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Abstract. Assume that M(T ) is a rational homology sphere plumbed 3–manifold associated

with a connected negative definite graph T . We consider the combinatorial multivariable Poincaré

series associated with T and its counting functions, which encode rich topological information.

Using the ‘periodic constant’ of the series (with reduced variables) we prove surgery formulae for

the normalized Seiberg–Witten invariants: the periodic constant appears as the difference of the

Seiberg–Witten invariants associated with M(T ) and M(T \ I), where I is an arbitrary subset of

the set of vertices of T .

1. Introduction

1.1. Surgery formulae for 3–manifolds, focusing on certain numerical or cohomological invariant are

key tools in low dimensional topology. They can serve e.g. in the identification of invariants, or

in the proof of the coincidence of two differently defined one, but also in concrete computations of

the invariants for certain families of manifolds. Some numerical surgery formulae are consequences

of cohomological exact sequences, where the involved cohomological theories are categorifications

of the corresponding numerical invariants. E.g., as the Seiberg–Witten invariant admits several

categorifications — the Heegaard–Floer homology of Ozsváth and Szabó, or the monopole homology

of Kronheimer and Mrowka, or (in the case of plumbed manifolds) the lattice cohomology introduced

by the third author —, exact sequences in these theories induce surgery formulae for the Seiberg–

Witten invariant as well, see e.g. [OSz04, Gr13, N11b]. Usually, such exact triangles compare the

invariants of three surgery 3–manifolds, see again [OSz04].

However, for negative definite graph manifolds, one can formulate a different type of surgery

formula, which is not imposed by purely topological theories and it has no extension (by the knowl-

edge of the authors) to arbitrary 3–manifolds. It has its roots in complex algebraic/analytic ge-

ometry by surgery formulae associated with analytic invariants, where certain Hilbert series play

crucial role, see e.g. [O08]. Using the fact that negative definite graph manifolds are exactly the

links of normal surface singularities, one can try to transport such ideas from the analytic the-

ory giving rise to purely topological results. By the new formula we present, the difference of the

Seiberg–Witten invariants of two surgery manifolds is determined from a multivariable zeta–type

series, which is combinatorially defined from the graph. This series is the topological analogue of

a Poincaré series of a multivariable divisorial filtration (of a local analytic algebra), but in this

topological/combinatorial discussion the analytic part can be totally neglected (however, for such

connections see [BN10, N99, N11, NN02, N05, N07, N08]).

In the sequel M(T ) denotes a plumbed 3–manifold associated with a connected negative definite

graphs T . We will assume that M(T ) is a rational homology sphere (hence T is a tree of S2’s).
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The series Z(t), which guides several topological invariants of M(T ), is defined combinatorially

from T , see (2.2.1). The number of variables {tv}v is indexed by the set of vertices V of T . The

series Z(t) decomposes as a sum Zh(t) according to the spinc–structures of M(T ).

If S(t) =
∑
l′ s(l

′)tl
′

is a multivariable series, then its counting function Q(l′) is defined by

Q(l′0) =
∑
l′ 6≥l′0

s(l′). We say that S admits a quasipolynomial (in the cone K) if for elements l′0 from

a shifted cone of type l∗+K the value Q(l′0) equals the value Q(l′0) of a quasipolynomial Q (for precise

definitions see 2.4). In this case we define the periodic constant of S (associated with K) as Q(0). The

construction creates a bridge between topological invariants of M(T ) and generalized Ehrhart theory

of counting functions and their quasipolynomials (see e.g. [LN14]). The above construction applied

for Zh realizes a deep connection between low dimensional topology and multivariable (Poincaré

type) series and their periodic constants. Indeed, by [N11], the periodic constant of Zh (associated

with the Lipman cone of T ) equals the normalized Seiberg–Witten invariant of M (where h indexes

the corresponding spinc–structures). For the precise statement see Theorems 2.3.1 and 2.4.2.

The surgery formula which (partly) motivated our research is the following [BN10]. Let us fix a

vertex v ∈ V and consider the graph T \ v obtained from T by eliminating v. Then the difference of

the normalized Seiberg–Witten invariants of M(T ) and M(T \ v) can be computed as the periodic

constant of the one–variable series Zh(t)|tu=1, u 6=v (cf. Theorem 2.6.1).

One of the main results of the present work (see Theorem 3.1.1) is a common generalization of

the above results. We fix an arbitrary subset I ⊂ V of the vertices of T , and we prove that the

difference of the normalized Seiberg–Witten invariants of M(T ) and M(T \ I) can be computed

as the periodic constant of the series with reduced variables Zh(t)|tu=1, u 6∈I . (Note that theory of

quasipolynomials and also the concrete computation of their periodic constants is much harder in

the multivariable case.) In the case when I is the set of nodes of T then we recover the ‘reduction

theorem’ from [LN15]. In the cases when T \ I contains only strings or ‘rational graphs’ (that is,

M(T \ I) is an L–space) then the formula simplifies, and we remain with a closed formula of the

normalized Seiberg–Witten invariants of M(T ) in terms of Zh with reduced variables.

It is important to mention that the ‘classical’ exact triangles (like in [OSz04]), hence their surgery

formulae too, involve manifolds which are modified along a knot. This, in the language of plumbing

graph means modification along one of the vertices. On the other hand, our formula is more general,

since I can be an arbitrary subset of vertices. Additionally, our formulae separates the involved

spinc–structures (while exact triangles usually mix them).

1.2. The organization of the paper is the following. Section 2 contains preliminaries regarding

plumbing graphs, manifolds, their Seiberg–Witten invariants, and also Poincaré series and their

periodic constants. We also recall several key Seiberg–Witten invariant formula which will be used

and generalized later.

In section 3 we formulate the new results and we list several applications. We split the presentation

into two steps: we give a ‘numerical surgery formula’ (Theorem 3.1.1) targeting the Seiberg–Witten

invariant, and also another surgery formula, which is a lift of the numerical identity to the level of

quasipolynomials (Theorem 3.2.2).

In sections 4–5–6 we prove the new results. In the proof we decompose the counting function

into an alternating sum of ‘modified counting functions’. In section 4 prove a ‘convexity property’

of these sums, in section 5 a surgery formula for them, and finally in section 6 we finish the proof.

Section 7 treats the case when I is the set of nodes (hence T \I are strings), while section 8 the case

when all subgraphs T \ I are rational. In these cases several vanishing results are established. Here

several computations are based on the (positive answer to the) Seiberg–Witten Invariant Conjecture
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from [N07, N12, BN10] and we also explain (and use) the connections with the analytic (singularity

theoretical) counterpart as well.

The last section treats the case of numerically Gorenstein graphs, where some additional nice

symmetries and dualities appear.
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2. Preliminaries

For more details regarding plumbing graphs, plumbed manifolds and their relations with normal

surface singularities see [BN10, EN85, N99, N11, NN02, N05, N07, N08, NW05]; for Poincaré series

see also [CDGZ04, CDGZ08].

2.1. Plumbing graphs. Plumbed 3–manifolds. We fix a connected plumbing graph T whose

associated intersection matrix is negative definite. We denote the corresponding plumbed 3–manifold

by M = M(T ). In this article we always assume that M is an oriented rational homology sphere,

equivalently, T is a tree with all genus decorations zero.

We use the notation V for the set of vertices, δv for the valency of a vertex v, and N for the set

of nodes, i.e. vertices with δv ≥ 3. End–vertices are defined by δv = 1.

Let X̃ be the plumbed 4–manifold with boundary associated with T , hence ∂X̃ = M . Its second

homology L := H2(X̃,Z) is a lattice, freely generated by the classes of 2–spheres {Ev}v∈V , with

a negative definite intersection form ( , ). Furthermore, H2(X̃,Z) can be identified with the dual

lattice L′ := HomZ(L,Z) = {l′ ∈ L ⊗ Q : (l′, L) ∈ Z}. It is generated by the (anti)dual classes

{E∗v}v∈V defined by (E∗v , Ew) = −δvw, the opposite of the Kronecker symbol. One has the inclusions

L ⊂ L′ ⊂ L⊗Q, and H1(M,Z) ' L′/L, denoted by H. We write [x] for the class of x ∈ L′ in H.

For any h ∈ H let rh ∈ L′ be its unique representative in the ‘semi–open cube’ {
∑
v l
′
vEv ∈ L′ :

l′v ∈ [0, 1)}.
L′ carries a partial ordering induced by l′ =

∑
v l
′
vEv ≥ 0 if and only if each l′v ≥ 0.

2.2. The series Z(t). The multivariable topological Poincaré series is the Taylor expansion Z(t) =∑
l′ z
T (l′)tl

′ ∈ Z[[L′]] at the origin of the rational function

(2.2.1) f(t) =
∏
v∈V

(1− tE
∗
v )δv−2,

where tl
′

:=
∏
v∈V t

l′v
v for any l′ =

∑
v∈V l

′
vEv ∈ L′ (l′v ∈ Q). It decomposes as Z(t) =

∑
h∈H Zh(t),

where Zh(t) =
∑

[l′]=h z
T (l′)tl

′
. The expression (2.2.1) shows that Z(t) is supported in the Lipman

cone S ′ := Z≥0〈E∗v 〉v∈V . Since I is negative definite, all the entries of E∗v are strict positive, hence

S ′ ⊂ {
∑
v l
′
vEv : l′v > 0} ∪ {0}. Thus, for any x, {l′ ∈ S ′ : l′ 6≥ x} is finite, cf. [N11, (2.1.2)].

Fix h ∈ H. We define a ‘counting function’ of the coefficients of Zh by

(2.2.2) QTh : L′h := {x ∈ L′ : [x] = h} → Z, QTh (x) =
∑

l′�x, [l′]=h

zT (l′).

For the motivation of the truncation {l′ � x, [l′] = h} see the results below (e.g. 2.3.2) or [N12].
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2.3. Seiberg–Witten invariants of M . The 4–manifold X̃ has a complex structure. In fact,

any such M(T ) is the link of a complex normal surface singularity (X, o), which has a resolution

X̃ → X with resolution graph T (see e.g. [N99]). In this analytic case X̃ is a smooth complex

2–manifold, and as a real smooth manifold is the disc–plumbed 4-manifold associated with T . Let

K ∈ L′ be its canonical cycle. Though the complex structure (with fixed T ) is not unique, K is

determined topologically by L via the adjunction formulae (K +Ev, Ev) + 2 = 0 for all v. Let σ̃can

be the canonical spinc–structure on X̃ identified by c1(σ̃can) = −K, and let σcan ∈ Spinc(M) be its

restriction to M , called the canonical spinc–structure on M . Spinc(M) is an H–torsor with action

denoted by ∗.
We denote by swσ(M) ∈ Q the Seiberg–Witten invariant of M indexed by the spinc–structures

σ ∈ Spinc(M) (cf. [Lim00, Nic04]). (We will use the sign convention of [BN10, N11].)

In the last years several combinatorial expressions were established for the Seiberg–Witten in-

variants. For rational homology spheres, Nicolaescu [Nic04] showed that sw(M) is equal to the

Reidemeister–Turaev torsion normalized by the Casson–Walker invariant. In the case when M is a

negative definite plumbed rational homology sphere, combinatorial formula for Casson–Walker in-

variant in terms of the plumbing graph can be found in Lescop [Les96], and the Reidemeister–Turaev

torsion is determined by Némethi and Nicolaescu [NN02] using Dedekind–Fourier sums.

A different combinatorial formula of {swσ(M)}σ was proved in [N11] using qualitative properties

of the coefficients of the series Z(t).

Theorem 2.3.1. [N11] For any l′ ∈ −K + int(S ′)

(2.3.2) −Q[l′](l
′) =

(K + 2l′)2 + |V|
8

+ sw[−l′]∗σcan
(M).

If we fix h ∈ H and we write l′ = l + rh with l ∈ L, then the right hand side of (2.3.2) is a

multivariable quadratic polynomial on L, a fact which will be exploited conceptually next.

2.4. Periodic constants. A key tool of the present article is an invariant associated with series

motivated by properties of Hilbert–Samuel functions used in algebraic geometry and singularity

theory. This also creates a bridge with Ehrhart theory and the properties of its qusipolynomials.

It is called the periodic constant of the series. For one–variable series they were introduced in

[NO09, O08], see also [BN10], the multivariable generalization is treated in [LN14].

Let S(t) =
∑
l≥0 clt

l ∈ Z[[t]] be a formal power series with one variable. Assume that for some

p ∈ Z>0 the counting function Q(p)(n) :=
∑pn−1
l=0 cl is a polynomial Q(p) in n. Then the constant

term Q(p)(0) is independent of p and it is called the periodic constant pc(S) of the series S. E.g.,

if S(t) is a finite polynomial, then pc(S) exists and it equals S(1). If the coefficients of S(t) are

given by a Hilbert function l 7→ c(l), which admits a Hilbert polynomial H(l) with c(l) = H(l) for

l� 0, then Sreg(t) =
∑
l≥0H(l)tl has zero periodic constant and pc(S) = pc(S−Sreg)+pc(Sreg) =

(S − Sreg)(1), measuring the difference between the Hilbert function and Hilbert polynomial.

For the multivariable case we consider a (negative) definite lattice L = Z〈Ev〉v, its dual lattice

L′, a series S(t) ∈ Z[[L′]] (e.g. Z(t)), and its well-defined counting function Qh = Qh(S(t)) as in

(2.2.2) for fixed h ∈ L′/L. Assume that there exist a real cone K ⊂ L′ ⊗ R whose affine closure is

top–dimensional, l′∗ ∈ K, a sublattice L̃ ⊂ L of finite index, and a quasipolynomial Qh(l) (l ∈ L̃)

such that Qh(l + rh) = Qh(l) for any l + rh ∈ (l′∗ + K) ∩ (L̃ + rh). Then we say that the counting

function Qh (or just Sh(t)) admits a quasipolynomial in K, namely Qh(l), and also an (equivariant,

multivariable) periodic constant associated with K, which is defined by

(2.4.1) pcK(Sh(t)) := Qh(0).
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The definition does not depend on the choice of the sublattice L̃, which corresponds to the choice

of p in the one–variable case. This is responsible for the name ‘periodic’ in the definition. The

definition is independent of the choice of l′∗ as well.

By general theory of multivariable Ehrhart-type quasipolynomials (counting special coefficients

of lattice points in polytopes attached to Z(t)) one can construct a conical chamber decomposition

of the space L′ ⊗ R, such that each cone satisfies the above definition (hence provides a periodic

constant), for details see [LN14] or [SzV03]. This decomposition, in principle, divides S ′R := S ′ ⊗ R
into several sub–cones (hence, providing different quasipolynomials and periodic constants associated

with these sub–cones of S ′R). However, Theorem 2.3.1 guarantees that this is not the case, the whole

S ′R is a unique chamber (cf. also with [LSz16]). Hence, Theorem 2.3.1 reads as follows.

Theorem 2.4.2. [N11] The counting function of Zh(t) in the cone S′R admits the (quasi)polynomial

(2.4.3) Qh(l) = − (K + 2rh + 2l)2 + |V|
8

− sw−h∗σcan
(M),

whose periodic constant is

(2.4.4) pcS
′
R(Zh(t)) = Qh(0) = −sw−h∗σcan

(M)− (K + 2rh)2 + |V|
8

.

The right hand side of (2.4.4) with opposite sign is called the rh–normalized Seiberg–Witten

invariant of M .

2.5. Reduced Poincaré series. Fix h ∈ H. For any I ⊂ V, I 6= ∅, we define the reduced rational

function

fh(tI) := fh(t)|tv=1,v /∈I

and its Taylor expansion Zh(tI), called the reduced Poincaré series. Note that Zh(tI) can be ob-

tained as Zh(t)|tv=1,v /∈I as well (this is well defined: the summations of the corresponding coefficients

are finite, since Z(t) is supported on S ′). Also, it is important to notice that before the elimination

of certain variables, we have to decompose the series Z(t) =
∑
h Zh(t) into its components Zh(t),

since the reduced (total) series Z(tI) does not contain sufficient information, which might provide

the decomposition into its components {Zh(tI)}h.

For any such I, one defines several operators connecting the different lattices. First, we define

the projection (along the E–coordinates) πI : R〈Ev〉v∈V → R〈Ev〉v∈I , denoted also as x 7→ x|I , by∑
v∈V lvEv 7→

∑
v∈I lvEv. Note that if I is identified with the set of vertices of a subgraph TI , then

πI does not preserve the intersection form in the corresponding lattices L(T ) and L(TI).

πI provides the ‘projected (real) Lipman cone’ πI(S′R).

We wish to understand what happens with the information coded in Zh after elimination certain

variables. The next results, as a prototype, shows that under certain reduction the ‘Seiberg–Witten

information’ survives: if the set of nodes N is non–empty then for I = N one has the following.

Theorem 2.5.1. [LN14] The counting function of Zh(tN ) in the cone πN (S′R) admits a quasipoly-

nomial and a periodic constant, and

pcπN (S′R)(Zh(tN )) = pcS
′
R(Zh(t)) = −sw−h∗σcan

(M)− (K + 2rh)2 + |V|
8

.

This result has the following advantages: the number of reduced variables (i.e. number of nodes)

usually is considerably less than the number of vertices, a fact which reduces the complexity of the

calculations. Moreover, the reduced series reflects more conceptually the complexity of the manifold

M (using only one variable for each Seifert 3-manifold piece in its JSJ–decomposition). Furthermore,
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the reduced series can be compared/linked with other (geometrically or analytically defined) objects

as well (see e.g. [BN10, N08]).

We generalize this result in two directions: first, we replace N by an arbitrary subset I 6= ∅, and

second, we lift the identity from the numerical periodic constant level to the quasipolynomial level.

2.6. A surgery formula associated with the elimination of a vertex. Surgery formulae for a

certain 3–manifold invariant, in general, compare the invariant of M with the invariants of different

surgery modifications of M . In the case of plumbed 3–manifolds, one compares the invariants asso-

ciated with 3–manifolds obtained by different modifications of the graph. The ‘standard’ topological

surgery formulae for the Seiberg–Witten invariant (induced by exact triangles of certain cohomology

theories, cf. [OSz04, Gr13, N11b]) compare the invariants of three such 3–manifolds. Furthermore,

in these approaches, one cannot separate a certain fixed spinc structure, the theory mixes always

several of them. (See also [T01].) The next formula (and our generalizations as well) are different:

they compare the Seiberg–Witten invariant of two 3–manifolds via an ‘algebraic’ term defined as

the periodic constant of a series (and they split according to the spinc–structures).

Let us fix I ⊂ V. The set of vertices V \ I determines the connected full subgraphs {Ti}i,
∪iTi = T \ I. For each i we consider the inclusion operator ji : L(Ti) → L(T ), Ev(Ti) 7→ Ev(T ),

identifying naturally the corresponding E–base elements in the two graphs. This preserves the

intersection forms. Let j∗i : L′(T )→ L′(Ti) be its dual, defined by j∗i (E∗v (T )) = E∗v (Ti) if v ∈ V(Ti),
and j∗i (E∗v (T )) = 0 otherwise. Then (j∗i (l′), l)Ti = (l′, ji(l))T for any l′ ∈ L′(T ) and l ∈ L(Ti).

Let us start with an arbitrary spinc–structure σ̃ on X̃. Since Spinc(X̃) is an L′–torsor, there is

a unique l′ ∈ L′ such that σ̃ = l′ ∗ σ̃can. Its restriction to Spinc(M) is σ = [l′] ∗ σcan. We also

refer to σ̃ as the extension of σ. Since X̃(Ti) can be regarded as a small tubular neighbourhood of

those Ev which are contained in V(Ti), σ̃ has restrictions σ̃i to each X̃(Ti) too. Since the canonical

spinc–structure of X̃ restricts to the canonical spinc–structure σ̃can,i of X̃(Ti), σ̃ = l′ ∗ σ̃can restricts

to σ̃i := j∗i (l′) ∗ σ̃can,i ∈ Spinc(X̃(Ti)), whose restriction to the boundary Mi = M(Ti) = ∂X̃i is

σi = [j∗i (l′)] ∗ σcan,i.
Having these general definitions, let us consider first the particular case of I = {v} (v ∈ V), and,

as above, let {Ti}i be the connected components of T \ {v}. The following surgery formula was one

of the motivations of our main result. Below the reduced tI has only one variable, namely tv, and

the corresponding periodic constant is computed by the ‘easy’ definition of the one–variable series.

Theorem 2.6.1. [BN10] Fix any h ∈ H and extend h ∗ σcan ∈ Spinc(M) as σ̃ := rh ∗ σ̃can ∈
Spinc(X̃). Consider also I = {v} ⊂ V and the corresponding restrictions of σ̃ to ∪iM(Ti). Then

the series Zh(tI) = Zh(tv) admits a periodic constant, and

sw−h∗σcan
(M) +

(K + 2rh)2 + |V|
8

=
∑
i

(
sw−[j∗i (rh)]∗σcan,i

(Mi) +
(K(Ti) + 2j∗i (rh))2 + |V(Ti))|

8

)
− pc(Zh(tv)).

(Note that usually j∗i (rh) 6= r[j∗i (rh)], see below.) This will be generalized to arbitrary I 6= ∅ and to

an arbitrary extension σ̃ := l′ ∗ σ̃can (l′ ∈ L′) of h ∗ σcan.

3. The main result: the new surgery formulae

3.1. First we state a consequence of our Main Theorem 3.2.2, which is still sufficient general to

generalize all the previous results.

We will use the notations of the previous section. Let I ⊂ V be an arbitrary non–empty subset

and write T \ I as the union of full connected subgraphs ∪iTi. Moreover, we fix h ∈ H as well.
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Theorem 3.1.1. The series Zh(tI) admits a periodic constant in the real cone πI(S ′R), and

sw−h∗σcan(M) +
(K + 2rh)2 + |V|

8
=
∑
i

(
sw−[j∗i (rh)]∗σcan,i

(Mi) +
(K(Ti) + 2j∗i (rh))2 + |V(Ti)|

8

)
− pcπI(S′R)(Zh(tI)).

Example 3.1.2. Let us consider the following particular cases.

(1) Assume that I = V. Then each Ti is empty, and we recover Theorem 2.4.2 proved in [N11].

(2) Assume that I consists of one vertex. Then we recover Theorem 2.6.1 proved in [BN10].

(3) Assume that I = N . Then we recover Theorem 2.5.1, proved in [LN14], once we verify for

each i the vanishing

(3.1.3) sw−[j∗i (rh)]∗σcan,i
(Mi) +

(K(Ti) + 2j∗i (rh))2 + |V(Ti)|
8

= 0.

This vanishing is well–known for h = 0 (see e.g. 8.2 or Remark 8.2.2), but it is not evident at all

(at least for the authors) for arbitrary h. It will be proved in Section 7 by analytic methods.

In this case the graph Ti is a string, hence M(Ti) is a lens space. The difficulty in the vanishing

(3.1.3) is that rh is a global object induced from T , and for any fixed Ti is not clear at all what

classes of L′(Ti) might appear as j∗i (rh) for certain ‘extension graphs’ T . (If h = 0 then j∗i (rh) = 0

as well, which simplifies the situation: (3.1.3) is a statement regarding merely a lens space, and it

follows e.g. from (8.1.1).)

(4) For generalization of (3) for the case when all subgraphs Ti are rational, see Section 8.

3.2. The above formula from Theorem 3.1.1, which targets numerical invariants, is a consequence

of a general ‘surgery identity of quasipolynomials’. This is the subject of the Main Theorem 3.2.2.

Similarly to the counting functions defined in (2.2.2), we set for any h and I ⊂ V, I 6= ∅,

(3.2.1) QTh,I : L′h → Z, QTh,I(x) :=
∑

l′|I�x|I , [l′]=[x]

zT (l′).

Note that QTh,I depends only on the reduced series Zh(tI): it is its counting function.

The setup of the next statement is the following. We fix h ∈ H, and we choose l′0 =
∑
v∈V avE

∗
v ∈

L′ with [l′0] = h. We also fix I ⊂ V, I 6= ∅, and T \ I = ∪iTi.

Theorem 3.2.2. For any l′0 with all av sufficiently large one has the identity

(3.2.3) QT[l′0] (l′0) = QT[l′0],I (l′0) +
∑
i

QTi[j∗i (l′0)](j
∗
i (l′0)).

3.3. Let us deduce some consequences and corollaries.

Write l′0 = rh + l. By Theorem 2.3.1 (see Theorem 2.4.2 too), for all av large, QT[l′0](l
′
0) equals

the (quasi)polynomial QTh (l), and the same is true for each term in the last sum (by the same

theorem applied for Ti). Therefore, the identity (3.2.3) guarantees that for all av large QT[l′0],I(l′0) is

a quasipolynomial as well.

Corollary 3.3.1. For h ∈ H fixed and l′0 = rh + l, l ∈ L, if all av are sufficiently large, QTh,I(l′0)

equals a quasipolynomial QTh,I(l) defined on L, where

−QTh,I(l) := sw−h∗σcan
(M) +

(K + 2rh + 2l)2 + |V|
8

−
∑
i

(
sw−[j∗i (rh+l)]∗σcan,i

(Mi) +
(K(Ti) + 2j∗i (rh + l))2 + |V(Ti)|

8

)
.

(3.3.2)
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Except for the ‘constant term’, QTh,I(l) is a multivariable quadratic polynomial. However, the

constant term is a ‘periodic’ function L→ Q. Indeed, L 7→ ui Spinc(Mi), l 7→ {[j∗i (rh + l)] ∗σcan,i}i,
in general, is not constant. However, if we define L̃ ⊂ L as the kernel of the composition

(3.3.3) L −→ ⊕i L′(Ti) −→ ⊕i L′(Ti)/L(Ti), l 7→ ⊕i[j∗i (l)],

then the ‘constant term’ of QTh,I(l) restricted to any class of type l0 + L̃ of L is constant.

Corollary 3.3.4. For h ∈ H fixed the counting function QTh,I(l′0) (l′0 ∈ L′h) of Zh(tI) admits a

quasipolynomial in the Lipman cone S ′R, namely QTh,I(l), and its periodic constant satisfies

−pcS
′
R(Zh(tI)) = −QTh,I(0) = sw−h∗σcan

(M) +
(K + 2rh)2 + |V|

8

−
∑
i

(
sw−[j∗i (rh)]∗σcan,i

(Mi) +
(K(Ti) + 2j∗i (rh))2 + |V(Ti)|

8

)
.

Note that this is not the statement of Theorem 3.1.1 yet. In order to conclude Theorem 3.1.1 we

make the following discussion. Above we considered QT[l′0],I(l′0), and its quasipolynomial, as functions

in l′0 ∈ L′h, or in l = l′0− rh ∈ L. This is the right point of view: when we take periodic constants of

a sum of different quasipolynomials, one has to consider this operation in the same lattice. In this

way the periodic constant will behave as an additive operator, cf. Remark 3.3.6.

However, note that QT[l′0],I (l′0) basically counts the coefficients of the reduced series Zh(tI), hence

it can be considered also as a counting function defined on the lattice L|I , via l′0|I = l|I + rh|I .

In this way, its periodic constant in this lattice should be computed by substituting into l′0|I its

representative in the semi-open cube associated with variables I. But, the point is that this is

exactly rh|I (since all the entries of rh|I are automatically in [0, 1)). Hence, the two periodic

constant (computed in L or L|I) agree and provide

(3.3.5) pcS
′
R(Zh(tI)) = pcπI(S′R)(Zh(tI)).

This fact, together with Corollary 3.3.4 prove Theorem 3.1.1.

Remark 3.3.6. (1) The analogue of (3.3.5) for the subgraphs Ti (that is, for the operator j∗i instead

of πI) is not valid. Let us assume e.g. that l′0 ∈ rh + L̃, hence [j∗i (l′0)] = [j∗i (rh)] is constant, say

hi ∈ H(Ti). Consider the following expression valid for any l̃′0 ∈ rhi + L(Ti) with large coefficients:

(3.3.7) QTi
[l̃′0]

(l̃′0) = −
(
K(Ti) + 2l̃′0)2 + |V(Ti)|

)
/8− sw−hi∗σcan,i

(Mi).

It can be considered in two different lattices. First, the right hand side is the quasipolynomial

QTihi
(l̃′0 − rhi

) associated with the lattice L(Ti). On the other hand, if we substitute into l̃′0 ∈ L′(Ti)
the restriction j∗i (l′0), it appears as a quasipolynomial in variable l′0 − rh ∈ L(T ) (this expression

appears in (3.2.3)). In the first case, in L(Ti), its periodic constant is QTihi
(rhi

), while in the second

case, in the lattice L, it is QTihi
(j∗i (rh)). Note that usually rhi

6= j∗i (rh), cf. Example 7.2.5.

The message is the following: when we take periodic constants of a sum of different quasipoly-

nomials, one has to consider this operation in the same lattice. However, if one of the periodic

constants is needed to be reinterpreted as a periodic constant in a different lattice then one has to

be aware of the fact that the pc–operation commutes with projections of type πI , but usually not

with operators of type j∗i .

(2) One has the following identity (for T , and similar expressions for any Ti)

(K + 2l′)2 + |V|
8

=
K2 + |V|

8
− χ(l′),
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where χ(l′) := −(l′, l′ +K)/2 is the ‘Riemann-Roch expression’ for any l′ ∈ L′.
(3) For certain surgery formulae regarding the invariant K2 + |V| see e.g. [BN10, §5].

3.4. By different choices of h ∈ H and of liftings l′0 = rh + l ∈ L′, the possible spinc–structures

σ̃ = l′0 ∗ σ̃can fill in Spinc(X̃) completely. σ̃ extends h ∗ σcan, and its restriction to Spinc(Mi) are

[j∗i (l′0)] ∗ σcan,i. Hence the quasipolynomial identity (3.3.2), for any fixed σ̃, can be regarded as a

surgery formula of the Seiberg-Witten invariants connecting (M,h∗σcan) and {(Mi, [j
∗
i (l′0)]∗σcan,i)}i

with correction term −QTh,I(l), computable from the quasipolynomial of ZTh (tI).

3.5. The expression QTh,I(l) in Corollary 3.3.1 can be rewritten in terms of certain periodic constant

computable from t
−l|I
I · ZTh (tI) as follows.

Assume that S(t) =
∑
l∈K c

S(l)tl is a series in variables l ∈ L = Z〈Ev〉v supported on the cone

K ⊂ L ⊗ R. We assume that K = R≥0〈Vj〉j , where all the entries of each Vj are positive. Let

QS(l) =
∑
l̃ 6≥l c

S(l̃) be its counting function, and assume that it admits the quasipolynomial QS(l),

which satisfies QS(l) = QS(l) in a shifted cone of type l∗ + K. Then, in a convenient shifted cone,

for any fixed l0 ∈ L one has

QS(l + l0) =
∑
l̃ 6≥l+l0

cS(l̃) =
∑
l̃ 6≥l

ct
−l0S(l̃).

Usually, t−l0S(t) is not a series (it is a Laurent series), let t−l0S(t)|≥0 and t−l0S(t)| 6≥0 be its

decomposition according to its support. Then t−l0S(t)|≥0 is a series, while t−l0S(t)|6≥0 is a finite

Laurent polynomial. (E.g., if l0 ≤ 0 then t−l0S| 6≥0 is identically zero, however, in general it is not.)

Furthermore, for l with large coefficients,
∑
l̃ 6≥l c

t−l0S|6≥0(l̃) = (t−l0S|6≥0)(1) (i.e. one substitutes for

each tv = 1). This proves the following fact.

Proposition 3.5.1. Under the above notations, for any l0 ∈ L the series t−l0S(t)|≥0 admits a

quasipolinomial and a periodic constant in the cone K and

QS(l0) = (t−l0S|6≥0)(1) + pcK(t−l0S|≥0).

Using this identity, Corollary 3.3.1 (and 3.4 as well) can be modified accordingly.

3.6. Modified counting functions. We say that a, b ∈ Rk satisfies a ≺ b if for all coordinates we

have av < bv. By inclusion–exclusion principle, a sum of type QT[l′0],I (l′0) can be rewritten as∑
l′|I 6≥l′0|I

zT (l′) =
∑

∃w∈I : l′|w<(l′0)|w

zT (l′) =
∑
∅6=J⊂I

(−1)|J |+1
∑

l′|J≺l′0|J

zT (l′),

where everywhere in the summations [l′] = [l′0]. This motivates to define (for l′0 ∈ L′ with [l′0] = h)

the ‘modified counting functions’

qTh,J (l′0) :=
∑

l′|J≺ l′0|J , [l′]=[l′0]

zT (l′).

There are similar expressions for the terms QTi[j∗i (l′0)](j
∗
i (l′0)) of (3.2.3) as well. Hence, we can rewrite

the wished identities in terms of modified counting functions. The point is that we will prove the

corresponding identities for these modified counting functions. Their advantage is that they satisfy

certain ‘convexity’ properties, which generate a lot of cancellations. They will be treated in Section

4, a part which constitutes also the start of the proof of (3.2.3).

Remark 3.6.1. In [LSz16] the expression qTh,I (l′0) is called the ‘coefficient function’, since it is the

coefficient of t
l′0
I in the Taylor expansion of fh(tI) ·

∏
v∈I tEv

I /(1− tEv

I ).
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4. A ‘convexity’ property of the modified counting functions

4.1. Some terminology. Multiplicity systems. Assume that T is a graph as above, and l =∑
vmvEv ∈ L is an integral cycle, which in the dual base is l =

∑
v cvE

∗
v . For each v ∈ V in X̃

we consider 2–discs (cuts) {Cv,i}kvi=1, each of them intersecting Ev transversally in generic points

and with ∂Cv,i ⊂ ∂X̃. Then, whenever
∑
i cv,i = cv for all v, C(l) :=

∑
v(mvEv +

∑
i cv,iCv,i) is

a relative cycle in X̃ with (C(l), Ev) = 0 for all v (hence its class in H2(X̃, ∂X̃,Z) is zero). Each

∂Cv,i ⊂ ∂X̃ is a link component in ∂X̃, and their collection endowed with the multiplicities {cv,i}v,i
forms a multilink with ‘multiplicity system’ {mv, cv,i}v,i [EN85], see also [P01] for the non–integral

homology sphere case.

If cv,i ≥ 0 and at least one inequality is strict, then each mv > 0 too (use the fact that the entries

of E∗v are positive). Moreover, under the same hypothesis, the multilink is fibered.

Fix C(l) and a multiplicity system as above. Let T ′ be a full connected subgraph of T and X̃(T ′) a

small tubular neighbourhood of ∪v∈V(T ′)Ev in X̃. Then C(l) induces a homologically trivial relative

cycle C(l)∩ X̃(T ′) (by multiplicity preserving intersection) in X̃(T ′), hence a multiplicity system of

T ′. In a different language, the Ev, respectively the E∗v–multiplicities of l after restriction are the

following. A cut Cv is preserved with its multiplicity cv if v ∈ V(T ′), otherwise it becomes empty.

The restriction of Ev becomes empty if Ev ∩ E(T ′) = ∅, it becomes a cut of Ew with multiplicity

mv if Ev ∩ E(T ′) is the point Ev ∩ Ew, and it remains Ev with its multiplicity mv if v ∈ V(T ′).
(Homologically, this is the operator j∗ associated with the inclusion j : L(T ′) ↪→ L(T ).)

4.2. Fix T as in 2.1. Let T2 be a connected full subgraph of T with vertices V2 and ‘boundary’

B := {u ∈ V2 : ∃ w 6∈ V2 adjacent to u in T }.

For any fixed u ∈ B, T1,u denotes that full connected subgraph of T , which contains u and all the

connected components of T \ T2, which have adjacent vertices with u. Write V1,u = V(T1,u).

As above, Z(tV2) is the reduction of the series of T to the variables indexed by V2.

For simplicity, we use the same notation l′|u for the Eu-coefficient of l′ ∈ L′ too (cf. 2.5).

Lemma 4.2.1. (a) Any element from the support of Z(tV2) can be written in a unique way as∑
v∈V2 rvE

∗
v |V2 for certain coefficients rv ∈ Q≥0.

(b) Fix u ∈ B. Let δ2,u be the number of edges adjacent to u but sitting in T2. Assume that

δ2,u ≥ 2. If
∑
v∈V2 rvE

∗
v |V2 is in the support of Z(tV2), then ru · E∗u|u ≤

∑
v∈V1,u(δv − 2)E∗v |u.

Proof. (a) For u ∈ B and v ∈ V1,u, the cycle E∗v ·E∗u|u −E∗u ·E∗v |u ∈ L⊗Q is supported in V1,u \ u.

(Indeed, the Eu–multiplicity of l := E∗v · E∗u|u − E∗u · E∗v |u is zero. Therefore, the restriction of the

multiplicity system C(l) to V1,u \ u has no cuts, has it is identically zero, cf. 4.1.) In particular,

(4.2.2) E∗v |V2 = E∗u|V2 · (E∗v |u/E∗u|u).

Next, write Z(t) as Z2(t) ·
∏
u∈B Z1,u(t), where Z1,u(t) :=

∏
v∈V1,u(1 − tE

∗
v )δv−2 and Z2(t) :=∏

v∈V2\B(1 − tE
∗
v )δv−2. Hence, in the support of Z(tV2), Z2(tV2) contributes with {E∗v |V2}v∈V2\B,

while, Z1,u(tV2) with E∗u|V2 for each u ∈ B. Moreover, {E∗v |V2}v∈V2 are linearly independent. Indeed,

if
∑
v∈V2 rvE

∗
v |V2 = 0 then x :=

∑
v∈V2 rvE

∗
v is supported in V\V2, but (x,Ev) = 0 for any v ∈ V\V2;

hence x = 0 since the intersection form of any subgraph is non–degenerate, see Lemma 4.3.1 too.

(b) We construct the following graph T ′1,u with arrowheads: T ′1,u consists of all the vertices and

edges of T1,u, and we also add δ2,u arrowheads attached to u (that is, we replace the u–adjacent

edges from T2 by arrowheads). Each arrowhead represent a cut (of Eu) in X̃(T1,u). We regard their

collection as a multilink, that is, we endow the vertices and arrowheads with a multiplicity system (of
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T ′1,u) as in 4.1. We define the mv–multiplicities as the multiplicities of dE∗u restricted to V1,u, where

d = det(−( , )T ). That is, the multiplicity of a vertex v is dE∗u|v = dE∗v |u = −d(E∗v , E
∗
u) ∈ Z>0.

Then the sum of the multiplicities of the arrowheads (all of them at u) should be cu = d+d
∑
w E

∗
u|w,

where the sum runs over the adjacent vertices w of u in T2 (there are δ2,u of them). Since each

dE∗u|w ≥ 1, we get cu ≥ d + δ2,u, hence we can distribute cu into δ2,u positive integers, such that

one of them is 1. These integers will be the multiplicities of the arrowheads (link components).

The constructed multiplicity system defines a fibred multilink (cf. [EN85]). Since one of the mul-

tiplicities is 1, the corresponding Milnor fiber is connected (see also [EN85, Th. 11.3]). Furthermore,

the monodromy zeta function of the Milnor fibration is (by A’Campo’s theorem [A’C75] or [EN85])

ζ(t) =
∏
v∈V1,u(1 − tdE∗v |u)δv−2. Hence, comparing the definitions of ζ and Z1,u, and using (4.2.2),

we get that the reduced series of Z1,u is obtained by the following substitution:

(4.2.3) Z1,u(tV2) = ζ(t)|
t 7→t

E∗u|V2/dE∗u|u
V2

.

We claim that if δ2,u ≥ 2 then ζ(t) is a polynomial. Indeed, being a zeta function of a connected Mil-

nor fiber, it has the form ∆(t)/(t−1), where ∆(t) is the characteristic polynomial of the monodromy

of the first homology of the Milnor fiber. Hence, ζ is a polynomial if and only if it has no pole at

t = 1. But, since T1,u is a tree, the vanishing order ordt−1ζ(t) =
∑
v∈V1,u(δv − 2) = −2 + δ2,u ≥ 0.

Furthermore, the degree of ζ is
∑
v∈V1,u(δv−2)dE∗v |u, and the (rational) E∗u|V2 degree of Z1,u(tV2)

is deg(ζ)/(dE∗u|u). Finally, by (a) and its proof, all contribution in the coefficient of E∗u|V2 in Z(tV2)

comes from Z1,u(tV2). �

4.3. Recall that the cycles {−E∗v}v∈V , considered as column vectors of a matrix, form the inverse

( , )−1 of the intersection form. A similar property is valid for the restrictions {−E∗v |V2}v∈V2 .

For a graph T we say that a bilinear form ( , )mod of L ⊗ Q is a modified intersection form of

( , ) = ( , )T , if (Ev, Ew)mod = (Ev, Ew) for any v 6= w (and the diagonal might be modified, usually

into some rational entries).

Lemma 4.3.1. [LSz16, Lemma 11 (iii)] Let V2 be as in 4.2. The |V2|–rank matrix {−E∗v |V2}v∈V2
is the inverse of a negative definite matrix ( , )mod, a modified intersection form of ( , )T2 . (In fact,

all the diagonal entries, which are modified are indexed by B.)

The proof is based on a diagonalization procedure of ( , )T from [EN85, §21].

4.4. Let T be as in 4.2, and let us fix a subset I ⊂ V, I 6= ∅. The closure I of I is defined as the

set of vertices of that connected minimal full subgraph of T which contains I.

The following proposition was first proved (with slightly weaker bound) in [LSz16] using residue

formulae for vector partitions of [SzV03]. Here we provide an independent proof.

Proposition 4.4.1. Assume that l′0 ∈
∑
v(δv − 2)E∗v + S ′, [l′0] = h. Then qTh,I(l′0) = qT

h,I(l′0).

Proof. Let us write T2 for the full connected subgraph with V2 = V(T2) = I, and we adopt the

notations of 4.2 associated with T2. Furthermore, we use the following notations as well: l′0 =∑
v avE

∗
v is the fixed element of L′ appearing in the statement, l′ =

∑
v bvE

∗
v is an element from

the support Supp(Zh) of Zh (i.e. zT (l′) 6= 0), and l = l′ − l′0 ∈ L with l|I ≺ 0. (Such l′ parametrize

the support of the sum in qTh,I(l′0).) Write cv = bv − av and l =
∑
vmvEv (hence {mv, cv}v is a

multiplicity system in the sense of 4.1). The assumption l|I ≺ 0 reads as mv < 0 for all v ∈ I.

We wish to compare the sets {l′ ∈ Supp(Zh) : (l′−l′0)|I ≺ 0} and {l′ ∈ Supp(Zh) : (l′−l′0)|I ≺ 0}
for fixed l′0. If they agree then definitely we get qTh,I(l′0) = qT

h,I(l′0) (since we sum over the same set).
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The point is that these two sets can be different, however, we show that the sum of the coefficients

over the support–difference is zero.

To start the proof, let us fix some l′ ∈ Supp(Zh) with (l′ − l′0)|I ≺ 0.

First, we check an easy inequality. Let us take v ∈ V with δv > 1. Then, by the assumption of

4.4.1, av ≥ δv − 2. But, by the shape of the rational function f(t) from (2.2.1), bv ≤ δv − 2. Hence

(4.4.2) cv ≤ 0 whenever δv > 1.

The proof in the ‘easy case’. Assume that mu < 0 for all u ∈ B. We claim that mv < 0 for all v ∈ I,

hence qTh,I(l′0) = qT
h,I(l′0) by the above discussion.

Assume that this is not the case, and choose a maximal connected full subgraph T ′ of T2 with all

mv–multiplicities non–negative.

Let C(l) =
∑
v(mvEv + cvCv) be the homologically trivial relative cycle in X̃ associated with

l (with some choices of cuts Cv) as in 4.1. Then C(l) induces a relative cycle and a multiplicity

system of T ′ via the multiplicity preserving intersection C(l) ∩ X̃(T ′), as it is explained in 4.1.

By construction V(T ′) ⊂ I \ I and for all v ∈ V(T ′) one has δv > 1. Therefore, those

cut–multiplicities which come as restrictions of cuts of C(l) are ≤ 0 by (4.4.2). The other cut–

multiplicities, which come from the restriction of some neighboring Ev’s have multiplicities mv < 0

(by the maximality of T ′). Therefore, the restriction of C(l) to T ′ has all cut–multiplicities ≤ 0,

with at least one < 0 (at the ‘boundary’ of T ′). On the other hand, all Ev–multiplicities ≥ 0. These

facts contradict the last sentence of 4.1.

The proof in the general case. Assume that mu ≥ 0 for at least one u ∈ B.

Let us define the rational coefficients {c1,u}u∈V2 as follows:

(4.4.3) c1,u :=

{ ∑
v∈V1,u cvE

∗
v |u/E∗u|u if u ∈ B

cu if u 6∈ B.

Then, by (4.2.2), for each u ∈ B,
∑
v∈V1,u cvE

∗
v |V2 = c1,uE

∗
u|V2 , hence

(4.4.4)
∑
v∈V

cvE
∗
v |V2 =

∑
v∈V2

c1,vE
∗
v |V2 =

∑
v∈V2

mvEv|V2 = l|V2 .

Claim 4.4.5. There exists u ∈ B with mu ≥ 0, c1,u > 0 and δ2,u ≥ 2. (For the definition of δ2,u

see Lemma 4.2.1(b).)

Proof. Set V<0
2 := {v ∈ V2 : mv < 0} and V≥0

2 := {v ∈ V2 : mv ≥ 0}. By assumptions I ⊂ V<0
2

and V≥0
2 6= ∅ too. Write l|V2 as l1− l2, l1 supported in V≥0

2 , while l2 supported in V<0
2 , both effective.

Consider also the negative definite modified intersection form ( , )mod associated with {−E∗v |V2}v∈V2 ,

defined in Lemma 4.3.1. If l1 6= 0 then (l|V2 , l1)mod ≤ (l1, l1)mod < 0, hence there exists u ∈ V≥0
2

(in the support of l1) such that (l|V2 , Eu)mod < 0. If l1 = 0, since T2 is connected, one can find

u ∈ V≥0
2 such that Eu intersects the support of l|V2 , hence (l|V2 , Eu)mod < 0 again. But, via (4.4.4,

(l|V2 , Eu)mod = −c1,u. Hence, there exists u ∈ V≥0
2 such that c1,u > 0. Using (4.4.2) and definition

(4.4.3) we get that u ∈ B necessarily. On the other hand, δ2,u ≥ 2 too. Indeed, if u ∈ B and δ2,u = 1

then u ∈ I (since V2 = I is the closure of I) hence mu < 0. �

Let us introduce the coefficients {b1,v}v∈V2 associated with {bv}v∈V by similar definitions as

(4.4.3). The assumption regarding av’s, and c1,u > 0, we obtain that the E∗u|V2–coefficient b1,u of

l′|V2 satisfies

b1,u =
∑

v∈V1,u

bvE
∗
v |u/E∗u|u >

∑
v∈V1,u

avE
∗
v |u/E∗u|u ≥ d1,u :=

∑
v∈V1,u

(δv − 2)E∗v |u/E∗u|u.
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In particular, by Lemma 4.2.1, l′|V2 is not in the support of Zh(tV2).

This fact can be reorganized as follows. We order {u ∈ B : δ2,u ≥ 2} = {u1, . . . , us}. We set

Supp1 := {l′ : [l′] = [l′0], l′|I ≺ l′0|I , b1,u1 > d1,u1}

and for s ≥ j > 1

Suppj := {l′ : [l′] = [l′0], l′|I ≺ l′0|I , b1,uk
≤ d1,uk

for k < j , b1,uj
> d1,uj

}.

Consider the restriction function πj : Suppj → L(T2) ⊗ Q, l′ 7→ l′|V2 . Then the sum
∑
zT (l′) over

any of the fiber of πj is zero. Indeed, if we write Z(tV2) as Z2(tV2) ·
∏
u∈B Z1,u(tV2), as in the

proof of Lemma 4.2.1, then Z1,uj
(tV2) collects the contribution from T1,uj

(as in the proof of 4.2.1).

Then in the fiber of πj the coefficient b1,uj
is larger than the E∗uj

|V2–degree of Z1,uj
(tV2), and by

Lemma 4.2.1(b) l′|V2 is not in the support of Zh(tV2). This means that the sum of the corresponding

coefficients is zero. In particular, the corresponding sum over all Suppj is zero for any j.

Hence, up to these zero sums in the ‘modified counting function’, we can consider only the cycles

l′ from {Supp(Zh) : (l′ − l′0)|I ≺ 0} \ ∪jSuppj . But by the above discussion such a cycle satisfies

mu < 0 for all u ∈ B, hence mu < 0 for all u ∈ I (by the ‘easy case’). Hence qTh,I(l′0) = qT
h,I(l′0). �

5. A surgery formula for modified counting functions

5.1. Choose some v ∈ V, and let T \ v = ∪kTv,k be the connected components of T \ v. Let

j∗v,k : L′(T )→ L′(Tv,k) be the dual operator defined similarly as j∗i above.

Lemma 5.1.1. Fix one of the components, say Tv,k′ , and let J ⊂ V(Tv,k′), J 6= ∅. Then for any

l′0 ∈
∑
v(δv − 2)E∗v + S ′ one has

(5.1.2) qTh,J (l′0)− qTh,J∪v (l′0) = q
Tv,k′

[j∗
v,k′ (l

′
0)],J (j∗v,k′(l

′
0)).

Proof. We will prove Lemma 5.1.1 in three steps.

5.1.3. First we assume that v is an end–vertex of T , and the adjacent vertex w has δw = 2.

Partly, we will follow the strategy of the proof of Proposition 3.2.4 of [N11]. We will write j∗ for

the dual operator, and we will use the notations of the proof of Proposition 4.4.1: l′ =
∑
u buE

∗
u,

l′0 =
∑
u auE

∗
u, l = l′ − l′0 ∈ L, l =

∑
u cuE

∗
u =

∑
umuEu. Define also Supp(T ) = {l′ : l|J ≺

0, l|v ≥ 0} ∩ Supp(ZT (t)), Supp(T \ v) = {l̃′ : l̃′|J ≺ j∗(l′0)|J , [l̃′] = [j∗(l′0)]} ∩ Supp(ZT \v(tV\v)).
In the left (resp. right) hand side of (5.1.2) we sum over Supp(T ) (resp. Supp(T \ v)).

In order to identify the coefficients of ZT (t) and ZT \v(tV\v) easier it is convenient to make the

change of variables xu := tE
∗
u (u ∈ V), hence ZT (t) becomes ZT (x) =

∏
u(1−xu)δu−2. In particular,

(5.1.4) ZT (x) = Z0(x0) · (1− xv)−1, and ZT \v(x) = Z0(x0) · (1− xw)−1,

where Z0(x0) is a series in variable {xu}u∈V\{v,w} only.

Since δw = 2, if l′ ∈ Supp(ZT (t)) then bw = 0.

If we apply j∗ to the identity l′ − l′0 = l we get

j∗(l′)− j∗(l′0) = −mvE
∗
w +

∑
u∈V\v

muEu.

Hence, Φ : Supp(T ) → Supp(T \ v), l′ 7→ j∗(l′) + mvE
∗
w is well–defined. Write l̄′ =

∑
u6=w,v buE

∗
u,

l̄′0 =
∑
u 6=w,v auE

∗
u. Then l′ = l̄′ + bvE

∗
v and Φ(l′) = l̄′ +mvE

∗
w. Since mv = −(l, E∗v ) one has

(5.1.5) mv = −(l̄′ − l̄′0, E∗v ) + aw(E∗w, E
∗
v )− (bv − av)(E∗v , E∗v ).
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Hence Φ (that is, (l̄′, bv) 7→ (l̄′,mv)) is injective. Furthermore, for any (l̄′,mv) ∈ Supp(T \ v) the

equation (5.1.5) provides a unique well–defined candidate for bv, such that (l̄′, bv) satisfies all the

requirement of the elements of Supp(T ) except maybe bv ≥ 0 (cf. (5.1.4)). Define Supp(T \ v)≥0

as a subset of Supp(T \ v) consisting of those elements (l̄′,mv) for which bv computed via (5.1.5) is

≥ 0; that is, Supp(T \ v)≥0 = im(Φ). Then, using the bijection Φ onto its image and (5.1.4)∑
l′∈Supp(T )

zT (l′) =
∑

l̃′∈Supp(T \v)≥0

zT \v(l̃′).

Set Supp(T \ v)<0 := Supp(T \ v) \ Supp(T \ v)≥0. In order to finish the proof of (5.1.2), we need

(5.1.6)
∑

l̃′∈Supp(T \v)<0

zT \v(l̃′) = 0.

But under the above correspondence and (5.1.4), this equals
∑
zT (l′), where the sum is over {l′ :

l|J ≺ 0, l|v ≥ 0, [l′] = [l′0], bv < 0}. The condition bv < 0 guarantees that these elements do not

belong to the support of ZT , hence
∑
zT (l′) = 0.

5.1.7. Next, we assume that v is an end–vertex of T , and the adjacent vertex w has δw ≥ 3. Then

we reduce this case to the previous case 5.1.3: first we blow up the edge connecting v and w, then

we apply 5.1.3, then we blow down the newly created vertex. We have to verify that the modified

counting functions are stable with respect to these operations.

When we blow up the edge (v, w), then we create a new graph, denoted by T with a newly created

base element Ēnew ∈ L(T ). There is a natural projection ρ : L(T )→ L(T ), and ρ∗ : L′(T )→ L′(T ),

which satisfy the projection formula (ρ∗(l′), l̄) = (l′, ρ(l̄)). In particular, ρ∗(E∗u) = Ē∗u (with natural

notations). Hence if we denote by J ⊂ V(T ) the same index set as J ⊂ V(T ), then

(5.1.8) zT[l′0](l
′) = zT[ρ∗(l′0)](ρ

∗(l′)) and qT[l′0],J (l′0) = qT
[ρ∗(l′0)],J (ρ∗(l′0)).

Next, T \ v is the graph obtained from T \ v by blowing up the vertex w. By definition, ZT \v

has the shape ρ∗(ZT \v(t)) · (1− tĒ
∗
w)/(1− tĒ

∗
new), where ρ∗(

∑
z(l′)tl

′
) =

∑
z(l′)tρ

∗(l′). Note that

Ē∗new = Ē∗w + Ēnew, hence tĒ
∗
new = tĒ

∗
w · tnew. Therefore, when we restrict to the J variables and

we substitute tnew = 1, the term (1 − tĒ
∗
w)/(1 − tĒ

∗
new) becomes 1. Hence, the coefficients of the

reduced series associated with T \ v and T \ v can be compared as in the previous case (5.1.8).

5.1.9. Now we consider the general situation. We prove the (5.1.2) by induction over
∑
k 6=k′ |V(Tv,k)|.

If this sum is zero, then we apply case 5.1.7. Consider the general situation, and let e ∈ ∪k 6=k′V(Tv,k)

be an end vertex of T . Then, by cases 5.1.3–5.1.7

(5.1.10) qT[l′0],J (l′0)− qT[l′0],J∪e (l′0) = q
T \e
[j∗(l′0)],J (j∗(l′0)),

(5.1.11) qT[l′0],J∪v (l′0)− qT[l′0],J∪v∪e (l′0) = q
T \e
[j∗(l′0)],J∪v (j∗(l′0)).

Since qT[l′0],J∪e (l′0) = qT[l′0],J∪v∪e (l′0) by Proposition 4.4.1, and

(5.1.12) q
T \e
[j∗(l′0)],J (j∗(l′0)) = q

T \e
[j∗(l′0)],J∪v (j∗(l′0)) + q

Tv,k′

[j∗
v,k′ (l

′
0)],J (j∗v,k′(l

′
0))

by the inductive step, the identity (5.1.2) follows. This ends the proof of Lemma 5.1.1 as well. �
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6. The proof of Theorem 3.2.2

6.1. We will prove the identity (3.2.3) by induction on the cardinality |I| of I.

6.1.1. Assume that I contains exactly one element, say v. We will use the notations of 5.1, T \ v =

∪kTv,k. We have to prove

(6.1.2) QT[l′0] (l′0)−QT[l′0],v (l′0) =
∑
k

Q
Tv,k

[j∗v,k(l′0)](j
∗
v,k(l′0)).

We rewrite this identity in terms of modified counting functions (as in 3.6). For the last sum we

have to consider nonempty subsets J ⊂ V \v. Hence, it is natural to organize the nonempty subsets

of V as {v} ∪ {J ,J ∪ v}J⊂V\v, J 6=∅. The modified counting function associated with {v} cancels

with the second term QT[l′0],v (l′0) of (6.1.2). Hence the left hand side of (6.1.2) becomes an alternating

sum of expressions of type qT[l′0],J (l′0)−qT[l′0],J∪v (l′0). If J is not contained totally in only one V(Tv,k)

then v ∈ J , hence this expression is zero by Proposition 4.4.1. Therefore we can assume that there

exists k such that J ⊂ V(Tv,k). Hence the expression (6.1.2) decomposes as a sum over k according

to this inclusion. Then the needed identity is the subject of Lemma 5.1.1.

6.1.3. Next, we take I with |I| ≥ 2, and we assume, by the inductive step, that the identity (3.2.3)

is true for any graph T ′, any h′ ∈ H(T ′), and any subset I ′ ⊂ V(T ′) with |I ′| < |I|.
Recall that T \ I = ∪iTi, and we wish to prove

(6.1.4) QT[l′0] (l′0) = QT[l′0],I (l′0) +
∑
i

QTi[j∗i (l′0)](j
∗
i (l′0)).

We choose some v ∈ I, and we apply the inductive step for T \ v and I \ v. Let T \ v = ∪kTv,k be

the connected components of T \ v, and let j∗v,k the corresponding dual operators. Note that if Ti is

contained in Tv,k then j∗Ti⊂Tv,k
◦ j∗v,k = j∗i . In particular, we get the following identity

(6.1.5)
∑
k

Q
Tv,k

[j∗v,k(l′0)](j
∗
v,k(l′0)) =

∑
k

Q
Tv,k

[j∗v,k(l′0)],I\v(j
∗
v,k(l′0)) +

∑
i

QTi[j∗i (l′0)](j
∗
i (l′0)).

By induction this identity is valid for any l̃′0 (instead of j∗T \v⊂T (l′0) = ⊕kj∗v,k(l′0)) from the lattice of

T \ v (satisfying the required assumptions that its E∗–coefficients are sufficiently high). Hence it is

true also for l̃′0 = ⊕kj∗v,k(l′0), and this identity, in this way, will be considered as a quasipolynomial

identity in variable l′0 ∈ L′ (cf. discussion from 3.3). The difference between (6.1.4) and (6.1.5) is

(6.1.6) QT[l′0] (l′0)−
∑
k

Q
Tv,k

[j∗v,k(l′0)](j
∗
v,k(l′0)) = QT[l′0],I (l′0)−

∑
k

Q
Tv,k

[j∗v,k(l′0)],I\v(j
∗
v,k(l′0)).

This identity (via induction) is equivalent with (3.2.3). But, for the left hand side of (6.1.6) one can

apply (the already proved) (6.1.2). In particular, (3.2.3) is equivalent with

(6.1.7) QT[l′0],I (l′0)−QT[l′0],v(l
′
0) =

∑
k

Q
Tv,k

[j∗v,k(l′0)],I\v(j
∗
v,k(l′0)).

Next, we rewrite the identity (6.1.7) in terms of modified counting functions by the same principle

as in 6.1.1. For the last sum we have to consider nonempty subsets J ⊂ I \ v, and we organize the

nonempty subsets of I as {v} ∪ {J ,J ∪ v}J⊂I\v, J 6=∅. The modified counting function associated

with {v} cancels with the second term of (6.1.7). Hence the left hand side of (6.1.7) is again a

combination of expressions of type qTh,J (l′0) − qTh,J∪v(l′0). If J is not contained totally in only one

V(Tv,k) then v ∈ J , hence this expression is zero by Proposition 4.4.1. Hence we can assume that

there exists k such that J ⊂ V(Tv,k) and the expression (6.1.7) also decomposes as a sum over k

according to this inclusion, and it becomes the statement of Lemma 5.1.1.
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7. The proof of the vanishing from Example 3.1.2(3)

7.1. Normal surface singularities. (For more details see [N07, N12, N99, L13]). Assume that

(X, o) is a complex analytic normal surface singularity, and let φ : X̃ → X be a good resolution of

(X, o). We denote the exceptional curve φ−1(0) by E, and let ∪vEv be its irreducible components.

Let T be the dual resolution graph associated with φ (which is automatically connected and negative

definite). Then X̃, as a smooth manifold, serves as the plumbing 4–manifold associated with T , and

M = ∂X̃ is the plumbed 3–manifold (and also the ‘link’ of (X, o)). A resolution is minimal if there

is no rational Ev with E2
v = −1. We will assume, similarly as above, that M is a rational homology

sphere, and we will use the notations from the previous sections.

The group of analytic line bundles on X̃ (up to isomorphism), Pic(X̃), appears in the exact

sequence

(7.1.1) 0→ Pic0(X̃)→ Pic(X̃)
c1−→ L′ → 0,

where c1 denotes the first Chern class of a line bundle. Furthermore, Pic0(X̃) = H1(X̃,OX̃) ' Cpg ,

where pg is the geometric genus of (X, o). (X, o) is called rational if pg(X, o) = 0. Artin in [A62, A66]

characterised rationality topologically via their graphs. Such graphs are called ‘rational’.

The homomorphism c1 admits a unique (group homomorphism) section l′ 7→ O(l′) ∈ Pic(X̃),

such that c1(O(l′)) = l′, which extends the natural section l 7→ OX̃(l) valid for integral cycles l ∈ L.

We say that for a singularity (X, o) and resolution φ the Seiberg–Witten Invariant Conjecture

(SWIC) is valid (cf. [NN02, N08]) if for any l′0 ∈ L′ one has

(7.1.2) QT[l′0](l
′
0) + sw[−l′0]∗σcan

(M(T )) +
(K + 2l′0)2 + |V|

8
= −h1(X̃,O(−l′0)).

For rational singularities (and for any resolution of them) the SWIC is valid, cf. [N07, N12, BN10].

The identity (7.1.2) connects topological invariants of (X, o) (left hand side) with analytic sheaf–

cohomology invariants. There are two special regions for l′0 when it simplifies. When l′0 ∈ −K + S ′

then by Generalized Grauert–Riemenschneider vanishing theorem h1(X̃,O(−l′)) = 0. Hence (7.1.2)

identifies the counting function with the normalized Seiberg–Witten invariant (as in Theorem 2.3.1).

However, when S ′ ∩ {l′ : l′ 6≥ l′0} = ∅, then QT[l′0](l
′
0) = 0 and the rank of the corresponding

sheaf–cohomology is identified with the normalized Seiberg–Witten invariant. If both conditions are

satisfied simultaneously then we obtain the vanishing of the normalized Seiberg–Witten invariants.

7.1.3. Cyclic quotient singularities [BPV84]. Recall that (X, o) is called a cyclic quotient

singularity if one of the following (equivalent) facts hold:

(1) (X, o) is the quotient of (C2, 0) by a cyclic group;

(2) the graph T of the minimal resolution is a string;

(3) there exists a finite map p : (X, o) → (C2, 0), whose (reduced) discriminant (ramification

locus) is included in the union of the two local coordinate axes of (C2, 0).

Assume that (X, o) is a cyclic quotient singularity, and φ is its minimal resolution. Let C1 and

C2 be two cuts of the end–vertices. Then there exists a finite projection p : (X, o) → (C2, 0) such

that the discriminant of p is included in ∪i=1,2p(φ(Ci)), and {p(φ(Ci))}i=1,2 might serve as local

coordinate axes of (C2, 0).

Cyclic quotient singularities are rational.

7.2. The proof of the vanishing from Example 3.1.2(3). We start with a normal surface

singularity (X, o), a fixed resolution φ with dual graph T . We fix h ∈ H and rh ∈ L′ as above. We

write T \ N = ∪iTi. Then each Ti is a connected string, hence by contraction of the corresponding
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exceptional divisors indexed by Ti we obtain a cyclic quotient singularity (Xi, 0). For this singularity

the SWIC is valid. This, for the line bundle O(−j∗i (rh)), reads as

QTi[j∗i (rh)](j
∗
i (rh))+sw[−j∗i (rh)]∗σcan

(M(Ti))+
(K(Ti) + 2j∗i (rh))2 + |V(Ti)|

8
= −h1(X̃(Ti),O(−j∗i (rh))).

Write Vi = V(Ti). Let {Ev}v∈Vi be the exceptional curves indexed by Ti, and let ∂Vi be those nodes

of T which are adjacent with Vi (this set contains one or two elements). If n ∈ ∂Vi then let w(n) ∈ Vi
adjacent with n. Then, if rh =

∑
v∈V l

′
vEv then j∗i (rh) =

∑
v∈Vi l

′
vEv −

∑
n∈∂Vi l

′
nE
∗
w(n). Since each

l′v ∈ [0, 1), the cycle j∗i (rh) has the form rhi
− l, where rhi

is in the semi–open cube of L′(Ti) and

l ∈ L(Ti), l ≥ 0. In particular, {l′ ∈ L′(Ti) : l′ 6≥ j∗i (rh)}∩S ′(Ti) is empty and QTi[j∗i (rh)](j
∗
i (rh)) = 0.

Hence, the needed vanishing is equivalent with h1(X̃(Ti),O(−j∗i (rh))) = 0. Usually, by ‘standard’

vanishing theorems, see e.g. [Lip69, Th.12.1], if in the resolution of a rational singularity l′ ∈ S ′

then h1(O(−l′)) = 0. However, in this case j∗i (rh) ∈ S ′(Ti) is not necessarily true (j∗i (rh) might

have even negative E–coefficients), see Example 7.2.4, hence we need another (deeper) argument.

The proof relies on the structure of the universal abelian covering (UAC) of (X, o). Since H =

H1(M,Z) is finite, the abelianization π1(M)→ H determines a regular covering of Ma →M , and a

normal surface singularity (Xa, o) with link Ma, and a finite analytic covering c : (Xa, o) → (X, o)

with ramification locus only at o ∈ X. It is called the UAC of (X, o) (see e.g. [N07, NW05, O04]

and the references therein).

If φ : X̃ → X is a good resolution of (X, o) then let c′ : Z → X̃ be the normalized pullback of

c via φ. The (reduced) branch locus of c′ is included in φ−1(o) = E, and the Galois action of H

extends to Z as well. Since E is a normal crossing divisor, the only singularities what Z might have

are cyclic quotient singularities. Let ψ : X̃a → Z be a resolution of these singular points such that

(c′ ◦ ψ)−1(E) is a normal crossing divisor. Set c̃ := c′ ◦ ψ.

(7.2.1)

X̃a
ψ−→ Z −→ (Xa, o)yc̃ yc′ yc

X̃ = X̃
φ−→ (X, o)

The point is that the cycles rh ∈ L′ and the line bundles O(−rh) ∈ Pic(X̃) appear in a natural

way via the UAC as follows: c̃∗OX̃a
has an H–eigenspace decomposition [N07, N08, N12, O04]

(7.2.2) c̃∗OX̃a
= ⊕h∈H O(−rh).

Let X̃i be a small neighbourhood of ∪v∈ViEv in X̃. It serves as the plumbed 4–manifold X̃(Ti)
associated with Ti, and the restriction of φ is a minimal resolution φi : X̃i → Xi of the quotient

singularity (Xi, o). Consider the restriction O(−rh)|X̃i
∈ Pic(X̃i). Its Chern class is −j∗i (rh) ∈

L′(Ti). Since pg(Xi, o) = 0, by the exact sequence (7.1.1) O(−rh)|X̃i
is determined by its Chern

class, hence it is O(−j∗i (rh)). Hence we need to prove that h1(O(−rh)|X̃i
) = 0.

Let X̃a,i be c̃−1(X̃i) in X̃a, and c̃i : X̃a,i → X̃i the restriction of c̃. Then the H action preserves

X̃a,i, and the eigenspace decomposition (7.2.2) is compatible with the restriction, hence O(−rh)|X̃i

is a direct eigenspace summand (corresponding to h) of (c̃i)∗OX̃a,i
. Hence it is enough to prove that

h1((c̃i)∗OX̃a,i
) = 0. Since ψ resolves only cyclic quotient singularities, and c′ is finite, R1c̃∗OX̃a

= 0.

Hence, by Leray spectral sequence, h1((c̃i)∗OX̃a,i
) = h1(OX̃a,i

). Thus, we need h1(OX̃a,i
) = 0.

X̃a,i has several (isomorphic) connected components. By construction, c̃i is a regular covering

off (∪v∈ViEv) ∪ ∪n∈∂Vi(En ∩ X̃i). The disc(s) Cn := En ∩ X̃i are/is cut(s) of Ti in X̃i at the

end–vertices. By the discussion from 7.1.3 there is a projection pi : (Xi, 0) → (C2, 0), such that

pi(∪nCn) is included in the discriminant, which itself is included in the union of the coordinate axes.
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This pi composed with c̃i provides a map X̃a,i → (C2, 0) with discriminant included in the union

of coordinate axes. Hence, each component of X̃a,i is a resolution of a cyclic quotient singularity.

Since cyclic quotient singularities are rational, h1(OX̃a,i
) = 0.

Remark 7.2.3. From (7.2.2) one has pg(Xa, o) =
∑
h∈H h

1(X̃,O(−rh)).

Example 7.2.4. Let T be the left graph below, and at right we show the E–multiplicities of rh ∈ L′.
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Let Ti be the subgraph consisting of the (−2) vertex E0 between the two nodes. Then j∗i (rh) =

−E∗0 = −E0/2. Hence, usually j∗i (rh) is not even effective. The Chern class of O(−j∗i (rh)) is

(E0/2, E0) = −1. Since h1(O(−E0 + E0/2)) = 0 by Grauert–Riemenschneider type vanishing, we

get h1(O(E0/2)) = h1(OE0(E0/2)) = h1(OP1(−1)) = 0.

Example 7.2.5. Consider the following graph T and the E–multiplicities of certain rh ∈ L′.
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Let I be the union of the four (−2)–vertices, hence T1 = T \ I consists of the (−3)–vertex E0.

Then j∗1 (rh) = −2E∗0 = −2E0/3. Its representative rh1 is E0/3, hence, usually, j∗i (rh) 6= rhi .

The Chern class of O(−j∗1 (rh)) is (2E0/3, E0) = −2. Hence, h1(O(2E0/3)) = h1(OE0(2E0/3)) =

h1(OP1(−2)) = 1. Furthermore, QTi[j∗1 (rh)](j
∗
1 (rh)) = 0, thus

(7.2.6) sw[−j∗1 (rh)]∗σcan
(M(T1)) +

(K(T1) + 2j∗1 (rh))2 + |V(T1)|
8

= −1.

8. Application: Ti are rational

8.1. Consider the situation of Theorem 3.1.1 and assume that all Ti are rational (see [N99] or Section

7). We will prove two ‘reduction formulae’, see Propositions 8.3.2 and 8.4.3.

If h = 0 (hence rh = 0 too) then the SWIC is valid for the corresponding singularity, hence (7.1.2)

applied for l′0 = 0 reads as

(8.1.1) swσcan(M(Ti)) +
K(Ti)2 + |V(Ti)|

8
= 0.

Hence, if each Ti is rational then

swσcan
(M) +

K2 + |V|
8

= −pcπI(S′R)(Z0(tI)),

thus the ‘normalized Seiberg–Witten invariant associated with σcan can be computed as the periodic

constant of the series reduced to the variables tI .

In general, for arbitrary h, the vanishing (3.1.3) does not hold (even if T itself is rational), cf.

Example 7.2.5. However, the contribution from Ti rational still can be simplified.

In order to state the results we need some preparation.
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8.2. We fix a graph as in 2.1 and h ∈ H. Then there exists a unique representative sh ∈ S ′ ⊂ L′ of

h, which is the unique minimal element (with respect to the partial ordering) of {s ∈ S ′ : [s] = h}
[N05, N07]. Usually sh 6= rh. Since sh ≥ 0, by the definition of rh we have sh − rh = ∆h ∈ L,

∆h ≥ 0.

Note that for sh still QTh (sh) = 0 (since Z is supported on S ′, and in S ′ the representative sh

is minimal in its class). Moreover, if T is rational, then for sh applies Lipman’s vanishing as well

[Lip69, Th.12.1], namely h1(X̃,O(−l′)) = 0 for any l′ ∈ S ′. Thus, the SWIC for l′0 = sh reads as

(8.2.1) sw−h∗σcan
(M(T )) +

(K + 2sh)2 + |V|
8

= 0 (whenever T is rational).

Remark 8.2.2. Since the lattice cohomology theory is a categorification of the normalized Seiberg–

Witten invariants cf. [N11], the above facts can also be reinterpreted by the lattice cohomological

characterization of rational singularities (for more details see [N08b, 4.1]).

8.3. Consider the situation of Theorem 3.1.1 with Ti rational. Then (8.2.1) and 3.3.6(2) imply

(8.3.1) sw−[j∗i (rh)]∗σcan,i
(Mi) +

(K(Ti) + 2j∗i (rh))2 + |V(Ti)|
8

= χ(shi
)− χ(j∗i (rh)).

Hence, if all Ti are rational then

Proposition 8.3.2.

sw−h∗σcan
(M) +

(K + 2rh)2 + |V|
8

= −pcπI(S′R)(ZTh (tI)) +
∑
i

(
χ(shi

)− χ(j∗i (rh))
)
.

8.4. Consider again the situation of Theorem 3.1.1 with all Ti rational. Corollary 3.3.1 applied for

l′0 = sh = rh + ∆h reads as

sw−h∗σcan
(M) +

(K + 2sh)2 + |V|
8

=∑
i

(
sw−[j∗i (sh)]∗σcan,i

(Mi) +
(K(Ti) + 2j∗i (sh))2 + |V(Ti)|

8

)
−QTh,I (∆h).

(8.4.1)

The following fact follows directly from definitions, for details see [LSz16, Lemma 8.4.2].

Lemma 8.4.2. j∗i (sh) = s[j∗i (sh)] in L′Ti .

In particular, (8.2.1) applied for each Ti gives the vanishing of the
∑
i in (8.4.1). Moreover, by

Proposition 3.5.1 one has

QTh,I (∆h) = (t−∆h|IZTh (tI)| 6≥0)(1) + pcπI(S′R)(t−∆h|IZTh (tI)|≥0).

Hence we obtain the following reduction formula

Proposition 8.4.3.

sw−h∗σcan(M) +
(K + 2sh)2 + |V|

8
= −(t−∆h|IZTh (tI)|6≥0)(1)− pcπI(S′R)(t−∆h|IZTh (tI)|≥0).

(By [LN14, (4.3.15)] on the right hand side one can replace ∆h by sh, in this way the series will be

‘genuine’ series with integral exponents.)
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8.5. More examples and applications. (1) The surgery formulae of this section generalize those

surgery formulae, which reduce the lattice L to a lower rank lattice associated with ‘bad vertices’.

We recall that a collection of vertices I of V is called ‘bad’ if by decreasing the decoration of

these vertices on the graph we obtain a rational graph (cf. [N05, LN15]). Since the subgraph of a

rational graph is rational, if I consists of ‘bad vertices’ then all components of T \ I are rational.

(Nevertheless, the converse is not true, see e.g. examples from [N05, 8.2(5)].) In this sense our new

surgery formula from Proposition 8.4.3 generalizes [LN15, Th. 5.3].

(2) A special family of graph manifolds when T \ I are all rational is provided by S3
−d(K), the

(−d)-surgery along the connected sum K = K1# . . .#Kν ⊂ S3 of algebraic knots K`. In this case

there is a special vertex v+ such that all the connected components of T \ v+ represent S3. In this

case Z0(tv+) can be computed from the Alexander polynomials of the knots K`, providing explicit

formula for the Seiberg–Witten invariants in terms of these Alexander polynomials. For details see

[BN10, 8.1] or [NR10, Th. 2.4.5].

9. The case of numerically Gorenstein graphs

9.1. Recall that Corollary 3.3.1 assures that the counting function QTh,I(l′0) and its quasipolynomial

QTh,I(l′0−rh) agree whenever all av coefficients of l′0 are sufficiently large. In general, for an arbitrary

graph and h it is hard to determine a precise (and sharp) bound from which this equality holds.

However, for numerically Gorenstein graphs and h = 0 we determine such a bound. The presen-

tation also shows the perfect parallelism of our ‘topological dualities’ with the (algebraic/analytic)

Gorenstein (or Serre) dualities known in singularity theory or algebraic geometry.

9.2. Definitions and notations. The connected negative definite graph T is called numerically

Gorenstein if K ∈ L. In this section we assume that the graph is minimal good (that is, there exists

no vertex v with E2
v = −1 and δv ≤ 2) and numerically Gorenstein, and we consider h = 0 only. We

denote the anticanonical cycle −K by ZK . Note that ZK = 0 if and only if T is ADE–graph (all

decorations are −2), and in all other cases all the coefficients of ZK are strict positive [La87, Prop.

2.1], [P11, Cor. 2.8].

Recall that χ : L→ Z was defined as −(l, l−ZK)/2, hence the first trace of the duality/symmetry

is χ(l) = χ(ZK − l).
Motivated by the theory of lattice cohomology (see e.g. [N08b, N11]) we consider for any J ⊂ V

lattice cubes (l,J ), of dimension |J |, of the cubical decomposition given by L ' Z|V| ⊂ R|V|. The

vertices of such a cube (l,J ) are {l + EJ ′}J ′⊂J (where EJ =
∑
v∈J Ev). The weight of the cube

(l,J ) is defined as w(l,J ) = maxJ ′⊂J {χ(l + EJ ′)}.
For lattice points a ≤ b, a, b ∈ L, we define the rectangle R(a, b) by {x ∈ L ⊗ R : a ≤ x ≤ b}.

Then the cube (l,J ) belongs to R(a, b) if a ≤ l + EJ ′ ≤ b for all its vertices.

The cycle jIπIZK ∈ L has the same Ev–coefficient as ZK whenever v ∈ I, otherwise it is zero.

They define the rectangles R(I) := R(jIπIZK , ZK). E.g., R(∅) = R(0, ZK) and R(V) = R(ZK , ZK).

In the next discussion it is convenient to use the next abridged notation for any connected T :

sw(T ) = −swσcan(M(T ))− (K2 + |V|)/8.

If T has several connected components, say T = ∪iTi, then we set sw(T ) =
∑
i sw(Ti).

The setup is as in Section 3: I ⊂ V is non–empty, and T \I = ∪iTi. We write ZT0 (t) =
∑
l∈L z(l)t

l.

We start with the following immediate consequence of (3.3.2) (use j∗i (K) = K(Ti) ∈ L′(Ti)):

Proposition 9.2.1. (Topological duality of the quasipolynomial) The quasipolynomial QT0,I
satisfies the symmetry QT0,I(l) = QT0,I(ZK−l), in particular pcπI(S′R)(Z0(tI)) = QT0,I(0) = QT0,I(ZK).



Surgery formulae 21

9.3. In the next formulae the rectangle R(0, ZK) will play a crucial role: basically we will express

all our invariants as sums of weighted cubes of different faces of R(0, ZK).

The main result of this section is the following.

Theorem 9.3.1. Under the above assumptions QT0,I(ZK) = QT0,I(ZK). In particular,

(9.3.2) pcπI(S′R)(Z0(tI)) = QT0,I(ZK) = QT0,I(ZK).

The main advantage of (9.3.2) is that the the needed correction term in the surgery formulae, the

usually hardly computable and more theoretical pcπI(S′R)(Z0(tI)), can be replaced by the directly

computable
∑
l|I 6≥ZK |I z(l). This shows that for such graphs the quasipolynomial QT0,I can be

avoided.

Proof. First we recall some needed results.

Fact 9.3.3. [N11, Th. 2.3.10] For any l ∈ L

(9.3.4) z(l) =
∑
J⊂V

(−1)|J |+1w(l,J ).

Fact 9.3.5. [N11], [LN15, §5.3] For any b ∈ L which satisfies b ≥ ZK one has

(9.3.6) sw(T ) =
∑

(l,J )⊂R(0,b)

(−1)|J |+1w(l,J ).

Furthermore, there is a combinatorial cancelation (‘contraction’) of cubes, which identifies

(9.3.7) QT0,V(ZK) =
∑
l 6≥ZK

z(l) =
∑
l 6≥ZK

∑
J⊂V

(−1)|J |+1w(l,J ) with
∑

(l,J )⊂R(∅),
l 6=ZK

(−1)|J |+1w(l,J ).

In particular, the two identities combined provide

(9.3.8) QT0,V(ZK) = w(ZK , ∅) + sw(T ) = χ(ZK) + sw(T ) = sw(T ).

This result was stated for connected graphs, however it extends naturally to non–connected graphs

as well by the additivity of χ and ZK over the connected components.

Note that (9.3.8) together with (2.4.4) and Proposition 9.2.1 imply Theorem 9.3.1 for I = V, that

is: QT0,V(ZK) = QT0,V(0) = sw(T ) = QT0,V(ZK).

The very same combinatorial cancelation of (9.3.7) from [N11], [LN15, §5.3, Lemma 5.3.3] (with

completely identical proof) provides the following identity as well.

Fact 9.3.9. For any I ⊂ V, I 6= ∅, one has

(9.3.10) qT0,I(ZK) =
∑

(l,J )⊂R(∅)\∪v∈IR({v})

(−1)|J |+1w(l,J ).

(In the sum those cubes do not appear which sit in the affine hyperplanes l|v = ZK |v for some v ∈ I.)

9.4. Let us introduce the function s : {set of graphs} → Z, such that

(9.4.1)
∑
T ′⊂T

s(T ′) = sw(T ) (with the convention s(∅) = sw(∅) = 0).

By induction on |V(T )| one shows that s is uniquely defined by (9.4.1). Moreover, the property

sw(∪ri=1Ti) =
∑r
i=1 sw(Ti), valid for several connected components, transforms into s(∪ri=1Ti) = 0

whenever r ≥ 2. Furthermore, by combinatorial cancellation (or by Möbius invertion)

(9.4.2) s(T ) =
∑
I⊂V

(−1)|V|−|I| sw(T (I)).
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Lemma 9.4.3. For any I ⊂ V the following identity holds.

(9.4.4) s(T (I)) =
∑

(l,J )⊂R(V\I)\∪v∈IR(V\(I\v))

(−1)|J |+1w(l,J ).

Proof. Since for any lI ∈ L(T (I)) one has χT (I)(lI) = χ(jI(lI)) = χ(ZK − jI(lI)), (9.3.6) implies

(9.4.5)
∑

(l,J )⊂R(V\I)

(−1)|J |+1w(l,J ) =
∑

(l,J )⊂R(0,ZK |I)

(−1)|J |+1w(l,J ),

where the second sum is considered in the lattice L(T (I)). We claim that in this lattice D := ZK |I−
ZK(T (I)) ≥ 0. Indeed, by the two adjunction formulae, for any v ∈ I, (Ev, D) = −(Ev, ZK |V\I) ≤ 0

(since ZK |V\I is effective), hence D ∈ S ′(T (I)), and D ≥ 0. In particular, the right hand side of

(9.4.5) via (9.3.6) is sw(T (I)). This gives for any I ⊂ V

(9.4.6) sw(T (I)) =
∑

(l,J )⊂R(V\I)

(−1)|J |+1w(l,J ).

By (9.4.2) and (9.4.6) and combinatorial cancelation:

s(T (I)) =
∑
J⊂I

(−1)|I|−|J | · sw(T (J )) =
∑
J⊂I

(−1)|I|−|J |
∑

(l,K)⊂R(V\J )

(−1)|K|+1w(l,K),

which equals the right hand side of (9.4.4). �

Then, for any J 6= ∅, (9.3.10) and Lemma 9.4.3 imply∑
K⊃J

s(T (K)) = qT0,J (ZK).

Therefore, for any I,

QT0,I(ZK) =
∑
∅6=J⊂I

(−1)|J |+1qT0,J (ZK) =
∑
∅6=J⊂I

(−1)|J |+1
∑
K⊃J

s(T (K))

=
∑
K⊂V

s(T (K))
∑

∅6=J⊂K∩I

(−1)|J |+1 =
∑

K⊂V,K∩I6=∅

s(T (K))

=
∑
K⊂V

s(T (K))−
∑
K⊂V\I

s(T (K)) = sw(T )− sw(T \ I) = pcπI(S′R)(Z0(tI)).

This ends the proof of Theorem 9.3.1. �

The formulae (9.3.6), (9.3.7), (9.3.10) and (9.4.6) provide explicit expressions for sw(T ), QT0,V(ZK),

qT0,I(ZK) and sw(T (I)) in terms of weighted cubes of different faces of R(0, ZK).

References
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