existence
results in the non homogeneous case have been obtained by L. Arkeryd and A. Nouri
n [, 6, [7]. The Cauchy problem for a modification of the system 71.0.4
has been considered by A. Nouri in [60]. If the linear terms in equation are
dropped, one obtains the so-called wave turbulence approximation, that has been
studied in detail, for n(t) = 1, by A. H. M. Kierkels and J. J. L. Veldzquez in [45, 46].
In Chapter 3, we will reproduce and adapt some of the arguments presented in [45].

It is expected from physical considerations that the solutions of (1.0.1)), (1.0.2),
and ([1.0.3)—(1.0.4]) satisfy the following conservation laws. The conservation of the
total number of particles in ((1.0.1]) and (1.0.2), that in both cases reads:

/ u(t, z)dr = constant vt >0, (1.0.8)
0

and for the system (|1.0.3))—(1.0.4]), the conservation of the total number of particles
and the total energy, that reads, respectively,

n(t) + / g(t, z)dx = constant V¢ > 0, (1.0.9)
0

o
/ x g(t,x)dx = constant V¢t > 0. (1.0.10)
0

However, the arguments to derive these conservation laws involve Fubini’s the-
orem, whose hypothesis are not necessarily fulfilled, due to the singularities of the
kernels in ) and - -

Although the particle interactions that are considered (hard spheres, Thomson
cross section) in the derivation of (1.0.1f) and (1.0.3)—(1.0.4) are not singular, when
the equations are written in terms of the densities of particles in energy variables,
singular kernels do appear in the collision integrals. Due to these singularities, the
collision integrals in and are not well defined near the origin
under the natural assurnptlon that u( ) and g(t,-) are integrable functions for all
t>0.

It is possible, however, to consider the following weak formulation for the equa-

tion (L0.1):

% Ooocp(x)u(t,x)da: - % /0 Oo/oookw(:z:,y)u(t, 2)ult,y)dydz — % /0 L (@)ult, 2)da,
(1.0.11)

ko(z, ) (e —e V) (p(x) — v(y)),
/ b, )yPe ¥ (p(x) — p(y))dy,

for all ¢ € C}([0,00)). The corresponding weak formulation for the simplified equa-

tion (1.0.2)) reads:

% Oooso(a:)u(t,a:)dx _ % /0 °°/0°°k@($,y)u(t,x)u(t,y)dydx, (1.0.12)
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and finally, in terms of the nonnegative measure G(t,-) defined by (1.0.7)), the weak
formulation for the system (|1.0.3)—(1.0.4)) reads:

q

— G dop| [ outenGo.nG iy -

e(z)G(t, z)dx = (1.0.13)

1/1¢(x)G(t,x)dx],

[0,00)

bplz.) = —= (ol +1) +(z = yl) — 2e(max{z.y}) ).

3
<

T

\/aE(go(O)Jrso(w))—j5 ; e(y)dy,

@D@(l’)

for all ¢ € CL([0, 00)).

For ¢ € C}([0,00)), the right hand side of is well defined for u(¢,-) an
integrable function with a finite exponential moment. However, it was proved in
[29] that among all the distributions with the same number of particles M > 0,
the maxima of the entropy H for the problem are given in terms of the
Bose-Einstein distributions:

un(z) = ado(e) + o), @) = ——.

(o]
<0, a>0, au=0, M—a+/ uy(x)de.
0

We are then going to consider solutions u of the problem such that u(t,-) is
a nonnegative measure on [0, 00). The functions k, and L, in then need to
be continuous on [0, 00)? and [0, c0) respectively. That is achieved for test functions
¢ € C}([0,00)) that satisfy the condition ¢'(0) = 0.

In the simplified problem , we will consider measure-valued solutions as
well as L!-valued solutions.

On the other hand, for ¢ € C}([0,00)), the functions ¢, and ¢, in (1.0.13)) are
continuous on [0,00)? and [0, 0) respectively, and the right hand side of (1.0.13))
is well defined for finite nonnegative measures G(¢,-) with a finite moment of order
1/2.

Measure-valued solutions have been considered by other authors in related prob-
lems (cf., for instance, [29], [45] and [53] 64, 55, 56]).

Let us mention very briefly some of the main contributions of this thesis. The
global existence of weak solutions for the initial value problems associated to ,
, and f is established for a large set of initial data. Several
estimates on some of their moments are also obtained. This is done using classical
arguments, although it is important to use them with the weak formulation in the
appropriate variables. We first consider a sequence of approximated problems for
bounded kernels, then we prove the existence of solutions by means of a fixed point
theorem, and finally obtain weak solutions by passage to the limit. The compactness
of the sequence of approximate solutions is deduced from uniform bounds, provided
by the conservation laws.
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Motivated by the possible relation of problems ([1.0.1)) and (1.0.3)—(1.0.4)) with

the Bose-Einstein distributions, we have also been interested in the time evolution
of the functions

u(t, {0}) :/ u(t, z)dx and G(t,{0}) = G(t,x)dx,
{0} {0}

and some partial results have been obtained. Their proofs involve the careful study
of the evolution of the integrals

/ o(z)u(t, z)dx and / o(z)G(t, x)dx
[0,00) [0,00)

for certain classes of test functions ¢ (monotone test functions for and convex
for (L03)-(L0)).

Lastly, the existence of L'-valued solutions for the simplified equation is
proved under a strong integrability condition on the initial data, and the asymptotic
behavior of the measure-valued weak solutions to is also described.

This thesis is organized as follows. In the present Chapter 1 we introduce the
main problems ((T.0.1)), (1.0.2) and (1.0.3)—(T.0.4). The equations and
are studied in Chapter 2 and the system f in Chapter 3. Some technical
results of Chapter 2 are presented in the Appendices A and B, and those of Chapter
3 in Appendix C.

We present, in the next two sections, the main results of Chapter 2 and Chapter 3.

1.1 On a Boltzmann equation for Compton scattering
with a low-density electron gas at non-relativistic
equilibrium

The evolution of the particle density of a photon gas that interacts only through

Compton scattering with a low density electron gas at nonrelativistic equilibrium,

is usually described by a Boltzmann equation (cf. [61], [42]). When the photon gas

is spatially homogeneous and its particle density f isotropic, the equation simplifies
to the following expression (cf. [25], [72]):

of
27
g ot

Qs(. ) = [ (FH) (1 (kR

— L E)(L + f(t, k’))e—ﬂ’“’) kk' B (k, K')dk,

(t.k) = Qa(f, /)(t.k)  t>0, k>0, (1.1.14)

where k = |k| denotes the energy of a photon of momentum k € R? (taking the
speed of light ¢ equal to 1), 8 = (AT)~!, T is the temperature of the electron gas
and (47/3)k?f(t,k) > 0 is the particle density. The function Bs(k,k’) is the so-
called redistribution function and has been deduced in [57]. Previous mathematical
results on this equation may be found in [29], [22, B4]. See also [38] and [18] for
numerical methods and simulations.
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It is common in the physics literature to approximate (|1.1.14]) by the Kompaneets

equation:
af 1.9 4 [(Of 9
% 2ok <k <8k +f+f) ), (1.1.15)

(cf. [49]). Equation has deserved great attention due to its importance in
modern cosmology and high energy astrophysics (cf. [11], [42]). However, although
this approximation is generally performed under some assumptions on the solution
f, no precise mathematical statement for such assumptions are known (for simpler
kernels than Bg, a rigorous derivation of may be found in [29]).

It is expected from physical considerations that the total number of particles is
conserved by . Since the particle density f is assumed to be isotropic, that
with some abuse of notation we express as f(t,k) = f(t, k), if we introduce the new
variable v(t, k) = k?f(t, k) that is (up to a constant) the particle density in energy
variables, the conservation of the total number of particles then writes

/ v(t, k)dk = constant vt > 0.
0

In terms of v, the equation (1.1.14]) reads

ov > Bg(k, k'
S = [T ok ar, (1.1.16)

as(v,0)(t kK'Y = v(t, ) (k2 + ot k) e PP —o(t, k) (K2 +o(t, k) e ¥ (1.1.17)

In the nonrelativistic limit, when 8 >> (mc?)~!, where m is the mass of an electron
and c is the speed of light, the differential cross section for Compton scattering is
usually approximated by the Thomson differential cross section (cf. [42]), and it is
then possible to deduce the following expression for the function Bg (cf. [57]):

4
/a2, K —K|
(k' —k)2+ 5

/ ™ 2 '
Bs(k, k') = /B €B<k2+k)/ We_ﬁm 2W—k2 sin Ad6.
; _

In particular, the function Bg satisfies the following properties (cf. Figure and

Figure :

(i) It is singular at the origin:

44

Bg(k,k):w\/g<;+ﬁ>+(9(k) as k— 0,

(ii) it grows exponentially at infinity:

2
Ba(k, k) = e (o <k12) fe IO <klg) ) as k- oo,

(iii) it is strictly positive at the axes:
8 _Bm (4 K2
Bo(k.0) = By0.k) = YD H e F04m) S0, ks

The kernel (kk')~'Bg(k, k') in (1.1.16)) is therefore quite singular at the axes and, of
course, does not satisfy the hypothesis imposed in [29]. Is not even possible to give
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Figure 1.2: Cross sections of Bg perpendicular to the diagonal and very close to the origin.
More precisely, let Bg(w, z) = Bg(k, k') with w = (k + k') /V/2, z = (k — k') /V/2. The figure
shows, for 5 =10, m =1and z € (—%, %), the function z — Bg(w, z) for the values w = 0.01

(blue), w = 0.02 (red) and w = 0.03 (yellow).

Figure 1.3: From left to right, the kernel Bg(k, k") with m = 1, (k,k’) € (0, 3)* and for
B=7,6=10and 8 =13.

0'8‘0 0.1 02 03 04 05 0‘8.0 0.1 02 03 04 05 0'8.0 0.1 0.2 03 04 05

Figure 1.4: From left to right, several level sets Bg(k, k') = constant for m = 1, (k, k') €
(0,2)? and =7, =10 and 8 = 13.
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sense to the right hand side of (|1.1.16)), not even in weak form, for a general finite
nonnegative measure v(t).
We then consider the following truncated problem:

oo ! /
sy = [T EEESED G ek )

where gg(v,v) is defined in (1.1.17)) and @ is a cut-off function supported in a neigh-
bourhood of the diagonal {k = k' > 0} of the form (cf. Figure [L.F):

k— K| < kK (k+K) for k, Kk <<1,

o

0k <K < ] elsewhere, where 6 € (0,1) is fixed.

0.4

0.3

0.2

0.1

0.0} ; ) ) ) ) )
0.0 0.1 0.2 0.3 0.4 0.5

Figure 1.5: The support of ®(k, k') for (k,k') € [0,1]?, 6 = 1/2.

This truncation, similar to the one proposed in [77], is suggested by the very
peaked shape of Bg along the diagonal (cf. Figure Figure. The function Bg®
is a first, rough approximation of Bg that keeps, nevertheless, a singular behavior
at the origin. A possible extension to this work could be the construction of weak
solutions to through the truncated problem , by passage to the limit
in the cut-off function parameters.

Although in this work the value of 8 remains fixed, and may then be taken equal
to 1, certain aspects of the equation appear more clearly in some other variables,
rescaled with 3. In particular, the fact that Bg is more and more peaked along the
diagonal as  — oo (cf. Figure and Figure . When the time is rescaled to
(3t and the energy to Bk, so that the total number of particles is unchanged, the

equation ([1.1.18]) rewrites as (|1.0.1]), where
u(t, ) = B~ o(t, k) t =63, x=7pk. (1.1.19)

The function b(z,y) in that we consider, satisfies general conditions. In par-
ticular, these conditions are fulfilled by the truncated kernel (kk')~*Bg(k, k") ®(k, k').
The function K (z,y) mentioned at the beginning of the introduction corresponds
to the kernel (kk')~1Bs(k, k') written in the rescaled variables as in (1.1.19).
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In order to present the main results of Chapter 2, let us denote by .Z, (][0, 00))
the space of nonnegative finite Radon measures on [0,00), endowed with the so-
called narrow topology, and denote by C([0, c0), .#4 ([0, c0))) the space of continuous
functions from [0,00) onto .#4(][0,00)). For convenience and unless otherwise is
noted, we write u(x)dx for every measure p, even if p is not absolutely continuous
with respect to the Lebesgue measure.

Let us define now the following notion of weak solutions.

Definition 1.1.1. Given ug € #1([0,00)), we say that u is a weak solution of
(1.0.1)) with initial data ug if:

(i) w € C([0,00), #+(]0,00))) and f[O,oo) o(x)u(0,z)dr = f[O,oo) o(x)up(x)dx for
all ¢ € Cp([0,00)).
(i) The map t f[o,oo) o(z)u(t, z)dxr belongs to W/llo’coo([(),oo)) for all ¢ €
[0,00)) with ¢'(0) =0,
(iii) u satisfies the weak formulation (1.0.11)) for almost every ¢ > 0 and for all
¢ € CL([0,00)) with ¢'(0) = 0.

Gy

We may then state our result about the existence of global weak solutions (cf.
Theorem [2.1.2]).

Theorem. Given any ug € #+(]0,00)) satisfying
/ eup(z)dr < 0o (1.1.20)
[0,00)

for some n € (1%9,%), there exists u € C([0,00), #4([0,00))) weak solution of

with initial data ug. Moreover, u satisfies

/ u(t,x)dz = / uo(x)dx vt >0,
[0,00) [0,00)

/ e"u(t,x)dr < ecnt/ e ug(z)dz vt >0,
[0,00) [0,00)

where Cy, is a positive constant.

The entropy functional

H(u(t))—/[o )h(m,ur(t,x))dx—/ zus(t, z)de,

[0,00)
h(x,s) = (2° + s)In(2? + s) — slns — 2% In(z?) — sz,

(cf. [58], [29]) is well defined for the weak solutions thus obtained, where u = u, + us
is the Lebesgue decomposition of u into a regular and a singular part (cf. [29] Lemma
3.1 and Lemma 4.1). However, due to the singularity of the kernel b, we do not know
how to give sense to the corresponding dissipation of entropy D(u(t)) that appears
in [29].

We have scarce information about the qualitative properties of the weak solutions
of , and in particular, on their long time behavior. It may then be useful to
consider the simplified equation , introduced in [76, [77], where the linear terms
in the right hand side of have been dropped. For large values of the parameter
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5, this simplification is suggested by the fact that, when is written in the
rescaled variables , the linear terms in the collision integral are formally of
lower order (cf. Appendix .

We define now the following notion of weak solutions for the simplified problem

(1.0.2).

Definition 1.1.2. Given ug € #4([0,00)), we say that u is a weak solution of
(1.0.2) with initial data ug if:

() u € ([0, 00), 4 (0,5))) and [y, p(@)u(0,2)dz = [, ow)uo(a)d for
all ¢ € Cp([0,00)).
(ii)) The map ¢ — f[o,oo) o(x)u(t, z)dz belongs to W,2>°([0,00)) for all ¢
0,00)) with ¢/(0) =0,
(iii) w satisfies the weak formulation (1.0.12) for almost every ¢t > 0 and for all
¢ € CL([0,00)) with ¢'(0) = 0.

Gy (

The existence of weak solutions for ((1.0.2]) presented below (cf. Theorem [2.5.1)
is proved with the same arguments as for equation (1.0.1)).

Theorem. For any initial data uy € A+ ([0,00)) satisfying for some n >
(1 —0)/2, there exists a weak solution u € C([0,00), #1(]0,00))) of with
iitial data ug. Moreover, u also satisfies

/ u(t,x)dx = / uo(x)dz vt >0,
[0,00) [0,00)

/ eu(t,x)dr < / ey (x)dx vt >0,
[0,00) [0,00)

Our next result shows the existence of solutions in L! for initial data that satisfy
a strong integrability condition (cf. Theorem [2.1.4)).

Theorem. For any nonnegative initial data ug € L*(R,) such that:
o0 _r_
Vr >0, / up(x) (ez3/2 + e"z) dx < oo (1.1.21)
0
for some n > (1 — 0)/2, there exists a nonnegative weak solution u of (1.0.3) with

initial data ug. Moreover, u € C([0,00), L'(Ry)), satisfies (1.0.9) in L'(Ry) for
almost every t > 0 and

[u(®)llr = luolly Vvt =0,
tCyq
u(t, ) < up(x)es/? vVt >0, a.e. x>0,

where Cy is a positive constant.

The condition (|1.1.21]) on the initial data is then a sufficient condition to have a
global solution in L', and therefore, to prevent the formation of any Dirac delta in
finite time.

The weak solutions of (|1.0.2)) satisfy two properties that may be loosely described
as follows:
(i) the support of the solution is invariant in time (cf. Proposition [2.5.4]) and
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(ii) the distribution of mass tends to “move” to lower values on the energy
spectrum (cf. Proposition [2.5.5).

These two properties have the following consequence on the long time behavior
of the solutions. Suppose, for example, that the support of the initial data wug is an
interval (ag,a1), with ag > 0. If a; — ag is sufficiently small, then a weak solution
of converges to Md,,, where M is the integral of the initial data ug. Even if
a1 — ag is large, or the support of ug was the disjoint union of two intervals (ag, a1),
(a2, a3) with ag > 0, due to the non local nature of , one could still expect all
the mass to move or jump to the lower endpoint ag of the left interval. However,
due to the lack of strict positivity of the kernel b that we consider, particles that
are sufficiently far away from each other do not interact. As a consequence, if the
distance between the two intervals (ag, a1) and (ag, as) is sufficiently large, the mass
on each of the intervals is constant in time, and the solution converges to a sum of,
at least, two Dirac measures, one at the point ag and other at the point as. This is
stated in the following result (cf. Theorem .

Theorem. Let u be a weak solution of for an initial data uy € A4(]0,0))
satisfying for some n > (1 —60)/2. Then there exist a sequence of nonneg-
atives numbers {(m;, k;) }ien such that u converges in C([0,00), .#+(]0,00))) to the
measure

p=> mid,. (1.1.22)
=0

This Theorem shows that the asymptotic state of the simplified equation
is formed by an at most countable set of Dirac measures. This suggests the possibility
for the solutions of the complete equation to develop more than one peak
that could remain for very long times.

1.2 On a system of two coupled equations for the nor-
mal fluid - condensate interaction in a Bose gas

A kinetic description of a weakly interacting dilute Bose gas below the critical tem-
perature, when a condensate is present, was considered in [26] and [47]. The expres-
sions of the collision integral for the interactions between particles in the normal
component of the gas, and for the interaction of the condensate with particles in the
normal component of the gas where deduced. Their results were then generalized in
[73], where the authors derived coupled equations for the distribution functions of
the normal and superfluid components.

The system that only takes into account the interaction of the condensate with
particles in the normal fluid for a homogeneous isotropic gas has been treated in [3],
where the existence of global solutions is proved for several approximations of the
scattering amplitude and the energy of the particles. This problem has also been
considered in [I], where the transition probability matrix is taken proportional to
Ip||p1||p2| and the energy of a particle with momentum p € R3 is proportional to
ply/n(®)-

The purpose of this chapter is to consider one of the regimes introduced in
[26] and [47], where the square of the transition probability matrix in the kinetic
equation is taken proportional to the condensate density n(t), and where the energy
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of a particle with momentum p € R? and mass m is taken to be E(p) = |p|>/(2m).
With this approximations and for a spatially homogeneous and isotropic gas, the
system may be written as f (cf. [66]). The same approximation, but
for a non isotropic gas with periodic spatial dependence has been considered in [4]
for initial data close to equilibrium The existence of weak solutions to ((1.0.3) with
a simplified equation for n(¢) has been proved in [60].

Let us present now our main results on the weak solutions of f (cf.
Definition that are studied in Chapter 3 in terms of the measure G(t) defined
in . We start with the global existence of weak solutions (cf. Theorem
and Theorem and some properties of their moments M, (G), where

M, (G) = z2G(x)dx o € R,
(@) /[0 _e6t) c
ME([0,00)) = {G € A1([0,00)) : Mo(G) < 00} .

Theorem. Suppose that Gy € 4} (]0,00)) satisfies Go( {0}) > 0. Then, there exists

a weak solution G € C([0,00), .#1([0,00))) to (u) with initial data Gy

that satisfies the following properties:

(i) G conserves the total number of particles N and energy E:
My(G(t)) = My(Go) = N vt >0,
M (G(t)) = M1(Goy) = E vt > 0.

(ii) For all o > 3, if My(Go) < oo, then G € C((0,00), #£([0,00))) and

a—1

_2 a—1 ot 2
Mo (G(t)) < (Ma(Gg)a—1 +a2 Ea—lf(t)) Vit >0,
where T(t fo s,{0})d
(iii) For all > 3,

1 2(a—1)

where the constants C(a, E) and (o, E) are defined in Theorem |3.3. 1|
() If a € (1,3] and
E > C(a)N®/3,

where C(a) > 0 is an explicit constant, then My (G(t)) is a decreasing function
n (0, 00).

(v) For allT >0, R>0 and a € (—%,oo),

/OTG(t, {0}) /0 o r*G(t, z)dzdt <
RJ“ (/ G(t,{0}) dt)%<\/2E /OTc;(t, {0})dt+\/ﬁ), (1.2.23)

RO
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Some remarks can be made about the result above.

(a) The condition G({0}) > 0 just reflects the initial presence of a condensate
in the system, and it is necessary in view of the particular form of —
and .

(b) An estimate for the moment of order o > 3 of the solution is provided in
point (iz), under the assumption that the same moment is finite for the initial data.
In point (i), on the contrary, no assumption is made on the initial data. It is
shown the instantaneous gain of moments of any order o > 3. The estimate in (i)
blows-up as t — 0, as it should.

(c) If an algebraic behavior around the origin like G(t,z) ~ 2” was known for
some f € R, then we would need 8 > —1/2, so that the left hand side of is
integrable for all @ > —1/2. Of course, no such algebraic behavior of G is known to
hold.

Some properties of the function n(t) are given in the next two results (cf. The-

orem and Theorem |3.1.8)).
Theorem. Let G be a weak solution to (1.0.3)- constructed above, and de-

compose it as
G(t,x) = n(t)do(x) + g(t,z),  n(t) = G(t,{0}).

Then, the function n is right continuous and a.e. differentiable on [0,00). Moreover,
there exists a positive measure p on [0,00) such that

0 < u((0,t]) < 00 YVt >0 (1.2.24)

and
n(t) = %u((o,t]) Cn()Mys(gt)  ae. t>0. (1.2.25)

The value p((0,¢]) is a limit that involves the behavior of g near the origin. This
term appears because the collision operator Q(g)(t,x) in ([1.0.5)) is not integrable at

the origin. If we had g € L'(R,) and M_;/5(g(s)) < oo for a.e. s € [0,t], that
would imply p((0,¢]) = 0 (cf. Proposition [3.6.4), and the function n would follow,

according to (|1.2.26]), the equation
n'(t) = —n(t) My j5(g(t)) a.e. t> 0. (1.2.26)

The function n would then be monotonically decreasing on [0,00). However, the
property shows that this can not be the case and that, in particular, for
every t > 0 there exists a subset ' C [0,t) with |E| > 0 such that M_;5(g(s)) = oo
for all s € E, even if the moment of order —1/2 of the initial data go is finite. Then
g loses instantaneously the moment M_;/5(g(s)) and the behavior of n(t) is more
involved.

This is quite different from the results obtained in [I], where the authors have
shown the existence of a global solution (n, g) that satisfies

%(nQ(t)) =— /OOO P(g)(t,x)dx ¥t >0, (1.2.27)
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where P(g)(t,x) is the corresponding collision integral in the equation for g, and the
integral in the right hand side of is absolutely convergent.

The property gives some further insight about the possible behavior of
G near the origin. If G(t,z) ~ 2” around the origin for some 8 € R, we saw above
that necessarily 5 > —1/2. Suppose, moreover, that G(¢) has no atoms on (0, c0)
for all t € [0, 7] for some T" > 0. Then, if 5 > —1/2, we would have

/ G(t,z)
sup dx < 00,
tefo,11J0,00) VT

and by Proposition we would obtain ((0,¢]) = 0 for all ¢ € (0,7, in con-
tradiction with . This observation implies that in case G had the algebraic
behavior G(t,z) ~ 2 near the origin, either 3 = —1/2 or, if § > —1/2, then G(t)
would have atoms on (0,00) for t € A C [0, 7] with |A| > 0.

In the last result of this section, we prove that, under some conditions on the two
first moments of the initial data Gy, the function n(t) vanishes as t — oo, sufficiently
fast to be integrable.

Theorem. Let G be a weak solution to (1.0.3)- with mass N and energy E

constructed above. If, for some o € (1,3],
E > C(a)N®/3, (1.2.28)
where C(a)) > 0 is an explicit constant, then

lim n(t) =0

t—00

and there is an explicit constant C(N, E, «) such that, for all tg > 0,

/ T ()t < O(N, B, ) Ma(G(to)).

to

According to [53] and the references therein, given an initial datum G with total
mass N and energy FE, the kinetic temperature T and the critical kinetic temperature
Te (cf. [53] for a definition) satisfy the following relation

r__E (2m)5 ¢(3/2)?

7. "Ne T T3 T ((5)2)

Using this identity, the condition ((1.2.28)) reads in terms of the variable T":
T > kC(a)Te.

The value kC(«) increases with o and takes its minimum at o = 1, kC(1) ~ 4.48403
(cf. Remark [3.1.12). The result above then could be interpreted as follows: the
density n(t) converges to zero if the kinetic temperature of the initial datum Gy is
kC(1) times above of the critical kinetic temperature.
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1.3 Conclusions

In this thesis, we have studied three problems, (1.0.1]), (1.0.2) and (1.0.3)—(1.0.4),

related to the mathematical description of dilute gases for quantum particles. These
problems are given by kinetic equations that, when written in terms of the natural
density in radial variables, have singular kernels. The singularities do not come from
the particle interactions that are considered, but rather from the angular integrations
and the geometric factors that appear when considering radially symmetric solutions.

The global existence of measure-valued weak solutions for a large class of initial
data has been proved for these three problems. In the case of , we have also
obtained a sufficient condition on the initial data in order to have global L!-valued
solutions.

Some properties of the weak solutions have been obtained. For example, we
have described the long time behavior of the weak solutions of , proving their
convergence to a countable sum of Dirac masses. In problem 7, we
have obtained estimates on the time evolution of some moments of G, as well as
some properties of the function n(t). In particular, the evolution of n(t) has been
proved to follow a non trivial integral equation, involving the local behavior of the
measure g around the origin. The long time behavior of the function n(¢) has also
been studied under certain conditions.

Several questions related to these results remain open and could be the object
of future research. One interesting question is, for example, the existence (or non
existence) of weak solutions to (1.0.1]), where the kernel b(x, y) is replaced by K (z,y),
for general initial data. It would also be interesting to understand the long time
behavior of the weak solutions u and G of the problems and —
respectively, as well as to know under what conditions, if any, the weak solutions
take their values u(t) and G(t) in L'(0,00) or in .#, ([0,00)). Lastly, it would be
worthwhile to extend the analysis of Chapter 3 to the whole Nordheim equation
by considering also the collision integral that accounts for the interactions between
particles with strictly positive energy.
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Chapter 2

On a Boltzmann equation for
Compton scattering with a
low-density electron gas at
non-relativistic equilibrium

2.1 Introduction.

When only Compton scattering events are considered, the evolution of the particle
density of a gas of photons that interact with electrons at non relativistic equilibrium
is usually described by means of a Boltzmann equation that may be found in [25],
[49], [72] and many others. For a spatially homogeneous isotropic gas of photons
and non relativistic electrons at equilibrium, the equation simplifies to the following
expression:

kzg{(t,k:) =Qs(f, f)t,k), t>0, k>0, (2.1.1)
(£ DR = [ (k) 1+ ftR)e =

— (R + f(t, k’))e’ﬁk/) k' By (k, &) dk . (2.1.2)

The variable k = |k| denotes the energy of a photon of momentum k € R3 (taking
the speed of light ¢ equal to 1), 8 = (hT)~!, T is the temperature of the gas of
electrons, (47/3)k*f(t,k) > 0 is the particle density, and Bg(k,k’) is a function
called sometimes the redistribution function.

We emphasize that only elastic collisions of one photon and one electron giving
rise to one photon and one electron are considered in this equation, and no radiation
effects are taken into account. As shown in [I7], the cross section for emission of an
additional photon of energy k diverges as k approaches zero, and so the probability
of a Compton process unaccompanied by such emission is zero. It follows that the
equation , can not take accurately into account photons with too small
energy.

When the speed of light ¢ is taken into account, the corresponding equation

(2.1.1), (2.1.2) is very often approximated by a nonlinear Fokker Planck equation
(cf. [49]). For 8 >> (mc?)~! (that corresponds to non relativistic electrons with

23



24 On a Boltzmann equation for Compton scattering

mass m), the scattering cross section of photons with energies k << mc? may be

approximated by the Thompson scattering cross section. It is then possible to deduce
the following expression of Bg(k, k'):

2,4

/ ™ (1 209y A2 miv”
Bg(k,k’)_\/ﬁeﬁ(kf?“/ U+ 08" 0) 25T deoso, (2.1.3)
o |k —K|
1
v=—|kK -k|, A=k -k, (2.1.4)
m

(cf. [57] and [30]). It is then argued (cf. [49] for example) that Bg(k, k') is strongly
peaked in the region

{k>0,k>0: |k—F|<<min{k,k'}} (2.1.5)

for large values of 3, (cf. Figure and then, if the variations of f are not too
large, it is possible to expand the integrand of (2.1.1]) around k and, after a suitable

rescaling of the time variable, the equation (2.1.1]), (2.1.2) is approximated by:

kQ%: _ aak <k4 (gi + f2 _|_f>> , (2.1.6)

the Kompaneets equation ([49]). However, it is difficult to determine under what
conditions on the initial data and in what range of photon energies k, is this ap-
proximation correct.

Due in particular to its importance in modern cosmology and high energy astro-
physics, the Kompaneets equation has received great attention in the litera-
ture of physics (cf. the review [11]). It has also been studied from a more strictly
mathematical point of view [20] 28] 43], and several of its possible approximations
have also been considered [9} 50]. It was first observed in [75] that for a large class
of initial data, as ¢ increases, the solutions of may develop steep profiles, very
close to a shock wave, near k = 0. This was proved to happen in [28] for some of
the solutions, for k in a neighborhood of the origin and at large times.

On the basis of the equilibrium distributions Fjs of (2.1.1), (2.1.2) given by

K2Fyr = k2fu +ady, <0, a>0, au=0, (2.1.7)
1 [e.e]
Julk) = k= _ 1’ /0 kau(k)dk =M, M=oa+M,, (2.1.8)

some of its unsteady solutions are also expected to develop, asymptotically in time,
very large values and strong variation in very small regions near the origin. This was
proved to be true in [29] where, under the assumptions that e =" +*) (k&) =1 By (k, k')
is a bounded function on [0,00)? for some n € [0,1), it is shown that, as t — oo,
certain solutions form a Dirac delta at the origin. A detailed description of this
formation was later given in [31], assuming Bg(k, k') (kk’) ' = 1 and for some classes
of initial data. Of course, in the region where this delta formation takes place,

the equation (2.1.1)), (2.1.2) can not be approximated by the Kompaneets equation
(2.1.6)).

It is obvious however that the function Bg(k, k') in (2.1.3), (2.1.4) does not
satisfies the conditions imposed in [29] or [31]. On the other hand, the Boltzmann

equation (2.1.1)), (2.1.2) with the kernel (2.1.3), (2.1.4)) was considered in [60] and
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[34]. Local existence for small initial data with a moment of order —1 was proved
in [60]. It was proved in [34] that, although the Cauchy problem is globally solvable
in time for initial data bounded from above by the Planck distribution, there is no
solution, even local in time, for initial data greater that the Planck distribution.
This seems to be an effect of the very small values of k and k" with respect to |k — k|
in the collision integral, and indicates that some truncation is needed in order to
have a reasonable theory for the Cauchy problem. (cf. Section below).

In this article, we consider first the Cauchy problem for an equation where the
kernel , is truncated in a region where k or k’ are much smaller than
|k — K'|, although keeping the strong singularity at the origin k = ¥’ = 0. This is
achieved by multiplying the kernel Bg by a suitable cut off function ®(k, k'),

20k = Qstr e 2.1.9)
Qs(. D) = [ (£ (1 1t )

R+ f(t, k’))e’ﬁk/) kK ©(k, k) Ba(k, k' )dk (2.1.10)

The Cauchy problem for (2.1.9)), (2.1.10)) proved to have weak solutions for a large
class of initial data in the space of non negative measures. Because of some difficulties

coming from the kernel Bz and its truncation, it is not possible to perform the
same analysis as in [29] or [31], where the asymptotic behavior of the solutions was
described.

In order to obtain some further insight, a simplified equation was proposed in
[76] and [77], where the authors suggest to keep only the quadratic terms in ([2.1.2))
when f >> 1 (or when the function f has a large derivative) and consider,

201

kat

o
(t, k) = f(t, k) / FE) (5% — e PV kK By (k, k') d. (2.1.11)
0
This equation may be formally obtained in the limit 5 — oo and Sk of order one
(cf. Appendix [B]). If the reasoning leading from equation (2.1.1)) to the Kompaneets
equation is applied to the equation (2.1.11)) we obtain the non linear first order
equation,
of 0
k=2 = — (K'f%). 2.1.12
For the same reasons as for the equation (2.1.1]), we shall consider the equation with
the truncated redistribution function,

of
ot

As for the equation (2.1.9)), (2.1.10)), equation (2.1.13) has weak solutions for

a large set of initial data. Moreover, if the initial data is an integrable function
sufficiently flat around the origin, it has a global solution that remains for all time an
integrable function flat around the origin. The weak solutions of converge
to a limit as t tends to infinity that may be almost completely characterized. It
is formed by an at most countable number of Dirac masses, whose locations are
determined by the way in which the mass of the initial data is distributed. This

k2= (t,k) = f(t, k) / b FE) (e — e PV kK (k, k) B (k, K')dk'.  (2.1.13)
0
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suggests a possible transient behavior for the solutions of the complete equation
, where large and concentrated peaks could form and remain for some time.
We refer to [39] for recent numerical simulations on the behavior of the solutions
of the equation and the Kompaneets approximation. The anisotropic case
has also been recently considered in [19].
We describe now our results in more detail.

2.1.1 The function Bs(k, k'). Weak formulation.
Due to the k? factor in the left hand side of (2.1.1)), it is natural to introduce the

new variable

v(t, k) = k2 f(t, k). (2.1.14)

This variable v is now, up to a constant, the photon density in the radial variables,

and equation (2.1.1)), (2.1.2]) reads,

g:(t, k) = Qp(v,v)(t, k), t>0, k>0, (2.1.15)
o0 /

Qs(w)(t:h) = [ a2, (2.1.16)
0

q5(v,v) = v'(k* +v)e Pk — (kK + v')e P, (2.1.17)

where we use the common notation v = v(¢, k) and v' = v(t,k’). As a consequence
of the change of variables , the factor k&’ in the collision integral has been
changed to (kk')~!.

An expression of Bg(k, k') may be obtained at low density of electrons and using
the non relativistic approximation of the Compton scattering cross section (cf. [57,
30]). It may be seen in particular that Bg(k,0) > 0 for all & > 0, and

s 2
m 2
Bs(k,0) = i{e@“e‘@(lﬁnﬂ). (2.1.19)

The kernel Bg(k, k')(kk')~! is then rather singular near the axes, and the collision
integral Qg(v,v) is not defined for v(t) a general non negative bounded measure. In
order to overcome this problem, it is usual to introduce weak solutions. A natural
definition of weak solution is:

d _ 1 , , Bﬁ(k,k:’) )
dt [O,oo)”(t’k”(mdk - 2//[0’00)2 (p(k) = (k) gs(v, v') =7 dkdk" (2.1.20)

for a suitable space of test functions ¢. Again, we use the notation ¢ = ¢(k) and
¢’ = (k). Since Bg(k,0) > 0 for all k& > 0, the integral in the right hand side of
(2.1.20) may still diverge. It was actually proved in [34] that for initial data vy such

that

56'2

S Va0,

vo(x) > o

the (2.1.20) has no solution in C([0,T), .#1([0,00))), for any T' > 0.
Kernels with that kind of singularities have been considered in coagulation equa-
tions. One possible way to overcome this difficulty is to impose test functions ¢
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compactly supported on (0, 00), like in [59], or such that ¢(z) ~ z® as x — 0 for
some « large enough, like for example in [36], (but in that case we could not expect
to obtain any information on what happens near the origin), or also to look for solu-
tions v in suitable weighted spaces like in [10] and [2I] (but that would exclude the
Dirac delta at the origin). In all these cases, the propagation of negative moments
for all £ > 0 is necessary. That property does not seem to hold true for , cf.
Remark for the local propagation of some negative moments. See Remark

and Remark for the equation (2.1.13)).

Truncated kernel: why and how.

As we have already mentioned, the equation , does not describe the
Compton scattering if “too” low energy photons are considered, since in that case
the spontaneous emission of photons must be taken into account (cf. [I7]). At this
level of description then, some cut off seems necessary for a coherent description,
where only collisions of one photon and one electron giving one photon and one
electron are considered.

In view of the properties of the function Bg for § large presented in Appendix
[B] and since no precise indication is available in the literature of physics, we use a
mathematical criteria as follows:

(i) - We truncate the kernel Bg, down to zero, out of the following subset of
[0,00) x [0, 00):

V(k, k') €[0,0,]%, |k —K| < pu(kE) (k4 K')°2, (2.1.21)
V(k, k') €[0,00)2\ [0,6,]%, Ok <k <071k, (2.1.22)

for some constants d, > 0, p. >0, a; > 1/2, 2a0 > 3 — 4a, and 0 € (0, 1).
(ii) - In order to minimize the region of this truncation, we choose a; = ay = 1/2.
(iii) - We leave Bg unchanged as much as possible inside that region, but at the
same time we want the resulting truncated kernel to belong to C'((0,00) x (0, 00)).

Remark 2.1.1. It is suggested in [74] that for very large values of 3, the support
of B is a subdomain of |k — k’| <2k?/mc? for small values of k and k’. That would
be a stronger truncation than in (ii).

Then we multiply Bg(k, k') by ®(k, k'), where:

1. ®(k,k") = ®(K k) for all k > 0, k' > 0,
2. ® € C([0,00)*\ {(0,0}),
3. supp(®) = D, where (k,k’") € D if and only if (2.1.21)) and (2.1.22)) hold for

a1 = ag = 1/2, and some constants 6§ € (0,1), d. > 0 and p, = p.(6,04).
4. ®(k,k") =1V(k,k') € Dy C D, where (k,k’) € D; if and only if,

k— k| < pi/ER (kLK) if (k&) €[0,8,2,

Ok <k <607k if (k, k") €[0,00)%\ [0,6,]%,
for some 61 € (6,1) and p1 = p1(61,6,) > 0. (Cf. also (2.2.5)—(2.2.11))). Then, for
all € C*(]0, 00)),

(% — ) (k) — o) 2B 1 ) € 17(10,00) 0, 00)),
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and if ¢/(0) =0,

(% — ) (k) — oK) 2B s 1) € €(0,00) x 0,00))

(cf. Lemma Lemma and (2.2.29).

In the first part of this work, we then consider the problem

o Ba(k, k") ®(k, k'
&(t,k):/[o )qﬁ(v,v’) 5 k;ﬂ,( )i, (2.1.23)

We need the following notations:

C1([0,00)) is the space of bounded continuous functions, with continuous bounded
derivative, on [0, c0).

The space of nonnegative bounded Radon measures is denoted .# ([0, o)), and

AL([0,00)) = {v € A ([0,00)) : My(v) < o0}, Vp ER,

M,(v) = / kPv(k)dk (moment of order p), (2.1.24)
[0,00)

X,(v) :/ e’fu(k)dk. (2.1.25)
[0700)

We use the notation [v(k)dk instead of [ dv(k), even if the measure v is not abso-
lutely continuous with respect to the Lebesgue measure.

Unless stated otherwise, in .#, ([0, 00)) we consider the narrow topology. We
recall that the narrow topology is generated by the metric do(u,v) = ||u — v||o,
where (cf. [15], Theorem 8.3.2),

liallo =sup{ | i o € Tima([0.00), Nl < 1}, (2.1.26)

)

Lip; ([0,00)) = {¢ : [0,00) = R : [po(z) — ¢(y)| < |= —yl}. (2.1.27)
The following is an existence result for the problem .
Theorem 2.1.2. Given any vy € #+([0,00)) satisfying
Xy (v) < oo, (2.1.28)

for somen € (12;0, %), then there exists v € C([0,00), .#1(]0,00))) weak solution of

, i.e., such that satisfies the following (i)-(i1):
(i) For all ¢ € Cp([0,00)),

/[ o(-, K)o (k)dk € C([0,50): R), (2.1.29)

0,00)

/ 0(0, K)o (k) dk — / vo(k)(k)dk, (2.1.30)
[0,00) [0,00)

(ii) For all ¢ € CL([0,00)) with ¢'(0) =0,

| oRyeli)r € Wi (0,001 R), (2.1.31)
[0,00)
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and for almost every t > 0,

d 1 [[®B
= | vtR)ek)dk =5 // k—qug(v,v’)(go — ¢')dkdK . (2.1.32)
[0,00) [0,00)2

The measure v(t) also satisfies, for all t >0,

Mo (v(t)) = Mo(vo) (2.1.33)
X, (v(t)) < e X, (vo), (2.1.34)
where
_G.(1-0)
Cy 202 (176) (L—7)° Ci > 0. (2.1.35)

Remark 2.1.3. Theorem does not precludes the formation, in finite time, of
a Dirac measure at the origin in the weak solutions of with integrable initial
data. Such a possibility was actually considered for the solutions of the Kompaneets
equation (cf. [74, [75, [77] and others). It was proved in [28] and [29] that, for large
sets of initial data, this does not happen, neither in the Kompaneets equation, nor
in equation with a very simplified kernel. But it is not known yet if it may
happen for the equation with the kernel ®(k, k")Bg(k, k').

Given a weak solution {u(t)};~¢ of (2.1.23) whose Lebesgue decomposition is
u(t) = g(t) + G(t), with g(t) € L*([0,0)), the natural physical entropy is

H(u(t)):/(o )h(az,g(t,x))dm/(o ):cG(t,:v)d:p, (2.1.36)

h(z,s) = (x? + s)log(z? + s) — slog s — 2° log 2® — sz. (2.1.37)

But the corresponding dissipation of entropy used, for example, in [29], is not defined
due to the singularity of the kernel i—? at the origin. The study of the long time
behavior of the weak solutions obtained in Theorem seems then to be more
involved than in [29], (cf. Section [2.4] also).

2.1.2 The simplified equation

In view of the exponential terms in , it is very natural to consider the scaled
variable Bk = z, then scale the time variable too as %t = 7, and the dependent
variable as 371k?f(t, k) = u(7, ) in order to let the total number of particles to be
unchanged (cf. Section [B.1)). When this is done, it appears that the linear term is
formally of lower order in 8 >> 1:

9u /0°°Bﬁ($vy>(

oy J
” e e )U(T,JJ)U(T,y) Y+

+878 /OOO W(U(ﬂ y)ate ™ — u(r,z)y’e V) dy, (2.1.38)

where Bg(z,y) = 871 Bs(k, k).



30 On a Boltzmann equation for Compton scattering

If only the quadratic term is kept in ([2.1.23|), the following equation is obtained

ov _ /  Ba(k, k') ®(k, ')
g k) = v(t. k) /[(LOO) o(t, k) (e — =) kk!

Weak solutions u € C([0,00), #+(]0,00))) to (2.1.39)) for all initial data ug €
M+ ([0,00)) satisfying (2.1.28]) are proved to exist (cf. Theorem [2.5.1)) with similar

arguments as for the complete equation.

But equation also has solutions v € C([0, 00), L!([0,00))) for initial data
vp € L'([0,0)) that are sufficiently flat around the origin. This “flatness” condition
happens then to be sufficient to prevent the finite time formation of a Dirac measure
at the origin in the solutions of .

dK'. (2.1.39)

Theorem 2.1.4. For any nonnegative initial data vo € L'([0,00)) such that:
&0 _r_
Vr >0, / vo (k) (ek3/2 + e"k> dk < oo, (2.1.40)
0
for some n > (1 —6)/2, there exists a nonnegative global weak solution

v € C([0,00), L1([0,))) of that also satisfies

1\ Bg(k,k )@ (k, k")

w(t, k) = vo(k)elo Jo7 (7 —em ) S s b i ds (2.1.41)

)

for allt >0, and a.e. k > 0. Moreover, for allt > 0,

o)l = llvolls, (2.1.42)
tC|
v(t, k) < vg(k)eki”i/%, vVt >0, and a.e.k >0, (2.1.43)
4« Clx
where Cy = Z(1+9) X (vo).

Remark 2.1.5. It follows from ([2.1.43)) that for the solution v obtained in Theorem
2.1.4} v(t) satisfies (2.1.40) for almost every ¢ > 0. That property is then propagated
globally in time.

For a solution v to equation (2.1.39), the moment M,(v(t)) defined in ([2.1.24])
is proved to be a Lyapunov function on [0,00) for all p > 1 (cf. Lemma [2.5.10]).

With some abuse of language, we sometimes refer to M,(v) as an entropy functional
for equation ([2.1.39)). It is possible to characterize the nonnegative measures that
minimize M,(v) for p > 1, or satisfy D,(v) = 0, where

¢ )
/ / kl/jfﬁ IR — ) (WP — K)o (k)u(K')dkdK'. (2.1.44)
0,00)2

This question is solved, usually, at mass M and energy E fixed. Because of the
truncated kernel ®Bg, it is also necessary to introduce the following property about
the support of the measure v in connection with the support of the kernel ®3g.

Given a measure v € .#4([0,00)), we denote { A, (v)}nen the, at most, countable
collection of disjoint closed subsets of the support of v such that,

(k, k') € A, x Ay, for somen € N, if and only if, ®(k, k") # 0 or

3{knnen C [k, K); ki = k, lim ky = K, ®(ky, kny1) # 0 ¥n € N, (2.1.45)
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(cf. Section for a precise definition of A4, (v)).

Let us define now, for any countable collection C = {C),, My, },en of disjoint,
closed subsets C,, C [0, c0) enjoying the property , and positive real numbers
M, the following family of non negative measures,

Feo = {v € M([0,00)) : O = Ap(v), M, = /A ( )v(k)dk}.
Theorem 2.1.6. For any C and o > 1 as above, the following statements are
equivalent:

(i) v € Feo and Dy (v) = 0.
(i1) My(v) = min{My,(v) : v € Fe o}
(iii) v =">"7" Mpoy, , where k, = min{k € A,}.

Remark 2.1.7. For any sequence {x,},en such that x, > 0, z, — 0 as n — oo,
and ®(xy,, ) = 0 for all n # m, the measure

o
u = g 0z,
n=0

satisfies the conditions (i)—(ii) in Theorem Although 0 € suppu, there is no
Dirac measure at the origin.

The long time behavior of the weak solutions of (2.1.39) is yet only partially
understood as shows the following Theorem,

Theorem 2.1.8. Let v be a weak solution of constructed in Theorem [2.5.1]
for an initial data vy € A4 ([0, 00)) satisfying X, (vo) < oo for some n > (1 —0)/2.
Then, as t — oo, v(t) converges in C(]0,00), #4([0,00))) to the measure

o0
p="> My, (2.1.46)
=0

where M] >0, k} > 0 satisfy the following properties:
1. k, € supp(vg) for alli € N,

2. ®(ki, ki) =0 for all i # j,

3. If we define J,={i € N: ki€ A, (vo), M] > 0} for all neN,

>N M = M, (2.1.47)
i€Jn

4. For alln € N, if k, = min{k € Ap(vg)} > 0, then there exists k. such that
K = k.

Remark 2.1.9. If in Point 4 of Theorem kyn = min{k € A, (vo)} = 0 for some
n € N, but vy has no Dirac measure at k = 0, we do not know if k[ = 0 for some
i € N, even if the origin belongs to the support of the limit measure u (cf. Remark

for example).
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The measure u is of course determined by the initial data vy, but its complete
description (i.e. the values of k, and m!) is not known, only the locations k] of some
of the Dirac masses. For example, it is possible to have k = k, = min{k € A, (vo)}
and k; < kj € Ayp(vo) for some n, 7, j in N, and kf, k) not seeing each other, i.e.,
®(k;, k;) = 0 (cf. Example [1} Section m ). The location of a Dirac measure at
ki = z, is just given by the support of the initial data, but the appearance of a
Dirac measure at k; is more difficult to be determined.

The long time behaviour that is proved in Theorem for the solutions of the
simplified equation can not be expected, of course, to hold for the solutions
of the complete equation (2.1.23). But in combination with the equation
for B large, it could indicate that the solutions of the complete problem also
undergo the formation of large an concentrated peaks, that could remain for some
long, although finite, time.

2.1.3 General comment

The main results of the article are stated in this Introduction in terms of the original
variables, t, k, and v(t,k) = k%f(t,k). However, in order to make clearly appear
some important aspects of the equation, it is useful to introduce 7, x, and u(7, ),
variables scaled with the parameter 5. This is a natural parameter since it is related
with the inverse of the temperature of the gas of electrons.. This scaling makes
clearly appear two features of the equation for 8 >> 1, namely, the fact that Bg
is very much peaked along the diagonal, and the different scaling properties of the
quadratic and linear part of the collision integral in (cf. Section for
details).

However, since in all this work the value of the parameter 8 remains fixed, it
is taken equal to one, without any loss of generality. Therefore, except in Section
Bl we have 7 = t, = k and v = v. In particular, for the sake of brevity, we do
not re-write again the main results in terms of the variables = and u, although the
proofs will be written in those terms.

The main results are actually proved for general kernels B satisfying some of the
properties that the truncated kernel ®(k,k")Bg(k, k') is proved to enjoy, and that
are sufficient for our purpose.

2.2 Existence of weak solutions.

In this Section we prove existence of weak solutions to the following problem:

ou
2 (1,2) = Q) = /[ R (2.2.1)
u(0) = ug € A4+([0,00)), (2.2.2)
where t > 0, x > 0,
q(u,u) = u(t,y)(x® +u(t,z))e ™ — u(t, z)(y* + u(t,y))e ?, (2.2.3)
b(z,y) = M, (2.2.4)

Ty
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under the following assumptions on the kernel B:

(i) B(z,y) > 0 for all (z,y) € [0, 00)?, (2.2.5)

(ii) B(z,y) = B(y, z) for all (z,y) € [0,00)?, (2.2.6)

(i) B € C([0,00)2\ {(0,0)}), (227
(iv) There exist 6 € (0,1), 6, > 0 and p. = p«(6,0.) > 0 such that

supp(B) =I'=T1 UT, (2.2.8)

Iy = {(z,y) € 0,00\ [0,6,] : 6z <y < 67"z}, (2.2.9)

Ty = {(z,y) € [0,8.]> : |2 — y| < pi/wy(z +y)} (2.2.10)

(v) There exists a constant Cy > 0 such that, for all (z,y) € T,

+y T+ Ce™s"
T x &
B(z,y) < B( Y, y) < (2.2.11)
2 2 4y
Remark 2.2.1. The region I' in (2.2.8)—(2.2.10) is such that:
L= {(z,y) €[0,00)* : y € (11 (z),12(2)) } , (2.2.12)
where )
2.2 3/2./,2
Zhe 2(fix2x) TS gy e [0, 0]
v (x) = px (2.2.13)
Ox if x € (04, 00),
2, 2 3/2
B et S i e [0,06,]
Y2 () = & (2.2.14)

01w if x € (04, 00).

In particular 6z < y1(z) < 2 < yo(z) < 7'z for all # > 0. The value of p, =
p«(0,0,) is chosen so that v, and 9 are continuous.

Definition 2.2.2. We say that a map u : [0,00) — 44 ([0,00)) is a weak solution

of @21) (€23 if

(1) Vo € Cp([0, 00)), / u(-, x)p(x)dr € C([0,00); R) (2.2.15)
[0,00)
and u(0, z)p(x )dl’—/ uo(z)p(x)dz, (2.2.16)
[0,00) [0,00)

(i) Y € Gy ([0,00)), ¢'(0) =0, (2.2.17)
/[O )u(-, 2)p(z)dr € WE™([0,00); R), (2.2.18)
% u(t, x)p(x)dr = // z,y)q(u, u)(p(x)—p(y))dydz. (2.2.19)

[0,00) [0,00)2

The existence of weak solutions for the problem (2.2.1)), was proved in [29]
under conditions on the kernel b not fulfilled in our case. In order to use that result
in [29], we first consider a regularised version of (2.2.1]), with a truncated function
b, € L>([0,00) x [0,00)).

It is not possible to define the dissipation of entropy for the weak solutions of

(2.2.1) as in [29], for the same reason as for the equation (2.1.23). However, it
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may be defined for the solutions u, of the regularised version of (2.2.1)), with the
truncated kernel b,,,

D™ (uy) = *D(”)(gn) + DY (gn, G) + 2D(”)(G ), (2.2.20)

D" (g,) //0 . n(2,9)7 (2% + gn)e gl (v + gh)e Yg,) dydz,  (2.2.21)
o0
) (gn, Gn) // n(2, )7 (2% + gn)e ™, gne™Y) Gy (y)dydz, (2.2.22)
Ooo

// (,9)7 (7%, e7Y) Gu(y)Gn(x)dydz, (2.2.23)
0 00)2
j(a,b) = (a—b)(Ina —Inb), Va >0,b>0, (2.2.24)

where u, = g, + G, is the Lebesgue’s decomposition of wu,,.

2.2.1 Regularised problem

For n € N, let ¢, € C.((0,00)) be such that 0 < ¢,(z) < 27! for all x > 0,
supp(¢n) = [1/(n+1),n+1] and ¢, () = ! forz € [ /n,n], so that lim,, o ¢p(z) =
2!, Then we define

bn(wv y) = B(ﬂc,y)qbn(m)qzbn(y), (2'2'25)
and consider the problem
ouy,
E(taw) = Qn(umun) = /[O,oo) bn(x7y)Q(un7un)dy7 (2'2'26)
un(0) = ug € A+ ([0,0)). (2.2.27)
If we denote
//[0 (z,y)u(t, z)u(t,y)dydz, (2.2.28)
ko(z,y) = b(z,y)(e™ — e7¥)(o(z) — »(y)), (2.2.29)
1
L,(u) = /[Ooo L, (z)u(t,x)d, (2.2.30)
/ o (z,y)dy, (2.2.31)
lo(z,y) = bz, y)y*e Y (p(z) — (y)), (2.2.32)
then reads
% p(x)u(t,r) = Ky(u,u) — Ly(u), (2.2.33)
[0,00)

and the weak formulation of ([2.2.26]) reads

d

p o) o(x)un(t, ) = Kpp(tn, un) = Lpn(un), (2.2.34)
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where b is replaced by b, in the formulas (2.2.28)-(2.2.32). Since b, € L*([0, 00)?)
for all n € N, Theorem 3 in [29] may be applied (cf. Proposition [2.2.4). For any

u € A([0,00)), we denote u = u, + us the Lebesgue decomposition of u into an
absolutely continuous measure with respect to the Lebesgue measure, u,, and a
singular measure, us.

Remark 2.2.3. By symmetry and Lemma for all ¢ € CL([0,00)),

Koww= [ [ ket ot pdyds.
[0,00) J[0,z)

Proposition 2.2.4. For any n € N and any initial data ug = ug, + uos €
ML([0,00)), there exists a unique weak solution w, = Un r+un s € C([0,00), 41 ([0,00)))
to (2.2.26), (2.2.27) that satisfies

Mo (un(t)) = Mo(uo) vt >0, (2.2.35)
supp(un,s(t)) C supp(uo,s) vt >0, (2.2.36)

and for all ¢ € C.([0,00) x [0,00)),

/ o(t, z)uy(t, x)dx = / (0, z)ug(z)dz (2.2.37)
[0,00)

[0,00)
t t
+/ / got(t,x)u(t,x)da;ds+/ Qn(Un, un)@(s, v)dxds,

and for all t1 and to with to > t1 >0,

” D™ (u, () dt = H (un(t1)) — H(un(t2)). (2.2.38)

t1
Moreover, if ug € L'([0,00)) then u, € C([0,00), L'([0,))).
Proof. Theorem 3 in [29]. O

Remark 2.2.5. In Proposition the space .} ([0,00)) is endowed with the
total variation norm.

Corollary 2.2.6. Let u, be as in Proposition form € N. Then (2.2.34) holds
for allt > 0 and for all nonnegative ¢ € C([0,00)) such that f[o 00) o(x)ug(x)dr <
00.

Proof. Given a nonnegative function ¢ € C([0,00)) such that

f[O,oo) o(x)up(x)dr < oo, let {pr}ren C Ce([0,00)) be such that pr(x) — ¢(z) as
k — oo for all z € [0,00), and @i < @r+1 < @ for all k € N. By with test
function ¢y, and recalling that ¢,, is compactly supported, it is easy to deduce using

Fubini’s theorem, the symmetry of B, and the antisymmetry of g(uy,u,), that for
all k € N,

/[o,oo) Pr(@)un(t, z)dr = / or(x)uo(w)dx

[0,00)

t
+/ (Zppn(tn, tn) = Ly n(un))ds. (2.2.39)
0
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Using again that ¢,, is compactly supported, we can pass to the limit as kK — oo in
(2.2.39) by monotone and dominated convergence theorems to obtain (2.2.39)) with
@ instead of wy.

Now, since u, € C([0,00),.#1([0,00))), where the topology on .#1([0,00)) is
the total variation norm, it follows that the maps

t = Kon(un(t),un(t)), t+ Lon(un(t))
are continuous for all n € N and all ¢ > 0. Then (|2.2.34)) follows from ([2.2.39)) with
p istead of ¢, by the fundamental theorem of calculus. O
2.2.2 The limit n — oo

The goal now is to pass to the limit as n — oo in (2.2.34]) and obtain a weak solution
of (2.2.1)—(2.2.11)). We start with the following uniform estimate.

Proposition 2.2.7. Let u, and ug be as in Proposition |2.2.4. If X,(ug) < oo for
some n € (0,1/2), then for allt > 0 and alln € N,

X,y (un(t)) < et X, (up) (2.2.40)

where Cy, is defined in .
Proof. Let n € (0,1/2) and take ¢(x) = €™ in (2.2.34]), which is allowed by Proposi-
tion If we drop all the negative terms in (2.2.34)), we use (A.0.2)) in Appendix

(for C! functions instead of Lipschitz functions), and ¢, (z) < 2!, then

4 e (t, z)dr < 1/ un(t,x)/ [y (z,y)|dydx
dt 2 [0,00) z
Ci(1-10) e [0, 0
< — 7
< ST 0] /{0 ualt el | ety

<C, e uy(t, x)dz,
[0,00)

from where (2.2.40) follows using Gronwall’s inequality. O
We prove now the following pre-compactness result of {u,, (t) },en for any fixed ¢ > 0.

Proposition 2.2.8. Let u,, and ug be as in Proposition[2.2.4. Then, for every fized
t > 0, there exist a subsequence of {u,(t)}nen (not relabelled) and U € .4 ([0,0))
such that, for all ¢ € Cy([0,00)),

lim o(x)un(t, x)dx = / o(z)U(x)dx. (2.2.41)

e J10,00) [0,00)
Moreover, if uy satisfies X, (up) < oo for some n € (0,1/2), then

X, (U) < e“"" X, (u), (2.2.42)
where Cy is defined in , and (2.2.41)) holds for all ¢ € C([0,00)) satisfying

the growth condition

lo(x)] < e Vael0,00), c>0,0<a<n. (2.2.43)
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Proof. By (2.2.35), the sequence {uy(t)}nen is uniformly bounded in .Z4 ([0, 0)),
and thus has a subsequence, still denoted uy,(t), that converges to some U € .#, ([0, 0))

in o(A(]0,00)),Co([0,00))) (the weak™ topology), i.e., (2.2.41) holds for all ¢ €
Co([0,00)). Moreover, if (; € C.([0,00)) is such that 0 < ¢; < 1, (j(x) =1 for all
z € [0,7] and (j(x) =0 for all > j + 1, so that (; — 1, then by weak™ convergence

and (2.2.39)),

/ ¢j(z)U(z)dx = lim Gi(z)un(t, x)dz
[0,00)

n—o0 [0700)

< lim un(t, Qj‘)dl’:/ uo(x)dz,
[0,00) [0,00)

n—o0

and then, as 7 — oo,

/ Ux)dx < / up(x)dx. (2.2.44)
[0,00) [0,00)

Suppose now that ug satisfies ([2.1.28]) for some n € (0,1/2), and let ¢(z) = €™
and 1; = ¥(;, where (; is as before. Then, by weak™ convergence and Proposition

227

Yj(x)U(z)dx = lim Vi) un(t, z)dx

[0,00) 700 J[0,00)

< lim inf/ e un(t, z)dr < ec"t/ e™uy(x)dz,
[0,00)

n—oo

and letting 7 — oo, ([2.2.42)) holds.
Let now ¢ € C([0, 00)) satisfying (2.2.43)), and define p; = ¢(;, with (; as before,
so that ¢; — ¢ pointwise as j — oco. Then, for all j € N,

[0,00)

‘ /[0 - (@) tn (t, ) dz — / () U(2)d
<

(2.2.45)

/[o,oo) ps(@)un(t, z)de = / oj(x)U(z)dz

[0,00)

¥ /[Om) o0~ pi@unlt o+ [ Jola) iU (@)

[0,00)

By (2.2.41)), the first term in the right hand side above converges to zero as n — oo
for all j € N. We just need to prove that the second and the third terms are
arbitrarly small (for j large enough). Both terms are treated in the same way. We

use that ¢; = ¢ on [0, j], (2.2.43), and Proposition to obtain
J 1@ i@t e = [ o) — gy, 2)ie

(4,00)
<2 el <2e [ @t
(4,00) (j,00)

< 2ce(a”)j/ e u,(t, z)dr < 2ce(a”)jecnt/ e ug(x)dz,
(J:00) [0,00)
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and by similar estimates, and ([2.2.42)),
/[ )]go(m) — (@)U (z)dx < QCe(a_”)jeC"t/[ )emu()(a:)d:n.
0,00 0,00

Since a < 1, both terms converges to zero as j — oo. O

The equicontinuity of {uy, },en in the narrow topology is proved in the following
Proposition.

Proposition 2.2.9. Let u, and ug be as in Proposition and suppose that
Xy (up) < oo for some n € [1 0. ;) Then, for alln € N, ¢ L-Lipschitz on [0, 00),
0<T <o0andt, ty€[0,T],

< Cuo, Tt —to],  (2.2.46)

/[(),oo) o(x)un(t, z)dx —/ () un (to, z)dx

[0,00)

where

X(1—8) (UO),

1-— TC (1_
C(uo,T) = LC, [AMO(UO) ) ] a0
2

202(1+0)] °
and A is given in . In particular, the sequence {up}nen 1S equicontinuous
from [0, 00) into A+ ([0, 00) with the narrow topology.

Proof. Let ¢ be L-Lipschitz, 0 < T' < oo and let ¢, ty € [0,7] with 9 < t. By
22.34)

’/{0700) @(x)un(t,x)dx—/ () un(to, ) da

[0,00)

< [ (61 D)+ (5D ) (22.47)

to

By (A.0.5), Remark (2.2.35)), and Proposition [2.2.7]

t t
| K (un(s), un(s))|ds < LC,AMo(uo) | Xa-o) (un(s))ds
to to 2
tC (19

< LC*AM(](U())G 2 X@ (’U,())(t — to), (2248)

2

and by (A.0.6) (positive part only), Remark and Proposition [2.2.7]

/ |Lyn(un(s))|ds < 292((1+;)) X@(un(s))ds
< 292((11;90)) — " X o) (u0)(t — to). (2.2.49)

Using (2.2.48)) and ([2.2.49) in (2.2.47)), the estimate ([2.2.46)) follows. For the equicon-
tinuity, let € > O and consider § < ¢/C(uo,T). By (2.1.26)), (2.1.27), if we take the
supremum on among all ¢ € Lip,([0, oo)) with ||¢]lec < 1, we deduce that
for all t € [O,T], to € [O,T] such that |t —to| < J, then do(un, (), un(to)) < € for all
n € N, that is, {up nen is equicontinuous on [0, 7. O

As a Corollary of Proposition [2.2.8 and Proposition 2.2.9] we obtain that a
subsequence of {up }nen converges to a limit w in the space C([0,00), . ([0,00))).
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Corollary 2.2.10. Let u, and ug be as in Proposition |2.2.4), and suppose that

Xy (ug) < oo for somen € [1;29, %). Then there exist a subsequence of {uy }nen (not

relabelled) and u € C([0,00), #+([0,00))) such that
li_>m do(un(t),u(t)) =0 ¥t >0, (2.2.50)

and the convergence is uniform on the compact sets of [0,00). Moreover,

X, (u(t)) < e X, (ug) ¥Vt >0, (2.2.51)
where Cy, is given in , and for all p € C([0,00)) satisfying ,
lim o(x)up(t, x)de = / o(x)u(t,x)dz Yt > 0. (2.2.52)
=00 J10,00) [0,00)

Remark 2.2.11. (2.2.50)) implies that, for every ¢ € Cy([0, 00)),

lim sup
N0 ¢y <t<to

/ up (t, x)p(x)dx —/ u(t, z)p(x)dx| = 0. (2.2.53)
[0,00) [0,00)

Proof. By Proposition the sequence {uy, }nen is relatively compact on
(A+([0,00)),dp), and by Proposition the sequence {uy, }nen is equicontinuous
from [0, 00) into (A4 ([0,00)),dp). Then, from Arzela-Ascoli theorem, wu,, converges
pointwise (for all ¢ > 0) to a continuous function u, and the convergence is uniform
on compact sets. Since the metric dg generates the narrow topology, and the con-

vergence in (2.2.50)) is uniform on compact sets, then (2.2.53)) follows. The estimate

(2.2.51)) and the limit (2.2.52)) are obtained as in Proposition since the time ¢
is fixed. O

We prove now that the limit u of the sequence {uy, },en is indeed a weak solution

of @21) @23

Corollary 2.2.12. Given any vo € #,([0,00)) satisfying (2.1.28) for some n €
(152, 1), there exists v € C([0,00), . #4([0,00))) weak solution of 42.2.1)742.24),
that also satisfies and (2.1.34).

Proof. Let {uy}nen be the sequence of solutions for the regularised problem ,
(2.2.27). By Corollary a subsequence of {uy}nen converges to a limit u €
C([0,00), #+([0,00))). Since u is continuous from [0, 00) to (.Z4([0,0)), dy) and dy
generates the narrow topology, then holds. Next, we prove that u satisfies

(2.2.16)(2.2.19). To this end, let ¢ € C}([0,00)) with ¢'(0) = 0. By (2.2.34), for

allm € Nand all £ > 0,

/ o(x)uy(t, x)de = / o(z)up(z)dx (2.2.54)
[0,00)

[0,00)
+ /Ot <K¢,"(un(8),un(s)) - Lp,n(un(s))>d37

and our goal is now to pass to the limit as n — oo term by term. By (2.2.53]), for
all ¢t > 0,

lim o(z)up(t, x)dx :/ e(x)u(t, z)dx. (2.2.55)

=0 J10,00) [0,00)
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Let us prove that for all £ > 0,

T Lo (un(t)) = Li(u(t)), (2.2.56)
T Ko (un(t), un () = Koo (u(t), n(t). (2.2.57)

Starting with (2.2.56), we have
| Lo () = Lip ()| <[ L) = Lip(utn)| + [ Lip (1) — Ly (). (2.2.58)

Since L, € C([0,00)) and L, satisfies the growth condition (2.2.43) with a =

(1-6)/2, (cf. Lemma[A.0.1)), then by ([2.2.52)) the first term in the right hand side
of (12.2.58)) converges to zero as n — co. For the second term we have, for any R > 0,

|Lip(tn) — L (un)| < /[O . Lo () — Loy ()| un(t, z)dz

+/ |Lo(x) — Lon(x)|un(t, z)de.
(R,00)
On the one hand, using ([2.2.35)),

/[ 1£25) = L@t 2)d < Mo(u0) |5 — Lo
07

le(o,R):
which converges to zero as n — oo by Lemma On the other hand, by (A.0.3)),

[ 1eae) ~ Lon@lunltinde <2 [ |L(@)un(t,2)do
(R,00) (R,00)

<C e Up (t, x)dr < C’eR(lze_”)/ e uy,(t, z)dz, (2.2.59)
(R,00) (R,00)

where C = %, and by Proposition [2.2.7| we deduce that (2.2.59) converges to

zero as R — oo. That concludes the proof of (2.2.56)).
In order to prove (2.2.57)), we use

]K¢(u,u) - K%n(un,un)‘ < ]Kw(u,u) - K%’(unaun)‘
+ | Ko (U, tn) — Kopn(Un, tn)|. (2.2.60)

Then, for the first term in the right hand side of (2.2.60)), given R > 0, we use
J[ helwyutoyut)dyds
[0,00)2

= (// +// - // >k“"(x’y)“($)U(y)dydx,
[0, 72 r1(R),00)? [ (R).R]
to deduce

|Kop(u, u) = Ko (un, un)| < I + Io + I, (2.2.61)

L = // kou(x)u(y)dydx — // kpun(x)un (y)dydx
[0,R] [0,R]?

I = // kou(x)u(y)dydx — // kpun (x)un (y)dydx
[v1(R),RJ? [v1(R),RJ?

I3 = // kou(z)u(y)dydr — // kot (2)un(y)dydz
[y1(R),00)? [v1(R),00)?

)

Y
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Since k, € C([0,00)?) (cf. Lemma , then by Stone-Weierstrass theorem,
k,(z,y) can be approximated on any compact subset X C [0,00)? by functions of
the form ¢y (x)2(y), with ¢; € C(X) for i = 1,2. By Tietze extension theorem
we may assume that ¢; € C([0,00)) for ¢ = 1,2. Then, using that u, converges
narrowly to u, we deduce that for any € > 0, R > 0, there exists n, € N such that
for all n > n,

I <e, I <e. (2.2.62)

Then, for I3 we have the following.

I3 < //[71(R),oo)2 ko(z,y) (u(a:)u(y) + un(:c)un(y))dydx, (2.2.63)

and by (A0.1), calling C = ||/« C A,

// kou(t, x)u(t,y)dydx < C / e u(t, x)u(t,y)dydz
[ [v1(R)

(R),00)? ,00)2
(1—-0)z
<2C e 2 ult, x)/ u(t,y)dydx
['Yl(R)7OO) ['YI(R)vx]
< 20X, (u(t)) / u(t, y)dy. (2.2.64)
[’Yl(R)voo)

We now use that for all x > 0, ¢t > 0, there exists R > 0 such that

1
u(t,y)dy < / yu(t,y)dy
/wm} N(R) a1 (R) 00)
1 / et X, (uo)
< eMu(t,y)dy < ——L—=, 2.2.65
Y1(R) Sy (R),00) (t:9) 71 (R) ( )

where we have used (2.2.51)). Using (2.2.65]) in (2.2.64)), and (2.2.51)) again,

20t (X, (ug))?
kou(t, x)u(t, y)dydr < . )
//["/1(1%),00)2 ottt 2jult, 4)dy 71 (R)

and the same estimate holds when u is replaced by u,. We then obtain from ([2.2.63])
that, for any € > 0, there exists R > 0 such that I3 < € for all n € N. Combining

this with (2.2.62)), we then deduce from ([2.2.61]) that for all ¢ > 0
lim |K,(u(t),u(t)) — Ky(un(t),un(t))| = 0. (2.2.66)

n—o0

Now, for the second term in the right hand side of (2.2.60]), we have

|Ks0(un7 Up) — Kw,n(um Up)|

< / / e )11 — 2y (2) () 1t ) (8, )y,
[0,00) J[0,7]

and we decompose the integral above as follows:

n px oo n min{m,%}
N A A A A A (2.2.67)
[0,00) J/[0,z] 1 JL n Jo 0 Jo
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It plays no role in the argument whether the limits of integration are open or closed,
so we use the standard notation for integrals. By definition ¢,(z) = z~! for all
z € [1/n,n], and then
n x
[ [ el = ayn@én(u)lun b 2)un b p)dydz =0,
Now, by (A.0.5) and (2.2.35|),

/noo /Ox o (2, ) |t (£, )t (£, ) dydac

< LC, AMy(uo) / e un(t, ) dx

n

SLC*AMO(uo)e”C?G”)/ e uy(t, z)dz,

n
and from Proposition we deduce that it converges to zero as n — oo. For
the las term in the right hand side of , we argue as follows. Let us define
zn = v2(1/n) and D,, = [0, x,] x [0,1/n]. Notice that z,, — 0 as n — oco. Then by
2239)

n min{ac,%}
/0 /0 o, Y111 — 2y (@) (9)ltn (b, ) (£, y)dyede

< max |ko(z,y)|Mo(ug)?.
_(x’y)eDnl (2, y) | Mo(uo)
Since k,(0,0) = 0 and k,, is continuous (cf. Lemma |A.0.3), then k,(x,y) — 0 for
all (z,y) € D,, as n — oo. That concludes the proof of (2.2.57)).
From the limits (2.2.56)), (2.2.57)), the uniform bounds ([2.2.48]), (2.2.49)), domi-
nated convergence theorem and ([2.2.55)), we obtain

/[0,00) @(x)u(t,x)dx:/ o(@)uo(z)dz

[0,00)

+/Ot (K(p(u(s)’u(s))+Lw(u(s))>d5. (2.2.68)

The identity (2.2.16)) then follows from (2.2.68]) for ¢ = 0. It follows from Proposition
by passage to the limit as n — oo, that for any ¢ € CL([0, 00)) with ¢/(0) = 0,
the map t — f[O,oo u(t, z)p(x)dx is locally Lipschitz on [0, 00), i.e., (2.2.17) holds,
and then from (2.2.68)), the weak formulation (2.2.19) follows. Taking ¢ = 1 in
(2.2.19)), we obtain ([2.1.33)). The estimate (2.1.34)) is just (2.2.51]). O

Remark 2.2.13. Because of the exponential growth of the kernel B, an exponential
moment is required on the initial data ug. This exponential moment is propagated
to the solution for all £ > 0. Using that exponential it easily follows that for any
p>1,if M_,(up) < oo, there exists a constant C7 > 0, and a non negative locally
bounded Cs(t) such that,

4

2
u(t,x)z Pdx < C4 (/ u(t,x)x%lx) + Cao(t),
[0,00)

from where it follows that M_,(u(t)) < oo for ¢ in a bounded interval.

Proof of Theorem [2.1.2] . Theorem follows from Corollary [2.2.12] since the
function b(k, k') = i—g? satisfies 72.2.11 O
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2.3 The singular part of the solution.
If w is a weak solution of (2.2.1)—(2.2.11)) obtained in Theorem for all ¢ > 0, the

measure u(t) may now be decomposed by the Lebesgue’s decomposition Theorem
as

u(t) = g(t) + a(t)do + G(t) (2.3.1)
g(t) € LY([0,00)), a >0, G(t) L dz, G(t,{0}) =0 (2.3.2)

In this Section we give some properties of u, o, and G.

We first notice that the weak solution u of f obtained in Theorem
satisfies the equation in the sense of distributions. This follows from
the properties of the support of the function B and Fubini’s Theorem. A similar
argument may be used for slightly more general test functions ¢. To be more precise,
let us define the set

€ = {cp € Cp(]0,00)) : ig% ’igg‘ < oo}. (2.3.3)

Proposition 2.3.1. Let u be a solution of —(2.2.11) obtained in Theorem
[2.1.9 Then, for almost everyt > 0, du/0t € 9'((0,00)), Q(u(t),u(t)) € Z'((0,00)),

and

Yo € Col(0,00)), 5 (ult). o) = (Qu(t), u(9), o). (2.3
Moreover,
Vo e, %W(t%@ = (Q(u(t), u(t)), ¢), (2.3.5)
where

Qi) u®) = [ bl — e 2yutt. )
—u(t,x)y?e Y +ult, y)xze*x] dy. (2.3.6)

Remark 2.3.2. Notice that in (2.3.6)), the integral containing the factor (e™* —e™Y)
is convergent near the origin even for test functions ¢ € €\ C.((0,00)). That is not
true anymore if we consider each of the terms e™ and e™¥ separately.

Proof. By (12.2.8)—(2.2.11]) and ([2.1.33)),

B
/ lo(x) <w7y)E(x,y)dyda¢ < 00,
[0,00) [0,00) TY

where E(x,y) is one the functions in
{ul)e?e™ u(@)?e™, u@)uly)e™, u@)u(y)e™ |
when ¢ € C}((0,0)), or, one of the functions in

{u@ule =™, u@)y?e ™, u(y)a’e ™ }
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when ¢ € ¥NCL([0,00)). Since u is a weak solution and satisfies (2.2.19)), we deduce
from Fubini’s Theorem the identity (2.3.4) for ¢ € C}((0,00)), and the identities

(2.3.5)-(2.3.6) for ¢ € € N CL([0,00)). By a density argument the Proposition
follows. o

We may prove now the following property of the singular measure G(t).

Theorem 2.3.3. Let u be a weak solution of (2.2.1)—(2.2.11]) obtained in Theorem

and consider the decomposition (2.3.1), (2.3.9). If G(0) = 0 in 2'((0,00)),
then G(t) =0 in 2'((0,00)) for all t > 0.

Proof. By (2.3.4)), for a.e. t > 0 and for all ¢ € C.((0,00)),

4

u(t, 2)p(x)d = / (@) Q(u(t), u(t)) (x)dr,

[0,00)

and then, after integration in time:

/[o,oo) {u(t,x) —u(0,z) — /Ot Q(u(s), U(S))(x)ds} o(2)dz = 0

for a.e. t > 0. If we plug now u = g + adp + G in this formula and use that
¢ € Cc((0,00)), we obtain for a.e. t > 0,

[, o0+ 6@ =00 - 60 - R - 0}ty =0

where
R(t,x) :/0 (g(s,a:)W(s,x)%—x%‘z /[07oo)b(x,y)u(s,y)dy>ds, (2.3.7)
S(t,x):/o G(s, )W (s, z)ds, (2.3.8)

Wi(s,xz) = /[0700) b(x,y)(e ™ —e Yu(s,y)dy —/ b(z, y)y’e Ydy. (2.3.9)

[0,00)

It follows that, for a.e. t > 0,
g(t) + G(t) — g(0) — G(0) — R(t) — S(t) = 0 in 2'((0, 0)). (2.3.10)

Let us prove now that R(t,-) € L} ((0,00)) for all ¢ > 0. To this end, we first show

loc

that W (t, ) € LS.((0,00)) for all £ > 0. Let then x be in a compact set [a, c], with
0 <a<c<oo,and let t > 0. Using that supp(b) =T C {(z,y) € [0,00)? : fz <
y < 671z}, the bound , and that x € [a, (], it is easily proved that there
exists a constant 0 < C < oo that depends only on a, ¢, # and C, such that for all

(xz,y) € I with = € [a, ],
b(z,y)le " —e Y| <C and b(x,y) max{z?, y?} < C. (2.3.11)
We then obtain from ([2.3.9)) that for all ¢ > 0, = € [a, c],

(W (t,z)| < C(Mo(u(t)) + 1),
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and by the conservation of mass ([2.1.33)),
sup W (t, )l Lo (fare)) < C(Mo(uo) + 1). (2.3.12)

Using now (2.3.11)), (2.3.12)) and ([2.1.33]), we deduce from ([2.3.7)) that for all ¢ > 0,
x € [a,d],

t
R(t, )| < C(Mo(uo) + 1) / o(s, 2)ds + C Mo (uo)t. (2.3.13)
0
Then, since sup;>q [|g(t, )L (o) < SuPi>o Mo(u(t)) = Mo(ug), it follows from
that
”R(t, ')HLl([a,c]) < C(MQ(UO) + 1)M0(u0)t + (C - a)CMg(uo)t. (2.3.14)

On the other hand, using the Lebesgue decomposition Theorem, we have for all
t>0:
S(t) = Sac(t) + Ss(t),  Sac(t) € L'([0,00)), Ss(t) L da.

Using this decomposition in ([2.3.10), we deduce that for a.e. ¢ > 0,
9(t) = 9(0) = R(t) = Sac(t) = —=G(t) + G(0) + Ss(t) in Z'((0,00)).

Since the left hand side is absolutely continuous with respect to the Lebesgue mea-
sure and the right hand side is singular, we then obtain for a.e. ¢ > 0,

g(t) = g(0) + R(t) + Sac(t)  in  Z'((0,00)),
Glt) = GO) + Ss(t) i Z'((0,00)).
Then, for all ¢ € C.((0,00)) and a.e. t > 0,
/ o(2)G (¢, 2)dz = / o(2)G(0, 2)da + / o(2)S(t )z, (2.3.15)
[0,00) [0,00) [0,00)

We use now that for all nonnegative ¢ € C.((0,00)), t > 0,

/ o(x)Ss(t, x)dx < / o(x)|Ss(t, x)|dx < / o(x)|S(t, z)|dx, (2.3.16)
[0,00) [0,00) [0,00)

where |Ss(t)| and |S(t)| are the total variation measures of Ss(t) and S(t) respec-
tively. Then, if ¢ > 0 and supp(y) C |a,c| for finite ¢ > a > 0, we deduce from
£3.8), @.3.12) and (2.3.16) that

[, e@s e < [l / PG5, ) duds
< C(Mp(up) + 1) / /[0 G(s,z)dzds,
and then, we obtain from that, for a.e. t > 0,
/[0 )gp(x)G(t,x)dac S/[o )cp(x)G(O,x)d:c

+ C(Mo(up) + 1)/ /[0 )go(:c)G(s,a:)da:ds.
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Then by Gronwall’s Lemma,
/ o(x)G(t,x)dx <
[0,00)
< ( / go(x)G(O,x)da:) <1+C(M0(u0) + 1)teC(M°(“°)+1)t>.
[0,00)

We deduce that, if G(0) = 0, then f[o o) o(x)G(t, z)dx = 0 for every ¢ € C.((0,00))
and then, G(t) =0 in 2/'((0,00)) for a.e. t > 0. O

Remark 2.3.4. If a(0) = 0, we do not know whether or not «(t) = 0 for a.e. t > 0.

2.3.1 An equation for the mass at the origin

We can obtain information of the measure at the origin u(¢,{0}) from the weak
formulation (2.2.19)), by choosing test functions like in the following Remark.

Remark 2.3.5. Let ¢ € C}([0,00)) be nonincreasing with supp ¢ = [0, 1], (0) = 1
and ¢'(0) = 0. Then, let p.(x) = p(z/e) for € > 0. It follows from (2.1.33) and
dominated convergence that for all ¢ > 0,

lim ve(x)u(t, x)dr = u(t, {0}). (2.3.17)

e—0 [0,00)

Proposition 2.3.6. Let u be a weak solution of —(2.2.11) obtained in Theo-
rem[2.1.9, and denote a(t) = u(t,{0}). Then « is right continuous, nondecreasing

and a.e. differentiable on [0,00). Moreover, for all t and to with t >ty > 0, and all
©e as in Remark[2.3.5, the following limit exists:

t

;ig(l] t Ko, (u(s),u(s))ds, (2.3.18)
and
a(t) = a(ty) + il_I}I(l) K, _(u(s),u(s))ds. (2.3.19)

to

Proof. Let us prove first (2.3.19)). Using ¢, in (2.2.33)), we deduce by (2.3.17)) that

for all £ and tg with ¢ > tg > 0, the following limit exists:

lim [ (K (u(s), u(s)) — L. (u(s))) ds.

e—0 to
and moreover
t
a(t) = a(ty) + lig(lJ (Kop. (u(s),u(s)) — Ly, (u(s)))ds. (2.3.20)
€ to
We claim
t
lim [ Ly, (u(s))ds =0. (2.3.21)
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In order to prove (2.3.21]), we first obtain an integrable majorant of L, (u(s)), and
then we show

lim Ly, (u(s)) =0 Vs >0. (2.3.22)

e—0

Taking into account I', the support of ¥, (z,y) = ¢-(z)—¢-(y), and using L,_(0) =0
(cf. Lemma [A.0.1)), we have

—1

/ / z [ (2, y)|dydz

/ |€ (z,y)|dydz. (2.3.23)
Since

< #'lloo
o) - ) = [ ez < =)y

€

then by (A-0.2)

C z—y C (1 9)
< = [l S
oyl < 2 o= g 1o

™

and from (2.3.23)) we deduce

o)z o1,
Bt < 2| [ uta) (3 -5
0,e

3

(1-0)x (1-0"1z) —1_ 1-0)z  (1-0)z z—e _ (1-0)z
Wenowusee 7 —e 7= < ¢ 29)% 2 ,e 2 —e 2 3(629”% z, and

(2.2.51)) to obtain, for all £ > 0,

(1-0)x

L (u(s))] < (671 — 6) /(0 o, )e e

(1-6)x
+ (1 —9)/ u(s,x)e 2 dx

(1-0)z

<c(0 ' -0 /(0 e 2 u(s,z)dx

<! - 9)630(1_9)/2/ et uo(x)dx. (2.3.24)
[0,00)

The right hand side above is independent of ¢, and it is clearly integrable on [0, ¢],
for all £ > 0.
Let us prove now (2.3.22)). If we prove

lim L, (x) =0 Vx>0, (2.3.25)

e—0

then by (2.3.24)) and dominated convergence, ([2.3.22)) follows. Therefore we are left
to prove (2.3.25). On the one hand, since L, (0) = 0 for all € > 0 (cf. Lemma
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A.0.1), then lim. 0 L,.(0) = 0. On the other hand, for all z > 0 and y € [0,0),
the function £,_(z,y) is well defined and

31_13(1)&05 (xz,y) =0. (2.3.26)
Moreoever, by (2.2.11))
€. (@,9)] < Bla,y)Ze ¥ (pe(2) + ¢2(y)) < 2C ve > (2, y)
Pe Yy Y PelT Pe\Y)) = *x(x+y) r\,y),

and then

-1
/oo o (2, y)|dy < 20*6(1_26)“/0 Y dy
0 T Joz THY

aox (070
=2C,e 2 / dz < +00. (2.3.27)
0 1+2

It follows from ([2.3.26)), (2.3.27) and dominated convergence that L, (z) — 0 as
€ — 0 for all x > 0, and then (2.3.25)) holds. That proves ([2.3.22)), which combined

with (2.3.24]) and dominated convergence, finally proves (2.3.21)). Using (2.3.21)) in
(2.3.20]), then the limit in (2.3.18]) exists and (2.3.19]) holds.

Since K, (u,u) > 0 for all ¢ > 0, it follows from that « is monotone
nondecreasing, and then a.e. differentiable by Lebesgue Theorem.

We are left to prove the right continuity of a. Since « is nondecreasing, we
already know

a(t) < lim 1nfa(t + h), (2.3.28)
h—0t
so it is sufficient to prove
limsup a(t + h) < a(t). (2.3.29)
h—0t+

To this end, let . as in Remark Using a(t + h) < f[o o) Pe(@)ult + h,x)dz
and (2.2.33)) with (., we have

t+h

a(t+h) S/ e (x)u(t, x)dx + / (Kp. (u(s),u(s)) + Ly (u(s)))ds.
[0,00) t

From Proposition |A.0.4]and (2.2.51)), we deduce that K,_(u(s),u(s)) and Ly_(u(s))

are locally integrable in time for every fixed € > 0, so letting h — 0 above, and then

€ — 0, we finally obtain (2.3.29)). The right continuity then follows from (2.3.28))

and (|2.3.29)). O

Remark 2.3.7. By a standard approximation argument, it is possible to use 1y .) as
a test function in . Then, by similar arguments as in the proof of Proposition
m it can be seen that equation also holds when . is replaced by 1o,
and then, for all ¢t >ty > 0,

at) = alty) + lim / / / BY) (o _ ovyu(s, wyus, y)dydads,  (2.3.30)

e—0

where D, = [g,72(¢)) X (11(x), €).
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2.4 On entropy and entropy dissipation.

Suppose that u is the weak solution of (2.2.1)) with initial data u;, given by Theorem
and {uy, }nen is the sequence given by Proposition 2.2.40 Then, if H is the

entropy defined in (2.1.36) and D are the functionals defined in (2.2.20), the

same calculations as in Section 2 and Section 6 of [29] yield

/ D™ (u,, (t))dt < H(Upr) + Cl/ (1 + 2)uim(x)dz, Vn € N
[0,00)

where Uy is the unique equilibrium with the same mass than w;,, M = Mg(up).
Since the sequence of functions {by, }nen is increasing,

/ D) (u, (t))dt < H(Upy) + Cl/ (14 z)uin(x)dx, Yn > m.
[0,00)

Therefore, by the weak lower semi continuity of the function D,, (cf. Theorem 4.6
in [29]), and the weak convergence of u,, to u:

/ Dm ))dt < H(Upy) + Cl/ (14 2)ujn(x)dz, Ym e N

[0,00)

However, it is only possible to obtain a partial characterization of the measures
u € M, ([0,00)) with total mass M and such that D) (u) = 0 for all m € N.

Proposition 2.4.1. A measure v € A ([0,00)) with total mass M > 0, satisfies
D™ (u) = 0 for all m € N, if and only if, there exists p < 0 and o > 0 such that
u =g, + ady and fooo gu(x)dx + o = M, where

1’2

Proof. Tt is straightforward to check that if u = g, + adp for some ;4 < 0 and o > 0,
such that [~ g, (z)dz+« = M, then D) (y) = 0. On the other hand, if u = g+ G
is the Lebesgue decomposition of u and D™ (u) = 0, then ng) (9) = Dém) (9,G) =

Dém)(G) = 0. From D§m) (g) = 0 it follows that, for a.e. (z,y) € [0,00)2,

bun(2,9)5 (9 (@2 + g)e ™", g(y* + g)e ") = 0. (24.2)

Since by, (x,y) > 0 for (z,y) € I'.,, for all € > 0 and all m € N, where

Pem = {(@,9) €T d((2,9),0) > &, (x,) € <;m) X <;m> 3

we deduce from (2.4.2)),

glz)e®  g(y)e
2 +g(z) ¥ +g(y)

and both terms must then be equal to a nonnegative constant, say v. If v = 0, then
g=0fora.e. z>e. Ify>0,theny=e" for some p € Rand g = g, for a.e. x > ¢.
Letting ¢ — 0 we obtain that either g = 0 or g = g, a.e. in (0,00) and, since g > 0,
then p <0.

T

€. (.Z',y) G F&ma
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From D:gm)(G) = 0 for all m € N, we obtain that j(e™®,e™¥) = (e™® —e7Y)(x —
y) =0 for G x G a.e. (z,y) € 'z . Letting € — 0, we deduce that

G=> aib,, (2.4.3)
=0

for some a; > 0, x; > 0 with by, (x;, ;) = 0 for all i # j, and all m € N.
From Dém) (9,G) =0, 9 =g, and G as in lb we deduce that, for all m € N,

Dém) (9,G) = Zai(l‘i —p) (et —e ™) /0 b (x, 23) g, (z)dx = 0,
i=0

and therefore, each of the terms in the sum above is zero. If a; > 0 and x; > 0 for
some i € N, it then follows that ;1 = x;, which is a contradiction since p < 0. Hence
G = ady for some o > 0. OJ

Remark 2.4.2. The measure u in the statement of Proposition [2.4.1|is not uniquely
determined because, since by, (x,0) = 0 for all > 0, it is possible to have p < 0 and
a > 0.

2.5 A simplified equation.

There may be several reasons to consider the following simplified version of equation
@.1.15), [@.1.16):

%(t’ 7) = ult,z) /OOO R(z,y)u(t, y)dy, (2.5.1)
R(z,y) = b(w,y)(e™" — ). (2.5.2)

Although the integral collision operator in ED only contains the nonlinear terms
of the integral collision operator in @ , it may supposed to be the dominant
term when w is large. This was the underlying idea in [76] and [77], when such
approximation was suggested. Let us also recall that, as shown in Section
in Appendix if the variables k,t and f are suitably scaled with the parameter
[ to obtain the new variables z,7 and u (cf. and ), the equation
(2.1.15)), (2.1.16) yields equation , where the dependence on the parameter
8 > 0 has been kept. Then, the reduced equation appears as the lower order
approximation as § — oo.

Due to its simpler form, the study of is slightly easier. The existence
of solutions u € C([0,0), L'([0,0))), that do not form a Dirac mass at the origin
in finite time, is proved (cf. Section and it is also possible to describe the
long time behaviour of the solutions. Both questions remain open for the equation

@.1.15).

2.5.1 Existence and properties of weak solutions.

In this Section we prove the following result on the existence of weak solutions of

the equation (2.5.1), (2.5.2).
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Theorem 2.5.1. For any initial data ug € #+([0,00)) satisfying

X, (ug) < 0o for some 1> % (2.5.3)
there eists u € C([0, 00), .4+ ([0, 50))) such that:
(i) Yo € Cy([0, ). /[0 _rempta)d € O, (2.5.4)
and /[Om) (0, 2) () da = / o (@) (x)da,

[0,00)
(i1) Yo € C5([0,00)), ¢'(0) =0,

/ u(,x)p(x)dr € Wﬁ)’:o([o, o0);R), and for a.e.t > 0,
[0,00)

1

G [ utop@is =5 [[ Reputauenew - sw)dps. 259

[0,00) [0,00)2

(We will say that u is a weak solution of with initial data ug). The solution
also satisfies,

Mo(u(t)) = Mo(ug) Yt > 0, (2.5.6)
X, (u(t)) < X (up) 'Vt > 0.

This result is similar to Theorem for the equation ([2.2.1)—(2.2.11)), and its

proof uses similar arguments. The main difference is that Theorem 3 in [29] can not
be used to obtain approximate solutions, and this must be done using a classical
truncation argument. Let us then consider the following auxiliary problem:

T ) = ualte) [ Rl shuatny 253
un (0, ) = Uin(x) (2.5.9)
Ry(z,y) = bu(z,y) (e —e™Y) (2.5.10)

where b,, is defined in (2.2.25)).

Proposition 2.5.2. For every n € N and for every nonnegative initial data u;, €
LY([0,00)), there exists a nonnegative function

un € C([0, 00), L1([0,00))) N C*((0, 00), L' ([0, 00)))

that satisfies (2.5.8) and (2.5.9) in C((0,00), L*(]0,00))) and L'([0,00)) respectively
and is such that,

Mg(un(t)) = Mo(um) Vit Z 0. (2.5.11)

Moreover, for all ¢, defined on [0, 00), measurable, non negative and non decreasing
function,

/ up(t, x)p(x)dr < / uin(z)p(x)dz, VYn € N, Vt > 0. (2.5.12)
[0,00) [0,00)
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Proof. The proof uses a simple Banach fixed point argument. For any nonnegative
f € C([0,00), L}([0,0))) we consider the solution u to the problem

8—?(1%,36) = u(t,x)/ Ry (z,y)f(t,y)dy x>0,t>0,
0
u(0,z) = up(x), x>0,

given by:
An(f) = ul(t, z) = g (x)elo Jo~ Bn@w)f(sy)dyds,

Our goal is then to prove first that A, is a contraction on &, r for some p > 0 and
T > 0 where,

Xor = {f e C([0,7); L'([o, OO)));OiltlgT IF @l < p} :

Forall T >0,t€[0,T) and f € X, 7,
1A (F)O)l1 <llwin|1eTPI1Fnl; (2.5.13)
and for all t1, ts such that 0 <t; <ty < T

|An(f)(tlax) - An(f)(t27x)| =

— Uin() ‘e oL S5 Ru@y) f(sy)dyds _ o fo? [5° Ru(@.)f(s,y)dyds

to [e's)
/ /0 Rn(7,y)f(s,y)dyds| x
t1
x €03 I B @) f(s,0)duds +(1-0) 52 [5° R(0) f (5,0)dds
< win(@)p|| Rollo|t1 — ta|eTPIRnlls

It then follows that

[An(£)(t1) — An()(t2)]l1 < llwinll1pl| Rallooe? 1Enlleo|ty — ). (2.5.14)

Let now f and g be in X, 7 and denote v = A,(g) and v = A,(f). Arguing as
before,

lu(t) = o)1 < il sl Ballso | f = glloqory, L1 ooy Te? = (2.5.15)

By @519 @519, i

Tpl| Rl

[in |1 < p, and

then A, is a contraction on C([0,T], L([0,0))), and has a fixed point u, that
satisfies

up(z,t) = um(x)efot Jo© B (ay)un(sy)dyds (2.5.16)

This solution may then be extended to C([0, Timax), L' ([0,00))). It immediately

follows from (2.5.16| that u, > 0.
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Moreover, since u, € C([0,Tmax), L}([0,00))) and R, is bounded, we deduce

from (2.5.16) that w, € C'([0, Timax), L'([0,00))) and, for every t € (0, Tiax), the
equation (2.5.8) is satisfied in L!([0,00)). For all T < Tipax and all ¢ € [0, T],

U’LTL()% (ef()t f()oo R”('ry)un(s:y)dy)

< tin (V| Rallso lun | oo 11,01 0,00y e Il leqom et € L1 ([0, 00)),

then if we multiply (2.5.16]) by any ¢ € L>([0, 00)), we deduce that for all t < Tpax,

d
i ), un(t x)p(x)dx —/ / (2, y)un(t, x)un(t, y)o(r)dydz.

Recalling the definition of R,,, then by the symmetry of b, and Fubini’s theorem,

d [ 00 oo
i up(t, x)p(x)dr = / / k¢7n(x,y)un(s,x)un(s,y)dydx, (2.5.17)
0 0 JO

i.e. uy, is a weak solution of , fort € [0,T). If we chose ¢ = 1 we deduce
that holds for all t < Tihax- Then, by a classical argument, Ty .x = 0.

In order to prove let @ be non negative and measurable function such
that [, uo(z)1(x)de < oo, and consider {4} }ren the sequence of simple functions
that converges monotonically to 1 as k — oo. Since 9, € L>([0,00)), then
holds with ¢ = 1, for all k, and by Lebesgue’s and monotone convergence Theorems,

/0 " () () = /0 ™ i ()(a)de

t o0 00
+ / / / Fop (@, 9)t0n (5, ©)tn (5, y) dydzds.
0 0 0

Using that u, € C([0,00), L'([0,00))), @5.11) and

/ / o (22,9 [ (1, )10 (B2, ) — 1 (t2, 2t (b2, ) |y
0 0
< 2|\ koo Mo (win ) ||un (t1) — un(t2) |1,

so that ¢ — [J%5° Ky (2, y)un(s, ©)un(s,y)dydz is continuous, it follows by the
fundamental theorem of calculus that (2.5.17)) holds for . If, in addition, ¢ is
nondecreasing, then (e™* — e™¥)(p(x) — ¢(y)) < 0 for all (z,y) € [0,00)2, and then

(12.5.12)) follows. O

Proof of Theorem [2.5.1] . Consider first a initial data uy € L!([0,00)). Let
{un }nen be the sequence of solutions to 2.5.87 constructed in Proposition
for n € N. As in the proof of Theorem [2.1.2] the result follows from the precom-
pactness (given by the conservation of My(u)) and the equicontinuity of {uy, }nen.
These properties follow as in the proof of Proposition and Proposition [2.2.9
respectively. The existence of the solution u follows using the same arguments as in
Corollary and the end of the Proof of Theorem

Property for u follows from , the lower semicontinuity of the non
negative function e, and the weak convergence to u of u,.
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For a general initial data uy € .#4([0,00)), by Corollary 8.6 in [24] there exists
a sequence {ug, fnen C L([0,00)) such that

o0

lim o(x)up p(x)de = / o(x)up(z)dx Yo € Cp(]0,00)). (2.5.18)

Since ug, € LY([0,00)), using the previous step there exists a weak solution u, that
satisfies f. By and , the sequence {uy, }nen is precompact
in C([0,00), .#4(]0,00))). Arguing as in Proposition we deduce that it is also
equicontinuous. Therefore, using the same arguments as in the end of the Proof
of Theorem we deduce the existence of a subsequence, still denoted {uy, }nen,
and a weak solution of (2.5.1), u € C([0, 00), .#([0,00))), satisfying (2.5.4)—(2.5.7).

The property @ is obtained using first in the weak formulation a
sequence of monotone non decreasing test functions {py }ren C C} ([0, 00) such that

¢}.(0) = 0 and ¢y (x) — €™ for all > 0, to obtain:

/ u(t, z)or(x)dr < / uo(z)pr(x)dx, (2.5.19)
[0,00)

[0,00)

and then pass to the limit as £ — oc. ]

Remark 2.5.3. In Theorem [2.1.2] the initial data is required to satisfy X, (uo) < oo
for some 1 € (1;29, %) On the one hand, the condition 7 > % is sufficient in order
to have boundedness of the operators K, (u,u) and Ly(u). On the other hand, the
condition 7 < 1/2 comes from the estimate (2.2.40). In Theorem however,

that last condition is not needed, thanks to the estimate (2.5.12)).
We show now that the support of u(t) is constant in time.

Proposition 2.5.4. Let u be a weak solution of constructed in Theorem/[2.5.1]
for an initial data ug € #+(]0,00)) satisfying . The following statements
hold:

(i) For all v > 0, ty and t with 0 < tg < t, and ¢ € C}((0,00)) nonnegative such
that supp(p) C [r, L] for some L >r,

/[ )cp(x)u(t,x)da: > (1) /[ )cp(m)u(tg,:c)dx, (2.5.20)
0,00 0,00
/[ )cp(x)u(t,x)da: < lt=t0)C2 /[ | o(x)u(to, x)dx, (2.5.21)
0,00 0,00
where
_ CopMo(wo) =" CupMy(ug) e 3 (25.2)
e pr 0 T R 5

(i) For allrT >0, tg and t with 0 <ty <'t,

/ u(to, x)dx < / u(t,x)dr < e(t_tO)CT/ u(to, x)dx, (2.5.23)
[0,r) [0,r) [0,r)

(1—-0)r

CipsxMo(ug) e 20
0(1+6) r32

(2.5.24)

where C, =
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(#3) supp(u(t)) = supp(uo) for all t > 0.

Proof. Proof of (i). Since there are no integrability issues near the origin because
supp(y) C [r, L], then by Fubini’s theorem

1

2 //[0,00)2R(x’ (@) = o(y)ult, 2)ult, y)dydz

:/[0700) ¢(m)u(t,x)/ R(z,y)u(t,y)dydz.

[0,00)

Let us prove the lower bound (2.5.20)). Using (2.2.8)—(2.2.11)), for all (z,y) € T,

y < x,

z— (1-6)x

C'*eTy(:L‘ —v) e 2 Ciips
R(z,y)| < < O L Ot =P 2.5.25
Bz, 9)l zy(z +y) x3/2 0(1+0) ( )

and taking into account the support of ¢, we deduce that

/[07OO)<P(ZL‘)u<t, x) / R(z,y)u(t,y)dydzx

[0,00)
L x
> [ etautta) [ Ryt )y

% (1—-6)L
C*e 2

L T
_W/T cp(ﬂs)u(t,ﬂf)/o u(t, y)dydz

L
> —C’l/ o(z)u(t, x)dx,
T
and then, from the weak formulation, we obtain that for all ¢ > 0,

L L
;i/ o(z)u(t, z)dx > Cl/ o(z)u(t, r)dx,

and (2.5.20)) follows by Gronwall’s Lemma.
We now prove the upper bound (2.5.21)) by similar arguments. Since R(z,y) <0
for y < x, then

/ p@yult.x) [ Rizy)ult,y)dyda
[0,00) [0,00)

L ')
< / o(@)u(t, ) / Rz, y)ult, y)dyd,

and since for all (z,y) €T, z <y,

C*e%(y—:r) < € 20 Cips
ety C PR V2

we deduce from the weak formulation that for all ¢ > 0,

R(z,y) <

d L C’e(lgg)L L 0o
G | et < S @t [t dyds

L
< 02/ o(z)u(t, z)dx,
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and then follows by Gronwall’s Lemma.

Proof of (ii). We first prove the lower bound in (2.5.23). Given r > 0, let 0 <
r <1, and p € CL([0,00)) be nonnegative, nonincreasing, and such that ¢(z) = 1
for all z € [0,7.] and ¢(z) =0 for all z > r. Since (e * — e ¥)(p(z) — ¢(y)) > 0 for
all 0 <y < z, it follows from the weak formulation

d
— e(x)u(t,x)dz >0 Vit > 0,
dt Jyo,ry

hence

/ o(z)u(t,z)dr > / o(x)u(to, x)dx YVt > to > 0,
[0,r) [0,r)

and then the lower bound in follows by taking the supremum over all ¢ as
above, i.e., letting r, — r.

Let us prove now the upper bound in . Given r > 0, let r, and ¢ be as
before. Keeping only the positive terms in the weak formulation and taking I' into
account, we deduce

d 5 min{z,r}
g ], et < / /9 IR(z, y)le(y)ult, 2)u(t, y)dyde,

dt
and by ([2.5.25)) we obtain
d C*(E(l;g)T % min{z,r}
G et < S0 [Tt [T st gy
dt Jjo.r) U 0

<c,. /[0 Pty

where
C*e <1§g>7-
Cr, = TMO(UO),
T

and then it follows from Gronwall’s Lemma

/ o(z)u(t, z)ds < elt=10)Cr / o(x)u(to, x)dx Vit > to > 0.
[0,r) [0,r)

The upper bound in then follows by letting r, tend to r..

Proof of (iii). We recall the following characterization of the support of a Radon
measure p (see [35], Chapter 7): z € supp(p) if and only if f[O,oo) wdp > 0 for all
@ € Cc([0,00)) with 0 < ¢ <1 such that ¢(z) > 0.

Then, from and for tg = 0, we deduce that

(0, 00) (1 supp(uo) = (0,00) N supp(u(t)) ¥t > 0,
and from (2.5.23) for tg = 0, we deduce that for all ¢ > 0,
0 € supp(up) if and only if 0 € supp(u(t)),

which completes the proof. O
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The queues of the weak solutions are decreasing in time, as proved in the following
Proposition.

Proposition 2.5.5. Let u be the weak solution of constructed in Theorem
2.5.1) for an initial data uy € 41 ([0,00)) satisfying (2.5.5). Then

(i) For all v >0, the map t — f[ u(t, z)dx is nonincreasing on [0, 00).
(i) For all T >0, if

Jzg € [r,72(r)) Nsupp(uo), Jyo € (1(r),7) Nsupp(uo),
such that B(zg,yo) > 0, (2.5.26)

then the map t f[ u(t, z)dzx is strictly decreasing on [0, 00).
Remark 2.5.6. Condition 1 2.5.26)) holds, for instance, if  is an interior point of
the support of ug.

Proof. Proof of (i). For r = 0, the result follows from the conservation of mass
. For r > 0, let £ € (0,7) and ¢, € C([0,00)) be an increasing function such
that ¢.(z) =1 for all x > r, p-(x) =0 for all z € [0, — ¢]. Using the monotonicity
of ¢., we deduce from the weak formulation that for all ¢ > 0,
4 ve(z)u(t, z)dx <0,
[0,00)

and then the map ¢ — f[o o) e (x)u(t, x)dx is nonincreasing. The result then follows
by letting € — 0.
Proof of (ii). Since (2 is invariant under time translations, it suffices to prove

that for all » > 0,
/ u(t, z)dr < / uo(x)dx vt >0,
[r,00) [r,00)

provided m ) holds. To this end, consider ¢, as in part (i). By -
[, eremanir= [ o)

/ / / o (T y)u(s, x)u(s, y)dydrds.

Then, since lim._oky. (2,y) = ky(z,y) for all (z,y) € [0,00)%, where o(z) =
1}, o0y (), and for all & small enough,

/Oo /m|k%(x’y)|u(s’x)u(57y)dydx
0 0
B / kg, (@, y)|u(s, z)u(s, y)dydx

Ox
zy

<20*P*/

r—eJlxr /T a:+y
2C, px /°° 1-0) /x

< e 2z u(s,z u(s,y)dydx

e el (s.2) [ u(s.v)dy

< ACup-Mo(uo) / S () de < o,
0(1+0)r3/2

(s,y)dydx




58 On a Boltzmann equation for Compton scattering

we deduce from dominated convergence Theorem

/ u(t, z)dr = / uo(x)dx
[r,00) [r,00)

t
+/ / R(z,y)u(s, x)u(s,y)dydzds. (2.5.27)

0 J[r,c0) J[0,r)

Taking I' into account, we observe that

[ [ Rewusouts,ydydods
[r,00) J[0,r)
= / / R(z,y)u(s, x)u(s,y)dydrds < 0. (2.5.28)
[ry2(r) J (n(2),r)

The goal is to show that the integral above is, indeed, strictly negative for all s €
[0,t]. By and Propositionm (iii), there exists an open rectangle G = G X
G2 centered around (z9,yp) and contained in {(z,y) € [0,00)% : z € [r,72(7)), y €
(71(z),7)} such that

/ u(t, z)dx >0 Vt>0,i=1,2.
GA

7

We then obtain

/ Rz, y)uls, )u(s, y)dydads
[ry2(r)) J (71 (z),r)

< max R(x,y)/ u(t,x)daz/ u(t,y)dy < 0,
(ac,y)eG Gl GQ

and the result then follows from (12.5.27)) and (2.5.28)). O

2.5.2 Global “regular” solutions.

We prove in this section Theorem for initial data wug sufficiently flat around the
origin. This condition on ug is sufficient to prevent the formation of a Dirac mass
in finite time. We do not know if it is necessary. We prove first the following,

Proposition 2.5.7. For all vg € LY([0,)), vo > 0, satisfying for some
n > (1-6)/2, there exists a nonnegative global weak solution v € C([0, 00), L' ([0, c0)))

of , such that

u(t,x) = uo(:v)efg Jo© Bleyyulsm)dyds py 5 0 g.e x> 0, (2.5.29)

and also satisfies v(0) = vy, (2.1.42), (2.1.43).

Proof of Proposition The proof has two steps.
Step 1. We consider first a compactly supported initial data, say suppuy C [0, L],
L > 0. We first prove that the operator

A(f)(t, ) = up(w)elo Jo™ R (sw)dyds (2.5.30)
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is a contraction on Y, 7 for some p > 0 and T' > 0, where
Yy ={f€C(0.T),L'([0,00),wdz)) : [|f|lT < p},
[fllz = sup / w(@)|f(t, z)|dz = sup |[f(t)]w,
0<t<T Jo 0<t<T
w(z) = (14 z3/?).

Using (2.2.8)—(2.2.11)), for all (z,y) € I, x < L,

lz—yl A=0)z

C*p*e z - Cyps € 20

R(x < Crw(y),
IR «/:cya:%—y 0(1+6) y3/? ~ )
(1-6)L
where Cf, = %. Then, for all nonnegative f € Y, 7, € [0,L], and ¢ €
[07 T)7
/ | IRl mdys < Cupr
and then

A(f)(t,x) < ug(z)erT,
IA(H) 7 < [luolle” ™. (2.5.31)

Notice that ||ug|l, < oo by the hypothesis (2.1.40)). Let now ¢; and t2 be such that
0<t; <ty <T. Then, for all z € [0, L],

[AF) (1, ) = A(F) (L2, )I—

= up(x) |e oL [o2 R(z,y) f(s,y)dyds _ eJo 12 [ R(z,y) f(s,y)dyds
< ug(z)e“H T Cpplty — tol,
and therefore
IA(f)(t1) — A(f) (t2) ]l < Iluollwe T Crplts — ta,

from where it follows that A € C([0,T), L'(]0,00),wdx)). On the other hand, if we
chose p = 2|luol|w and T' > 0 such that e“2PT < 2. we deduce from (2.5.31)) that
||A(f)”T < P Le., A(f) € YVp,T~

Let now f and g be in Y, r . By similar computations as before,

IA(f) = A(g) 7 < lluollwe ™ CLT| f = glir,
and if T is such that
|ug||lweC=PTCLT < 1,

then A is a contraction on Y, 7, and has then a fixed point u that satisfies ([2.5.29))
for all ¢ € (0,7) and a.e.z > 0. It then follows in particular that w > 0. Let us
denote

Tnax = SUp {T > 0;dp > 0,3u € Y, 1 satisfying (2.5.29), Vt € [0, T)}
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We claim that if Tiyac < 0o, then limsup, .5 [Ju(t)||w = oo. Suppose that Tiax <
oo and limsup, .7 |ju(t)]|w = ¢ < oo, and let t, — Tinax. For every n € N we
define p,, = 2||u(ty)||w, and the map

An(H)(t,2) = ulty, w)els Jo R (sw)duds

for f € C([0,T), L'([0,00),wdx)), T > 0. For every T > 0,t € [0,T), = € [0, L], and
fey,

A
Au(F)(t,2) < ultn,x)eCT
14w (D)l < Nultn)]weCenT,

and for all T" such that T < (In2)/(Crp,) = Ty, it follows that A,(f) € Y,, 7.
Notice that by hypothesis, p, < 2¢ for all n, and then

In2
T, > =
- L2

71 Vn e N.

Now let f and g be in Y, 7 for "> 0. Arguing as before
14n(f) = An(@)llr < lults)llwe™* T CLT| f = glir,
and since
u(ty, z) < ug(z)eCr¥Tmax  ¥n e N,
then
14n(f) = An(@) 7 < l|uolloe > T )T f = gz
If we chose ™ > 0 such that
g || eCE2 T2t Tmax) O 1y < 1,

and we let 7, = min{r, 7}, then A4, is a contraction from Y, into itself, and has

then a fixed point, say v,. The function v,, satisfies

n T

v (t,z) = u(tn,x)efot Jo© Ry) vn(t,y) WYt e0,7), ae z € [0,00).

Therefore, the function w,, defined as

(t.2) u(t, ) ift € [0,t,)
wp(t, z) =
Un(t —tn,x), ift € [tn,tn + T)

satisfies the integral equation:
wn(t, x) = ’UJO(.’E)GIJ fooo R($,y)wn(s,y)dyds’ VYt € [O7 tn + 7—*)‘

Since t,, = Tiax, then t, + 7 > Thax for n large enough, and this contradicts the
definition of Ti.x. We deduce that, either T,,,x = 0o, and the solution is said to be
global, or limsup, .7, ||u(t)|l, = oo and the solution is said to blow up in finite
time, at Tiax.
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Since for all T' < Tax, t € [0,T] and a.e.x € [0, L],
‘jt (vol@)p(a)e s 5 Reteanas)

< ug(z)|(x)|eCrTIIT CLT|ul|7  (integrable in ),

we may then multiply both sides of the equation ([2.5.29)) by a function ¢ € Cy([0, 00))

and integrate on [0, 00):

o

i [ tops = [Tueapw ([T Re i) s

and since

]u(t, ')u(ta ')(p(t, )R(a )‘ € Ll([07 OO) X [07 OO)) vt e [07 Tmax)7

by Fubini’s Theorem and the antysimmetry of R(x,y),

dt Jo

oou(t,a:)@(x)d:v = /000 /Ooo o(z)R(z, y)u(t, z)u(t,y)dxdy

=3 [ [ e - cn Rttt sy

This shows that u is a weak solution of (2.5.1)), (2.5.2]) . If ¢ = 1:

d oo
i Jy u(t, z)dzr =0,

and then ||u(t)||1 = ||uo|l1 for all ¢ > 0. Then, since

[ Rle. iy < Celinl
0 i

we obtain from ([2.5.29))
tCplluglly
u(t,x) <wup(x)e 32 |
and then

tCOplluwolly

u(t)]lw < /0°° w(z)e 372 wug(z)d.

Notice that (2.1.40) implies

1 032
Vr > O, A Uo(l’)wdl' < Q.

Indeed, if we write 2—3/2 = e 3 nz “then for all r > 0,

1 =73 1 1
ex3/ r__3ng
/“0(5”)3/2‘&:/ uo(x)ex7? "7 dmé/ uo(x)
0 x 0 0

!

e=3/2 dx < oo,

(2.5.32)

(2.5.33)

(2.5.34)
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where

3
r=r+4+e ! = max <r = a:3/21nx> )
z€[0,1] 2

We then obtain from (2.5.33)), (2.5.34]) that

tCrlluglly

[l w(®) || S/ w(z)e 232 wug(r)dr < oo Vte |0, Tmax), (2.5.35)
0

therefore lim;_,7,, ., [|u(t)]|w < 00 if Timax < 00, and then by the alternative, Tinax =
0.

Step 2. For a general initial data uo, let ug,(z) = uo(z)1Ly ) (7), and u, be the
weak solution constructed in Step 1 for the initial data wug, that satisfies

Un(t, ) = g p(z)edo Jo~ Blew)un(s.y)dyds, (2.5.36)

and ||un ()1 = ||uonlli < [Juolls for all £ > 0 and all n € N. Then, arguing as in
the proof of Theroem a subsequence of {u, }nen (not relabelled) converges to
some u € C([0,00),.#+(]0,00))) in the space C([0,00), .#1(]0,00))). On the other
hand, since for all n € N,

oe C* [ a-ay Co
| Rty < 5 [T weis < S s

where Cy = C* fooo eMug(y)dy, it follows from ([2.1.40)) that for all € > 0 there exists
d > 0 such that for all E C [0, 00) mesasurable with |E| < 4,

Cot
/ up (t, x)dr < / uo(x)eﬁ%dx <e VneN, Vt>0. (2.5.38)
E E
Moreover, for all £ > 0 there exists M > 0 such that

/ un(t,x)dazge_"M/ e uy,(t, z)dx
M M

< e”M/ eMug(z)dr < e VYn €N, Vt > 0. (2.5.39)
0

It then follows from (2.5.38[)—(2.5.39)) and Dunford-Pettis Theorem, that for all ¢ > 0,
a subsequence of u,(t) (not relabelled) converges to a function U(t) € L'([0,00)) in
the weak topology o (L', L>°). Therefore we deduce that for all ¢ > 0,

/ " @)U 2)dr = / o(2)ult, z)dz Ve € Cy([0, 00)),
0 [0,00)

i.e., the measure u(t) is absolutely continuous with respect to the Lebesgue measure,
with density U(t). With some abuse of notation we identify u and U. The goal now
is to pass to the limit in as n — oo. Since R(z,-) € L>®([0,00)) for a.e.
x> 0and all £ >0, and

/0 |R(z,y)|un(s,y)dy < 7 </0 &7 up(s,y)dy+ (2.5.40)

+/ eygmun(s,y)dy>
C*

< Or (tuali+ [ emutar) vmen, s
0
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it follows by the weak convergence u,(t) — wu(t) and dominated convergence, that
forall t > 0, a.e. x > 0,

ll)m// xyunsydde—// u(s,y)dyds,

and then, using that ug, — ug a.e., (2.5.37)), and dominated convergence,
oo

t
lim uoyn(x)efo Jo© Bl y)un(s.y)dyds g,
n—oo 0

_ /OO ( )efo fO z,y u(s,y)dydsdx
0

Therefore, u satisfies (2.5.29)) for all t > 0 and a.e.x > 0.

Arguing as in (2.5.37) we obtain (2.1.43)), and arguing as in Step 1 we obtain
(12.1.42)).

We now claim that
u € C([0,00), LY((0,00))). (2.5.42)
For all T' > 0, ¢ and to with 0 < t; <ty < T, we have by (2.5.40)),

lu(ts) — ult2)]1

oo
S/ uo(z ‘ ol Jo Ray)ulsy)dyds _ fo? [o° R(zy)uls.y)dyds
0

t2
g/ </ / ]ny[usy)dyds)d:n
0 t1
0 C (e
< ’tl _t2| uO )6753/2 3/2 e HUOHI + eﬁyuo(y)dy dz,

and then (2.5.42)) follows using (2.1.40)). Arguing as in Step 1 we deduce that u is a

weak solution of (2.5.1)), (2.5.2). O

Proof of Theorem m Theorem 2.1.4) follows from Proposition [2.5.7] since the

function b(k, k') = kk’ satisfies -D O

Remark 2.5.8. The same proof shows that Theorem is still true for the
equation

dx

v
ot

Bs(k, k')

o dk’. (2.5.43)

(01) = ot ) [oft, ) (e — ) 0T
[0,00)
where the redistribution function Bg is kept without truncation. This is possible

because the property (2.1.40) is also propagated by the weak solutions of ([2.5.43])
such that

0o [ _ o\ Bg(k,E) N o
ot k) = vo(k)edo S5 (e —em ) S ol by ai ds, (2.5.44)

Notice in particular that the integral term in the exponential is well defined when

v(t) satisfies (12.1.40)).
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Remark 2.5.9. Let u and v be two solutions of (2.1.39)), with a compactly supported
initial data ug € L'([0,00)) satisfying (2.1.40) and such that supp(ug) C [0, L],
L > 0. It follows from the representation(2.5.29)) that, for all ¢ > 0 and a.e.z > 0,

tCLHuoHl CL
|U(t, 1") - v(t,x)\ < UO(‘T) $3/2 / / S y)‘dyds

and then, by Gronwall’s Lemma, v = v for a.e. ¢ > 0 and a.e. = > 0.

2.5.3 M, as Lyapunov functional.

The goal of this Section is the study of the functionals M, (u(t)), defined in (2.1.24)),

and D, (u(t)), defined in (2.1.44]), acting on the weak solutions of problem ({2.5.1),
and to prove, in particular, Theorem [2.1.6

Let us start with the following simple lemma, that establishes a monotonicity
property for the moments of a solution to ([2.5.1]).

Lemma 2.5.10. Let u be the weak solution of given by Theorem for an

initial data uy € M1 ([0,00)) satisfying (2.5.3). Then holds for p(x) = x®
for all o > 1. Moreover, for all to > 0,

Ma(u(t)) < Ma(u(to)) Yt =to (2.5.45)

Proof. Let @ > 1 and ¢(z) = 2. We first notice from (2.5.3) and (2.5.7) that
My (u(t)) < oo for all t > 0. Then, consider an approximation {¢y }reny C C4 ([0, 00))
such that ¢, is nondecreasing, ¢} (0) = 0, ¢, < ¢’ for all k£ € N, and ¢ — ¢
pointwise as k — oo. Using the definite sign of the right hand side of (2.5.5)) for the
test function ¢, we obtain

d

- or(z)u(t,z)dr <0 vVt >0, VkeN,

from where, for all ¢y > 0, fo,oo or(x)u(t, z)dr < f[o,oo) or(x)u(ty, z)dx for all t > tg
and all £ € N, and then follows from dominated convergence theorem, by
letting & — oo.

Let us prove now that holds for ¢(z) = x®. From for the test
function oy,

/ or(@)u(t, x)dx—/[o erle ol

/ //[0 00)?2 ko, (2, y)u(s, z)u(s, y)dydzds. (2.5.46)

Using that ¢} < ¢’ for all k € N, we obtain from (A.0.4) that for all (z,y) € T,

a— |z—y| (1—0)2
kg (z,y)| < Camax{z, y} ez, C:maX{W7P*},

and, since |z —y| < (1 —0) max{z, y} and max{z, y} < 6~ min{z, y} for all (z,y) €
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I, we then deduce using also (2.5.7)) and (2.5.45)), that for all £ > 0 and k € N,

[o
- 904 1 //[Ooo
= 7;5_0; (/ T ult, x)d$> (/ y””U(t,y)dy)
[0,00) [0,00)
2C _
<28 eruawa) ([ v oy ).
[0,00) [0,00)

On the other hand, ky, (z,y) — ky(z,y) for all (z,y) € [0,00)? as k — oo. Passing to
the limit as £ — oo in (2.5.46)), it then follows from dominated convergence theorem
that for all ¢ > 0,

u(t, z)u(t,y)dydx

Aww>umm—/ () () de

[0,00)

/ //0 - Juls, x)u(s,y)dydzds, (2.5.47)

and then (2.5.5)) holds. O

If u is a weak solution to (2.5.1]) given by Theorem then by Lemma [2.5.10
the following identity holds,

%Ma(u(t)) - %Da(u(t)) Wt > 0. (2.5.48)
Since Dy (u(t)) < 0 for all ¢ > 0, this shows that M, is a Lyapunov functional on
these solutions. The identity is reminiscent of the usual entropy - dissipation
of entropy identity.

As already observed in the Introduction, since the support of the function B is
contained in the region I' C [0,00)?, if @ > 0 and b > 0 are such that (a,b) ¢ T (they
do not see each other) then, for all ¢ € C}([0,00)) such that ¢/(0) = 0,

//[‘0 )2 6(x N a)&(y o b)R(x, y)(@(x) - @(y))dl'dy =0.

Let us then see some of the consequences of this simple observation.

Definition 2.5.11. We say that two points a and ¢ on [0, c0) are I'-disjoint if (a, ¢) ¢
I'. We say that two sets A and C on [0,00) are I'-disjoint if for all (a,c) € A x C,
(a,c) €T, ie., if Ax C C[0,00)?\T.

Since the support of any given measure u € .#4 ([0, 00)) is, by definition, a closed
subset of [0, 00), then

(supp(u))© = U I, Iy openinterval , Iy NI; =0 if k # j. (2.5.49)
k=0
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We may write Iy, = (ag,bx) for 0 < ax < by, for all k € N, except if suppu C [r, 00),
r > 0, for which I = [0 = ag, bx) for some k. We now define

Z = {I): n(br) > ax},

and denote {Cj}res the connected components of ({J;cz ). Notice that, in gen-
eral, J could be uncountable. Finally define, for all u € ., (][0, 00))

Ag(u) = Cp Nsupp(u), Yk € J. (2.5.50)

Notice by (2.5.50) that Ag(u) is a closed subset of [0,00) for all k& € N, since it is
the intersection of two closed sets.
We write Ai(u) = Ay when no confusion is possible.

Lemma 2.5.12. 7 is a countable set.

Proof. Given two elements of Z, there is at most a finite number of elements of 7
between them. More precisely, we claim that, for any given I; € Z, I; € I, with
I = (ai,bi), Ij = (aj,bj), 0<bh < aj, then: card({]k. = ((lk,bk) €T b <ap<
bi < aj}) < co. The proof of this fact start with this trivial remark: if I, € Z, then
|I| = by, — ar, > by, — 71 (b). Using that, if we consider the decreasing sequence
bj, 11(bj), ¥2(b;) = y1(71(b5)), ¥3(b;),..., then 7(b;) < b; for some integer m, and
therefore there could be only m elements of Z between I; and I;.

For the sake of the argument, let us say that given two elements I; = (a,b;)
and I; = (aj,b;) of Z, there are 2 more elements Iy = (a1,b1) and I = (ag, bz) of T
between them, i.e.,

ai<bi§a1<b1§a2<b2§aj<bj.

Then, there are 3 connected components in (a;, b;) \ (Iz- UL ulu Ij), namely
[bi, a1], [b1,a2] and [ba,a;]. With this idea, it can be proved that the number of
connected components of [0,00) \ (U;ez 1), i-e., the collection {Cy}res, is at most
countable. O

We prove now several useful properties of the collection {Ag}ren-

Lemma 2.5.13. Let u € #,([0,00)) and consider the collection {A}ren con-
structed above. Then A; and A; are I'-disjoint if and only if i # j, and

supp(u) = U Ap. (2.5.51)
k=0

Proof. 1t is clear that A; and A; are not I'-disjoint, since A; x A; contains points
on the diagonal, and therefore on I. Now, if ¢ # j, we first observe that A; and
A; are disjoint. Indeed, by definition A; C C; and A; C C}, where C; and Cj are
different connected components of [0,00) \ (U;ez ), therefore disjoint. We now
prove that A; and A; are in fact I'-disjoint. Let us assume that A; is on the left of
Aj, ie., sup A; < inf A;. It follows from the construction that there exists at least
one I, = (ax,by) € T between A; and Aj, i.e., such that

sup A; < ap < by <inf Aj.
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By definition of Z, the points aj and by are I'-disjoint, and then, for all (a;,a;) €
Ai X Aj,
Y1(a;) > 71 (br) > ar > a;,

hence a; and a; are I'-disjoint. Finally, (2.5.51f) follows from the construction. In-
deed, since by definition Ay = Cj Nsupp(u), then UgenyAr C suppu. On the other

hand, by definition UgenCr = [0,00) \ (UIGI I), and then by (2.5.49))

supp(u) = () Iz € | Cr,

keN keN

from where the inclusion supp(u) C UgenAy follows. O

In the remaining part of the section we will use several times the following simple
remark.

Remark 2.5.14. Consider the function z(x) = z — y1(x), * > 0, where 7, is given
by (2.2.13) in Remark Then, z is a continuous and strictly increasing function
on [0, 00), with z(0) = 0.

In the next Lemma we prove that any two sets A; and A; of the collection
{ Ak }ren are separated from each other by a positive distance, given by the function

z(x) of Remark [2.5.14] .

Lemma 2.5.15. Let u € #4([0,00)) and consider the collection A = {Ag}ren
constructed above. Suppose that card(A) > 2. For any k € N, let us denote xj =
min Ay and y, = sup Ap. Given two elements A;, A; in A, suppose that y; < x;.
Then,

diSt(Ai, AJ) > Tj— ’yl(ﬂjj) > 0. (2552)

Moreover, for every e >0, let
A.={Ap e A: A C (g,00)}. (2.5.53)
If Ac # 0 and card(A.) > 2, then
dist(A;, Aj) > e —71(e) >0 VA, Aj € A, i # j. (2.5.54)

Proof. Since A; and A; are closed sets and y; < z;, it follows that dist(A4;, A;) =
xj — y;. By Lemma [2.5.13] the closed sets A; and A; are I'-disjoint and then, by
Definition [2.5.11
yi < m(z)).

Therefore dist(A;, A;) > x; —~v1(x;) and, since z; > 0, (2.5.52)) follows from Remark
2514

Let now ¢ > 0 be fixed and consider A; and A; in A.. Without loss of generality,
we may assume that y; < x;. Using Remark [2.5.14, it then follows from (2.5.52])

and (2.5.53)) that
dist(A4;, A;) > z(x;) > z(e) > 0.
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Lemma 2.5.16. Let u be the weak solution of constructed in Theorem [2.5.1]
for an initial data ug € 1 ([0,00)) satisfying (2.5.3), and consider the collection
A = {Ak(ug) }ren constructed above. Then

/ u(t,x)dz = / uo(x)dx vVt >0, Vk € N. (2.5.55)
Ay, Ay,

Proof. In the trivial case Ay = supp(ug) for all k£ € N, then is just the con-
servation of mass . Suppose then that card(.A) > 2. We consider separately
two different cases.

(i) Suppose that there exists e > 0 such that [0,e] C supp(up). Then, since [0, €]
can not intersect Aj for two different values of k, there exists kg € N such that
[0,¢] C Ag,. In particular Ay, & A.. Let us see that

A=A U {4} (2.5.56)

Arguing by contradiction, suppose that for some ¢ # ky we have A, € A\ A..
Since [0,e] C Ay, and Ay, N Ay = 0, then zy = min Ay > e. Therefore 4y € A,
which is a contradiction.

We wish now to estimate from below the distances dist(A;, A;) for all A; € A,
Aj € A, i+ j. By ([@25.54) and (2.5.56),

diSt(Ai,Aj) >e—7()>0 Vi # ko,Vj # ko, i # J. (2.5.57)

On the other hand, for all ¢ # kg, x; = min A; > € by (2.5.56]) and then, by (2.5.52))
and Remark [2.5.14]

dist(A;, Agy) > i — 71(2i) = 2(x5) > z(e). (2.5.58)

By (2.5.56)), (2.5.57) and (2.5.58)) we have then:

dist(A4;, Aj) > z(e) >0, VA; € A, VA; € A (2.5.59)

For any fixed k € N, we now claim that, since A; is closed for every i € N, by
the set
D= |J A (2.5.60)
€N, itk
is a closed subset of [0,00). In order to prove that property, let us assume, by
contradiction, that there exists a point x, € Dy \ Dg. Let {z,}nen C Dy be a
sequence such that converges to z,. In particular {x,},en is a Cauchy sequence.
Therefore, by (2.5.59)), there exists k. € N\ {k} such that, for some n, sufficiently
large:
Tn € Ag,, Yn > n,.

Since Ay, is a closed set, it follows that x, € A, C Dy, and this is a contradiction.
By (2.5.59), Dy and Ay are disjoint subsets of [0,00). Therefore, by Urysohn’s
lemma, there exists a function ¢ € C([0,00)) such that

pr)=1 Vre A, and ¢(x)=0 V€ Dy.
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Using (2.5.59) and a density argument, we may assume that ¢ € C}([0,00)). Then,
since supp(u(t)) = supp(uo) (cf. Proposition [2.5.4] (iii)), it follows from (2.5.51])

/[o,oo) o(x)u(t,x)de = /Ak u(t, z)dz,

and since A; and A; are I'-disjoint for i # j (cf. Lemma2.5.13]), then by construction
of ¢,

//[0 )QR(fan)(SO(UU) — o(y)u(t, x)u(t,y)dydz
B zzzg //x4iXAi R(:U’ y)((p(;{;) - SO(y»u(t? f’«")u(t: y)dydx

- / / R, 9)(p(x) — o ())ult, )u(t, y)dydz = 0,
ApxAyg

from where follows by the weak formulation.

(ii) Suppose that the assumption of part (i) does not hold. In this case, there
exists a strictly decreasing sequence {x,}nen with z, — 0 as n — oo such that
xn & supp(up) for all n € N. Moreover, since supp(ug) is a closed set, for each n € N
there exists d,, > 0 such that

(Xy, — Ony Ty, + 0p) C (supp(ug))©.
For every n € N and k € N fixed such that
A € As,, (2.5.61)

where A, is defined in (2.5.53)), we consider the set:

D= |J A
AlE.A“Ln
Ai# Ay

Using now ([2.5.54)) for ¢ = x,, we deduce that Dy, is a closed set by the same
argument as for Dy in (2.5.60). By Urysohn’s lemma again, we can then construct
a test function ¢ € C}([0,00)) such that

plx)=1 Vze A and o(x) =0 Vzel0,z,]UDyg,.

Arguing as in part (i), we then deduce that
/ u(t,z)dr = / up(x)dx vVt >0, VA, € Ag,,. (2.5.62)
A, A,

We use now that
A= < U Axn>U{AieA:Ai¢ (0,00)}
neN

because
U 4w, = {45 € A: 4; C(0,00)}.

neN
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But, if A; ¢ (0,00), then 0 € A;. Therefore, if 0 ¢ supp(ug) there is no such A;. If
0 € supp(up), since the sets Ay are pairwise disjoint, such subset A; is unique. It
follows that there exists at most a unique kg € N such that:

A= ( U Axn> U {Ako}. (2.5.63)

neN

The equality (2.5.55) then follows from (2.5.62)), (2.5.63) and the conservation of
mass ([2.5.6]). O

We may prove now the main result of this Section.

Proof of Theorem [2.1.6l Let us prove (i) = (iii). Suppose that D, (u) = 0,
and let, for ¢ > 0,

. ={(z,y) €T :d((z,y),0T) > ¢, |[x —y| >e}.

Since b(z,y)(e™* — e Y)(z* — y*) < 0 for all (x,y) € I's, it follows from (¢) that
supp(u x u) C I'S. Letting € — 0, we deduce that

supp(u x u) C AU (D), A={(z,z):z >0} (2.5.64)

Notice that any two points y < x in the support of u have to be at distance, namely,
z —y >z — (). Otherwise v1(z) < y and then (z,y) € I'\ A, in contradiction
with (2.5.64). Moreover, since the map z(z) = z — v1(z) is continuous and strictly
increasing on [0,00), with z(0) = 0, it follows that the support of u consists, at
most, on a countable number of points, where the only possible accumulation point
is x = 0. Therefore Ay = {x} for all k € N, and then (i7i) holds.

Let us prove (i1) == (i). If u is as in (¢4), then supp(u x u) = {(zs,2;) : 4,j €
N}, and then

Da(u) = ZX(i7j)aiajb(xi7xj)(e_wi - e—ac]-)(x;x - l?) =0,

i<y

where x(i,7) = 2 if i # j and x(i,75) = 1 if i = j. Indeed, the terms with i = j
vanish due to the factor (e™"" —e™"7)(zf — %), and for those terms with ¢ # j, then
b(x;, x;) = 0 since (z;,z;) ¢ I'.

We now prove (iii) = (ii). Using in Lemma [2.5.13| and the definition

of xy, for any v € F,
My (v) = Z/ x%(x)dx > Zx%mk = My (u),
k=0 Ak k=0

and since u € F, u is indeed the minimizer of M,,.

We finally prove (i4) = (4i7). Let w be a minimizer of M, and let v =
Y peo Midz,,. We already know by the previous case that v is also a minimizer of
M, hence M, (u) = My (v). Since moreover

Mofo) = Sy = o [ ()i,
k=0 k=0 Ag
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it follows that

Z/A ¢ —ap)u(z)dr = 0.

By definition of xj, all the terms in the sum above are nonnegative, and therefore

/ (% — zf)u(z)dr =0 Vk € N,
A
which implies that Ay = {xy} for all k£ € N, and therefore u = v. O

2.5.4 Long time behavior.

This Section is devoted to he proof of Theorem 2.1.8] that we have divided in several
steps. For a given increasing sequence t,, — 0o as n — 0o, let us define

un(t) = u(t +t,), t>0, neN, (2.5.65)

where u is the weak solution of (2.5.1)) constructed in Theorem for an initial

data ug € A(]0,00)) satisfying (2.5.3)). We first notice by (2.5.48) and Lemma
that for all @ > 1 and ¢ > 0,

/ |Da(u(s))lds = Ma(uo) — Ma(u(t)) < Ma(ug),

so by letting t — co we deduce Dy (u) € L'([0,00)). Since moreover

tntt
/ Dy (un(s))ds —/ D (u(s))ds, vt >0,

it follows that

t
lim Dy (un(s))ds =0 vt > 0. (2.5.66)

n—oo 0

Proposition 2.5.17. Let u be the weak solution of constructed in Theorem
for an initial data ug € A1 ([0,00)) satisfying (2.5.3). For every sequence

{tn}nen such that t, — oo, there exist a subsequence, still denoted {t,}nen, and
U € C([0,00), .#4([0,00))) (2.5.67)
such that for all ¢ € C(]0,00)) satisfying , and all t > 0,

lim o(z)u(t + ty, z)dr = / o(z)U(t, x)dx. (2.5.68)

00 J10,00) [0,00)
Moreover, U is a weak solution of such that My(U(t)) = My(ug) for allt > 0.
Proof. The proof is the same as the first part of the proof of Theorem for

equation (2.2.1)). O
Lemma 2.5.18. Let u, ug and U be as in Proposition |[2.5.17. Then

supp(U(t)) = supp(U(0)) C supp(up) Vit > 0. (2.5.69)
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Proof. On the one hand, since U is a weak solution of ([2.5.1]), then by Proposition
it follows that supp(U(t)) = supp(U(0)) for all ¢ > 0, where U(0) is given

by (2.5.68) for ¢ = 0. On the other hand, again by Proposition we have, in
particular, that supp(u,(0)) = supp(ug) for all n € N. The result then follows

from the convergence of u,(0) towards U(0) in the sense of (2.5.68). Indeed, let
xo € suppU(0). We use the characterization of the support of a measure given in
the proof of part (iii) of Proposition m Then

Py = / e(x)U(0, z)dx > 0,
[0,00)

for all ¢ € C.([0,00)) such that 0 < ¢ < 1 and ¢(zp) > 0. Using then (2.5.68)) for
t = 0, we deduce that for all ¢ as before, there exists n, € N, such that

/ o(x)un (0, x)dx > %0 >0 n > n,
[0,00)

and then zg € supp(un(0)) = supp(uo). O
A partial identification of the limit U is given in our next Proposition.

Proposition 2.5.19. Let u, uy and U be as in Proposition[2.5.17 Then
Ut)y=p  Vt>0, (2.5.70)

where p is the measure defined in .

Proof. We first prove that D, (U(t)) = 0 for a.e. ¢t > 0 and for all « > 1. Indeed,
if we define as in proof of Theorem un(t) = u(t +t5), we deduce by the same

arguments

t t
lim [ Dy(un(s))ds = /0 Do(U(s))ds =0 ¥t >0,

n—oo 0

hence D, (U(t)) =0 for a.e. t > 0.
Then by Theorem , there exist m;(t) > 0, z;(t) > 0 such that,

Ut) =Y mj(t)d, ), (2.5.71)
=0
zi(t), x;(t) a]re I-disjoint Vi # j. (2.5.72)
By in Proposition
2j(t) = x;(0) := ; € supp(uo) vVt >0, Vj € N. (2.5.73)

Furthermore, since by Proposition U is a weak solution of (2.5.1)), it follows
from Lemma [2.5.16| that for all ¢ > 0, j € N,

m;(t) = / Ul(t,z)dr = / U(0,z)dx = m;(0) := m,
{z;(0)} {z;(0)}

and then by (2.5.71]) we conclude that U is independent of ¢
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Let us prove now that U satisfies Properties 1-4. Properties 1 and 2 are already

proved in (2.5.72) and (2.5.73)). In order to prove 3, let k € N and ¢ € C1([0,0)) be

such that p(z) = 1 for all € Ay, and p(x) = 0 for all x € U;£;A;. This construction
is possible by Uryshon’s Lemma. Then, by (2.5.55)) in Lemma [2.5.16

/ o(x)upy(t, x)de = / up(t, z)dx = my, Vn €N,
[0,00) Ag

and then by ([2.5.68]) in Proposition [2.5.17
/ o(z)U(z)dx = my,.
[0,00)

Since supp(U) C supp(up) by Lemma [2.5.18, we then deduce

/[0700) o(x)U(z)dx :/ Uw)dz = 3 m),

Ak JE€ETk

and thus Property 3 holds.

Let us prove Property 4. Let k € N and suppose that x; = min{zx € A} > 0. By
in Property 3, the set Jj in non empty. Let then x; e J. If a:; = 1z, there
is nothing left to prove. Suppose then .%; # xy, which by definition of z; implies
x; > xp. We first notice that between x; and x;, there can only be a finite number
of elements in J;. This is because z; > 0 and the points in Jj are pairwise I'-
disjoint, thus, the only possible accumulation point for any sequence in J is « = 0.
Consequently, the point ZL';O = min{x € Ji} is well define. Again, if x}o = 1}, there
is nothing left to prove. Suppose then z; > xy, and let 0 < ¢ < (2 — x%)/2. On
the one hand,

/ U(z)dz = 0. (2.5.74)
[xg,x". —e]

Jo

On the other hand, let us show that the integral in (2.5.74) is strictly positive, which
will be a contradiction. Since Ay C supp(ug), in particular

0= / up(x)dx >0, and / uo(x)dx > 0,
[zg .2}, —€) AgNle —&,00)

and then by Proposition [2.5.5

/ u(t, z)dx > / up(x)dx vt > 0.
[O,x}o—a)

[0,:1:;.0—&)

We now deduce from Lemma 2.5.16] that

/ u(t,z)dr = / ug(z)dx vt > 0,
{x<xk} {1’<Ik}

and then we obtain

/ u(t, z)dx > / up(z)de =6  Vt>0.
[zr,2; —e)

[zk 7x‘/7‘0 _8)
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It then follows from ([2.5.68)) that

/ U(z)dr > lim Sup/ U (t,x)dx > 6 >0,
[xk,m; —é] [:vk,x;.Ofs]

n—oo

in contradiction with (2.5.74)). O

Proof of Theorem 2.1.8] By Proposition Lemma and Proposition
there exists a sequence, {t,}nen such that, if u,(t) = u(t +t,) for all t > 0
and n € N, then u,, converges in C([0, 00), .#([0,00))) to the measure y defined in
E110).

Let us assume that for some other sequence {s;,}men, the sequence wy,(t) =
u(t + sm) is such that w,, converges in C([0,00),.#+([0,00))) to a measure W €
C([O? OO), '///—0—([07 OO)))

Arguing as before, there exists a subsequence of {wy, }men, still denoted {wyy, }men,
such that, {wy,(t)}men converges narrowly to a measure W € .#, ([0, 00)) for every
t > 0 as m — o0o. Moreover, the limit W is of the form

W = Z cjdyj,
7=0

and satisfies the properties 1-4 in Theorem We claim that W = U.
By Point (i) of Proposition [2.5.5 for any = > 0, the map ¢ — f[z 00) u(t,y)dy is

monotone nonincreasing on [0, 00). Therefore the following limit exists:

F(z)= lim u(t,y)dy, x >0.

t—o0 [I,OO)

From,
/ U(t,y)dyZ/ wm(t,y)dy, Vm €N,
[2,00)

[z,00)

we first deduce that,
/[ )U(t,y)dy > [ )W(y)dy-

On the other hand, it follows from the narrow convergence,

W (y)dy > limsup / wp (t, y)dy,
[x,00)

[1700) m—0o0

and then
F(x) = W (y)dy.

[,00)

The same argument yields

F(x) = /[ )u(y)dy,

and then, using that My(W) = My(ug) = Mo(p), it follows that W and p have the
same (cumulative) distribution function, and therefore W = p (cf. [48], Example
1.44, pg.20). O
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We describe in the following example the behavior of a particularly simple solu-
tion of the reduced equation for which, although the sequence { A (ug)}ren has only
one element, the asymptotic limit p has two Dirac measures.

Example 1. Let 0 < a < b < ¢ be such that B(a,b) > 0, B(b,c) > 0, and
B(a,c) =0, and let 9 > 0, yp > 0 and zp > 0 be such that xg + yo + z0 = 1. If we
define

Uy = To0a + Yooy + 209,

it follows from the choice of the constant a, b, ¢ that Ag(ug) = {a,b, c} and Ag(ug) =0
for all k> 0. On the other hand, by Proposition [2.5.4] (iii) the weak solution u of

(2.5.1)) given by Theorem is of the form,
u(t) = x(t)dq + y(t)op + 2(t)de, ¥Vt >0,

where, in addition, x(t) + y(t) + z(t) = 1 for all ¢ > 0. Using the weak formulation
([2.5.5) for the test functions 1 o), 1jc,00), and the conservation of mass, we obtain
the following system of equations:

Since 2/(t) > 0 for all ¢ and z(t) € (zo, 1),

Jim z(t) = Too € [0, 1].

Moreover, for all ¢ > 0,

y(t) = yoefot (R(b7c)z(5)_R(a,b)27(S))ds

Z(t) _ Zoe—R(b,c) fg y(s)ds’
and, by the conservation of mass,

y(t) _ @efg (R(b,c)—:v(s)(R(a,b)—‘rR(b,c)))ds < @BCt, (2.5‘75)
z(t) 2o 20
C = (R(b,c) — zo(R(a,b) + R(b,c))).

If we suppose that

R(b,¢)
R(a,b) + R(b,c)’

xro >

then C < 0 and, by (2.5.75)),

Using that for all ¢ > 0, z(t) < 29, we also have, using again (2.5.75)), y(t) < yoe®?,
and then lim;_,~ y(t) = 0. However, since for all ¢ > 0,

2(t) = —R(b, 0)z(1)y(t) = —R(b, ¢)z(t)yoe",
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we have,

) s <R<b, S)yo(1 — eCt>>'

C
Then, since 2/(t) <0,

. R(bv C)yo
= > _ 7
Zoo thjglo z(t) > zpexp < c > 0,

and the measure py is,
= Toolq + Zoole-



Chapter 3

On a system of two coupled
equations for the normal fluid -
condensate interaction in a Bose
gas

3.1 Introduction

We consider the existence and properties of radially symmetric weak solutions to
the following system of differential equations:

%(t,p) =n(t)[3(F(t))(p) t>0, peR?, (3.1.1)
n(t) = —n(t) /R LE@O)p)p >0, (3.1.2)

where

I3(F(t))(p) _//(RB)Q[R(P,PLZD)—R(m,p, p2)—R(p2, p1,p) | dp1dpa, (3.1.3)

R(p,p1,p2) = [0(Ip]* = Ip1[* = |p2*)(p — p1 —p2)] ¥
X [F1Fy(1+ F) — (1+ Fy)(1+ F)F], (3.1.4)

and we denote F' = F(t,p) and Fy = F(t,pg) for £ = 1,2.

The system , is motivated by the mathematical description of a
weakly interacting dilute gas of bosons. Given such a gas at equilibrium, if its
temperature is below the so-called critical temperature T, a macroscopic density
of bosons, called a condensate, appears at the lowest quantum state (cf.[52]). A
description of the system of particles out of equilibrium at zero temperature has
also been rigorously obtained ([27]). The system (3.1.1)), is more directly
related to a gas out of equilibrium and at non zero temperature. The equations
that, in the physic’s literature, describe a gas in such a situation have not been
the object of a mathematical proof; they have rather been deduced on the basis
of physical arguments (cf. [37], [40) [73], [69] for example). We are particularly
interested in the kinetic description of the interaction between the condensate and

77
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the particles in the dilute gas, when most of the particles are still in the gas, and so
when the system is at a temperature close to 7.

3.1.1 The Nordheim equation

The kinetic equation consistently used to describe the evolution of the distribution
function for a spatially homogeneous, weakly interacting dilute gas of bosons of
momentum pq is

%f(t,pl) =L(F®)(p) t>0, p1 €R? (3.1.5)

where

LEO@) = [[[ | aE)spp), (3.1.6

q(F) = F3Fy(1+ F1)(1 + Fp) — FiFy(1 + F3)(1 + Fy), (3.1.7)
dv(p1,pa,ps) = 2a*m 6 (p1 + p2 — p3 — pa) X
6 (E(p1) + E(p2) — E(p3) — E(pa)) dpadpsdps. (3.1.8)

sometimes called Nordheim equation ([58]), (cf. for example [37], [40], [69]). We are
assuming that the particles have mass m = 1/2 and E(p) denotes the energy of a
particle of momentum p. The constant a is the scattering length that parametrizes
the Fermi pseudopotential of scattering. In the absence of condensate, the energy
of the particles is taken to be E(p) = |p|>.

For a condensed Bose gas, it is necessary to include the collisions involving the
condensate. A kinetic equation is derived in [26] and [47] describing such processes.
More recently, [73] extended the treatment to a trapped Bose gas by including
Hartree-Fock corrections to the energy of the excitations, and have derived coupled
kinetic equations for the distribution functions of the normal and superfluid compo-
nents. Later on the results where generalized to low temperatures in [41] using the
Bogoliubov-Popov approximation to describe the energy particle. The system is as
follows

OF
ot
() = —n(t) /R @)@ >0, (3.1.10)

(t,p) = La(F(t))(p) + 32a°n(t) I3(F(t))(p) t >0, p € R, (3.1.9)

(cf. [26], [40], [47] for a deduction based on physic’s arguments). The term I,(F')
is exactly as in (3.1.6) and the constant 32a? comes from the approximation of
the transition probability: |M(p,p1,p2)|*> ~ 32a?n(t). The integral collision I3 is

given by an expression similar to (3.1.3), (3.1.4) but where the corresponding terms
R(p, p1,p2) are as follows,

R(p,p1,p2) = [6(E(p) — E(p1) — E(p2))d(p — p1 — p2)] X
x [F(p1)F(p2)(1 + F(p)) — (1 + F(p1))(1 + F(p2)) F(p)] - (3.1.11)

In presence of a condensate, the energy FE(t,p) of the particles at time ¢ is now
taken as E(t,p) = v/|p|* + 16an(t)|p|?, where n(t) is the condensate density ([I4],

[40]). Once equation (3.1.9) has been obtained, the equation (3.1.10) is just what is
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needed in order to ensure that the total number of particles n(t) + [ps F/(t, p)dp in
the system is constant in time.

We are particularly interested in a situation where most of the particles are in
the gas, and the condensate density n is very small. The energy of the particles is
then usually approximated as E(t,p) =~ |p|> + 4amn(t) (cf.[40]). In all what follows
we need the strongest simplification E(t, p) = |p|? to have the collision integral I3 in
(13.1.3)).

Moreover, in the problem , only the term that in the equation
describes the interactions involving one particle of the condensate has been
kept. The term I, the same as in equation , that only considers interactions
between particles in the gas, has been dropped. The term I; has been studied
with detail to prove the existence of solutions to the Nordheim equation
and describe some of their properties. The problem , only takes into
account the collision processes involving a particle of the condensate.

Since we are only concerned with radial solutions (F,n) of , , a
very natural independent variable is 2 = |p|?. But this introduces a jacobian and
then, the most suitable quantity is not always f(x) = F(p) but may be sometimes

Vaf(@).

3.1.2 The term I, and the Nordheim equation

The local existence of bounded solutions for Nordheim equation was proved
n [16]. Global existence of bounded solutions has been proved in [51] for bounded
and suitably small initial data. The existence of radially symmetric weak solutions
was first proved in [53] for all initial data fy in the space of nonnegative radially
symmetric measures on [0, c0).

For radially symmetric solutions F(p) = f(x), z = |p|?, the expression of the
Nordheim equation simplifies because it is possible to perform the angular variables
in the collision integral. After rescaling the time variable ¢ (in order to absorb some
constants), the Nordheim equation reads:

g‘:(t,ml) =Ju(f@#®)(z1), t>0, 21 >0, (3.1.12)

where
Ja(f)(z1) = //K]’qu(f)(l'l,CL'Q,.%'g)d.’L‘deg, (3.1.13)
q(f) = 1+ fu) (1 + fo) fafa — (14 f3)(1 + fa) f1 fo, (3.1.14)

w(zw1, 2, x3) = min {\/x1, /T2, \/T3,\/T4}, T4 = (x1 + T2 — T3) 4. (3.1.15)

The factor \/% in the collision integral comes from the angular integration of

the Dirac’s delta of the energies |pg|?.
If we denote .#4(]0,00)) the space of positive and finite Radon measures on
[0,00), and define for all & € R

ME([0,00)) ={G € A ([0,00)) : Mu(G) < o0}, (3.1.16)
M, (G) = / 2*G(x)dx (moment of order «), (3.1.17)
[0,00)

the definition of weak solution introduced in [53] is the following.
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Definition 3.1.1 (Weak radial solutions of (3.1.5)). Let G be a map from [0, o0)
into ./} ([0,00)) and consider f defined as /z f(t) = G(t). We say that f is a weak
radial solution of (3.1.5) if G satisfies:

Vt>0: G(t) € #1([0,00)), (3.1.18)
VI'>0: sup / (14+2)G(t,x)dx < o0, (3.1.19)
0<t<T J[0,00)
Ve € CMY([0,00)) : / o(2)G(t, 2)dz € C1([0, 00)), (3.1.20)
[0,00)
d
it || o(t,2)G(t, x)dx = Qu(p, G(1)), (3.1.21)
0,00)
G1GLG
Qu(p, G /// s wAp dridrodrs+
0,00) 3 .%'1.%2%‘
/// GhGo wAcp dzidzodrs (3.1.22)
[0,00)° VZ1T2
Ap(1, w2, 23) = @(x4) + p(3) — p(22) — @(21), (3.1.23)

w(xy, x2, r3) = min{\/T1, /T2, /T3,/Ta}, T4 = (x1 + 22 — 23)+. (3.1.24)

For all initial data fo such that Gy = \/zfy € #}([0,00)), the existence of a
weak solution was proved in [53]. The moments of order zero and one of G where
shown to be constant in time. It was shown in [55] that a definition equivalent to
Definition would be to impose ¢(0) = 0 to the test functions in Definition
and impose the conservation of mass on G(t) for all t > 0. Further properties of the
solutions, such as the gain of moments, asymptotic behavior, where obtained in a
series of articles [53] [54] 55 56]

It is proved in Proposition [3.2.1 below that if the measure G is written as G(t) =
n(t)do+g(t), where n(t) = G(¢,{0}), then for all ¢ € C (0, 00)) the term Q4(p, G)
may be decomposed as follows:

Qulp, G(1)) = 2a(p, g(1)) + n(t) 239, 9(t)), (3.1.25)

where

/// 919293 wAgo dridzodxs
0,00) 3 1’1:62%

/// 9192 wAgp dxidzedzs, (3.1.26)
0, oo 3 1’1.262
33(% = 2 g) e@( )(cp,g) (3.1.27)
// )g(ac)g(y)dxdy, (3.1.28)
M (4, g) = M )z
237 (¢,9) = /(O’oo) NG g9(z)dz, (3.1.29)
Alp)(z,y) = p(z +y) + ¢(lz — y|) — 2¢p(max{z, y}), (3.1.30)

Lo(@)(@) = 2(0(0) + p(x)) — 2 /0 " o)dy. (3.1.31)
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It was also proved in [53] that as ¢ — oo, the measure G converges in the weak
sense of measures to one of the measures:

Gpuc = eﬂgﬁ_‘/f’_l + 06, B>0, p<0, C>0 (3.1.32)
where the constants C' and p are such that Cu = 0.

When C' = 0 and p < 0, the function Fg,0(p) = [p|'Gp u0(|p|?) is an equi-
librium of the Nordheim equation because ¢(F3,,0)dv = 0. When C > 0
and g = 0, then Fzoc(p) = |p| 'Ggo.c(|p|?) is an equilibria of because
Q(fﬁ,0,0) = Oand R(p7p,ap//) = 0 for all (pa p/ap”) € (R3)3 for f,B,0,0a where R(pvp,vp//)
is defined in (3.1.4]). It was proved in [53] that Fj , ¢ is a weak solution of the Nord-
heim equatioqrmt_@[) if and only if uC = 0.

On the other hand, it was proved in [33] that, given any N > 0, £ > 0 there
exists initial data fo € L™ (Ry; (1 4 x)7) with v > 3, satisfying

/ fol@)Vzde = N, folx)VaPds = E,
R+ R+

and such that there exists a global weak solution f and positive times 0 < Ty < T
such that:

sup Hf (ta ')HL"O(R"F) < o0, sSup \/Ef (t,l‘) dz > 0. (3133)
0<t<T T <t<T™* J{0}

Property (3.1.33)) shows that the solution G = /x f of (3.1.18)—(3.1.24]) is a bounded

function on the time interval [0,7™) and a Dirac mass is formed at the origin at
some time Ty between T, and T™*. After that time Ty, the solution G is such that
G(t,{0}) > 0.

In the simplified description of the physical system of particles that we are us-
ing, where only the radial density G of particles of momentum p is considered, the
description of the physical Bose-Einstein condensate can just be given by a Dirac
measure at the origin.

Notwithstanding the similarity of these two phenomena, the extent to which the
first one is a truthful mathematical description of the second is not clear. Never-
theless, we refer to the term n(t)dy that appears in finite time in some of the weak
solutions of the Nordheim equation as “condensate”, with some abuse of language.

3.1.3 The term I3 in radial variables.

The results briefly presented in the previous sub Section describe some of the prop-
erties of the weak solutions to the Nordheim equation in terms of the measure G.
In particular, the weak convergence of GG to the measures defined in shows
what is the limit of G(¢,{0}) as ¢ — oco. To understand better the dynamics of
G(t,{0})dp and its interaction with G(t) — G(t,{0})dp it seems suitable to write
G(t) = G(t,{0})d + g(t) and consider the system (3.1.9), (3.1.10).

For radially symmetric functions F(p) = f(x), = = [p?|, the system ,
(13.1.2)) reads, after a suitable time rescaling to absorb some constants:

of n(t)

o (10) =" AO)@) >0, >0, (3.1.34)

n(t) = —n(t) /Ooo I(f(0)(z)dz >0, (3.1.35)
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where
(@ = [ (e =016 = F@[1+ o =9) + 10)])dy+
+2 /oo (f(y) 14+ fly—=)+ f(x)] — fly— x)f(a:))dy. (3.1.36)

(cf. [65] and [70] for the isotropic system that also contains the term J4(f), that
comes from I in (3.1.9))). Notice that

/ T B () (@)de

0

— /Ooo /Ooo (f(t,x)f(t,y) —flt,z+y)[1+ f(t, )+ f(t,y)])dxdy (3.1.37)

whenever the integral in the right hand side is finite, for example, if f € L' (R+, (1+
x)dx) In that case we also have,

/Doo Js(F() (@)dz = My(f(2). (3.1.38)

The factor z~/2 in the right hand side of (3.1.34) comes from the angular in-
tegration of the Dirac’s measure of energies of I3, just as the —= term of (3.1.13)

N
in 1. But since \/% is a bounded function, it appears that the operator I3 is more

singular than I, for small values of x.
If we denote F(t,p) = f(t,|p|?) = |p| 'g(t,|p|?) and = = |p?|, from the original
motivation of the Nordheim equation it is very natural to expect
oo o
/ F(t,p)dp = 27r/ f(t,2)/xdx = 27r/ g(t,x)dx < o0,
R3 0 0

(that corresponds to the number of particles in the normal fluid), and

/ F(t,p)|p/*dp = 27r/ f(t, )23 de = 27r/ g(t, x)zdr < oo,
R3 0 0

(corresponding to the total energy in the system). But there is no particular reason
to expect

dp_ 00 B 9] ﬁ
/RaF(t,p)’m—Qﬂ/O f(t,:v)da:-%r/o g(t,x)ﬁ<m.

Without that last condition, the convergence of the integrals in the term I3(F(t))
(cf. (3.1.3), (3.1.4)), or in (3.1.34)), (3.1.36)), is delicate. That difficulty is usually

avoided using a suitable weak formulation.
If we suppose that f =z~ Y/2g € L! (R+, (1+ a:)da:), and multiply the equation
(3.1.34) by \/x ¢, we obtain by Fubini’s Theorem,
d
dt J10,00)

p(@)g(t, x)dw = n(t) L3(p, g(t)) Ve € Cy([0,0)), (3.1.39)
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where
D3(p,9) = 2 (0.9) - 2V (¢.9). (3.1.40)
5(1) L)) o
257 (¢.9 )—/(OOO) NG g(x)dz, (3.1.41)
Lp)(x) = / (3.1.42)
Notice that, by ,
23(¢.9) = 23(, 9) — 0(0) M, j2(9). (3.1.43)

A natural weak formulation for G = n(t)dp+g¢ is then obtained by adding (3.1.35))
to (3.1.39). We then define a weak radially symmetric solution of the Problem

B1), B-12) as follows.

Definition 3.1.2 (Weak radial solution of (3.1.1)), (3.1.2])). Consider a map G :
0,T) — #}([0,00)) for some T € (0, 0c], that we decompose as follows:

Vi e [0,T): G(t) =n(t)do+g(t), where n(t) = G(t,{0});
and define F(t,p) = |p| tg(t, |p|?) for all t > 0 and p € R3. We say that (F,n) is a

weak radial solution of (3.1.1)), (3.1.2)) on (0,7) if:

VT € (0,7 : sup / (1+2)G(t, z)dr < oo, (3.1.44)
0<t<T" J[0,00)

Vo € CH[0,00)) 1t o(x)G(t, x)dx € WE([0,T)), (3.1.45)
[0,00)

and for a.e. t € (0,7

a4
dt J[o,00)

where Z3(¢, g) is defined by (3.1.27)-(3.1.29).

We show in Proposition that the Definition substantially coincides
with the Definition of radial weak solution of when the term 24(¢p, g)
in (3.2.1) is dropped (cf. Remark [3.2.2). As a consequence, the measures fz0.c(p)
defined above are weak radial solutions of (3.1.1]), (3.1.2)) (cf. Proposition .

p(x)G(t,z)dz = n(t) 230, g(t)) Ve € C;((0,00)), (3.1.46)

3.1.4 Main results

The existence of weak radial solutions for the Cauchy problem associated with the
system (3.1.1]), (3.1.2]) is given in the following Theorem.

Theorem 3.1.3 (Existence result). Suppose that Gy € .41 ([0,00)) satisfies Go({0}) >
0, and define Fo(p) = |p| Lg0(|p|?), where go = Go — Go({0})69. Then, there eax-
ists a weak radial solution (F,n) of (3.1.1), on (0,00) such that F(t,p) =
Ip|~tg(t,|p|?), where G = ndg + g satisfies:

G € O([0,00), .4 ([0,0))), G(0) =Gy (3.1.47)

and:
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(i) G conserves the total number of particles N and energy E:

Mo(G(t)) = Mo(Go) = NVt >0, (3.1.48)
M(G(t) = My(Go) =E ¥t > 0. (3.1.49)

(it) For all a > 3, if Mo(Go) < 00, then G € C((0,00), #2([0,00))) and

_2 -1 atl aTil
Mo (G(1)) < (Ma(Go)afl +a2® Eaflf(t)) vt >0, (3.1.50)
t
where T(t) = / G(s,{0})ds. (3.1.51)
0
(iii) For all o > 3,
1 2(a—1)

where T(t) is given by (3.1.51]), and the constants C(a, E) and vy(a, E) are
defined in Theorem[3.5.1].

(iv) If a € (1,3] and
E > C(a)N*?, (3.1.53)

where  Cla) = (%)3 if ac(1,2],
(a(a+1)) if ae(23],

then My (G(t)) is a decreasing function on (0,00).

(3.1.54)

Wi

The next result is a property satisfied by all the weak radial solutions of ([3.1.1)),
B12).

Theorem 3.1.4. Let Gy be as in Theorem and G a weak radial solution of

(-) . Then for all T > 0, R>Oanda€( )
T
/ Gt {0}) / 219Gt 2)dudt <
0 (0,R]
3 VE [T
< ﬁ (/ G(t, {0}) dt) (2/0 o, {0})dt+\/ﬁ>. (3.1.55)

The only possible algebraic behavior for such a measure G near the origin is then

1‘_1/2.

Remark 3.1.5. The functions Fgo o defined above are weak radial solutions of

(3.1.1), (3.1.2) for all > 0 and C > 0 (cf. Proposition 3.2.3)). Since

/ %G dr <oo <= a>-1/2,
(0,00)

the estimate (3.1.55)) can not hold for all radial weak solutions if o < —1/2.
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In the next two results we describe the evolution of the measure at the origin
n(t) = G(t,{0}) by taking the limit &€ — 0 in the weak formulation (3.1.46| for test
functions . as follows:

Remark 3.1.6. Given ¢ € C}([0,00)) nonnegative, convex, with ¢(0) = 1 and
lim, o0 v/Z@(x) = 0, denote p-(z) = p(x/e) for € > 0. Notice that for any G €
%-‘r([ou OO)),

G({0}) = lim e (z)dG(x). (3.1.56)

e—0 [0700)
The standard example is ¢.(z) = (1 — z/e)2.

Theorem 3.1.7. Let G be the solution of obtained in Theorem with
initial data Gy € M1([0,00)) such that N = My(Gg) > 0, E = M1(Gp) > 0 and
Go({0}) > 0. Denote G(t) = n(t)do + g(t), with n(t) = G(t,{0}). Then n is
right continuous and a.e. differentiable on [0,00). Moreover, there exists a positive
measure p on [0,00) whose cumulative distribution function is given by

p((0,8)) = lim | n(s) 25 (2, g(s))ds (3.1.57)

e—0 0

for any . as in Remark[3.1.6, and such that:

t
n(t) — n(0) +/ n(s) My 2(g(s))ds = p((0,1]) vt > 0. (3.1.58)
0
Theorem 3.1.8. Let G and pu be as in Theorem|3.1.1 Then

0 < u((0,t])) < o0 Vit > 0. (3.1.59)

The measure p in (3.1.57)) depends on the atomic part of g, and on the behaviour
of g at the origin (it seems to be actually related with its moment of order —1/2 c.f.
Proposition and Remark [3.6.5). This measure p appears as a source term in

the equation ([3.1.58]) for n. Given the function n, the equation (|3.1.34)) satisfied by
g on (0,00) has also a natural weak formulation by itself. In terms of g(t), where

g(t) = G(t) — G(t,{0})do and \J/xf(t,z) = g(t,x) it reads

jt/[o f(x)g(t,x)dx = n(t)23(p, (1)), Yo € CL([0,00)), p(0) = 0.  (3.1.60)

In the next result we describe the relation between a weak solution (F,n) of

BL), (12, where F(t, p) = ||~ g(t,[pl?), G(t) = n(t)do +g(t), n(t) = G(t, {0}),
and a pair (g,n) where g is a weak radial solution of the equation (3.1.1) and n

satisfies (3.1.2)).

Theorem 3.1.9. Suppose that G € C([0,00), #4([0,00))) is such that G(0) = Gy €
ML(]0,00)) with Go({0}) > 0, and denote G(t) = n(t)do+g(t) with n(t) = G(t,{0}).
(i) If (F\,n) is a weak radial solution of , and F(t,p) = |p|~1g(t, |p|?),
then n is given by (3.1.58), (3.1.57), and g satisfies for a.e. t> 0.
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(it) On the other hand, if g satisfies (5.1.44)), (5.1.45)) 5’ (13.1.45) and m 3.1.60) for some non-
negative bounded function n, then the limit in exists. If n also satisfies

t

n(t) = n(0) + lim [ n(s) 2 (¢, g(s))ds — /O n(s)Myjo(g(s))ds  (3.1.61)

e—0 0

and F(t,p) = |p|~tg(t, |p|?), then (F,n) is a weak radial solution of , .

If in the Definition only test functions satisfying ¢(0) = 0 are taken, it
becomes necessary to introduce some other condition to the system. Otherwise the
system would be reduced to find g satisfying f for a given function
n(t) and for test functions such that ¢(0) = 0. If we impose just the conservation
of mass, we prove below (Corollary that we recover a solution that satisfies

the Definition B.1.2

Corollary 3.1.10. If g satisfies (3.1.44), (3.1.49]) and (3.1.60) for some nonnega-
tive bounded function n = n(t) such that

n(t) + / g(t,x)dx = constant (3.1.62)
(0,00)

and F(t,p) = |p|~tg(t, |p|?), then (F,n) is a weak radial solution of , .

In our last result we show that, under some sufficient conditions, the condensate
density n(t) tends to zero as t — oo, fast enough to be integrable.

Theorem 3.1.11. Suppose that Gy € ///1([0 00)) satisfies Go({0}) > 0 and let

(F,n) be the weak radial solution of (3.1.1] ' obtained in Theoremm Let

us call N = My(Gp) and E = M1(Gy). If condmon (5.1.53), (3.1.54]) hold for some
€ (1, 3], then, for all ty > 0,

/ T ()t < Ma(G(to))C(N, B, o) (3.1.63)

to

for some explicit constant C(N, E,«) given in , and
tlggo n(t) = 0. (3.1.64)

Remark 3.1.12. The quantity E/N 5/3 has a very precise interpretation in physical
terms. Suppose that T is the temperature of a system of particles at equilibrium
with total number of particles N and total energy E. And denote T, the critical tem-
perature, that is the temperature at which the ground state of the system becomes
macroscopically occupied. Then:

E T 3 ¢(5/2)

—— _ =9} h b= .
o VT R (2r)3 C(3/2)7/3

and condition (|3.1.53)) implies
T 1 FE C(w)

TC_EN5/3> b

The function C(«)/b is continuous and strictly increasing on [1,3] and its limit
as a — 1% is log(16)%/3/b ~ 4.48403. Condition (3.1.53) means that, when at
equilibrium, the system of particles would be at a temperature clearly above the
critical temperature. Anyway, the solution F' of the problem , may be
far from any real distribution of particles of the original system of particles.
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3.1.5 Some arguments of the proofs.

It is very natural to make the following change of variables in problem (3.1.46]).
Given G(t) = n(t)do + g(t), where n(t) = G(t,{0}), we define

H(t)=G(t), where T = /0 n(s)ds. (3.1.65)

In terms of H, (3.1.46|) reads
d

To obtain a measure H that satisfies (3.1.66|), we first find h satisfying
d

dr [0,00)

where Qvg is given in ([3.1.40)—(3.1.42). Then we define H as
1) = ()~ ([ 2t alhtoac) o (3.168)
0

o(x)h(r,z)dx = ég((p, h(1)) Ve € CL([0,00)), (3.1.67)

By (3.1.43), the measure H will satisfy (3.1.606|).

As it will be seen in Section all the arguments are much simpler and clear
in the equation for H than in the equation for GG. In particular, the measure A, that
corresponds to the measure p of Theorem [3.1.7] appears as the Lebesgue-Stieltjes
measure associated to m(7) = h(7,{0}).

The proofs of Theorem [3.1.3] and Theorem make great use of the change
of variables (3.1.65]). Several of our arguments will need the measure h(7) to satisfy
only one inequality in (3.1.67]). This requires the following;:

Definition 3.1.13. A function h : [0,00) — #1([0,00)) is said to be a super

solution of (3.1.67) if

Vi € CL([0, 00)) nonnegative, convex and decreasing :
CZ_/ e(x)h(r,z)dx > Qz(f)(go, h(T)) a.e. 7> 0. (3.1.69)
(0,00)

The operator Qém is considered in [44] and [45], where a problem similar to

is studied, with 25 replaced by 2;2) and for which, the property of in-
stantaneous condensation is proved. We extend this result to the solutions h of
the problem with the whole QN;»,, using similar arguments (monotonicity,
convexity of test functions) and taking care of the linear term.

Theorem is deduced from the corresponding existence result of h, that is
proved using very classical arguments: regularization of the problem, fixed point, a
priori estimates and passage to the limit. Then, the delicate point is to invert the
change of variables in order to obtain a global in time nonnegative solution
G.

The Plan of the article is the following. In Section [3.2]we prove Proposition[3.2.1]
Section [3.3] is devoted to the proof of the existence of the measure H. In Section
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we obtain several properties of h(7,{0}). In Section 3.5 we prove Theorem
(existence for the measure G) and Theorem The contents of Section [3.6|are the
proofs of Theorem [3.1.7] Theorem[3.1.8] Theorem [3.1.9/and Corollary[3.1.10] Finally
in Section we prove Theorem Several technical results are presented in
an Appendix.

3.2 On weak formulations.

We deduce first a detailed expression of the weak formulation of (3.1.12)) for a radial
measure G.

Proposition 3.2.1. Let G satisfy (3.1.18)—(3.1.24) for some T" > 0, and write
G(t) =n(t)do + g(t), where n(t) = G(t,{0}). Then, for all p € C’;’l([(), o0)) and for
allt € (0,T):

% p()G(t,x)dz = 2a(p, g(t)) +1(t) 23(0, (1)), (3.2.1)
[0,00)

where 24(p, g) and 23(p, g) are defined in (3.1.26)—(3.1.31]).
Remark 3.2.2. If the term 24(yp, ¢g) in (3.2.1]) is dropped, we recover the equation

(3.1.46) that defines a radial weak solution of (3.1.1f), (3.1.2)).
Proof of Proposition We may rewrite Q4(p,G) in (3.1.22)) as

1
Q4((p, G) = /// (I)ga dG1dGadGs + 5 // \/563(1)%0 dG1dGadzxs,
[0,00)3 [0,00)3

where @, is as in Lemma @I, and we have used notation dG instead of Gdzx.
Then we decompose [0,00)° = (0,00)> U AU P, where, for {i,j,k} = {1,2,3},

A = {(x1, z2,23) € 0]0, 00)3 ca;=x; =0, 2 >0} U{(0,0,0)},
P = {('1/‘13517271'3) € 8[0300)3 LT = O’ (mjaxk) € (0700)2}

Let ¢ € CH1([0,00). By (C.2.34) in Lemma [C.2.22] and the definition (C.2.35) of

W, it follows that ®, = 0 on A. Hence, recalling the definition (3.1.26]) of 24(¢,g)
and the definition of ®, in Lemma we have

Qu(,G) = 24(, g / / / O, dG1dGodGs + = / / Va3, dGydGodas.
(3.2.2)

We now study the integral over P for the cubic and the quadratic terms in (3.2.2)).
(a) The cubic term. Since ®, is symmetric in the x;, xo variables, and ®, is
uniformly continuous on [0, 00)3 by Lemma |C.2.23] then

/// @, dG1dG2dG3 =2 /// @, dG1dG2dGy
{x2=0, £1>0, 23>0}
/// ¢, dG1dG2dG3
{x3=0, £1>0, z2>0}

—2G t {0} // x1,0 333) dGldG;J,

G(t, {0}) //(0 )2 (I)Sp(xl,l’g,()) dGldGQ. (323)
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Using now the definition of ®,, we have

2//(0 )2 (21,0, 3) dG1dGs (3.2.4)
-7 //{m1>x3>0} [w(xl - 333) * SO(:IB) B 90(0) B So(xl)] dj%g

_ xr1 — X mind{zi.x _ _ max{ 1.z dGlng
_(OZO/)Z [e(Jz1 — 23]) + @(min{z1, 23}) — ©(0) — p(max{z1, z3})] T

and

//(o )2 By (21, 2,0) dG1dG2 (3.2.5)
_ T €T — o(min{z1. x —olmax{zi.x dG1dGa
—(OZO{ [p(a1 + 22) + 9(0) — p(min{z1, 22}) — p(max{z1, 22})] N

Notice in (3.2.4) that ¢(|z1 — z3]) + ¢(min{z1,23}) — v(0) — p(max{z1,23}) = 0 on
the diagonal {z1 = x3 > 0}. Then, using (3.2.4) (changing the labels 3 by x2) and

(3.2.5) in (3.2.3)), and recalling the definition (3.1.30]) of A(¢), we obtain

®, dG1dG2dGs = G(t, {0}) A 22) yo i, (3.2.6)
/11, o™

b) The quadratic term. Again, by the symmetry of ®, in I1, T2, and the cont 1nu1ty
P
of <I><p on [0, 00)3, we obtain

1/// \/gfgq)w dGlngdxg = /// \/37»3(1)@ dGlngd:L'g,
2 P {£2=0, 21 >0, 23>0}
= G(t, {0}) //( : \/¢T>3CI)LP(.T1, 0,z3) dGidxs
0,00)2

— G(t, {0}) / / Ap(@1,0,28) 4o 0
{z1>23>0}

Nen
Lo() (1)

=—G(t,{0 / ———=dGy, 3.2.7

wiop [ (3:27)

where Lo(p) is given in (3.1.31). Using (3.2.6) and (3.2.7) in (3.2.2)), the result

follows. O

Proposition 3.2.3. For all C > 0 and all § > 0, the measure fzoc is a radial

weak solutions of (3-1.9).
Proof. By Proposition [3.2.1

Qu(p, Gpo,0) = 249, Gp00) + C25(p, Gpo0)-
We already know by Theorem 5 of [53] that Q4(p, G 0.c) = 0 for all p € C11([0, 0)).

Since 24(, Gs00) = Qua(p, Gpo00), we deduce 24(p, Gg ) = 0 for all o € C11([0, 00)).

Then, since C > 0,

23(p,Gp00) =0 Vo e CH([0,00)).
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3.3 Existence of solutions H to (3.1.66)

The main result of this Section is the following,

Theorem 3.3.1. Let hy € #}([0,00)) with N = My(ho) > 0 and E = Mi(hg) > 0.
Then, there exists h € C((0,00), #¢([0,00))) for any o > 1, that satisfies the
following properties: for all p € C}([0,00)

(i) T+ o p(x)h(r,z)dz € WL>([0,00)), (3.3.1)
(i1) di o(z)h(r,z) dz = D5(p,h(7)) a.e.T >0, (3.3.2)
7 Jl0,00)
(iii)  h(0) = ho, (3.3.3)
2
(iv)  My(h(1)) < (‘/ff + \/N> VT >0, (3.3.4)
() M (hM7))=E ¥r>0, (3.3.5)

(vi) For all a > 3, if My(ho) < oo, then

1

2

2 o] okl
Mo (h(7)) < (Ma(hg)afl +a2 EcHT) vr > 0, (3.3.6)

1 2(a—1)
)T> Ya >3, Vr>0, (3.3.7)

(vii)  Ma(h(1)) < C(a, E) (H—waE

where C' = C(a, E) is the unique positive root of the algebraic equation

2a—1

20-2(q + 1) E%e 11 (1 + C) = CPa 1, (3.3.8)

and v =v(a, E):

Y= 2(@11) (g) D - (3.3.9)

The proof of Theorem [3.3.1]is in three steps. In the first, a regularized problem
is solved (Theorem [3.3.6). Then, using an approximation argument, a solution

is obtained that satisfies (3.3.1)-(3.3.6) but not yet (3.3.7) (Theorem [3.3.4)). The

Theorem |3.3.1] is proved with a second approximation argument on the initial data.

As a Corollary, we obtain the measure H (not necessarily positive).

Corollary 3.3.2. Suppose that hy € #}([0,00)) with N = My(hg) > 0 and E =
M;(ho) > 0, consider h given by Theorem and define, for >0

H(r) = h(r) — ( /O Y /Q(h(a))do—> 8o (3.3.10)
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Then H € C([0,00),.#*([0,00))) and for all T € [0,00) and ¢ € CL([0,0)):

() T | S@HE e Wy ([0, 00)), (3.3.11)
(i) % o )go(:n)H(T, x)de = Z3(p,H(T)) a.e.T7>0, (3.3.12)
(i45) H(0) = ho, (3.3.13)
(iv) My(H(r))=N Vr >0, (3.3.14)
(v) Mi(H(r))=E V¥12>0, (3.3.15)

(vi) VYa >3, if My(ho) < oo then, for allT > 0,
Mo (H (7)) < (Ma(ho)% +a2a1E3fiT)21, (3.3.16)

1 2(a—1)

(vii) My(H(1)) < C(ay, E) <1_6_7(QE)T> , Va > 3, (3.3.17)

where the constants C(a, E) and v(a, E) are defined in Theorem|3.3.1|

Remark 3.3.3. Under the hypothesis that all the moments of the initial data hg
are bounded it is easy to obtain the estimate using the weak formulation
(13.3.2)). However, it is not so easy using the regularized weak formulation
below. For that reason, we first want to obtain a solution h satisfying with
an initial data with bounded moments of all order.

3.3.1 A first result.

Theorem 3.3.4. For any hy € #1([0,00)) with N = My(ho) and E = M (hy),
there exists h € C ([0, 00), #L([0,00))) that satisfies f :

The proof of Theorem is made in two steps. We first solve a regularised
version of (3.3.2). Then, in a second step, we use an approximation argument. More
precisely, we consider the following cutoff:

Cutoff 3.3.5. For every n € N let ¢,, € C(]0, 00)) be such that supp ¢, = [0,n+1],
dn(z) < xzV/2 for all z > 0 and ¢, (z) =z~ /2 for all z € (1,n), in such a way that:

V>0 lim ¢,(z) = (3.3.18)

-

3.3.2 Regularised problem

We now solve in_Theorem [3.3.6| a regularised version of (3.3.2)) with the operator
23, defined in dC.1.14I)de.1.16 . The solution h,, is obtained as a mild solution to
the equation

Ohn,

W(T? l‘) = J3,n(hn(7-))(-75)7 (3.3.19)

where J3 , is defined in (C.1.17)-(C.1.20]), and corresponds to a regularised version
of the term J3 defined in (3.1.36). Namely, J3,(h) = J3(h¢yp), where ¢, is as in
Cutoff B33
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Theorem 3.3.6. For any n € N and any nonnegative function hy € C.([0,00)),
there exists a unique nonnegative function hy, € C([0,00), L®(R4) N LL(R)) such
that for all T € [0,00) and all ¢ € L}, (R):

T . w(m)h(T z)dz € W,52°([0, 00)) (3.3.20)
4 / (v, 2)dx = Dy, h(7)- (3.3.21)
,x) = ho(z) (3.3.22)

Moreover, if we denote by N = My(ho) and E = M (hg), then for every T € [0, 00)
and o > 3:

2
Mo(hn (7)) < (ff + \/N> , (3.3.23)
My (hn(7)) = E, (3.3.24)

—1

2

Mo (hn(7)) < (Ma(ho)% n om—lE%iT) (3.3.25)

Furthermore, there exist two positive constants C1, and C, depending on n and
||ho||LoomL316 such that for all T > 0:

1 (7)|oo < C1peC2n (57, (3.3.26)
Proof. Using ((C.1.17)) we write equation (3.3.19) as
8;7 hnAn(hn) = Kn(hn) + Ln(hn), (3.3.27)

and the solution h,, is obtained as a fixed point of the operator:
Ry, (hy) (7, ) =ho(2)Sn(0, T; x)
/ Sn(o,7;2) (Kn(hn) (0, %) + Ln(hy) (0, z))do, (3.3.28)
Sn(o, ;1) =e =[5 An(hn)(o,2)do (3.3.29)
on

B(T) := {h e C([0,T), L°(R)NLL(R})) :h >0 and

sup [|A(7)|| ey < 2||h0||Loong16}. (3.3.30)
T€[0,T]

Let us show first that R, sends B(T') into itself. Let 1o := [|ho|| ez and for an
arbitrary 7' > 0, let h € B(T'). By Proposition |C.1.21| with p(x) =z

R, (h)(r,xz) >0 V7 €0,T], Vx € Ry,
Fa(h) € (0,7, L*(Ry) N LL(Ry).

Moreover, using (C.1.28]) and (C.1.29)):

o | R () ()| ooz < o + T C(n) (475 + 2r).
7€(0,T
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If T satisfies:

1
T < SO (3.3.31)

then R, (h) € B(T).
To prove that R, is a contraction, let hy € B(T), hy € B(T) and write:

|Rn(h1) (7, @) — Ry(ho) (7, x)| < ho(x)]51(0,752) — S2(0, 75 2)| +
—i—/o |S1 (0, T52) — Sa(o, 75 )| (Kn(hl)(o, x) + Ly (h1)(o, a?))da
+ / K(h)(0,2) — Kn(ho)(0,2)|do
0
+ /0 |Lo(h1) (0, %) — Lu(hs) (0, )| do.
By,forallaZOandTZO

|S1 (0, 752) — Sa(o,152)| < /OT |An(h1)(o,z) — An(h2) (o, x)|do

< C(n)7T sup ||h1(7) — ha(7)||co- (3.3.32)
T€[0,7T]

Using now ([3.3.32)) and (C.1.28))—(C.1.31)), we deduce:

[Bn(h1)(T) = Rn(h2)(T)||Loenry < Cr sup [[ha(7) = ha(7)lloo,

T7€[0,T]
Ch = Cl(n, T, 7“0) = C(n)T (1 + 3rg + 2T7’0(1 + 27’0)) .

If (3.3.31) holds and

C(n)T (1 + 3rg+ 2Tro(1 + 2r9)) < 1,

R, will be a contraction from B(T') into itself. This is achieved, for example, as
soon as:

1 1
T < mi = fipy.
< min { 2r0(1 + 2rg)’ 2C (n)(1 + 2r0) } ¥ro
The fixed point h, of R, in B(T) is then a mild solution of (3.3.19)), that can be

extended to a maximal interval of existence [0, T3, max)-
We claim now that h,, satisfies (3.3.20)), (3.3.21). Since h,, is a mild solution of

(3-3.19):

B, ) = ho(2)Sa(0, 75 ) + /0 " S0(0,732) (K (hn) (0, 2) + L)@, 7)) do
(3.3.33)

We multiply this equation by ¢ € L}, (R) and integrate on (0, 00):
/ hon (T, 2)(x)dx = / ho(x)Sn(0, 75 z)p(x)dr+
0 0

+/0 /0 Sn(o,7;3) (Kn(hn) (0, ) + Ly(hn) (0, 7)) o(x)dzdo.
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Using Lemma |C.1.21}and kg € C,(]0,00)), it follows that the integrals above are well
define. It also follows from Lemma (C.1.21|and (3.3.29) that 7 — [ hn (7, 2)@(2)da
is locally Lipschitz on (0,7}, max), and:

d o0 oo
dt/o hn(T,J:)go(w)da::/o ho(x)(Sn (0, 75 2))rp(z)dz+

+/oo Ky (hy)(1,2) + Lp(hy) (1, 2)) o(2)da+
/ / (0,7;2))7 (Kn(hn)(0,2) + Ly (hy) (0, z))@(z)dzdo.

We use now that (S, (o, 7;2)); = —Ap(hyn)(7,2)S, (0, 7; ) and the identity (3.3.33))
to deduce:

é% OmDhn(T,x)w(m)da:::jgakj(n(hn)(r,x)-+;Ln(hn)(77x))¢(x)dx__

_ /0 " Ao (7, 20 (7, 2) i,

that is (3.3.21)).

Suppose now that T;, max < 00 and

sup |[|hn(7) || Loy < 00

TG[OaTn,max)

Then there is an increasing sequence 7; — T}, max as j — oo and L > 0 such that

sup || (75) || ooy < L < o0.
J

Fix 6 > 0 such that 6 < Ky, 41. Starting with the initial value h(7;) we have a mild
solution h; defined on [0,d]. Gluing together h with h; we obtain a mild solution
on [0,t; + d]. For j large enough, t; + 0 > T max, and this is a contradiction.
Therefore, either T}, max = 00 or, if T}, max = 00, then limsup || (7)|| Leenz1 = 00 as
T — Tn,max-

Let us prove now the estimates (3.3.23)), (3.3.24) and (3.3.26)), first for all 7 €
(0, T max). Then, the property T}, max = oo will follow. We start proving .
To this end we use with ¢ = x. Since in that case A(p)(z,y) = 0 and

L(p)(x) =0, (3.3.24)) is immediate. To prove (3.3.23)), we use (3.3.21) with ¢ = 1.
Then, A(p)(z,y) = 0 and L(p)(z) = —x and then, using ¢, < 2z~ /2, Holder

inequality and (3.3.24)):

d ([ V2 VE
_ < Y=
dr (/0 hn(T’ a:)dm) =9

from where (3.3.23|) follows.
In order to prove (3.3.26]) we use (3.3.23)):

1) (@)oo < [ allZ a1 n () o
2
< Hqsnuzo(“fo #VE) 1ol
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which combined with the estimate ||Ly,(hn)(0)]loo < 2||énll1]]hn(0)]0o, gives

1 (7)o < [[ho]lo0 + /OT (5 (hn) (@)lloo + | Ln(hn ) (0) [l ) do
< [lhollee + C(n; ho) /07(02 + Dhn(0)]lcodo

where

SullZ
(o) = wax {166 e lrols, 125 ol }.

Then ([3.3.26)) follows from Gronwall’s inequality.
For the proof of (3.3.25) we use (3.3.21]) with ¢(z) = z* for a > 3:

d

—Ma(ha(7)) = Z3.n(: ha (7). (3.3.34)
Since:
L(p)(z) = <z;> 2t >0, (3.3.35)
we have,
TMa(h (1) <2 [ [ A )0n@)60 )b (7, 2)

Then, we write A(p)(z,y) = 2*((1 + 2)* + (1 — 2)* — 2), where z = y/z, and by
Taylor’s expansion around z = 0:

[u”llso o . a—3_2
u(z) < % <ala—1)29772%

Hence for all 0 <y < z:

A(p)(z,y) < Coz™ %2, where Co = afa —1)2073, (3.3.36)

and then, using ¢, (z)é,(y) <y~ ! and (3.3.24),

4
dr

Since by Holder’s inequality and (3.3.24))

Mo (h(7) < 2CaMe_o(hn())E.

Ma-a(hn(7)) < Ea-1 M (ha(7)) 571,

we deduce

L (Malha(r))a®) < 202 p3,

and (|3.3.25]) follows. ]
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3.3.3 Proof of Theorem [3.3.4l

The solution h whose existence is claimed in Theorem [3.3.4]is obtained as the limit of
a subsequence of solutions (hy,)n,en to the regularized problems obtained in Theorem
We first prove the following Lemma.

Lemma 3.3.7. Let hy € C.([0,00)) be nonnegative with N = My(hg) > 0 and
E = M;i(hg) > 0, and consider (hy)nen the sequence of functions given by Theorem
3.53.6. Then for every T € [0,00) there exists a subsequence, still denoted (hy(T))nen,
and a measure h(1) € M1 ([0,00)) such that, as n — 0o, hy,(T) converges to h(t) in
the following sense:

. , p(z)
Vo € C([0,00)); 30 € ]0,1) : il;}g 120 < 00, (3.3.37)
lim o(x)hp (T, x)dz :/ o(z)h(T, x)d. (3.3.38)
=90 J10,00) [0,00)

Moreover, for every T € [0,00):

Mo(h(7)) < <*/2ET + \/N>

M (h(r)) < E. (3.3.40)

2
, (3.3.39)

Proof. Let us prove first the convergence for a subsequence of (hy,(7))nen. For every

7 > 0 we have by (3.3.23]) that
& E
sup/ hn (7, x)dx < <\/2>7'+ \/ﬁ)
0

neN

2

Therefore, there exists a subsequence, still denoted (h,(7))nen, and a measure h(7)
such that (h,(7))nen converges to h(7) in the weak™® topology of .Z([0,0)), as
n — oQ:

lim o(x)hy (T, 2)dr = / e(x)h(r,x)dx, Yo € Cy([0,00)). (3.3.41)
770 J0,00) [0,00)

Since for all n € N, h,(7) is nonnegative, then h(7) is a positive measure. Also by

weak™ convergence and (3.3.23)) we deduce that h(7) is a finite measure:

/ h(7,z)dz < lim inf/ I (7, 2)dx < (\/2E7- + \/]V>
[0,00) 0

2
. (3.3.42)

n—o0

Moreover, by (3.3.24) we also have that the sequence (h,(7))nen is bounded in
LL(R,). Hence there exists a subsequence (not relabelled) that converges to a
measure v(7) in the weak™ topology of .#(]0,>0)), i.e., such that

im [ o(2) 2 ha(r2)ds = / () (r,2)dz, Yo € Co([0,00)).  (3.3.43)

n—oo 0 [0700)
Again, since h,,(7) is nonnegative for all n € N then v(7) is a positive measure. Also

by weak* convergence and ([3.3.24)) we have

/ v(7,z)dz < liminf Z hyp(7,2)de = E. (3.3.44)
[0,00)

n—o0 0
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Let us show now that v(7) = x k(7). This will follow from
Vo € Cp([0,0)) : / o(x)v(r,z)de = / o(x) z h(r,z)dx (3.3.45)
[0,00) [0,00)

In a first step we show that (3.3.45)) holds for ¢ € C.([0,00)) and then we use a
density argument Let € > 0 and ¢ € C.([0,00)). Using (3.3.43)) with test function
¢, and (3.3.41)) with test function zp(x), we deduce that

‘/ v(r,x)dz —/ o(z)x h(r,z)dx
[0, oo) [0,00)

‘/ v(T,x)dx — /[0700) (@) @ hn (7, 2)d2

/ o(x) x hy (T, w)dl‘—/ o(z) x h(r,x)dz

0 [0,00)

for n large enough. Hence (3.3.45)) holds for all ¢ € C.(]0,00)). Now let ¢ €
Cy(]0,00)) and consider a sequence (pg)ren C Ce([0,00)) such that

ok — ¢llo — 0 as k — oo. Using (13.3.45) with ¢ and the bounds (3.3.42) and
(13.3.44)), we deduce that

'/[Ooo) v(r, v)dz — /[0,00) o(x) z h(r, z)dx
</[ooo lo(x) — () |v(r, x)dw

’ /[ooo) v(r, z)dz — /[Om) o)z h(r, z)dx
T /[0700) {‘Pk(if) — ()| zh(r,z)dr < €

for k large enough. Therefore (3.3.45) holds for all ¢ € Cp([0,0)), i.e., v(T) =
x h(7). Hence we rewrite ([3.3.43)) as

lim [ ()3 (7, 2)ds = / o(2)x hr, 2)dz, Y € Co([0,00)).  (3.3.46)

n—oo 0 [0,00)

+ <€

Let us show now (3.3.37)), (3.3.38]). Let then ¢ € C([0,00)) be any nonnegative test
function that satisfies (3.3.37). We denote ((j);en a sequence of nonnegative and
nonincreasing functions of C2°([0, 00)) such that:

C(z)=1if 2 €]0,7), Gilx)=01ifz>j+1,
and define ¢; = ¢ (;. Then for every n, j € N:

‘ / (r,z)dz — /[0 . o(2)h(r, z)da
/ lo(@) — () |n(r, 2)de

’/ 0j(x)hp(T a:)d:x—/[o’oo) j(x)h(T,z)dx

+ /[Om) 19;(2) — (@) (7, 2)da

(3.3.47)
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Since ¢; € Cp([0,00)), using (3.3.43)), the second term in the right hand side of
(3.3.47) converges to zero as n — oo for every j € N. The first and the third term in
the right hand side of are treated in the same way, using that ¢;(z) = ¢(z)
for all x € [0, 7). For instance, in the first term:

[e.e]

| 1ot = er@tatraie = [ lota) - o5 (e
0

J

< 2/00 (o(@) | (7, 2)d < 20 /00(1 + 2V ho (7, 2)da

-0 00 -0
§2C'<1+,‘7 >/ xhn(T,x)dz§20<1+,] )E
J

J J
Therefore this term is small provided j is large enough. In conclusion, the difference
in (3.3.47) is less than e for n sufficiently large, i.e., (3.3.38)) holds. [

Remark 3.3.8. The so-called narrow topology o (. ([0, 0)), C([0, 00))) on .#4(]0, 00))
is generated by the metric d(u,v) = ||u — v||o, where

|1llo = sup {/{0 )s@du : ¢ € Lipy([0,00)), [[¢llee < 1} ,

(cf. [15] Theorem 8.3.2).

Using this Remark, Lemma|[3.3.7] and the Arzela-Ascoli’s Theorem we prove now
the following:

Proposition 3.3.9. Let hg and (hp)nen be as in Lemma|3.5.7. Then there exist a
subsequence (not relabelled) and h € C([0,00), #([0,00))) such that

hn ——h in C ([0, 00), A+ ([0,0))). (3.3.48)
Moreover, if we denote by N = My(ho) and E = M (ho), then for all T > 0
E 2
My(h(7)) < (‘gr + \/N> : (3.3.49)
My (h(7)) < E, (3.3.50)
and for all ¢ € C([0,00)) satisfying the growth condition :
lim o(x)hy (1, z)dx :/ o(x)h(r, z)dz. (3.3.51)

Proof of Proposition By Lemma the sequence (h,(T))nen is rela-
tively compact in .Z ([0, 00)) for every 7 € [0,00). Let us show now that (hy)nen is

also equicontinuous. To this end let 79 > 7 > 0, and consider ¢ as in Remark
i.e., ¢ € Lip([0,00)) with Lipschitz constant Lip(gpi < 1, and ||¢|lcc < 1. Then,

using ¢n(z) < x~1/2, (C.1.2) and (C.1.4) in Lemma [C.1.15) we have
o0 oo

/ o(x)hyp (11, z)d / o(z)hp (12, x)dz
0 0

< /: | s (0, hn(0))|do < 2/: </OOO (0 m)daz)2da
+ 4/: /OOO vV hy (o, x)dzdo. (3.3.52)
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Using Holder’s inequality and the estimates (3.3.23)) and (3.3.24) in (3.3.52), it

follows that

‘/ n(T1, 2)dw — /OOO o(x)hn (72, z)dz

32/71 <‘FJ+W> da+4f/ <a+f)da Vn e N.

We then deduce using Remark that (hp)nen is equicontinuous. It then fol-
lows from Arzela-Ascoli’s Theorem (cf. for example [63]) that there exists h €
C([0,00), #+([0,00))) such that h,, — h in C([0,T], #4([0,00))), for every T > 0,
as n — oo.

The estimates ([3.3.49)), (3.3.50) and the convergence are deduced in the
same way as in the Proof of Lemma [3.3.7] O

Proof of Theorem [3.3.4. By Corollary there exists a sequence of nonneg-
ative function (hon)nen € Cc([0,00)) that approximate hg in the weak™® topology
of the space Cy([0,00))*. Let then (hp)neny C C([0,00), .#4([0,00))) be the se-
quence of solutions to (3.3.20), (3.3.21) obtained by Theorem with the initial
data hg,. By Proposition there exists a subsequence, still denoted (hy,)nen,
and h € C([0,00),.#([0,00))) such that h, converges to h in the topology of
C([()? OO), %Jr([ov OO)))
By (3.3.21) and (3.3.22), for all ¢ € C}(]0,00)) and 7 > 0:

/0 () (7, ) — /0 o(2)hop(2)dz = /O Gyl hn(0))do. (3.3.53)

By construction, for every ¢ € C([0,00)) and every 7 € [0, 00):
[ee]

lim o(x)hp (T, x)dx = / o(x)h(r, x)dx. (3.3.54)

n—oo 0 [0700)

We prove now the convergence of the linear term: for all p € C}([0,00)) and 7 €
[0, 00)

lim D) (0, ha(1)) = 28 (0, (7). (3.3.55)

n—oo

By definition:

2 (¢, n(r) ~ 92( o(7))
)

o)

> L(p)(x) L{p)(
<|[ =% )
* _c<x>
+ kwwwam 2 (. a)a (3.3.56)

From Lemma |C.1.15| (iii) and (3.3.51)):

= Lp)) ML,
/0 NG h(r,x)dx /0 Jz hn (T, x)d

lim
n—oo

=0 (3.3.57)
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For the second term in the right hand side of (3.3.56|) we split the integral fooo in
two: fOR and [z~ for R > 0, and apply l) We obtain:

x L@@
/0 ’E((p)(:ﬂ)qbn(x) Jz hy (T, x)d (3.3.58)
oy L@)@) e
gHﬁw 90) = = | oy /0 o (7, @)+

el [V ho(r.)ds
R
By (3.3.24)), for any € > 0 and R > (E/e)*

oo E
< — .
/R \/Ehn(T,x)dx_\/R<a Vn € N
Then by Lemma |C.1.16|and (3.3.23)), the part on [0, R] converges to zero as n — 00.
Since R > 0 is arbitrary we finally deduce that converges to zero as n — oo.
Therefore holds.
Let us prove now the convergence of the quadratic term: for all ¢ € C}([0, 00))
and all 7 € [0,00):

Jim 255 (0, hn(r)) = 247 (9, ha(r). (3:3.50)
As before
22(0,h(r) - 20, hm)] (3.3.60)
@) A(o)(z,y)
‘Q (¢, h // Vi — "L h,(T, :v)hn(T,y)d:vdy‘
o Alp)(2,y)
" /0 /0 \wa,ym( Youta) = 2EED b 7 b )y,

It follows from Lemma |C.1.15 (ii) and (3.3.51)) that the first term in the right hand
side above converges to zero as n — co. For the second term we proceed as before.
For any R > 0 we split the double integral:

/ / \ ) (@, ) bn (@) (y) (\ﬁ AR Y| oy, y)drdy

2

R
: "A(¢)(x’y)¢"(x)¢n(y) - A(% = C([0,R]2) </0 hn(T’x)dx)
M@)o
+ / /m,oo)z\(o,m? M) on(@)n(y) — =2 2 (), )y

=1+ Is.

By Lemma |C.1.16| and (3.3.23), I; converges to zero as n — oo. For the term I we
use ((C.1.2)) in Lemma |C.1.15| and the estimates (3.3.24]) and (3.3.23]):

/ / Alp) (2, y)

2 / 2
4 oF
s4||so||oo</R h <r,x>dz> <APIER ey

ho (T, ) o (T, y) dxdy




3.3 Existence of solutions H to (3.1.66]) 101

a,

nd

oo rR / 2
4 ol E
<t [ [ atrahardedy < kel <ff+\/ﬁ).

A((p)(x>¢n(x)¢n(y) - hn(T7 x)hn(r,y)dxdy

Since R > 0 is arbitrary we deduce that I also converges to zero as n — oco. We
then conclude that (3.3.59) holds.

Combining (3.3.55) and (3.3.59) it follows that for all ¢ € CL([0,00)) and all
7 € [0,00):

nh_{glo °@~3,n(‘pahn(7—)) = °@~3(80> h(7)). (3.3.61)

Moreover, using ¢, (z) < z~%/2, (C.1.2) and (C.1.4) in Lemma |C.1.15, and the

estimates (3.3.23) and (3.3.24), we have for all ¢ € C}([0,00)), all 7 € [0,00) and
alln e N:

D, ha(r))| <
<2l [ hn<7,x>dx)2+4usouoo [ Vit
< 2[|¢']loo <‘/2ET + \/N>4 + 4||¢Hoo\/E(‘/ET + W)

2
By (3.3.61)) and the dominated convergence Theorem:

T

lim | Z23,(0,hn(0))do = /0 ' 93(¢, h(o))do. (3.3.62)

n—o0 0

Using now (3.3.54)) and (3.3.62)), we may pass to the limit as n — oo in (3.3.53)) for
all p € C}([0,00)) and all 7 € [0,00) to obtain:

/[Om) o(x)h(r, z)dx = /[O - o(x)ho(x)dx + /O 23(p, h(0))do. (3.3.63)

The map 7 +— f[o 00) o(x)h(T,x)dx is then locally Lipschitz on [0, 00), and h satisfies

3.3.1)), for all ¢ € C}([0,00)) and for a.e. 7 € [0,00). It also follows from
3.3.63) that h(0) = hg in ..

The property follows from . The conservation of energy
is obtained as follows. We already know by that My(h(7)) < E. On the
other hand, let ¢ € CL([0,00)) be a concave test function such that ¢y(z) = z
for x € [0,k) and pr(x) = k + 1 for > k + 2. Notice that there exists a positive
constant C' such that

sup || @)oo < C. (3.3.64)
keN

By Remark [C.1.14 Q@Nél)(gok,h) < 0 and ng?)(cpk,h) < 0 for all ¥ € N, and then,
from (3.3.63)):

/ on(@)h (T, z)dz > / on(2)ho(z)dz + / ’ 2P (o, h(o))do.  (3.3.65)
[0,00) [0,00) 0
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We now prove that for all 7 € [0, 00):

lim ,02< (1, h(o))do = 0. (3.3.66)

k—o0 0

Notice that A(epg)(z,y) — 0 as k — oo, since ¢i(x) — x. Then, using (C.1.2) in
Lemma |C.1.15} (3.3.64)) and (3.3.23]), we deduce for all 7 € [0,00) and o € (0, 7):

lim 2 (i, h(0) = 0 (3.3.67)
(Q§2>(<pk, h(T))] < 20(‘?7 + \/N)4 Vk € N. (3.3.68)

and follows from the dominated convergence Theorem. We take now limits
in as k — oo. By and the monotone convergence Theorem we
obtain that M;(h(7)) > E and then M;(h(r)) = E for all 7 > 0.

We assume now that M, (hg) < oo for some o > 3 and prove (3.3.6). By (3.3.25)

and (|C.1.10)) in Corollary [C.1.18

Ma(h(r)) < liminf (Ma(hon) 77 + a2 My (ho) 57) *

n—oo

2

2 a+1
< (Ma(ho)™T +a2°7 B2 7 )

3.3.4 Proof of Theorem [3.3.1]

Proof of Theorem [8.3.1] Consider again the sequence of initial data hg, used in
the proof of Theorem [3.3.4] and the sequence of solutions h,, obtained by Theorem
Using we know that My (h,(7)) < oo for 7 > 0 and n € N.

Our first step is to prove that (3.3.2) holds also true for p(z) = z*. Notice that
h, solves now the equation @ , with the operator 23 in the right-hand side,
whose kernel is not compactly supported and the argument in the proof of
must be slightly modiﬁed

In order to use we consider a sequence (¢x) C CL([0,00)) such that:

Yk — @ as k— o0 (3.3.69)
ok < rr1 <@ (3.3.70)
¢ > >0. (3.3.71)

Let us prove by the dominated convergence Theorem that for all 7 > 0:

(i)  23(p, hn) € LY(0,7), (3.3.72)
(14) kli)rgo/ D3(p1, b ))daz/OT 23(p, hn(0))do. (3.3.73)

To this end we first observe that, for x > y > 0:

lim A(pe)(z.y) = Alp)  and  lim L(px) = £lg)(2) (3.3.74)

n—o0
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and, by the mean value Theorem:

Ag)@,y) (&) — i(&)

Ve
for some & € (z,x 4+ y) and & € (z — y, z). Using then (3.3.71)):
A
Alen)@y)l a2+ 1)2* ! VEkeN, (3.3.75)

VY
and by (3.3.70)):

Iﬁ(sf;g)?(x)l - <Zii’> 2t WEeN.

Since by Theorem Ma-1(hn(7)) < 00 and Myqq/2(ha(7)) < oo, for ev-
ery fixed n we may apply the Lebesgue’s convergence Theorem to the sequences

A T L T .
{%hn(g, ) hn(o, y)}keN and {%hn((;, x)}keN and obtain (3.3.72), (3.3.73).

We use now ¢y, in (3.3.2) and take the limit k¥ — co. We obtain from (3.3.69),
(3.3.70)), (3.3.73) and monotone convergence:

Mo (b (7)) = Ma(hon) + /0 ’ 23(p, hn(0))do V1 >0, (3.3.76)

and then, using (3.3.72)):
d

T Ma(hn(7)) = D3(0,hn(7))  ae.T>0. (3.3.77)
-
If we use (3.3.35)) and (3.3.36)) in the right hand side of (3.3.77]), we obtain

— < ¢ — _ —
dTMa(hn) <2°a(a— 1)E,My—2(hy) <a n 1) M,

(hn),

1
2
where E,, = M;(ho,). Now by Hoélder’s inequality:

Mo_s(hn) < EY DN, (hy,) @3/ (0=1)

My (hy) < Erll/(2a71)Ma+%(hn)Z(afl)/@afl).

Then we obtain

diMa(hn) <29 20(a — 1) EXF2/@=D 0L, (hy,) @73/ (@=1)
-

(=1 poyee-) M,y (hy) 221/ Cl0=1)
a+1 "

Since (aw — 3)/(av— 1) € [0,1) then
Mo (hy)@=3/@=0 <1 4 My (hy),

and :

diMa(hn) <20 %a(a — 1) B0 (1 4+ My (hy,)) (3.3.78)
—

_ (a - 1> E1/2la=0) g () 2a=D/ 2la1)
a+1 ’
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where (2o — 1)/(2(av — 1)) > 1. If we define:

u(o) = Ma(hn(7)), o=0Ci1, ¢=2(a-1),
C1 =2°"%a(a — 1) B+ (D)

Cy = <0‘ - 1) /e o G2

a+1 N a
We deduce from (3.3.78]) that
W <14 u—Culte, (3.3.79)

and then by Lemma 6.3 in [I3], for every n € N:

2(a—1)
My (hn(7)) < Clor, Ey) (W) , (3.3.80)
where the constants C(c, Ey,) and v(«, E,,) are defined as in Theorem [3.3.1] We may
argue now as in the proof of Theorem and pass to the limit along a subsequence
to obtain a limit & € C([0,00), #([0,0))) satisfying (3.3.1)—(3.3.5) and (3.3.7).
Using and h € C([0,00), .#4([0,00))) we deduce as in the proof of Theorem
B-3.4] that h € C((0,00), .#([0,00))) for all a > 1. O

Proof of Corollary We first observe that the map 7 +— M 5(h(7)) is lo-
cally bounded. Indeed by Holder’s inequality, (3.3.4) and (3.3.5):

VE
Mya(h(r) < VRO < VE( Y57+ VR,
Then by (3.3.1) it follows (3.3.11). Now for all ¢ € C}([0,00)) and for a.e. 7> 0,
we deduce from (3.3.2):
d

dr [0,00)

() H(r, z)de = 23(p, h(r)) — (0) My 2 (h(7))
= Z3(, h(7)).

Since H = h on (0,00) then Z5(p, H) = Z3(p, h), and therefore (3.3.12)) holds.
Now for the initial data: H(0) = h(0) = hg. The conservation of mass (3.3.14)
follows from (3.3.12)) for ¢ = 1, since A(p) = 0 = Ly(p). The conservation of energy

(3.3.15)) follows directly from (3.3.5) since H = h on (0, c0). O

3.4 Properties of h(r, {0}).

In all this Section we denote
m(7) = h(r, {0}). (3.4.1)
The main result of this Section is the following.

Theorem 3.4.1. Suppose that h € C([0,00); #1([0,00)) is a solution of
with h(0) = hg € #1([0,00)), N = My(ho) > 0 and E = M (hg) > 0. Then m is
right continuous, a.e. differentiable and strictly increasing on [0, 00).
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We begin with the following properties of the function m defined in (3.4.1]).

Lemma 3.4.2. The function m is nondecreasing, a.e. differentiable and right con-
tinuous on [0, 00).

Proof. Given any . as in Remark then for all 7 > 0

m(7) = lim ve(x)h(T, z)dz, (3.4.2)
e—0 [0,00)
and by (3-1.67)-(3-1.40)
d ~
07 Jo oy SR = 25 (e, h() = 27 (02, (7). (3.4.3)

Since (. is convex, nonnegative and decreasing, it follows from Lemma [C.1.13| that
Q:(,’Z)(goa, h) > 0 and Qé”((pg, h) <0 for all € > 0. Then by (3.4.3)

/ ve(x)h(2, x)dx > / we(x)h(m, x)dx V19 > 11 > 0.
[0,00) [0,00)

Letting ¢ — 0 it follows from ({3.4.2)) that m is nondecreasing on [0, c0) and, for any
7>0and d >0,

liminf m(7 4 &) > m(r). (3.4.4)

5—0t

Using Lebesgue’s Theorem (cf. [63]), m is a.e. differentiable on [0, c0). On the other
hand, if in 1) the term le)(gog, h) is dropped,

T+3
/ we(z)h(T + 9, 2)dr < / we(x)h(r,x)dx + / Q;Z)(cpg, h(o))do.
[0,00) [0,00) T
Using 1py < . for all € > 0, and the bound , we deduce

m(7 +6) < / we(x)h(T,x)dx + 255(M0(h(7-)))2.

[0,00)
If we take now superior limits as 6 — 0" at ¢ > 0 fixed,
limsupm(7 4+ J) < / ve(z)h(T, x)dz Ve > 0.
6—0t [0,00)

We may pass now to the limit as ¢ — 0 in the right hand side above and use (3.4.2))
to get,

limsup m(7 + ) < m(r). (3.4.5)
d—0+
The right continuity then follows from (3.4.4)) and (3.4.5)). O

Corollary 3.4.3. The map T — H(71,{0}), defined for all T > 0, is right continuous
on [0,00) and

limsup H(7 —6,{0}) < H(7,{0}) v > 0. (3.4.6)

6—0t
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Proof. By construction (cf.(3.1.68)) it follows

H(r, {0}) = / My jo(h

Since M j5(h) € Lj,.(Ry) then 7 — [ My 2(h(0))do is absolutely continuous, and
since m is right continuous by Lemma ’3_4L2|7 it follows that 7 — H(7,{0}) is also
right continuous. To prove (3.4.6)) we use the continuity of 7 +— fOT M, j5(h(o))do
and the monotonicity of h(7,{0}): for all 7 > 0 and § € (0, 1),

limsup H(7 — §,{0}) = limsup m(r — / My o (h

6—0t d—0+
/M1/2 ))do = H(r,{0}).
O

Remark 3.4.4. We do not know if the map 7 — H(7,{0}) is continuous. By
property (3.4.6) however, H(7,{0}) does not decrease through the possible discon-
tinuities.

The proof of Theorem closely follows the proof of Proposition 1.21 in [45]
(see also [44], Ch. 3), where the authors proved the same result for the equation
without the linear term éél). The main arguments in the proof are, on the one
hand, the invariance of the problem (3.1.67)) with respect to time translation and
under a suitable scaling transformation. On the other hand, the fact that A(¢) >0
on R% for convex test functions ¢, and that the map 7 +— Q§2)(cp, h(7)) is locally
integrable on [0,7"). When the linear term éél) is added, a slight modification of
these argument still leads to the proof. Since by Lemma for all nonnega-
tive, convex decreasing test function ¢ € C}([0,00)), we have QV;)(@, h) <0, then

solutions h to (3.1.67)) are also super solutions (cf. Definition [3.1.13]).

Proposition 3.4.5. Let h be a super solution of . Then for any R > 0 and
6 e (0,1)

/ h(r,z)dx > (1 — 0)/ h(1o, x)dx V1 > 19 > 0. (3.4.7)
[0,R] [0,0R]

Proof. Chose pgr(z) = (1 —2/R)4 for R > 0, and consider a sequence (¢gn)nen C
Cg([O,oo)) such that ¢r, = ¢r, Yrn < ¢r and @r,(0) =1 for all n € N. Since

by convexity 6@&2)(@3,”, h) >0, then for all 7 and 79 with 7 > 79 > 0,

/ Yrn(x)h(T, z)dx > / YRrn(x)h(19, x)dx
[0,00)

[0,00)

2/ ©Rrn(x)h(10,z)dx > goRm(@R)/ h(ro, x)dz,
0,0R] 0,0R]

and (3.4.7) follows since, if we let n — oo,

/ h(r,z)dx > / or(z)h(T,z)dx > (pR(HR)/ h(7o, z)dx.
(0,R] [0,00) (0,0R)]
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Lemma 3.4.6. Let h be a super solution of . Let R > 0 and consider a
sequence R = ag < a1 < ag < ... < ap < ... such that |a; — a;—1| < % for all
i€{1,2,3,...}. Then for all T > 19 > 0 there holds

2
> . 4.
/[Oﬂ] T,z)dx Z 2az/ </a, Mh] h(o, ac)da:) do (3.4.8)

Proof. We chose ¢ and ¢pr, as in the proof of Proposition above. Since h is
a super solution of (3.1.67)), then for all n € N,

d

- (7, 2)pra(x)de > D8 (orn, h(T)).
dT [0,00)

‘We have now:

@) )
257 (R h //ROO (t,2)h(r,y) ———=—= Vi dxdy

= Z R R/2 // )h(r,y)dxdy

az 17a7,

X era(R)2)
> e

ai—1 7ai}

2
h(r, x)dm) .

Estimate (3.4.8) follows in the limit n — oo, since ¢ ,(R/2) — 1/2. O

Proposition 3.4.7. Let h be a super solution of with initial data ho €
ME([0,00)), and denote N = My(ho) and E = Mi(hg). Then for all R > 0,
a € (—%, oo), and T and T with 0 < 171 < Ty

T2 l—l—a / — /
/ / xh(7, x)dxdr < 21 7—? Tl ETQ +VN|. (3.4.9)

Proof. Since h is a super solution of (3.1.67), if we chose p(z) = (1 — z/r)2 for
r > 0, then

/ o(2) (7, 2)dz > / " 99 (o, h(r))dr. (3.4.10)
[0,00) 1

Since supp A() = {(z,4) € [0,00)? : |z —y| < r} and A()(z,y) = p(jz —y]) for al
(x,y) € [r,00)?, then for all 7 > 0:

Q // ]ac _ y]) =2 (T, x)h(T,y)dzdy

4 </<] h%x)dx>

If we use that ¢ <1 in the left hand side of (3.4.10)), and the estimate above in the
right hand side, then

/: (/( , h(&;)dx>2d7 < AMo(h(7)).

[&3>

\/




On a system of two coupled equations for the interactions in a Bose gas

108

Since for any a € (—1/2,00)
—a-1
) /( xh(r, x)dz,

we then obtain

[

For any given R > 0, using the decomposition
k
2
ap = < >R7

2 1+2a
xo‘h(T,aj)d:U> dr < 4My(h(12)) (3;) . (3.4.11)

o0

(0, B = | J (ars1, ax),
k=0

and Cauchy-Schwarz inequality we obtain
2 2
x*h(T, a:)dx) dT) :

/ / 7 :1: dxdl < ;2 1 : : / (/Cl
0 ]E] T1 ( k+1aak]
( (3/2)’}] fOI' every k' S N, then by 3411

If we chose r = aj41 so that (ag41, ax]

we deduce

/ / T x d:L’dT<2\/ 7'2—7'1 MQ 7'2 Zaera.
OR]

Using the estimate (3.3.4) for My(h(72)) and
Rt

00 a%_’_a _
SRS
O

k=0

we finally obtain (3.4.9)).
Lemma 3.4.8. Let h be a super solution of . Then for allT >0, 7> 1 >0

and n € N: ,
1 T
/[Or} h(r,z)dz > 4"+1r/ (/(r,rzn] h(o, ar)da;) do. (3.4.12)

Proof. Consider the decomposition
2n+1

(r2™] = | (g(i—n,gz}.

=3

Then by Lemma and Lemma 3.12 in [45], we have

2n+1 2
T 1
h(r,z)dz 2/ (/ h(a,x)d:z) do
/[o,r] 70 Zz; rt (5(-1),54]
’ 1 2n+1 —1 2
>/ (ZZ> (/ h(a,a:)da:) do
T0 (r,r2m]

=3

e ), ( | e w)dﬂf)Qda.

>
=@ -D@+3

Notice that (27 — 1)(2"F! 4 3) < 47+,
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The next Lemma takes into account the linear term Qvél).

Lemma 3.4.9. Let h be a solution of with initial data hy € #1(]0,00))
satisfying

moy = / ho(z)dz > 0. (3.4.13)
(0,00)
Then, for any 9 > 0 there exist Ry > 0, C1 > 0 such that
/ h(r,x)dx > Cyr Vr e [0,Ry], V1 >1p. (3.4.14)
[0,7]
Proof. By (3.4.13]), there exist 0 < a < b < oo such that
/ ho(z)dz > 0. (3.4.15)
2
(a,b]
We prove now
1’ > 0; vr € [0,17) : /( ] h(t,x)dz > %. (3.4.16)
2.2

To this end we use (3.1.67) with a test function ¢ € C}([0,00)) such that 0 < ¢ < 1,
¢ =1on (a,b] and ¢ =0 on [0,00) \ (%,2b] and (3.4.15) to obtain:

/ h(r,z)dz > 0 4 / s, h(o))do. (3.4.17)
(5.2] 2 Jo
Now using (C.1.2)) and (3.3.4) we deduce
M, (h 4
2210 < 206 1ee (2o 4 Rl )

Using now % < 3||plloov/a and My jo(h) < /Mo(h)Mi(h), we have by the

x
conservation of energy and the mass inequality

~1 M (ho
2610 < 2/ 1000) (4 M) )
It follows that Z3(p,h) € LL (R ) and we deduce (3.4.16) from (3.4.17).
By Lemma and (3.4.16)), for any r € (0, %] and n € N such that 2" €

(2b, 3b] we have

2
o1
hT,xde/ / h(o,z)dx | do
/[o,r} 7 0 4"+1T< (5.20] () >

T mg\ 2 mé )
> n-t1.. e > . . .
= gntly ( 4 ) z paoe " VTelT] (3.4.18)

where (%,2b] C (r,r2"] has been used.
For any given 79 > 0 define 7/ = min{7y,7"}. Then by (3.4.7) in Proposition

with 6 = % and R = 2r, we deduce from :

/
/ h(r,z)dz > o
[0,27]

5" vr > 1. (3.4.19)
and this proves the Lemma, where Ry = a/2 and C; = C7' /4. O
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Proposition 3.4.10. Let h and hg be as in Lemma[3.4.9 For all L > 0 and every
71 > 0 there exists Ry = Ro(h, L, 1) > 0 such that

/ h(r,z)dx > LRy VT > 1. (3.4.20)
[0, Ro]
Proof. By Lemma for 7o = %5

3Cy > 0, dRy > 0; h(r,z)dz > Cir, Vr € [0,Ry], V1T > % (3.4.21)

(0,7]

Now fix an integer p > 2 such that Cip > 8L. We divide the proof in two parts.
Assume first :

/
I’ € (0, Ry], 37" € [— 7'1} : / h(r',z)dz > Cur . (3.4.22)
2 oy 2
It follows from lemma with 0 = % and R = %I that
C /
/ hra)de > 2 vr >,
[0727“] 4
P
If we take Ry := ==, we have, by our choice of p,
/ h(r,z)dz > @Ro > LRy v > 1/,
[0, Ro] 8
so (|3.4.20) holds.
Assume now that (3.4.22)) does not hold, then, by (3.4.21]):
C
/( ] h(r,2)dz > 7“" Vr e (0,Ry], Vre [% ﬁ} (3.4.23)
;,’l"

Take now any r € ( } let n € N be the largest integer such that rp™ € (%, Rl} ,
and consider now the followmg decomposition

pn+1

=5 Ge-i-0. 0 o

i=p+1 k=1i=pk+1

By lemma, on (11/2,m) with a; =ri/p, i =p+1,--- ,p"th

T1 pn+1 1 2
D
h(my, z)da >/ o - (/ h(o, x)d:c) do
/[0 "] 7 2r i:EpJ:rl L (%(1—1)711
T1 [ n  pht! 1 2
p
_/T1 o > P (/T - T]h(a,x)da:> do
2 | k=li=pk+1 (;,(7' )sod
- 11 prt! 2
> — _
B /n 2r 2D pk > (/(( bzl h(m)dw> do (3.4.24)
2 L k=1 i=pF+1 p pt
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We use now Lemma 3.12 in [45]

pk+1 2
1
._Z </(;(i—1),;i] h(g’x)dgC) S Fe-1

and deduce
[ wmiez [ Ly / oa)ie) | d
T, x)dxr > — — o,z)dx .

[0,r] 1 7 2rk At (rpF=1,rp¥]

Due to the choice of the integer n, rp* (0,Ry] forall k =1,--- ,n, and we can use
(3.4.23) on each interval (rpF~1, 7p¥] to obtain:

n 2
Tl 1 Cyrp” n1C3n
h dx > — —— | —— do =
/[O,r} (11,2) m—/gl lzr;p%—i—l ( 2 d 16p r

It then follows from lemma with 0 = % and R = 2r that

2
/ hro)de > 2 e s (3.4.25)
[0,2r] 32p

10g<%)

log(p)

Since rp™ € (%, Rl], then n > , and we chose r > 0 small enough in order

to have r € (0, Ry /p) and
R
nC3log (7"7;)

> L;
64p logp T
and set Ry := 2r. The result then follows from (|3.4.25)). [

Lemma 3.4.11. Let h be a solution of and, for any k > 0 and A > 0,
consider the rescaled measure hy  defined as:

/[o,oof)LH’A(T’ x)p(x)dx = /i/[o’ool)z(ﬁ)n', x)p <X) dx, Yo € Cy(]0,00)). (3.4.26)

Then hy, y is a super solution of .

Proof. Let ¢ € CL([0,00)) be nonnegative, convex and decreasing, ¥(z) = ¢(x/)),

and 7 = kAT. By Lemma Qvél)(w, h) <0, and by |j

d
| w@hina)de > 22 W, k().
1 J[0,00)

Since 247 (1, h(n)) = k2271 2%) (o, hye A (7)), then
d

d
07 J ey M7 2} = KA | @), z)de > 28 (0, hea (7).

dn J{0,00)
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Lemma 3.4.12. Let h be a super solution of . Suppose that there exists
7' >0 such that
/ h(r,x)dx > 1 vr > 7. (3.4.27)
[0,1]
Then for any given § > 0 there exist 19 such that
4
<<+ To(),  To(d) = %3 (1 - g) (3.4.28)
5
and h(ro,x)dx > 1 — —. (3.4.29)
[0.4] 2

Proof. The statement of the Lemma is equivalent to show that the following set

A= {T e, v +Ty(9)] : /[0 5]h(T,av)ng >1- g}

Z
is non empty, where Ty(9) is defined in (3.4.28]). To this end we first apply Lemma

with ag = g, a; = g (1 + %) forie {1,....,n—1} and a,, = 1. The number n is
chosen to be the largest integer such that a,_; < 1, which implies

1 )
=. 4.
o > 3 (3.4.30)

Then, using a; ' > 1 for all i € {1,...,n}:

T N 2
/[ 6]h(7,m)dac > ;/ > (/ h(o, x)dm) do, V1 > 7.
0 Eal— (ai—1,a:]

4

Since by Lemma 3.12 in [45] and (3.4.30)):

n / 2 2
h(a,x)dac) > (/ h(a,:c)da:) ,

Z( (ai—1,a4] 8 (%71]

i=1
we obtain, for all 7 > 7/
5 [T 2
h(r,x)dx > — </ h(o, ZL‘)d$> do. (3.4.31)
/[Ovi] 16 Jo \J (5]
Arguing by contradiction suppose that A = (:
/ h(r,z)dzr <1 — é vr e [, 7 + Th(9)]
(0.4] 2
and by (3.4.27)):
)
/( h(r,z)dx > 3 vr e |7, 7 + Ty (0)].

(7 —+') for all 7 € [, 7/ + Ty(8)] which is a

It follows from (3.4.31) that 1 — 3 > 2
O

contradiction for 7 = 7/ + T(4).
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Proposition 3.4.13. Let h be a solution of . Suppose that there exist m,
R > 0 such that

h(r,z)dz >m V71 € [0, 00). (3.4.32)
[0,R]

Then given any « € (0,1) there exists Ty = Ty (o) > 0 such that

m

RT,
h(t,x)dx > r® Vr e |0,R], V7€ ,00 |. 3.4.33
[ e o, vre | M) s

Proof. We argue by induction and define first the scaled measure hy = h,,, »,, defined
as in ([3.4.26)), that satisfies condition (3.4.27)) for k1 = %, A1 = R. From Lemma

3.4.11} and Lemma [3.4.12| with 7/ = 0, we deduce that for all § € (0,1) there exists
71 > 0 such that:

0 <7 <Tp(9), / hl(Tl,.’L‘)dx21—é.
0.4 2

Then from Lemma |3.4.11} and Proposition with # = /2 and R = 1/2,

/[o : hi(r,x)dx > <1 - 3)2, VT > Tp(0),

/ h(r,z)dx >m(1—-46), V1> ETo(é). (3.4.34)
[0.5] m
Exactly as before we now define hg = hyy 2, as in (3.4.206]), that satisfies condition
(3.4.27)) for kg = (1 I A2 = L7 =2(1 - 6)Tp(6). The same argument gives
then:
RTy(0) 1
h de >m(1-68)%, vr>="2"(1 : 4.
/[OR] (1,2)dz > m( ), V1> - +2(1—6) (3.4.35)
We deduce after n iterations
n—1
n RTy(9) 1
> 1-— > 4.
/[07£]h(7,x)dm_m( ", vr=> - ;Qk(l—d)’f (3.4.36)
If we chose 6 =1 — 279 for any 0 < a < 1, we may define
— (1-a)k _ (6)
T, =To(0 Z 2- =T (3.4.37)
Since for any 7 € (0, R) there exists n € N such that r € (£, 2f r],
T
/ h(r,z)dx > m2™" V1 > R
[0,7]
and using 27" > r /2R, (3.4.33) follows. O

Proposition 3.4.14. Let h be a solution of . Then, for all 7o > 0 and for
any « € (0,1) there exists R, = Ry (h,19,a) > 0 such that

/ h(r,z)dz > Cr® Vr €10, R V71 € [19,00), (3.4.38)
[0,7]

where C = T*( )(ZR*) @ and T («) is given by Proposition|3.4.15.
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Proof. By Proposition(3.4.10|with L > 0 and for 7, = 79/2, there exists Ry (h, L, 1) >
0 such that

/ h(r,z)dz > LRy V1> 2.
[0, Ro] 2

Then by Proposition [3.4.13] with m = LRy and R = Ry, we obtain that for any
given « € (0, 1) there exists Ty = Ti(«) > 0 such that

LRO |:7’0 T* )
h(t,z)dx > re Vrel0,Ry], Vre|=—+—,0].
/M (7,2) (2Ry)® [0, Rol 2 'L

If we chose L = 2T, /7y, then the Proposition follows with R, = Ry. O]

Proof of Theorem [3.4.1] By Lemma the map 7 +— h(7,{0}) is right contin-
uous, nondecreasing and a.e. differentiable on [0,00). It remains to prove that it is
actually strictly increasing. We first suppose that hg is such that

/ ho(z)dz = 0, / ho(z)dz > 0, (3.4.39)
{0} (0,00)

and prove
h(r,{0}) >0 V7 >0. (3.4.40)

Arguing by contradiction, if we suppose that there exists 79 > 0 such that h(m, {0}) =
0, by monotonicity h(7,{0}) =0 for all 7 € [0, 7p]. In particular

/ / (0,z)dxdo = / / (0,x)dxdo (3.4.41)
0 Jo,r] 0 J(0,r]

for all r > 0. Now using Proposition with a = 0, and Proposition we
deduce that, for any « € (0,1/2), there exists R. = R.(h,79/2, «) such that

70
Cor® < / h(o,x)dzdo < Ci/r, Vr € [0, R.J;
o 0,r

C, =8 \/ZO <M21(h0)70 + Mo(ho)> . Oy = T*éa) (2R,

and that leads to a contradiction for r small enough.
Consider now a general initial data ho such that |, (0} ho(x)dz > 0. Let h be a

solution of (3.1.67]) with initial data ho and define

h(r) = h(r) = ho({0})o.

Then, on the one hand, the initial data of & satisfies h(0,{0}) = 0. On the other
hand we claim that h is still a solution of (3 (3.1.67). Notice indeed that h, = h, and,
moreover, 23(¢, h(t)) = Z3(¢, h(7)). Using the previous case

/ h(r,z)dz >0, V7 >0,
{0}

and then

/ h(T,x)d:c>/ ho(z)dz, V1> 0.
{o} {o}

The Theorem follows using now the time translation invariance of the equation. [
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The last result of this section describes the relation between the Lebesgue-
Stieltjes measure associated to the (right continuous and strictly increasing) function

m(7) = h(7,{0}), and the equation for h (3.1.67).

Proposition 3.4.15. Let h be a solution of for a initial data ho € AL([0,0))
with N = My(ho) > 0 and E = M (hg) > 0. If we denote m(1) = h(r,{0}) and X is
the Lebesgue-Stieltjes measure associated to m, then for all ¢- as in Remark
and for all 71 and 5 with 0 < 1 < 7o

m(72) —m(m1) = M(71,72]), (3.4.42)
A((71,72]) = lim / i 2P (o, h(r))dr, (3.4.43)
and 0 < A((71,72])) < 0. (3.4.44)

Furthermore, for all p. as in Remark[5.1.0

lim 257 (., h) € 2/(0,0), (3.4.45)

e—0

and if we denote m' the derivative in the sense of Distributions of m, then
m =)= liH(l) Q§2)(g05,h) in 2'(0,00). (3.4.46)
E—

Proof. By Lemma m is right continuous and nondecreasing on [0,00). Then
it has a Lebesgue-Stieltjes measure associated to it, A, that satisfies (3.4.42) (c.f. [?]
Ch.1).

On the other hand, since h is a solution of (3.1.67)), using ¢, as in Remark
and taking the limit ¢ — 0, it follows from (C.1.25]) in Lemma [C.1.20|that for all 7
and 7 with 0 < 11 < 79:

T2
m(re) —m(m) = lin(l)/ Q§2)(g0€,h(a))da, (3.4.47)
E—> 1

and then (3.4.43) follows from (3.4.42). Moreover, since by Theorem m is
strictly increasing, then (|3.4.44]) holds.
Notice that the limit in (3.4.47)) is independent of the choice of the test function

¢e. Indeed, if 1), is another test function as in Remark [3.1.6] since for all 7 >0

lim Ye(z)h(T, z)dr = m(T) = lim we(x)h(T, z)dz,

e—0 [0,00) e—0 [0,00)

it follows from (|3.4.47)) that for all 0 < 7 < 7
B LPNe) B A
lim 257 (Ye, h(0))do = hrr(l) 257 (e, h(0))do.
E— ol

e—0 .

Now, for all ¢, as in Remark consider the absolutely continuous function

Oc(1) = /[0700) ve(z)h(T, x)dz.
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Then the equation in (3.3.2) reads 0.(r) = 3(¢e, h(1)). Using integration by parts
we deduce that for all ¢ > 0:

_ /OO &' (7)0:(T)dT = /OO (;5(7')@3(@5, h(r))dr V¢ € C°(0,00).
0 0

Taking the limit ¢ — 0 it then follows from Lemma that

- [ o @minyir =t [ o012 (e h()yir,

hence, m' = lim._, Q:(f)(goa, h). On the other hand, by Fubini’s theorem

/qbd)\ //gzbdad/\ /¢

for all ¢ € C2°(0,00) (cf. [64], Example 6.14), thus m' = A. O

3.5 Existence of solutions G, proof of Theorem [3.1.3]

Given a initial data Go € .Z} as in Theorem let h € C([0,00), .#+([0,0)))
satisfy (3.3.1)—(3.3.5)), (3.3.7)), given by and H defined by and sat-
isfying (3.3.11)(3.3.15)), (3.3.17) by Corollary It is natural, in view of the
change of variables to define now,

Glt) = H(7), 7= /0 G(s,{0})ds. (3.5.1)

Notice nevertheless that since G(s, {0}) is still unknown, (3.5.1)) does not define G(t)
actually. What we know is rather, given 7 > 0, what would be the value of ¢ such

that
/ e {0} (3.5.2)

since we expect to have G(s,{0}) = H(0,{0}) for s and o such that

If G is going to be defined in that way it is then necessary first to check that the
range of values taken by the variable ¢ in (3.5.2) is all of [0,00). By definition

(3.3.10)),
H(rA0}) = hr {0} = [ Myalh(o))do (35.3)
Since both terms in the right hand side are nonnegative, H (7, {0}) has no a priori

definite sign. We must then consider that question in some detail. Our first step is
to prove the following

Lemma 3.5.1. If Go({0}) > 0, then
T = inf{r > 0: H(r,{0}) =0} > 0, (3.5.4)

H(r,{0}) =0, (3.5.5)
H(r,{0}) >0 V7 € [0, 7). (3.5.6)
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Proof. H(0) = Go by (3.3.13), and then, using ¢. as in Remark we deduce
H(0,{0}) = Gop({0}), which is strictly positive by hypothesis. Then (3.5.4)) follows

from the right continuity of H(7,{0}) (cf. Corollary [3.4.3)).
In order to prove (3.5.5) we use a minimizing sequence (7,)pen, 1-€., Tn > T,
H(1,,{0}) = 0 for every n € N, and 7,, — 7. as n — oo. Then from the right

continuity (3.5.5) holds.
Let us prove now (3.5.6). If H(7,{0}) < 0 for some 19 € (0,7x), then 75 must

be a left discontinuity point of H(7,{0}) and

limsup H(mp — 6,{0}) > H(7o,{0}),

§—0t

and this would contradict (3.4.6)). That proves (3.5.6)). O

It follows from Lemma [3.5.1] that the function:

=0~ [ 0.0y (357

introduced in (3.5.2)) is well defined, monotone nondecreasing and continuous on the
interval [0, 7,). We then define,

VEe[0,6(r)): G(t) = H(E\(2)). (3.5.8)

By (3.5.8) and (3.5.3), if G(t) = G(t,{0})do + g(t) and H(7) = H(r,{0})do + h(7),
then

G(t,{0}) = H(7,{0}), (3.5.9)
h(r) = h(r) = h(7,{0})do, (3.5.10)
g(t) = h(r). (3.5.11)

Remark 3.5.2. Formula (3.5.8) defines the function G at time t € (0,£(7)) from
the knowledge of the function H(7) for 7 > 0 such that 7 = ¢~1(t). Moreover,

vt € (0,£(7:)) : gl(t)z/o G(s,{0})ds. (3.5.12)

We have now,

Proposition 3.5.3. The function G defined by s such that
G € O([0,&()), #1([0,00))), G(0) = Gy (3.5.13)
and satisfies (3.1.49), (3.1.46}), (3.1.48) and (3.1.49) on the time interval [0,&(7y)).

Proof. We first prove that G(t) is a positive measure for all ¢ € [0,{(7y)). By
and we have G(t,{0}) > 0 for all t € [0,£(7«)). Then, since h(7) is a positive
measure for all 7 € [0, 00), we deduce from (3.5.11)) and (3.5.10)) that g(¢) is a positive
measure for all ¢ € [0,&(7y)). Hence G(t) = G(¢,{0})do + ¢(t) is also positive.

All the properties of G(t) at t € [0,£(7.)) fixed follow from the corresponding
property of H(7) with t = £(7). The only property where ¢ is not fixed are

and (|3.1.45)). Since

OH

S0 < e oy | 250

ot 0Ot

o
ot
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By definition,

[ AOD)] < im0 + [ M1 a(hio)dor

Since h € C([0,00),.#1) it follows using also (3.3.4), (3.3.5)) and Holder inequality
)

that H(7r,{0}) € L;5.([0,00)).Then, by (3.3.1), G(t) is locally Lipschitz on [0,&(7y))
and satisfies (3.1.45)). Since H satisfies (3.3.2)) the change of variables ensures that

G satisfies (3.1.46)). O
We prove now the following property of the function G defined in (3.5.8)).

Proposition 3.5.4. Let G be the function defined in for t € (0,&(7)).
Then the map t — G(t,{0}) is right continuous and differentiable for almost every
t €10,&(7)) and, for all ty € (0,&(74))

G(t,{0}) > Gty {0})e Jio Mir20lDds vy o 4 (7)) (3.5.14)

In particular, if G(0,{0}) > 0, then G(t,{0}) > 0 for all t € (0,&(74)).

Proof. Using (3.1.46|) and (3.1.43) with ¢. as in Remark we have

d

it Jo )SDE(w)G(t,w)dx+G(t,{0})M1/2(G(t)):G(t,{O})§3(¢E,G(t)). (3.5.15)

We use now that for all € > 0:

G(t,{0}) < / ve(2)G(t, x)dx, (3.5.16)

[0,00)

and we deduce from (3.5.15)), using J(t) = exp (fot Ml/z(G(s))ds),

i(J(t) /[O N ape(a;)G(t,a:)da:) > Gt 0N (1) Fs (o, G(1). (3.5.17)

By Lemma |C.1.13| the right hand side of (3.5.17)) is nonnegative, and we deduce

() /[o,oo> oo (2)G(t 2)dz > J(to) /[O’OO) o (2)C (b, 2)dz

for all ¢t € (tg,&(7)) and all € > 0. If we pass now to the limit as e — 0:
J()G(t,{0}) = J(to)G(to,{0}), (3.5.18)

and this proves the estimate . It also follows from Lebesgue’s Theorem that
J(t)G(t,{0}) is differentiable for almost every ¢ € (0,£(7)) (cf. [63], Theorem 2).
On the other hand, since J(¢) is a.e differentiable and J(¢t) > 0 for all ¢ € [0,£(7)),
we deduce that G(t,{0}) is also differentiable for almost every ¢ € [0,&(7x)).

We prove now the right continuity of G(t,{0}). It follows from (3.5.18)),

J(t+8)G(t +6,{0}) > J)G(t, {0}), V5> 0Vt > 0.
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If we take inferior limits and use that J is continuous and strictly positive we obtain,

liminf G(t +9,{0}) = G(t,{0}), ¥t > 0. (3.5.19)

Since Lo(¢:) > 0 by convexity (cf. Lemma |C.1.13)), we deduce

dt [0,00) pe(2)G(t, x)dz < G(t,{0}) //(0700)2 T G(t,z)G(t,y)dzdy,

and the argument follows now as in the proof of the right continuity of H. From
the inequality (3.5.16)), the bound (C.1.2)) and the conservation of mass, we deduce
for all t € [0,£(7)) fixed and § € [0,&(Tx) — 1),

G(t +6,{0}) < / oo (2)G (1 ) + 2

[0,00) €

2 t
g /0 (s, {0})ds.

If we take superior limits as 6 — 0, and then let ¢ — 0 we obtain, using with
G instead of H:
limsup G(t + 6,{0}) < G(t,{0}).
6—0
and this combined with proves that G(t,{0}) is right continuous on [0, {(7%)).
0

In the next Lemma we prove that the function G defined by (3.5.8) is actually
well defined for all ¢ > 0.

Lemma 3.5.5.
lim £(7) = oo. (3.5.20)

T—>Ty

Proof. Since the function £(7) is monotone nondecreasing and continuous on [0, 7y ),

its limit as 7 — 7, exists in R;. Let us call it £ and suppose £ € R;. Now, from

(3-5.14) and the fact that G satisfies : 0 < M, /5(G(s)) < VNE, we deduce

limsup G(t, {0}) > e~ VVF¢G(0, {0}) > 0, (3.5.21)
t—4—
and by (3.4.6)
H(7y,{0}) > limsup H(7,{0}) = limsup G(¢,{0}) > 0,
ToTe t—l~
and this contradicts (3.5.5). This proves that ¢ = occ. O

Proof of Theorem [3.1.3l By Lemma the function G is defined for all ¢ > 0.
As we have seen in the proof of Lemma [3.5.5, G(t) € .#,([0,00)) for all t > 0. It
then follows from Proposition that G satisfies now all the conditions (3.1.44))—

(13.1.46) and (3.1.47)—(3.1.49). Property (3.1.50) follows from the corresponding

estimate (3.3.6|) for h. Similarly, property (3.1.52)) follows from the property (3.3.7))
of h. We prove now the point (iv). Suppose then o € (1,3] and condition (3.1.53]).

For ¢(x) = % we have,

2.60) = (257 ) M.

(G(1))-

1
2
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On the other hand, for 0 <y < z,
AMp)a,y) = (L4+2)" + (1-2)"=2), z=2€01]
Ifae(1,2], forall z >y >0,

Ap)oy) (2 — 2)2* 2y7 < (2 — 2)(2y) "7 .

VIy T
We deduce
(2) o 2
2P (6,G(1) < (2" - 2)(Mazs (G(1)))

and obtain

d 2

GMalG(0) < 60t 0D | C1a (Mapa (G(0) = o,y (G0
where C1; = 2% —2 and Cy = (a — 1) /(e + 1). Using Holder’s inequality

d

S Ma(G) < Gt {0}) [Cl,lz\f?’*aEcH - C’QE(QQH)/QN“*Q“)/Q]. (3.5.22)

By (3.1.53), the right hand side of is negative, and then M, (G(t)) is de-
creasing on (0, c0).

For a € [2,3] we use the estimate with C1 2 = a(a — 1) instead of C,.
Then we proceed as in the previous case to obtain

d

Mo (G(1) < G(t,{0}) {CLQJV?’*‘HEQ*1 - 02E<2a+1>/2N(1*2a)/2]. (3.5.23)
As before, (3.1.53)) implies that the right hand side of (3.5.23)) is negative, and then
M, (G(t)) is decreasing. O

Proof of Theorem [3.1.4. By construction

6(0) = 1) = h(r) = [ Mypathioda ) o

where 7 and t are related by

t_g(T)_/OTH(j,Um; T—gl(t)—/o G(s, {0})ds. (3.5.24)

Therefore G(t,z) = h(r,x) for x € (0,00), and

T (D)
/ G(t, {O}) / 29G(t, 7)dadt — / / +h(r, z)ddr
0 (0,00) 0 (0,00)

The result then follows from Proposition [3.4. O

Remark 3.5.6. One could try to directly solve the system (3.1.34)), (3.1.35]), written
in (g,n) variables. First, to obtain a sequence of solutions (g, nx) of an approxi-
mated system where the factor /2 is modified by truncation and regularization,
and then pass to the limit. However, the limit obtained in that way, say (g,n) is
not a solution of (3.1.34)), (3.1.35)). The reason is that all the solutions g of the ap-
proximated system will be functions with a bounded moment of order —1/2. Then,
the right hand side of the equation is equal to My /o (gx) and by passage to
the limit the equation for n will be n’(t) = —n(t) M, 2(g(t)), and the total mass will
not be conserved.
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3.6 Proofs of Theorems [3.1.7], [3.1.8 and [3.1.9|.

We first prove Theorem (3.1.

Proof of Theorem . We already know by Proposition and Lemma
that n is right continuous and a.e. differentiable on [0,00). Then, by con-
struction

6(0) = 1) = 1) - ([ 31 al0o))a ) o
where 7 € [0,7%) and ¢ € [0, 00) are related by (3.5.24). Hence
n(t) = m(r) — /OT M, j5(h(o))do =m(T) — /0 n(s)M;/o(g(s))ds. (3.6.1)

Since n(0) = m(0), it then follows from Proposition [3.4.15| that for all ¢ > 0:

n(t) — n(0) + /0 n(s)Mys(g(s))ds = A((0, 7)), (3.6.2)
and using
N(O,7]) = Ty | () 247 (e, 95)) s (3.6.3)

If we denote = &xA (cf. [2], Ch. 5), i.e., the push-forward of A through the
function ¢ : [0,7%) — [0,00) in (3.5.24)), then from the definition of p we obtain

w((0,t]) = A((0, 7)) vt > 0. (3.6.4)
Then (3.1.58) and (3.1.57) follows from (3.6.2)), (3.6.3) and (3.6.4). Moreover,
(13.1.59) follows from ([3.4.44)) in Proposition |3.4.15 O

The following properties of n(t) follows by the same arguments used in the proofs

of properties (3.4.45) and (3.4.46[ of Proposition |3.4.15

Proposition 3.6.1. Let G, g, and n(t) be as in Theorem . Then, for all p. as
n Remark the following limit exists in 2'(0,00):

lim 12" (., 9) = T(G), (3.6.5)
e—
and n' +nM5(9) =T(G) in 2'(0,00). (3.6.6)

Proof. Consider, for all ¢, as in Remark the absolutely continuous functions
n(t) = / oo (2)G(t, ) da. (3.6.7)
[0,00)
Then equation (3.1.46|) becomes 7. = n23(p., g). Using integration by parts,

- (e (t)dt = / " p(t)n(t) 23(oe. g(B))dt Yo € C(0, 00).
0 0
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Taking the limit ¢ — 0 we deduce, using Lemma that
- [T oomi=tim [ o002 (oeat)at
/ SO ()M o g(0))
and then (3.6.5)), (3.6.6) follows. O

Remark 3.6.2. If we take distributional derivatives in both sides of (3.1.58)) we
obtain:

n' +nMj(g) =p in 2'(0,00),
and by (3:6.6), 1 = T(G)

Proof of Theorem [3.1.8] The statement of the Theorem follows from (3.4.44]) in
Proposition [3.4.15 and (3.6.4)). O

Proof of Theorem [B.1.9. Proof of part (i). By Theorem n is given by

(3.1.58) and (3.1.57). On the other hand, since G satisfies (3.1.46)), and for all
¢ € CL([0,00)) such that p(0) = 0:

/ o(2) Gt 2)da = / o(2)g(t, 2)dx, (3.6.8)
[0,00) [0,00)

then g satisfies . In order to prove part (ii) we first show the existence of
the limit in (3.1.57). To this end we write ¢. = (1 — %), where 1. is as in Remark
3.1.6, Then ¢-(0) = 0, and by (3.1.60) and (3.1.43), using that Z3(1 — 1., g) =
25(1,9) — Z3(¢e, g), and Z3(1,¢9) = 0, we deduce

/ n(5) D34z, g(s))ds — / oel2) (9(0,2) — g(t,2)) da
0 (0,00)

—i—/o n(s) M 2(g(s))ds. (3.6.9)

The existence of the limit in (3.1.57)) follows and, if we pass to the limit,

t

iy [ 0(5) 2 e g(o)ds = [ (g(0,) = gt )z

e—=0 Jo (0,00)
+ / n(s) My 15 (g(s))ds. (3.6.10)
0

We now check that, if n satisfies the equation (3.1.61)) then G satisfies equation
3.1.46) for a.e. t > 0 and for every p € CL([0,00)). If ¢(0) = 0 this follows from

3.1.60) and (3.6.5).

For ¢(0) # 0 we may assume without loss of generality that ¢(0) = 1, and write
@ = (¢ — ) + e, where 1), is as in Remark Since (¢ — 1:)(0) = 0, using

and
| e-va@gtade= [ (o= v)(a)gl0,2)da
[0,00)

[0,00)

t o~
+ [ 092l - v gl (3.6.11)
0
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In order to pas to the limit as ¢ — 0, we first use Qvg((cp —e),9) = ég((p,g) =
23(1)e, g). Then, since for all t > 0

lim Ye(x)g(t, x)dz = 0, (3.6.12)

e—0 [0,00)
and n satisfies , we deduce from and Lemma

t ~
[ et e = [ @02t [T Isegtods
t
+n(0) =) = [ 01 2(9()ds

Since 23(¢, G) — M, /5(g9) = 23(, G), it follows that G satisfies

/[o,oo) <P(x)G(t,x)dx:/[o7oo) @(m)G(O,m)dw—i—/O n(s)23(p, g(s))ds,

thus (3.1.46)) holds for a.e. ¢ > 0.

In order to check that G satisfies (3.1.44) we first use (3.1.46) with ¢ = 1 €
C1([0,00)). For that choice of ¢ we have A(p) = Lo(¢) =0 and then:

G(t,z)dr = Go(x)dx.
[0,00) [0,00)
Because:
/ xG(t,x)de = / x g(t,z)dz,
[0,00) [0,00)
G satisfies (3.1.44)) since by hypothesis so does g. O

Remark 3.6.3. If G is a weak radial solution of (3.1.1)), (3.1.2), we know by Theorem
that g satisfies (3.1.60)). It is straightforward to check that it also satisfies,
4

where p is as in Theorem and ,@~3 is defined in f.

Proof of Corollary [3.1.10] If we prove that n satisfies (3.1.61]), the conclusion of
the Corollary will follow from part (ii) of Theorem By the hypothesis and

part (ii) of Theorem the limit in (3.1.57)) exists, and (3.6.10|) holds, that we

write:

p(@)g(t, x)dw = n(t) 23(p, (1)) — @(W%M((O, t]),

t

tim [ ()28 (62 g())ds = [ n(s) 0 a(a(s))s =

e—0 Jo
_ /[0 (6(0.2) = Gta))da + (t) = n(0).

Using the conservation of mass (3.1.62)) it follows that n satisfies equation (3.1.61]).
O
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Proposition 3.6.4. (i) Let G € #+([0,00)). If G has no atoms on (0,00) and

f(om) Gfi) dr < 0o, then, for all p: as in Remarrk|(3.1.6,

7(@) = lim 2 (., G) = 0. (3.6.13)

e—0

(i) Let T > 0 and F : [0,T] — #+([0,00)) be such that F(t) has no atoms on
(0,00) for allt € [0,T] and

F(t,x)
p(T) = sup / dr < 0. (3.6.14)
te0,1](0,00) VT
Then, for any bounded measurable function n: [0,T] — [0, 00),
t
lim n(5)28 (ge, F(s))ds =0 Vte[0,T]. (3.6.15)
E— 0

Proof. Let us prove (i). By definition

7(G) = lim //000 (pe) (2, y)G(w)G(y)dxdy,

e—0

Since A(p:) <1 for all £ > 0 and

lim Ape)(,) = Lipmysop (@) V(@,y) € (0,00)%,

e—0

and f (0,00) f) dx < oo, then by dominated convergence

7T(G) = // )Gy )d dy.
{z=y>0} Iy

Since G has no atoms on (0,00), i.e., G({z}) = 0 for all z > 0, by Fubini’s theorem

G@)Gly) , o G Gireyde =
//{”>0} e dedy /(0700) —C({r)d

That proves (3.6.13)).

Let us prove now (ii) using part (i) and dominated convergence Theorem. We
first consider a bounded measurable function 7 > 0 defined on [0, 7]. By part (i),

lim n(t) 22 (¢, F(t)) =0Vt € [0,T). (3.6.16)

e—0

On the other hand, using again that A(¢.) <1 for all € > 0, we deduce

()25 (e, F(1)| < Illcp(T) <00 Ve>0, We0,T].  (3.6.17)

Identity (3.6.15)) then follows from (3.6.16), (3.6.17) and dominated convergence
Theorem. O

Remark 3.6.5. From Prop051t10n 4 if M_; /5(g) < oo and g has no atoms, then

p((0,¢)) =0forallt >0. Iif ge L (0 o0) and x = 0 is a Lebesgue point of g then
T(g) = 0 (cf. [60]) and again u((0,t]) = 0 for all t > 0. If g(x) = 2~ /2, then
T (g9) = 72/6, (cf. [55]), and a similar result holds if lim,_o+/Tg(z) = C > 0 (cf.
[67]). In that case, u((0,t]) = 72/6 fg n(s)ds
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3.7 Proof of Theorem [3.1.11]
Proof. By (3.5.22) and (3.5.23|), we deduce that for all ¢ > ¢y > 0:

| G5, 101)ds < (Ma(Glt0) ~ Ma(G())CN. B
C(N, E, Oé) _ [(Z; 1) E(2a+1)/2N(1—2a)/2 o CINS—aEa—l - ’ (3‘7‘1>

where C1 = 2% — 2 for a € (1,2] and C; = a(a — 1) for a € [2,3]. Since by part (i),
0 < My(G(to)) — Ma(G(t)) < My(G(to)) for every t > tg, we immediately deduce
B153).

We prove now (3.1.64)). Since, as we have seen in (3.5.18), the function n(t)J(t)

is monotone nondecreasing, from where, for all ¢ > 0 and s € (0, ¢):
n(t) > e IN Miy2(g(r)dry, (g).
As we have M, »(g(r)) < VNE for all r > 0,
n(t) > e_\/ﬁ(t_s)n(s). (3.7.2)

By (3.1.63)) we already have a sequence of times 0, such that 6 — oo and n(fx) — 0
as k — oo. Suppose that there exists, for some p > 0, an increasing sequence of
times (sg)ken such that sy — oo as k — oo and :

log 2
VNE
log 2

Then, if we denote t; = sp + Jnp We deduce from ([3.7.2) that for all t € (sg, tg):

VEk, n(sk) > p and sy — Sp >

n(t) > e VNVEE=sk)p(g1) > e VNEW=s1) ) — L
- - 2

This would imply

and this contradiction proves (3.1.64)). O
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Appendix A

Some useful estimates

Lemma A.0.1. If B satisfies (2.2.5)- , and ¢ is L-Lipschitz on [0,00), then
for all (z,y) €T

lz—y] (1-0)?
< LC AT, A= % b A0.1

LC.(1—6) =

[l (z, )| < me (A.0.2)

Moreover, the function L, given in (2.2.31)) is continuous on [0,00) and for all
z € [0,00),

LC(1—-0), z=n@
|£<p(x)| > m(e

33_722(17) )

(A.0.3)

In particular, L,(0) = 0.

Proof. We first prove (A.0.1). Let (x,y) € supp(B) = TI', and assume, by the
symmetry of k,, that 0 < y < x. By the mean value theorem, [e™ —e™¥Y| <
e Y(x —y), and from (2.2.11]) and the Lipschitz condition,

sy (v —y)?
ko(z,y)| < LC.e P e S
ko (2, 9)] @+ o)y
Then by (2.2.8)—(2.2.10)
92 .
(@-y? _ ] wde @y eTy,
@+y)zy = | if (z,y) € Ty,

and (A.0.1)) follows.
In order to prove (A.0.2)) we use ([2.2.11)) and the Lipschitz condition to have, for
all (z,y) €T,

’ <roeYr Yl
|<P(xay)|— 062 JJ(CC—I—y)

Using that ' C {(x,y) € [0,00)? : 0z <y < 6~ 'z}, then

yle—yl _ (1-6)
2z +y) ~ 2(1+0)
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and (A.0.2) follows. We obtain (A.0.3) directly from and Remark-
We finally prove the continuity of L, on [0, c0) By - m
continuous for all x > 0, so we only need to prove £ ( ) — 0 as 2 — 0. This follows

from (A.0.3) and the mean value theorem, using 72(1’) —y(z) < (071 - 0)a. O

Remark A.0.2. Under the hypothesis of Lemma[A.0.T} the function &, could not be
continuous at the origin (x, y) = (0, 0), since we do not know if lim gy, (0,0) ko (7, y) =
0. However we have the following.

Lemma A.0.3. If B satisfies f, then k, € C([0,00)?) for all ¢ €
C1([0,00)) with ¢'(0) = 0, and k,(0,0) = 0.

Proof. By definition and (2.2.7), it is clear that k, € C([0,00)%\ {0}). If we prove
that lim(, ), 0,0) ko(z,y) = 0, the continuity at the origin follows. To this end

we mimic the proof of (A.0.1) using ¢(x) — ¢(y) = ¢'(§)(x — y) for some & €
(min{x, y}, max{x,y}) instead of the Lipschitz condition, and we obtain

lz—y|

2
|k@<x,y>|Smax{0<§(lf)m,p} P (©)]e3 (A.0.4)

for all (z,y) € T and all ¢ € C*(]0,00)). If ¢/(0) = 0, it follows from (A.0.4)) that
liHl(:z,y)~>(0,0) ktp (xu y) =0. o

Proposition A.0.4. Suppose that B satisfies (2.2.5)- , @ is L-Lipschitz on
[0,00), and u € A+ (]0,00)). Then

’&NHMSLQA<4mfﬁﬂm()®><Amﬁwmﬁ’ (A.0.5)

LC, ( 9) / (ex—él(w) _ ex_WQZ(w))U(IL‘)dl’, (A.O.G)
[0,00)

Lp(u)l < 20%2(1+6)

where A is given in .
Proof. In order to prove (A.0.5), we use Remark Remark [2.2.3] and (A.0.1):

T

|Ky(u,u)| < LC A/ egu(x)/ e 2u(y)dydzs
71(z)

< LC, A/ =32, / u(y)dydzx,
71 (z)

from where (A.0.5)) follows. The estimate (A.0.6)) follows directly from (A.0.3). O

Let us define now

//[0 ko (z,y)u(t, z)u(t,y)dydz, (A.0.7)

kpn(2,y) = bu(z,y) (™" — e ¥)(p(x) — @(y)), (A.0.8)

memzl/ Ly m(@)ult, 2)de, (A.0.9)
00)

/ lon(x,y)d (A.0.10)

Com(z,y) = bn(, y)y’e Y (0(z) — o(y))- (A.0.11)
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Remark A.0.5. Since ¢, < 27!, the estimates (A.0.1), (A.0.2) and (A.0.3) in
Lemma hold for kg, £yn and Ly, respectively, and estimates (|A.0.5) and
(A.0.6) in Lemma hold for K, (u,u) and Ly ,(u) respectively, for all n € N.

Lemma A.0.6. Ly, — L, as n — oo uniformly on the compact sets of [0,00) for
all ¢ L-Lipschitz on [0, 00).

Proof. Let R > 0 and = € [0,R]. On the one hand, if z € [0,1/n], we have
Lo (2)—Lom(x)] < 2|L,(2)] = 0asn — oo, since L,(0) = 0 (cf. Lemma[A.0.1). On
the other hand, if z € [1/n, R] and y € [1/n,n], by definition ¢, (x)¢n(y) = (zy) 7},
and then

=

n

Lo(@) = Lopn(z)] < /0 100, 9) — Lo 2, )\dy

+ / 100 (.) — Lo, y)ldy.

The two integrals in the right hand side above are treated in the same way. Using
[l (2, y) = Lon(z,y)| < [lp(z,y)| and (A.0.2),

1

1
n LC.(1—-0) r n _y
/ rw,y)rdys“)e?/ e Hdy — 0,
0

0 92(1 + 9) n—00
o0 LC*(l - 0) R e _y
/n [l (z,y)|dy < mw /n e 2dy P 0,

and the result follows. ]
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Appendix B

The function 5g, properties and
scalings

In this Section, we describe several properties of the function Bg. First, the parame-
ter [ is used to scale the variables, in such a way that the total mass of the solution
is conserved. In the scaled equation, the linear term appears as a lower order term
for 8 large. Then, for each S > 0 fixed, the behavior of Bg(k, k') is studied when k
and k' are varying on (0, c0).
B.1  [-scalings of Bgs.
It looks natural from (2.1.2)) to introduce the scaled variable

x = [k, (B.1.1)

and define
F(r,z) = B73f(t, k), r=pB%, x«=pk (B.1.2)

The scaling (B.1.2)) preserves the total number of particles:
/ 22F (7, z)de = / K2f(t, k)dk = / E£(0,k)dk Y7 > 0.
0 0 0
In terms of F',

af OF
kZE(L k) = B41’2§(T, .73),

q(f, ') = BOFF (e —e ) + B3(Fle™™ — Fe™™),

and if we define

Bg(z,2') = B Bs(k, k'), (B.1.3)
that is,
@'+2) [T (1 + cos? 6) 4m(z_z,)2+‘z/n;;2‘4
Bs(z,2') = \/Be 2 / ﬁe_'g 2/ x| dcos¥, (B.1.4)
0 X —X
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the equation (2.1.1)—(2.1.2)) then reads

F o0 ,
PO ) = [ Bala ) PR - e o'+
or 0
+ B3 / Bg(z,2')(F'e™™ — Fefx/)xx/dajl. (B.1.5)
0
If we now define
u(t,z) = 2?F (1, x) (B.1.6)

then from (B.1.5) we finally obtain

ou * Bg(z,2'), . _
E(T, x) :/0 BxT(e — e " )uddz’+
* B ! /
+ ﬁ_?’/ 76@;’,3: ) (Wze ™ —uz®e ) da/, (B.1.7)
0 rr

The second term in the right hand side of (B.1.7)) seems then negligible when 5 — oo,
but no rigorous result on that direction is known.
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B.2 The function Bg(z,z’) for § fixed.

In this Section we show some properties of the kernel Bg defined in (B.1.4}).

Figure B.2: From left to right, the kernel Bg(x,y) for m = 1, (z,y) €
[0.1,4]2 and 8 = 10, 8 = 50 and 8 = 200.

120,

20,

-04 -0.2 } 0.2 0.4

Figure B.3: Sections of Bg for 8 = 50 and m = 1. The horizontal axis
corresponds to the variable ¢ = (z —v)/v/2. The vertical axis corresponds
to Bg(x,y) for x + y = constant. In blue, x +y = 0.3, inred x +y = 0.5
and in yellow, x +y = 1.

Proposition B.2.7. For all 3 >0, x >0 and 2’ > 0,

4(10 max?{z, 2’} + min*{z,2'}) @'+x
e 2
15max3{x, z'} ’

Bs(z,2') < \/B (B.2.8)

and for all x > 0, 2’ > 0 with x # 2/,

lim By(x,a') = 0. B.2.
Jim Bp(w,2’) =0 (B.2.9)
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Proof. For all z > 0 and 2’ > 0,

(wta’)
— =0 T (1 2 1 1 2
’ Bg(x,x/)ﬁ/ (+,Cose)dcos0:/ L+t) dt
VB 0o X —x| 1 Va2 22 = 2zalt
4(10 max*{z, 2’} + min*{z, 2'})

e

= B.2.10
15 max3{x, 2’} ’ ( )
and then (B.2.8) holds. If 2’ # x, we have first
m(z—z/)2+7‘x,7x‘4
. _ﬁ 4m[‘32
lim e 2 —x[? =0 VOel0,n],
B—o0
and since
(1+cos?@) g " 52~ i ﬁzx‘4 (14 cos? )
e < ST T e Tldcos) VB >0,
x —x] o x
then (B.2.9) follows from Lebesgue’s convergence Theorem. O

Proposition B.2.8.
2/2 1\?
Bs(z,z) = /B <7;mﬁ +0 <> ) e’ as x — 00, (B.2.11)
x x

Bs(z,x) = /B % <; + 1) +O0(z) as z—0. (B.2.12)

Proof. By definition, for all z > 0,
1 2 0 2(1fcos 9)
(z,x) \/7 i ) amB dcos 0

1-— cosc9
= \/B%T (\/%(6527712 — ZBm:L“2 + $4)Erf <

22
— 126727"(5771)3/23;),

)

and the result follows. ]

The function Bg is exponentially decreasing in the direction orthogonal to the
first diagonal, as shown in the next two Propositions.

Proposition B.2.9. For all 8 > 0,

VBg(z,2') - (1,-1) >0 4f 2’ >z>0, (B.2.13)
VBg(z,2') - (1,-1) <0 4f z>z' >0. (B.2.14)
Proof. It is only a straightforward calculation. With the help of Mathematica,
using the change of variables ¢t = cos @,
|x —x|4

e e

2T Oz, 2 t)dE, (B.2.15)

(@' +)

0Bg (1+ t2 -8
%(IEJ 4mf/1 |x! —x|5e
O(x, 2, t) = 4(fm)%(t — D' (z — ') (x + 2') — (x — ta)|x' — x|+

+28m (2 — 2ta’(xz — 1) + (z — 2)7) [x' — x|*. (B.2.16)
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The expression of %% is obtained from (B.2.15)) and (B.2.16)) using the permutation

x < x'. Then,

(2! +x) m<ziz/)2+\x/—x\4
(1+t?) —p— — dmp®
B . 1 _1 2|x/ —x|2
VBj(e,a') - (1, 4mf/1,X,_X,5 Y
x (O(z,2',t) — ©(2', z,1))dt, (B.2.17)

Oz, 2, t) — Oz, z,t) = (2 — ) [4(ﬁm)2(1 )z + ')
+4Bm(1+ % = x4 (1+ )%~ x|*],
and the result follows. O
Proposition B.2.10. For all 3 >0, x > 0 and 2’ > 0,

Bg(x,2") < Bp(x,2'), (B.2.18)
where
m(z—m/)2+7(17zlg)4
no_ —B—— / /
By (x,2') = /Be 2@t N(x + 2|z — '), (B.2.19)
8e2 (10(p+9)* + (p — 9)%)
N(p,q) = . Vp>0,Vg>0. B.2.20
(p,q) 50p 1 9)° P q ( )

Proof. For all x € R? and x’ € R? such that |x| = z, |x/| = 2/

o —2'| < |x—X| <z + 2.

Therefore,
4
m(x—x,)2+(Z71l>
(o' +2) — " amp? (T (] 4 cos2 f
Bs(z,2') < \/Be 2 e P3G / (|X/X|)alcos97
0 _

and the result follows using (B.2.10)). O
Corollary B.2.11.

Vo > 0,2" >0: Bg(z,2') < Bg < (B.2.21)

! ! 2\/2 T \?\ awo
Bﬁ(x—kx x+x>:\/ﬁ<m7§+(’)< />>e+2,m+x’—>oo,

4+ x4+
2 7 2 ’

2 72 (x + ) T+
r+a x4+ 44\/B 1 , ,
B = 1 @) 0.
5< 2 2 ) 15 \zyo 1) TOETT), wha

Ifx + 2 — o0, and |x — 2’| < Ox:

/7 3
‘6796 |Bﬁ($ .T < 2\[ <2 ‘2|‘7TSC/)2 O <$i$/> >

For all p > 0 fized and x > 0, 2’ > 0 such that v + 2’ = p,

mm(f)*(Bzm)

N2

By(a,a!) < /Be "o (p, |z — '), (B.2.23)
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Proof. By Proposition the function Bg is strictly decreasing in the direction
orthogonal to the first diagonal, and then property (B.2.21)) follows. In order to

prove (B.2.22) we have first, when = + 2/ — oo,
/ —_—
sinh (x x) ‘
2

e w ) 2v/27mp 1 \°
e — e [Bg(x,2) <2 <(;U—|—J:/)2+O<:U+aj/> )
5——n 3
0< (e—az — e—l’,)Bﬁ(l‘,;pl) <2 (227an + 0 < 1 /> ) sinh <92.%'>

If moreover, 0 < 2’ — z < Oz then
(x4 ) r+x

If —0x < a2’ — 2 <0 then,

! - 6
0 < —sinh <:E 5 x> = sinh <$ 2x ) < sinh <2x> ,
and (B.2.22)) follows. O

Proposition B.2.12. For all ¢ € C.((0,00) x (0,00)):

im [ )@l ) Byt )iy =

B—00

=5 e ) /(Om)w (2.2) eha: (B.2.24

Proof. Define the new variables
e=a-p c=atn w60 =p (3455

and denote ¥g(§,() = ®g(x,y). Then,

I 2//(0 o o, y)Ps(x,y)Ba(x,y)dvdy =
- [ vt 0 (55455 ) e e
where D = {((,€) € R2:( >0, —¢ < £ < (}. We write now,
g et pe (1 N €2>
2mB¢? 2m(? 32

and the change of variables:

whose Jacobian is /2m/3 zo and,

.2 1 2mz%z§
://e Zl(+ ’ )‘@5(21722)><
Q

X U (51\/ 22%122,5122,) P <\/ 2;12122722> V2m/f zodz1dzy
Z1 = % (22 + \/2?2122) , Lo = % <22 =4/ 2;”2122>
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Due to the cut off function ®3(x,y), the actual domain of integration Qg is:

9 1/2
Qﬁ:{(Zl,ZQ)GRXR+; V2m| z1| §9z5/2 (1—;2,2%) }

where Q is the domain where z5 > 0, 21 € (—1,1). As 8 — oo,

2.2
) 1+2mz1z2> 2
511_)11306 Zl( VAT <, / ?leZQ, ,22> = e_zfiﬁ (0, 22) .

On the other hand, using (B.2.12)), for all 21, 23,

Bs(Z1,72)  4de7

li = B.2.2
g5 B 152 (B-2.25)
By definition of W, for all z; € R and z9 > 0 fixed, if 8 is sufficiently large,
2
v (B_l leZ27B_1227) =1
V B
Then,
. 44 _,2 2
lim I:\/Zm// e “le2 1 (0, 29) dz1dzy
B—o0 15 Q
44 |mm z2 Z2\ 22
s [, o(33) %
g s [ e(33) e
O

The function Bg(z,y) > 0 coincides with %g(x,y) for x = y and is below that
function, that tends to a Dirac measure along the first diagonal as § — oco. From

properties (B.2.9) and (B.2.24)), the truncation of Bg may then be seen as reasonable.
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Appendix C

Appendix

We have gathered in this Appendix several results that are important and useful,
but not directly related to the main results of Chapter 3. For the sake of clarity, we
present them in two different sections. In the first one, we find results that are used
all along Chapter 3, perhaps several times. In the second, we present results that
are needed in Section 3.2

C.1 A1l

Lemma C.1.13 (Convex-positivity). Let ¢ € C([0,00)). If ¢ is convexr then
A(p)(x,y) > 0 for all (z,y) € [0,00)% and Lo(p)(x) > 0 for all x € [0,00). If
@ is nonnegative and nonincreasing, then L(p)(x) <0 for all z € [0, 00).

Proof. Since A(p)(zx,y) is symmetric we may reduce the proof to the case 0 < y < x.

Putting z = Z5¥ + ZZ¥_ then by the very definition of convexity

o(z) < sﬂ(fﬂ; y) N 90(562— y)’

therefore A(¢)(x,y) > 0.
The positivity of Lo(p) is equivalent to prove

515/033 o(y)dy < W Vz € [0, 00). (C.1.1)

Since for any 0 < y < z we may trivially write y = (1 — £) 0+¥ z, then by convexity

p(y) < (1= %) (0) + £eo(x), which implies (C.11).
If ¢ is nonnegative and nonincreasing, then L(¢)(z) < —zp(z) < 0 for all x €
[0, 00). O

Remark C.1.14. By linearity and Lemma it follows that for all ¢ €
C(]0,00)) concave, A(¢)(z,y) < 0 for all (z,y) € [0,00)? and Lo(p)(x) < 0 for
all z € [0,00).

Lemma C.1.15. Consider the operators A(-), Lo(-) and L(-) given in ,
13.1.51]) and respectively. Then

(i) If ¢ € Lip(]0,00)) with Lipschitz constant L, then

W\/%y)' <oL  Y(z,y) € [0,00)% (C.1.2)
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(ii) If o € C*(]0,00)), then the map (x,y) Ap)(.y) belongs to C(]0,00)?) and

Ve
A
((’D)Q(;Z’y) =0 V(z,y) € 9]0, 00)2. (C.1.3)
(i) If ¢ € C([0,00)) then the maps x % and x +— £(g07\/)5(a:) belong to
C([0,00)) and ﬁo(\%(x) = L(%x) =0 at x = 0. If in addition ¢ is bounded,
then
LN < tlplonE e € 0,20), (©.14)
L(p)(x
’((p\/);:(” <3|¢llovx YV €0, 00). (C.1.5)

Proof. (i) By the symmetry of A(p) we can assume that 0 < y < z, and directly
from the Lipschitz continuity

IA@) (@, y)| < oz +y) — (@) + [p(z —y) — (2)] < 2Ly,

which implies (C.1.2)).
(ii) The only possible problem for the continuity is on the boundary of [0,00)2.
Again by the symmetry of A(p) we can assume 0 < y < z. Then by the mean value

theorem A(¢)(z,y) = y (¢/(€1) — ¢/(€2)) for some & € (z,2 +y) and & € (2~ y, ).
Hence
Alp)(@,y)
NG

and the continuity of w on [0, 00)? and (C.1.3)) follow from the continuity of ¢'.

zy

<¢'(&) — ¢' (&),

(iii) The continuity of Eo(j%(:c) and E(:%x) are clear for x > 0. Using that % fox o(y)dy —
©(0) as * — 0 by Lebesgue differentiation Theorem, it follows the continuity at

=0 and that 00 — L&) — ¢ for 7 = 0. The bounds (C.1.4) and (C.1.5
are straightforward for ¢ € Cy([0, 00)). O

Lemma C.1.16. Consider the operators A(-) and Ly(+) given in (3.1.30) and (3.1.31)),
and a sequence (¢n)nen C Ce([0,00)) as in Cutoff[3.3.5

(i) If o € CY([0,00)) then A()(x,y)bn(x)dn(y) —— 2ELY yniformly on the

compact sets of [0,00)2.

(ii) If ¢ € C([0,00)) then L(p)(x)pn(x) — L(%x) uniformly on the compact
sets of [0, 00).

Proof. (i) The pointwise convergence on [0,00)? is trivial since ¢y, (x) — /2 as

n — oo. Then, let ¢ > 0 and R > 0. For n > R there holds ¢,(z) = 2~ /2 for
all z € [1/n, R], so we only need to show the uniform convergence on the regions
(x,y) € [0,R] x [0,1/n] and (z,y) € [0,1/n] x [0, R]. By the symmetry of A(p), we
may study only one region.



C.1Al 141

Using that % is continuous (hence uniformly continuous on compacts) and

vanishes when (z,y) € 9[0,00)? (c.f. Lemma [C.1.15)), there holds for all (z,y) €
[0, R] x [0,1/n] that, for n large enough,

SO Al wpontalon ()| < HEZI <

(ii) Let € > 0 and R > 0. Since for n > R there holds ¢, (z) = z~'/2 for all
x € [1/n, R], we only need to prove the uniform convergence on the region [0,1/n].

Using that % is continuous (hence uniformly continuous on compacts) and
vanishes when x — 0 (cf. Lemma |C.1.15)), we have

LD pe@onto| < B <o vrepoapm
for n large enough. O

The following Lemma is about the approximation of a measure by continuous
functions. It is a simplified version of Lemma 4 in [53].

Lemma C.1.17. Let v € .#{([0,00)) for some o > 0. Then, there exists a sequence
of functions (vn)nen C C([0,00)) N L' (R, (1 + 2%)dx) such that

Vo € C([0,00)) : ili% m < 00, (C.1.6)
nh_}ngo h o(z)vp(x)dx = / o(x)dv(z). (C.1.7)
0 [0,00)

a2
Proof. Let J(x) = 67 for > 0 and define, for n € N, x > 0,

Up(x) = e /[0700) J (e”]w —y(1l— e*")\) dv(y).

In order to prove that v, is a continuous function on [0, 00), let > 0 and (xy)ken C
[0,00) be such that x — x as k — oo. Since J is a bounded continuous function on
[0,00) and My(v) < oo, it is easily deduced using dominated convergence theorem
that, for all n € N, v, (z) — vn(z) as k — oo, and therefore v, € C([0,0)).

Let us prove now that v, € L' (R+, (14 mo‘)d:v). To this end, let Fy,(x,y) =
(14z*)e"J (e"|z — y(1 — e~ ™)|). Using the change of variables z = " (y(1—e ") —x)
we deduce that for all y > 0, n € N,

00 y(e™—1)
[ iEplds= [T 1= ) = ) S
0 0
—|—/0 (1+[y(1—e™) +e "2]%) J(2)dz.
Since

T+[y(l—e™™) —e 2] <1+ [y(l—e™™) +e7"2]" <1+2%(y" +27)
<2%(1 4+ y*) (14 2%), (C.1.8)
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and v € #([0,00)), then for all n € N,
/ / |F(z, y)|dzdv(y) < 2““/ (1+ ya)du(y)/ (14 2%)J(2)dz < oo,
[0,00) 0 [0,00) 0

which implies, by Fubini’s theorem, that v, € L! (R+, (1+ xo‘)daz).
Now, for any ¢ € C(]0,00)) satisfying (C.1.6), using Fubini’s theorem and the
change of variables z = e™(z — y(1 — e™™)):

| swmas= [ newa) (C.19)
0 [0,00)

y(e™—1)
L(9)(y) = / o (y(1—e™) — ze™) J(2)dz
/Ooo e(y(l—e™™) + ze ™) J(2)dz.

By a similar estimate as in (C.1.8]), using ((C.1.6)) we obtain that for some constant
C >0,

max{’gp(y(l —e ") — ze_") ’, ‘go(y(l —e ™M+ ze_”)‘} < C'(l + ya) (1 + 20‘),

and |I,(¢)(y)| < C(1 4 y*). We then deduce, using dominated convergence, that

n—00

lim I,(2)(y) = 20(y) /0 T =)z = o), Yy >0,

and
i [ L) = [ eldvly)
=00 J[0,00) [0,00)
which completes the proof, in view of (C.1.9)). O

Corollary C.1.18. Let v € #$([0,00)) for some o > 1. Then, there exists a
sequence of nonnegative functions (fn)nen C Ce([0,00)) such that

lim sup My (fn) < Mo (v), (C.1.10)
and for all ¢ € Cy([0,0)),
lim h o(x) fro(x)dx = / o(x)dv(z). (C.1.11)
n—oo Jg [0,00)

Proof. We consider the sequence (vp)nen given by Lemma |C.1.17) and a smooth
cutoff ¢, € C(]0,00)) such that 0 < (, <1, {,(z) =1 for z € [0,n] and (,(x) =0
for £ > n + 1. Then we define for all n € N:

fa(2) = vn(2)Gn (). (C.1.12)

It then follows that f,, is a nonnegative continuous function on [0, c0) with compact

support. Since f,, < v, the property ((C.1.10]) directly follows from (C.1.7)) in Lemma
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C.1.17} Now let ¢ € Cp(]0,00)). Since vy, satisfies (C.1.7)), in order to prove (C.1.11])

it is sufficient to prove

ILm / o(x) fr(x)dx — / o(x)vp(z)(z)dz| =0, (C.1.13)
and ((C.1.13) follows from
> OOM n
lim o(x)vp(z)de < lim Iplloo M1 (V) =0,
n—oo [, n—o00 n
where we have used that M (v,) — M1 (v) < oo as n — 0. O

Definition C.1.19. Let h, ¢, and ¢ be real-valued functions with domain R,.
Then, let

Ds.n(p,h) = 22 (0, 1) — D) (o, ), (C.1.14)
where
e = [ / (&,4)6n ()6 () h(z)h(y)dady, (C.115)
25 (o, h / L(p (z)h(z)dz, (C.1.16)
and let, for z € R,
J3n(h)(z) = Kp(h)(x) + Lp(h)(z) — h(z)A,(h)(x), (C.1.17)

where

K, () () = /jh( D)) bn( — 4)bn(v)dy

42 [ h@hly = 2)n(0) (0 — 2)dy (C.118)
=9 Ooh y)dy, (C.1.19)
A () (z) = bul) (x4 /0 h(w)ou(u)dy). (C.1.20)

Lemma C.1.20. Let G € #4([0,00)), ¢- as in Remark([3.1.6, and ¢y, as in Cutoff
.3.3.5. Then

G({0}) = lim ve(2)G(x)dx, (C.1.21)
e—0 [0,00)
g _
;1_% D3 (e, G) =0 Vn € N. (C.1.22)

If in addition G has no singular part in (0,00), then

lim Qé )(cpe, G)=0 Vn € N. (C.1.23)

e—0 n
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Furthermore, if G € ///1/2([ 00)), then

lim 28" (¢., G) = M, 5(@), (C.1.24)
e—0
lim 25" (¢, G) = 0, (C.1.25)
e—0

where Qél) and éél) are defined in and (3.1.41) respectively.

Proof. The proof only uses dominated convergence. Since . < 1 for all € > 0, and
My(G) < oo, and @ — 1yp as € — 0, then (C.1.21) holds. Then, since for all
x € [0,00) it follows from dominated convergence that

gLI% Lo(p:)(z) =2 and lim L(pe)(z) =0, (C.1.26)

e—0

and ¢, is compactly supported, then (C.1.22) follows. Also, since for all (x,y) €
[0,00)2, A(p:)(z,y) <1 for all e > 0, and

lim A((pe)(x Y) = Lp—ysoy (2, ),

e—0

then
tim 22 (0., G / / )ébn ()G (@) Gy)ddy,
{z= y>0}

Using that G has no singular part on (0, 00), (C.1.23)) follows.
Lastly, since

2 (0, G) < 2 (¢.,G) = / G(z)dz, (C.1.27)

(0,00) \/‘E
and by (C1J)

Lol (z
/(o ) wqx)dw <AM,j5(G) Ve >0.

then (C.1.24)) and (C.1.25)) follows from ((C.1.26]) and dominated convergence. O

Lemma C.1.21. Consider n € N, ¢, € C.([0,00)) nonnegative and p € L}, (Ry)
nonnegative. Then for every nonnegative functions h, hy and ha in L>®(R.), the
functions K, (h), Ly(h), Ap(h) and hA,(h) are also nonnegative, belong to L (R4)N
Lz(R+), and there exists a positive constant C(n, p) such that:

[Kn(h1) = Kn(h2)|[Leenry < C(n, p)|[halloollhr — h2fleo (C.1.28)
[Ln (M)l Loy < C(n, p)l[hllo (C.1.29)
14w (P) [l ooy < C(n, p) (1 + [[Alloo) (C.1.30)
[An(h1) = An(h2)llLoenry < C(n, p)|1h1 = halloo- (C.1.31)

Moreover J3n(h) € L2(Ry) N L;(RJF). (C.1.32)
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Proof. The positivity of the operators is clear from their definitions. Notice that
since ¢, is bounded and compactly supported on Ry and p € L; OC(R+), there exist
two positive constants C'(n) and C(n, p) such that

sup / " bullr — y)én(y)dy < C(n),

x>0

/ / 2)én(lz — y)gn(y)dyde < C(n, p).

1. Estimates for K,,. For all x > 0:

Ko (h)(x) < 3[1h]1% /O " bullr — y)én(y)dy < 3|H|2Cn),
and

1K (R) ]|y < 3|13 / / 2)pn (| —yl)on(y)dydz < 3||h|[5,C(n, p).
Then for all z > 0:
() () — Ko () )| (C.1.33)
<3 [ oule = () e~ yha(o)  halle = )bl
Without loss of generality we assume that ||hi||cc > ||h2]|ecc. Using
|h1(Jz = y))hi(y) — ha(lz — y[)ha(y)| < 2[|P1]lcollP1 — 2l

in ((C.1.33)) then (C.1.28]) follows.

2. Estimates for L,. Since ¢, is bounded and compactly supported and p €
Li (R,), there exist two positive constants C'(n) and C(n, p) such that

loc

/ dn(@)dr < C(n) and / o(2) / on(y)dydz < C(n, p)
0 0 x
and (C.1.29) follows.

3. Estimates for A,,. The estimate (C.1.30) follows from
lAn(M)lloe < [l dn(@)lloo + 4llénl3 2ol supDP(Pn)| < C(n)(1 + [IF]lo0),
and
4l < [ o) wontarte+ 4l [ @) duta) [ u)duds
< C(n, p)(1 + [[hloc)-

For all z > 0,

|An(h1)(x) — An(h2) ()| < 4llh1 — hallcn(z) /Ow bn(y)dy
< C(n)|h1 = halloo-



146 Appendix

We also have,

| An (1) = Au(ho) 13 < 4llhn - hallo / p()n () / bn(y)dyda
0 0
< C(n,p) 1 — haloc,

and then, follows.

4. Since h € L*(Ry) and A, (k) € L®(Ry) N Ly(Ry), then hA,(h) € L=(Ry) N
Ly(Ry).

5. It also follows from points 1 to 4 that J3,(h) has the desired regularity. O

C.2 A2

Lemma C.2.22. Let p € C'1(]0,00)). Then, for all (x1,z2,23) € [0,00) such that
T+ T2 > X3!

Ap(z1,x9,23) = (1 — x3) (T2 — T3)X
/ / (z3 + t(z1 — 23) + s(w2 — x3))dsdt.
Moreover, if p € C}H1([0,00)), then for all (x1,z2,3) € [0, 00)3
|Ap(x1,z2,23)] <min{A,B,C,D}. (C.2.34)
where A=A|lglls, B=2[¢[lcclrr —a3], C=2[¢|loc|z2 — 3],

D = ||¢"||lso|lz1 — 23|72 — 23]

Proof. Let (x1,72,23) € [0,00)% be such that z; + 22 > x3. By the fundamental
Theorem of calculus

Ap(z1, 22, 23) = [p(2a) — @(22)] — [p(21) — p(a3)]
= /01 jt (22 + t(z1 — x3))dt — /01 jt (23 + t(z1 — x3))dt
— 1w [ [ (w9 + 1 — 2)) — o (5 + o — )] dt
= (1 — x3) /1 /1 %d(xg + t(z1 — x3) + s(w2 — x3))dsdl

= (z1 — z3)( 2—:63// x3+tx1—$3)+s(2—x3))dsdt.

Assume now that ¢ € C}1([0,00)). Using the first, the third, and the fifth line
above, estimate ((C.2.34]) follows. ]

We now consider the function w given in (3.1.24)) and define

,

% if (z1,29,23) € (0,00)3
1 . )
1f x = 07 xr 7:1: E 0, o0
W (w1, 9, 23) = VoI 3 (21, 22) € (0, 00) (C.2.35)
\/ﬁ ife; =0, 2, >23 >0; {3, ={1,2}
0 otherwise.

We then have:



C.2 A2 147

Lemma C.2.23. Consider the function ®, = WAy, where Ap and W are defined
in and respectively.

(i) If o € C11([0,00)) then @, € C([0,00)3).

(ii) If ¢ € CL1([0,00)) then @, € Co([0,00)3). In particular ®, is uniformly

continuous on [0,00)3.

Proof. Proof of (i). By definition ®, € C((0,00)?). Therefore it only remains to
study the behaviour of @, in a neighborhood of the boundary 9[0, )3 of [0, c0)3.
First we show that ®,, is continuous on 9]0, 00)3.

Thanks to the symmetry of ®, in the x1, z2 variables, we just need to prove:

(i)for all (z1,x2) € (0, 00)2,

Ap(z1,22,0)
A/ L1T2

whenever 1 — 0 or 9 — 0 or (z1,z2) — (0,0), and
(ii) for all 1 > z3 > 0,

@w(xl,xg,()) = —0 (C.2.36)

Ago(xl, 07 .%'3)
\/X1T3

whenever z1 — x3 or 3 — 0 or (z1,z3) — (0,0).
By (C.2.34) |Ap(21,22,0)| < [|¢”||coz122 for all (21, 22) € (0,00)2, which implies
(C.2.36]). Also |[Ap(z1,0,23)| < ||¢"||coxs(x1 — x3) for all x1 > x3 > 0. Hence

’A@(xlv 0,.1“3)’ " z3 "
=7\ o)l 9 _ < _
L0 ooy 22 01— 23) < [ ool — ),

which implies (C.2.37)).
Then we prove that for any z € 9[0,00)% and for any (z,,)neny C (0,00)3 such
that , — x, then ®,(z,) = ®,(z) as n — co. Let us denote

<I><p(x1,0,:v3) = — 0 (C.2.37)

Q = {(21, 2, 23) € (0,00) : 21 + 72 < w3}
Since x4 is defined as x4 = (21 + 22 — x3) 4, then for all (z1,z2,23) € (0,00)3,
(x1,29,23) € Q if and only if x4 = 0.

It might happen that the sequence (x,)peny “jumps” from Q to Q°. If in every
neighbourhood of x the sequence has points in both regions, then we may con-
sider two subsequences, each one contained in one region only. For the sequel,
the main estimate is the following: if we denote z,, = (z7,2%,2%) and w(zy,) =

min{\/ﬁ, \/:1:721, \/:Tg, \/JTZ}, then by

|y (2n) 5y — a§). (C.2.38)

| < Hw"lloo\/i\ — ||}
We study case by case depending on where x lies.
Case z = (0,0,0). If (z,) C Q then 2z} = 0, w(z,) = /2} = 0 and thus

Do) = 0 = ().
If {z,} C Q° then z}} > 0 and we study case by case depending on the relative order
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of 27, xf, and x%. Since ®, is symmetric in the xq, w2 variables, we may assume
without loss of generality that 7' < z3. Note by m ) that we also may assume
xy # xf, xf # x5; otherwise the result follows directly.

If 2} < ab < ¥, then w(z,) = /2] andbym
n
vV Ey

@ T < /! I A mn _ xn xn _ xn
[Py (@0)| < 19" [loo :L‘"xgarg( 3 1)( 3 2)
I e M
o > \/ TTy \/ g
( )3/2
< 1" lloo NG +Vrtay
Since x,, — = = 0, then /2725 — 0. Moreover, since z, € Q¢ and z < z7, then
xy < 2y, and so

(1_ )3/2

8L < 23/2 —0 as n — 0o.
zl
2

If 2} < af < af, then w(z,) = \/x andbym

(05 — a3)(a} — o)
()| < ¢l 2
2%3

" | TTN/TY
< Ne"lloo | VBl + =
V)

< 16" oo <\/x3x§ + \/x?xg) —0 as n — oo.
Lastly, if 25 < 27 < 23, then w(z,) = /2% and by (C.2.3§ m

(27 — x3)(ay — a3)
iy

"
> [|¥ oo 129 .1‘711];721
< 2[l¢"|loo ( rixy + x1> —0 as n — o0.

Hence, in the three cases above ®(z,) = 0 = ®,(x).
Case z = (21,0,0) with 2y > 0. Then w(z,) = min{,/z}, /2 } for n large
enough. On the other hand

o — 5] = (v/25 + V/aB) |/ — /|
< 2max { /o, \/a§ } |/ — /2],

Since min {\/a%, /2% } max { /a5, /25 } = /a5 Y, then by

()] < 201 2 -
o)l < 26 loo = |V = /7]

[P (n)] < 19" lloo
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for n large enough. It then follows ®,(x,) = 0 = ®,(z) as n — oc.

The case © = (0, 22,0) with x5 > 0 is analogous to the previous one thanks to
the symmetry of ®, in the 1, 2 variables.

Case x = (0,0, x3) with 3 > 0. Then z,, € Q for n large enough, z} = 0 and
w(zn) = \/2} = 0. Thus ®,(2,) = 0= () for n large enough.

Case x = (0,22, 23) with z2 > 0 and x3 > 0. If z3 > 23 then w(z,) = /27 for
n large enough and

1 1
D, (xp) — Pu(x)| = Ap(x}, xh, x%) — Ap(0,z9,3)],
| (zn) o()] o] p(a7, 23, 75) N ¢(0, 22, 23)

which clearly goes to zero as n — oco. If x5 < x3 then z} = 0 for n large enough and
w(zy) = \/2) =0, thus Oy(z,) = 0 = Py(2). If 25 = 23 and (2,) C Q for n large
enough, then 2} = 0, thus ®,(z,) =0 = $,(z).

If 25 = 23 and () C Q° for n large enough, then w(x,) = min {|/27, /2% }, and
by

min { /7T, /7%)
artxrsry

[Py (2n)] < 19" lloo |27 — a| |25 — 25|,

On the one hand
o — o] < 2max {\/aT, v/af } |v/aT — /aF].

On the other hand min{\/:T?, M} < min{\/:T?, @} for n large enough. Since

min{\/mT‘, \/:):»g} max{\/ﬁ, \/aTg} = \/m, then
gl
o0 < 211 - v

Y

which goes to zero as n — oo since x2 = 3. Thus ®,(x,) = 0 = Py (z).

The case x = (x1,0,z3) with 1 > 0 and x3 > 0 is analogous to the previous one
thanks to the symmetry of ®, in the x1, xo variables.

Case © = (x1,72,0) with (z1,22) € (0,00)%. Then w(zy,) = (/2% for n large
enough and

1 1
D, (xp) — Pu(x)| = Ap(x?, xh, xf) — Ap(x1,22,0)],
a0) )| = | (e ) — B, 22,0

which clearly goes to zero as n — oc.
Proof of (ii). By part (i) ®, € C([0,0)?). Let us show now that for any given
e > 0 there exists R(¢) > 0 such that |®,(x)| < e for all z € [0,00)3\ [0, R(¢)]3.
Given R > 0 and a > 0, let (z1,79,23) € [0,00)% \ [0, R]® and denote z; =
min{x1, x2, 23}, £, = max{x,x2, 23} and x; neither ; nor x. Notice that z;, > R
and the function W defined in (C.2.35) satisfies W (z1, o, 23) < —= If z; > aor

VETE
xj > « then by (C.2.34)

gl as)| _ el
TjTk vaR

| Py (21, 22, 23)| <
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2
provided R > %. If z; < o and z; < o we study case by case depending on
the relative position of x1, w2, 3. Since ®,, is symmetric in variables x1 and x2, we
may assume without loss of generality that zo < x1. If 23 = 1, using (C.2.34)

2 ool = 71) _ 2oy _ 2/ _ _

VLT A VR

provided R > %. If v, = x3 and x € Q then x4 = 0 and Py (x) = 0. If 4, = 3
and x € Q° then ;1 > R/2 and

| Py (21, 22, 23)] <

el _ 4ol _
xT1r3 R -7

|y (21, 22, 23)| <

provided R > %‘
Finally, if we chose R > max { 161';5930 4lle’ 2o 4\/§Hs<p||oo } then ®, € Co([0, 00)?)

) €

and in particular, ®,, is uniformly continuous in [0, 00)3. O
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