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Abstract. In this paper it is presented some classes of homeomorphisms that

preserve multiplicity and tangent cones of complex analytic sets. Moreover,

we present a class of homeomorphisms that has the multiplicity as an invariant
when we consider right equivalence and this class contains many known classes

of homeomorphisms that preserve tangent cones. Finally, we show versions of

these results looking at infinity.

1. Introduction

In 1971, O. Zariski in [16] propose many questions and the most known among
of them is the following

Question A Let f, g : (Cn, 0) → (C, 0) be two complex analytic functions. If
there is a homeomorphism ϕ : (Cn, V (f), 0) → (Cn, V (g), 0), then is it true that
m(V (f), 0) = m(V (g), 0)?

Another question made in [16] was Question B and it is presented below a weak
version of it.

Question B’ Let f, g : (Cn, 0)→ (C, 0) be two complex analytic functions. If there
is a homeomorphism ϕ : (Cn, V (f), 0) → (Cn, V (g), 0), then is there a homeomor-
phism h : PC(V (f), 0)→ PC(V (g), 0)?

In Question B’, PC(V (f), 0) and PC(V (g), 0) are, respectively, the projectivezed
cones of C(V (f), 0) and C(V (g), 0).

Question A is still an open problem. However, J. F. de Bobadilla in [4] showed
that Question B’ (and, in particular, Question B) has an negative answer.

Here, we want also consider a weak version of Question A that it is presented
above:
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Question A’ Let f, g : (Cn, 0)→ (C, 0) be two reduced complex analytic functions.
If there is a homeomorphism ϕ : (Cn, 0) → (Cn, 0) such that f = g ◦ ϕ, then is it
true that m(V (f), 0) = m(V (g), 0)?

Let me remark that by using Corollary in [9] together with Corollary 2 in [12],
we obtain that, in the case of functions with isolated singularities, Question A’ is
equivalent to Question A.

Finally, let me state the following question which is related with Question B’:

Question B” Let f, g : (Cn, 0) → (C, 0) be two complex analytic functions. If
there is a homeomorphism ϕ : (Cn, V (f), 0)→ (Cn, V (g), 0), then is there a home-
omorphism h : (C(V (f), 0), 0)→ (C(V (g), 0), 0)?

Thus we want study some classes of homeomorphisms that satisfy or do not satisfy
the Questions A’ and B”. Moreover, we show in this paper that Questions A’, B’
and B” are related.

2. Classes of homeomorphisms that preserves tangent cones

Let us define the exact definition of tangent cone that it is used in this paper.

Definition 2.1. Let A ⊂ Rn be a set such that x0 ∈ A \ {x0}. We say that
v ∈ Rn is a tangent vector of A at x0 if there is a continuous curve α : [0, ε) → A
satisfying α((0, ε)) ⊂ A and αi(t) − x0 = tv + o(t), where g(t) = o(t) means that

lim
t→0+

g(t)
t = 0. Let C(A, x0) be the set of all tangent vectors of A at x0. We call

C(A, x0) the tangent cone of A at x0.

Definition 2.2. Let H be a set of germs of homeomorphisms between germs
of complex analytic sets at the origin of some Cn. We say that H is a class of
germs of homeomorphisms that preserves tangent cones, if whenever that
h : (X, 0) → (Y, 0) belongs to H, then there exists φ : (C(X, 0), 0) → (C(Y, 0), 0)
such that φ ∈ H.

Definition 2.3. Let p be a point in Rn. The mapping ρn,p : Sn−1×R+ → Rn
given by ρn,p(x, r) = rx+ p is called spherical blowing-up (at p) of Rn.

Definition 2.4. Let X be a subset of Rn and p ∈ X. The strict transform

(at p) of the subset X under the spherical blowing-up ρn,p is X ′p := ρ−1n,p(X \ {p})
and the boundary ∂X ′p of the strict transform (at p) is ∂X ′p := X ′p∩ (Sn−1×{0}).

Remark that when X is a subanalytic subset, we have ∂X ′p = SpX×{0}, where

SpX = C(X, p) ∩ Sn−1.
Let X ⊂ Rn and Y ⊂ Rm be two subsets. Let us recall some definitions about

differentiability of mappings: we say that a mapping f : X → Y is a Ck (k ≥ 1)
mapping, if for each x ∈ X, there exist an open U ⊂ Rn and a mapping F : U → Rm
such that x ∈ U , F |X∩U = f |X∩U and F is a Ck mapping. We say that a mapping
f : X → Y is differentiable at x ∈ X, if there exist an open U ⊂ Rn and a mapping
F : U → Rm such that x ∈ U , F |X∩U = f |X∩U and F is differentiable at x.

Definition 2.5. We say that a mapping h : (X,x0) → (Y, y0) is weakly
directional differentiable if for each v ∈ C(X,x0) and for any two curves α1, α2 :
[0, ε) → X satisfying αi(0) = x0 and αi(t) − x0 = tv + o(t) for i = 1, 2, we have

that the limit lim
t→0+

h(αi(t))−h(y0)
t there exists for i = 1, 2 and these two limits are



HOMEOMORPHISMS THAT PRESERVE MULTIPLICITY AND TANGENT CONES 3

equal. In this case, we have a mapping D+hx0
: C(X,x0)→ C(Y, y0) such that for

each v ∈ C(X,x0), it is given by

D+hx0
(v) = lim

t→0+

h(α(t))− h(y0)

t
,

where α : [0, ε)→ X satisfies αi(0) = x and α(t)− x0 = tv + o(t).

The above definition is a little bit more general than the definition presented
in [15] in the case of subsets of Euclidean spaces.

Definition 2.6. Let (X,x0) and (Y, y0) be subsets germs, respectively, at
x0 ∈ Rn and y0 ∈ Rm. We say that a homeomorphism h : (X,x0)→ (Y, y0) is a:

• C1 equivalence (between (X,x0) and (Y, y0)), if there are representatives
of h and h−1 such that they are C1 mappings. In this case, we say that
(X,x0) and (Y, y0) are C1 equivalent. We denote by HDiff(C1) to be the

set of all C1 equivalences between germs of complex analytic sets at the
origin of some complex Euclidean space.

• differentiable equivalence (between (X,x0) and (Y, y0)), if h and h−1

are respectively differentiable at x0 and y0. In this case, we say that
(X,x0) and (Y, y0) are differentiable equivalent. We denote by HDiff

to be the set of all differentiable equivalences between germs of complex
analytic sets at the origin of some complex Euclidean space.

• weak directional equivalence (between (X,x0) and (Y, y0)), if h and
h−1 are respectively weakly directional differentiable and

D+hx0 : C(X,x0)→ C(Y, y0)

is a homeomorphism. In this case, we say that (X,x0) and (Y, y0) are
weak directional equivalent. We denote by HwDir to be the set of all
weak directional equivalences between germs of complex analytic sets at
the origin of some complex Euclidean space.

• blow-spherical equivalence (or blow-spherical homeomorphism) (be-
tween (X,x0) and (Y, y0)), if the mapping

ρ−1m,y0 ◦ ϕ ◦ ρn,x0
: X ′x0

\ ∂X ′x0
→ Y ′y0 \ ∂Y

′
y0

extends as a homeomorphism ϕ′ : X ′x0
→ Y ′y0 . In this case, we say that

(X,x0) and (Y, y0) are blow-spherical equivalent. We denote by HBS to
be the set of all blow-spherical equivalences between germs of complex
analytic sets at the origin of some complex Euclidean space.

• bi-Lipschitz equivalence (between (X,x0) and (Y, y0)), if h is a bi-
Lipschitz mapping with respect the outer metrics of Rn and Rm. In this
case, we say that (X,x0) and (Y, y0) are bi-Lipschitz equivalent. We
denote by HLip to be the set of all bi-Lipschitz equivalences between
germs of complex analytic sets at the origin of some complex Euclidean
space.

Proposition 2.7. The sets HDiff(C1), HDiff , HwDir, HBS and HLip are classes
of germs of homeomorphisms that preserve tangent cones.

Proof. It is easy to see that HDiff(C1) ⊂ HDiff . Moreover, if h ∈ HDiff ,

then it is also easy to see that Dh0 and Dh−10 are restrictions of linear mappings and
Dh0 : C(X, 0)→ C(Y, 0) is a homeomorphism and, in particular, Dh0 ∈ HDiff(C1).
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This tell us that HDiff(C1) and HDiff are classes of germs of homeomorphisms
that preserve tangent cones. About the classes HBS and HLip this was shown,
respectively, in ([14], Proposition 3.2) and in ([13], Theorem 3.2).

Hence, if h ∈ HwDir, then D+h0 : C(X, 0) → C(Y, 0) is a homeomorphism.
To finish the proof it is enough to show that D+h0 ∈ HwDir. However, D+h0 :
C(X, 0)→ C(Y, 0) is a positive homogeneous mapping (i.e., D+h0(λv) = λD+ϕ0(v)
for all λ ≥ 0 and v ∈ C(X, 0)), then for v ∈ C(X, 0) and α : [0, ε)→ C(X, 0) being
a curve satisfying α(0) = 0 and α(t) = tv + o(t), we obtain

lim
t→0+

D+h0(α(t))

t
= lim
t→0+

D+h0

(
α(t)
t

)
= D+h0(v)

since D+h0 is a continuous mapping and lim
t→0+

α(t)
t = v. Therefore, D+h0 is weakly

directional differentiable with D+(D+h0)0 = D+h0. By the same way, D+h−10 is
weakly directional differentiable as well and as D+(D+h0)0 = D+h0 is a homeo-
morphism, we obtain that D+h0 ∈ HwDir. �

Definition 2.8. We say that a homeomorphism ϕ : (Cn, 0) → (Cn, 0) satis-
fies Question B’ (resp. Question B”) if for any complex analytic functions f, g :
(Cn, 0)→ (C, 0) such that ϕ(V (f)) = V (g), we have that there exists a homeomor-
phism φ : PC(V (f), 0)→ PC(V (g), 0) (resp. φ : (C(X, 0), 0)→ (C(Y, 0), 0)).

Corollary 2.9. All element of HDiff(C1), HDiff , HwDir, HBS and HLip sa-
tisfies Question B”.

Proposition 2.10. Let (X, 0) and (Y, 0) be germs of subanalytic subsets. If
ϕ : (X, 0) → (Y, 0) is a weak directional equivalence, then ϕ is a blow-spherical
homeomorphism.

Proof. As ϕ : (X, 0)→ (Y, 0) is a weak directional equivalence, then D+ϕ0 :
C(X, 0) → C(Y, 0) is a homeomorphism. In particular, the mapping νϕ : S0X →
S0Y given by νϕ(v) = D+ϕ0(v)

‖D+ϕ0(v)‖ is a homeomorphism, since the mapping D+ϕ0 :

C(X, 0)→ C(Y, 0) is a positive homogeneous mapping (i.e., D+ϕ0(λv) = λD+ϕ0(v)
for all λ ≥ 0 and v ∈ C(X, 0)).

Therefore, the mapping ϕ′ : X ′ → Y ′ given by

ϕ′(x, t) =

{ (
ϕ(tx)
‖ϕ(tx)‖ , ‖ϕ(tx)‖

)
, if t 6= 0

(νϕ(x), 0), if t = 0

is a homeomorphism. �

Corollary 2.11. HDiff(C1) ⊂ HDiff ⊂ HwDir ⊂ HBS.

3. Invariance of the multiplicity and counter examples

In [8], it was shown that the multiplicity of complex analytic set is invariant by
a differentiable equivalence. Thus, the classes HDiff(C1) and HDiff preserve the
multiplicity. Additionally, in [2] it was shown that the multiplicity of a complex
analytic curve or surface is invariant by a bi-Lipschitz homeomorphism and in [3] it
was shown that in general the multiplicity of complex analytic set with dimension
greater than 2 is not invariant by a bi-Lipschitz homeomorphism. In this Section
we study the invariance of the multiplicity with respect the classes HwDir and HBS .
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Theorem 3.1. Let X ⊂ Cn and Y ⊂ Cm be two complex analytic sets with
the same dimension. Suppose that 1 ≤ dimX ≤ 2. If (X, 0) and (Y, 0) are blow-
spherical homeomorphic, then m(X, 0) = m(Y, 0).

Proof. By Theorem 5.1 in [14], it is enough to show Theorem 3.1 when X
and Y are two irreducible homogeneous complex algebraic sets. The Theorem 5.1
in [14] was stated with the sets X and Y being subsets in same ambient space,
however, let me emphasize that the same proof of the Theorem 5.1 in [14] works
when the sets X and Y are subsets in different ambient spaces. Thus, we suppose
that X and Y are two irreducible homogeneous complex algebraic sets and they are
blow-spherical homeomorphic. Therefore, if dimX = dimY = 1, then by Theorem
6.1 in [14], we have m(X, 0) = m(Y, 0). Thus, we can suppose that dimX =
dimY = 2. However, since (X, 0) and (Y, 0) are blow-spherical homeomorphic, then
they are, in particular, homeomorphic and, therefore, by Proposition 3.5 in [2], we
obtain m(X, 0) = m(Y, 0), since degree and multiplicity are equal for homogeneous
complex algebraic sets. �

Proposition 2.10 jointly with Theorem 3.1 give us the following result.

Corollary 3.2. Let X ⊂ Cn and Y ⊂ Cm be two complex analytic sets with
the same dimension. Suppose that 1 ≤ dimX ≤ 2. If (X, 0) and (Y, 0) are weak
directional equivalent, then m(X, 0) = m(Y, 0).

However, in the other dimensions the above results are not true, as it is shown
in the next theorem.

Theorem 3.3. For each n ≥ 3, there exists a family {Yi}i∈Z of n-dimensional
complex algebraic varieties Yi ⊂ Cni+1 such that:

(a) for each pair i 6= j, the germs at the origin of Yi ⊂ Cni+1 and Yj ⊂
Cnj+1 are weak directional equivalent, but (Yi, 0) and (Yj , 0) have different
multiplicity.

(b) for each pair i 6= j, the germs at the origin of Yi ⊂ Cni+1 and Yj ⊂
Cnj+1 are blow-spherical equivalent, but (Yi, 0) and (Yj , 0) have different
multiplicity.

Proof. Let {pi}i∈Z be the family of odd prime numbers. In the proof of
Theorem in [3] it was shown that there exists a family {Xi}i∈Z of 2-dimensional
projective varieties, such that each Xi ⊂ CPmi is obtained by the embedding of
a very ample bundle Li, where Li is a very ample bundle on X = CP 1 × CP 1 of
bidegree (2, pi). For each i ∈ Z we denote by S2mi+1 to be the unit sphere centered
in 0 ∈ Cmi+1 and by C(Xi) ⊂ Cmi+1 to be the affine cone of the projective
variety Xi. Thus, it is also shown in [3] that for each pair i 6= j the links Si :=
C(Xi) ∩ S2mi+1 and Sj := C(Xj) ∩ S2mj+1 are diffeomorphic to S2 × S3 and, in
particular, Si and Sj are bi-Lipschitz homeomorphic. Moreover, m(C(Xi), 0) = 4pi,
for all i ∈ Z. Let φ : Si → Sj be a bi-Lipschitz homeomorphism. Then, the mapping
Φ: C(Xi)→ C(Xj) given by

Φ(x) =

{
‖x‖ · φ( x

‖x‖ ), if x 6= 0

0, if x = 0

is a bi-Lipschitz homeomorphism as well. Thus, for each k ∈ Z we define Yk :=
C(Xk)×Cn−3. Then the mapping Ψ: Yi → Yj given by Ψ(x, y) = (Φ(x), y) for all
(x, y) ∈ C(Xi)× Cn−3 is also a bi-Lipschitz homeomorphism.
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Claim. Ψ: (Yi, 0)→ (Yj , 0) is a weak directional equivalence.
Firstly, we remark that if Ψ is weak directional differentiable, then D+Ψ0 = Ψ.

In fact, since Ψ is a positive homogeneous mapping and Yi is a cone, we have

D+Ψ0(v) = lim
t→0+

Ψ(tv)

t
= lim
t→0+

tΨ(v)

t
= Ψ(v),

for all v ∈ Yi. The same statement is true for Ψ−1, since Ψ−1 is also a positive
homogeneous mapping and Yj is a cone as well. Thus, let v be a point in C(Yi, 0) =
Yi and α : [0, ε) → Yi be a curve satisfying α(0) = 0 and α(t) = tv + o(t). Using
the fact that Ψ is Lipschitz, we obtain that Ψ(α(t))−Ψ(tv) = o(t). Then,

lim
t→0+

Ψ(α(t))

t
= lim
t→0+

Ψ(tv)

t
= Ψ(v).

Thus, Ψ is weak directional differentiable and by the same way Ψ−1 is also weak
directional differentiable. As D+Ψ0 = Ψ is a homeomorphism, we have that Ψ is a
weak directional equivalence.

Then, for each pair i 6= j, (Yi, 0) and (Yj , 0) are weak directional equivalent.
Therefore, we have that the family {Yi}i∈Z satisfies the item (a), since m(Yi, 0) =
m(C(Xi), 0) = 4pi, for all i ∈ Z.

In order to obtain the item (b) and finish the proof we just need to recall
Proposition 2.10. �

4. Invariance of the multiplicity by right equivalence

Let me introduce a new class of homeomorphisms that essentially generalizes bi-
Lipschitz equivalence, weak directional equivalence, differentiable equivalence and
C1 equivalence.

Definition 4.1. For each n ∈ N, let Hn be the collection of all germs of
homeomorphisms from (Cn, 0) to (Cn, 0). Let TH ⊂ H :=

⋃
n∈N
Hn (resp. TPH ⊂

H :=
⋃
n∈N
Hn) be the maximal subset with respect the inclusion satisfying:

i) If ϕ ∈ TH (resp. ϕ ∈ TPH), then ϕ × id2 ∈ TH (resp. ϕ × id2 ∈ TPH),
where id2 : (C, 0)→ (C, 0) is the germ of the identity mapping;

ii) If ϕ ∈ TH (resp. ϕ ∈ TPH), then ϕ−1 ∈ TH (resp. ϕ−1 ∈ TPH);
iii) Any ϕ ∈ TH (resp. ϕ ∈ TPH) satisfies Question B” (resp. Question B’).

Remark 4.2. It is easy to verify that each set HDiff(C1), HDiff , Hw−Dir and
HLip intersected with H is a subset of TH.

Theorem 4.3. Let f, g : (Cn, 0)→ (C, 0) be complex analytic functions.

(a) If there exists ϕ ∈ TH such that f = g ◦ ϕ, then ord0f = ord0g.
(b) If there exists ϕ ∈ TPH such that f = g ◦ ϕ, then ord0f = ord0g.

Proof. Suppose firstly that ϕ ∈ Hn and f = g ◦ ϕ. Suppose that ord0f <
ord0g. If k = ord0f , then by Lê-A’Campo’s Theorem (see [1] and [10]), we have

that k > 1. Let us define f̃ , g̃ : (Cn × C, 0) → (C, 0) by f̃(x, t) = f(x) + tk and
g̃(x, t) = g(x) + tk. Then, C(V (g̃), 0) = {t = 0} = Cn × {0}. Moreover, since
fk := inf 6≡ 0 and k > 1, we get that fk + tk cannot be a power of a linear form
and, in particular, C(V (f̃), 0) = V (fk + tk) is not a linear subspace. Now, let us

define ϕ̃ : (Cn × C, 0)→ (Cn × C, 0) by ϕ̃(x, t) = (ϕ(x), t). Therefore, f̃ = g̃ ◦ ϕ̃.
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Proof of item (a). If ϕ ∈ TH, by item i) of the definition 4.1, we have that ϕ̃ ∈ TH.

By item iii) of the definition 4.1, there exists a homeomorphism φ̃ : (V (fk+tk), 0)→
(Cn × {0}, 0). Thus, by Prill’s Theorem (Theorem in [11]), V (fk + tk) is a linear
subspace of Cn, which is a contradiction. Then, ord0f ≤ ord0g. Since by item ii)
of the definition 4.1, ϕ−1 ∈ TH, we obtain also that ord0g ≤ ord0f . Therefore,
ord0f = ord0g.
Proof of item (b). If ϕ ∈ TPH, by item i) of the definition 4.1, we have that ϕ̃ ∈ TPH.

By item iii) of the definition 4.1, there exists a homeomorphism φ̃ : PV (fk + tk)→
P(Cn×{0}). If dimPC(V (f̃), 0) 6= 2, by Corollary 2.12 in ([5], p. 145), PC(V (f̃), 0)

is a linear subspace of CPn, since P(Cn×{0}) ∼= CPn−1. In particular, C(V (f̃), 0)

is a linear subspace of Cn+1, which is a contradiction. If dimPC(V (f̃), 0) = 2
and, in particular, n = 3, then we define f̄ , ḡ : (C × C3 × C, 0) → (C, 0) by

f̄(s, x, t) = f̃(x, t) + sk+1 and ḡ(s, x, t) = g̃(x, t) + sk+1 and we define ϕ̄ : (C ×
C3 × C, 0) → (C × C3 × C, 0) by ϕ̄(s, x, t) = (s, ϕ(x), t). Therefore, f̄ = ḡ ◦ ϕ̄.
Moreover, C(V (ḡ), 0) = {t = 0} = C4 × {0} ⊂ C5, C(V (f̄), 0) = V (fk + tk) ⊂ C5

and as before C(V (f̄), 0) cannot be a linear subspace. However, since ϕ̃ ∈ TPH,
by item i) of the definition 4.1, we have that ϕ̄ ∈ TPH. Then, By item iii) of the
definition 4.1, there exists a homeomorphism φ̄ : PC(V (f̄), 0)→ P(Cn+1×{0}). So,
since dimPC(V (f̄), 0) = 3 6= 2, by the same reason as before, C(V (f̄), 0) is a linear
subspace of Cn+2, which is a contradiction.

Then, in any case, ord0f ≤ ord0g. Since by item ii) of the definition 4.1,
ϕ−1 ∈ TPH, we obtain also that ord0g ≤ ord0f . Therefore, ord0f = ord0g. �

Remark 4.4. It is clear of the proof of Theorem 4.3 that if Question B’ (or
Question B”) has a positive answer when we consider only right equivalence, then
Question A’ has a positive answer as well.

Definition 4.5. Let F = (f1, · · · , fm) : (Cn, 0) → Cm be a complex analytic
mapping. We define the order of F at 0 ∈ Cn by

ord0(F ) = max{ord0(f1), · · · , ord0(fm)}.

Corollary 4.6. Let F,G : Cn → Cm be complex analytic mappings. If there
exists ϕ ∈ TH ∪ TPH such that F = G ◦ ϕ, then ord(F ) = ord(G).

5. Invariance of the degree by right equivalence

Definition 5.1. Let A ⊂ Rn be an unbounded subset. We say that v ∈ Rn is a
tangent vector of A at infinity if there exist a continuous curve α : (ε,∞)→ A

satisfying α(t) = tv + o∞(t), where g(t) = o∞(t) means that lim
t→+∞

g(t)
t = 0. Let

C∞(A) denote the set of all tangent vectors of A at infinity. This subset C∞(A) ⊂
Rn is called the tangent cone of A at infinity.

Definition 5.2. For each n ∈ N, let Hn,∞ be the collection of all germs of
homeomorphisms at infinity from Cn to Cn. Let TH,∞ ⊂ H∞ :=

⋃
n∈N
Hn,∞ (resp.

TPH,∞ ⊂ H∞) be the maximal subset with respect the inclusion satisfying:

i) If ϕ ∈ TH,∞ (resp. ϕ ∈ TPH,∞), then ϕ × id2 ∈ TH,∞ (resp. ϕ × id2 ∈
TPH,∞), where id2 : (C, 0)→ (C, 0) is the germ of the identity mapping;

ii) If ϕ ∈ TH,∞ (resp. ϕ ∈ TPH,∞), then ϕ−1 ∈ TH,∞ (resp. ϕ−1 ∈ TPH,∞);
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iii) If ϕ ∈ TH,∞ (resp. ϕ ∈ TPH,∞) and f, g : Cn → C are complex polynomials
such that ϕ(V (f)) = V (g) (outside of a compact subset), then there exists
a homeomorphism φ : (C∞(X), 0) → (C∞(Y ), 0) (resp. φ : PC∞(X) →
PC∞(Y )).

Example 5.3. If Lipn,∞ is the collection of all germs of bi-Lipschitz homeo-
morphisms at infinity from Cn to Cn, then by Theorem 4.5 in [7], it is easy to verify
that Lipn,∞ ⊂ TH,∞.

As an application of the proof of Theorem 4.3, we obtain a result about invari-
ance of the degree.

Corollary 5.4. Let f, g : Cn → C be complex polynomials. If there exists
ϕ ∈ TH,∞ such that f = g ◦ϕ (outside of a compact subset), then deg(f) = deg(g).

Proof. Suppose that deg(f) > deg(g). If k = deg(f), then we have that
k > 1, since g cannot be constant. Let fk be the homogeneous polynomial formed
by the monomials of f that have degree k. Let us define f̃ , g̃ : (Cn+1, 0)→ (C, 0) by

f̃(x, t) = f(x)+ tk and g̃(x, t) = g(x)+ tk. Then, C(V (g̃), 0) = {t = 0} = Cn×{0}.
Moreover, since fk 6≡ 0 and k > 1, we get that fk + tk cannot be a power of a linear
form and, in particular, C(V (f̃), 0) = V (fk + tk) is not a linear subspace. Now,
let us define ϕ̃ : (Cn+1, 0) → (Cn+1, 0) by ϕ̃(x, t) = (ϕ(x), t). By item i) of the
definition 5.2, we have that ϕ̃ ∈ TH,∞. By item iii) of the definition 5.2, there exists

a homeomorphism φ̃ : (V (fk + tk), 0) → (Cn × {0}, 0). Thus, by Prill’s Theorem
(Theorem in [11]), V (fk + tk) is a linear subspace, which is a contradiction. �

Remark 5.5. We can also prove a result like Corollary 5.4, when ϕ ∈ TPH,∞.

We would like to say that in general it is hard that the degree to be preserved
by some equivalence, as we can see in next example.

Example 5.6. Let f, g : Cn → C be two complex polynomials such that
f(x, y) = y − x2 and g(x, y) = y. Let ϕ : C2 → C2 be the polynomial diffeo-
morphism given by ϕ(x, y) = (x, y − x2). Then f = g ◦ ϕ. However, deg(f) = 2
and deg(g) = 1.

In particular, a polynomial diffeomorphism does not need to belong to TH,∞.

Definition 5.7. Let F = (f1, · · · , fm) : Cn → Cm be a polynomial mapping.
We define the degree of F by

deg(F ) = max{deg(f1), · · · ,deg(fm)}.

Corollary 5.8. Let F,G : Cn → Ck be complex polynomials mappings. If
there exists ϕ ∈ TH,∞ ∪ TPH,∞ such that F = G ◦ ϕ (outside of a compact subset),
then deg(F ) = deg(G).
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