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Abstract. In this paper we provide weighted estimates for rough operators, in-
cluding rough homogeneous singular integrals TΩ with Ω ∈ L∞(Sn−1) and the
Bochner–Riesz multiplier at the critical index B(n−1)/2. More precisely, we prove
qualitative and quantitative versions of Coifman–Fefferman type inequalities and
their vector-valued extensions, weighted Ap−A∞ strong and weak type inequalities
for 1 < p < ∞, and A1 − A∞ type weak (1, 1) estimates. Moreover, Fefferman–
Stein type inequalities are obtained, proving in this way a conjecture raised by the
second-named author in the 90’s. As a corollary, we obtain the weighted A1 − A∞
type estimates. Finally, we study rough homogenous singular integrals with a ker-
nel involving a function Ω ∈ Lq(Sn−1), 1 < q < ∞, and provide Fefferman–Stein
inequalities too. The arguments used for our proofs combine several tools: a recent
sparse domination result by Conde–Alonso et al. [9], results by the first author in
[38], suitable adaptations of Rubio de Francia algorithm, the extrapolation theorems
for A∞ weights [13, 16] and ideas contained in previous works by A. Seeger in [51]
and D. Fan and S. Sato [22].

1. Introduction and main results

Many important inequalities in Harmonic Analysis and P.D.E. are of the form∫
Rn
|Tf(x)|pw(x) dx ≤ C

∫
Rn
|Sf(x)|pw(x) dx,

where typically T is an operator that carries some degree of singularity (e.g., some
singular integral operator) and S is an operator which is, desirably, easier to handle
(e.g., a maximal operator), and w is in some class of weights. One of the most usual
techniques for proving such results is to establish a good-λ inequality between T and S.
This method, due to D. L. Burkholder and R. F. Gundy [2], relies on the comparison
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of the measure of the level sets of S and T , namely on finding an intrinsic constant
c > 0 (depending upon the operators S, T ) such that for every λ > 0 and small ε > 0,

(1.1) w
{
y ∈ Rn : |Tf(y)| > 3λ, |Sf(y)| ≤ ε λ

}
≤ c εw

{
y ∈ Rn : |Tf(y)| > λ

}
,

where the weight w is usually assumed to be in the Muckenhoupt class A∞.
A paradigmatic example of the application of that technique was provided by R.

R. Coifman and C. Fefferman in the classical paper [10]. In that work they proved
that, given w ∈ A∞ and any p, 0 < p <∞, there is a constant c depending on p and
w such that

(1.2)

∫
Rn
|Tf(x)|pw(x) dx ≤ c

∫
Rn
Mf(x)pw(x) dx,

for any function f such that the left-hand side is finite. Here, T is any Calderón-
Zygmund operator and M is the Hardy–Littlewood maximal operator. We point
out that this estimate does not hold in general for every singular integral: there
are examples of convolution type operators with kernels satisfying the Hörmander
smoothness condition for which (1.2) fails, as it can be found in [41]. In particular,
it is impossible to establish a good-λ inequality between these operators and M . As
an immediate consequence of the classical Muckenhoupt’s theorem, if T satisfies (1.2)
then T is bounded on Lp(w), 1 < p < ∞, w ∈ Ap (for the notations and basic facts
on Ap weights, see Subsection 2.1).

On the other hand, it is not so well known that the estimate (1.2) turns out to
be the key estimate for proving the following non-standard two-weight result for T ,
namely

(1.3) ‖Tf‖Lp(w) ≤ cp,T‖f‖Lp(Mbpc+1w),

as shown in [46]. The notation bpc means the integer part of p, and by M bpc+1 we
mean the (bpc+ 1)-fold composition of the operator M . Actually, the method in [46]
is very general. Roughly, if p ∈ (1,∞) and if T is a linear operator whose adjoint T t

satisfies (1.2) with exponent p′ and for any RH∞ weight, then (1.3) holds. The proof
can be reduced, after using the duality in Lp, to study a corresponding estimate for
the maximal Hardy-Littlewood function proved in [47]. Estimates like (1.3), using the
iteration of the maximal functions to control singular integrals were considered first
by J. M. Wilson in [56]. It is proved in his work that (1.3) holds for p ∈ (1, 2) when
T is any smooth singular integrals of convolution type. Wilson’s method is different
and it is based on proving corresponding square function estimates.

Even more, the estimate (1.2) is crucial as well in the solution of Sawyer’s conjecture
in [14]. This time, the fact that the estimate holds for any 0 < p < 1 and for any
w ∈ A∞ plays a fundamental role.

In this paper we shall start by considering Coifman–Fefferman’s type estimates like
(1.2), and then we will show other qualitative and quantitative weighted estimates,
in the case where T is either a rough homogeneous singular integral or the Bochner–
Riesz multiplier at the critical index. By “qualitative” we mean weighted inequalities
without specifying the dependence of the norm bound on the Ap constant, while
in “quantitative” estimates we search for the optimal explicit dependence on such
constant.
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We recall that given Ω ∈ L1(Sn−1) such that
∫
Sn−1 Ω = 0, we can define a kernel

K(x) =
Ω(x′)

|x|n

where x′ = x
|x| . It is clear that K is homogeneous of degree −n. Using that kernel we

define the rough homogeneous singular integral TΩ by

(1.4) TΩf(x) = p.v.

∫
Rn

Ω(x′)

|x|n
f(x− y)dy.

On the other hand, the Bochner–Riesz multiplier at the critical index B(n−1)/2 is
defined by

(1.5) ̂B(n−1)/2(f)(ξ) = (1− |ξ|2)
(n−1)/2
+ f̂(ξ).

It is well known that TΩ, with Ω ∈ L∞(Sn−1), is bounded on Lp(w), 1 < p < ∞,
when w ∈ Ap (first proved in the celebrated paper by J. Duoandikoetxea and J. L.
Rubio de Francia [21], later improved in [19] and [54], and with quantitative version
in [31]). In view of these works, the second author conjectured after [46] that (1.3)
would hold for rough singular integral operators TΩ in the case Ω ∈ L∞(Sn−1) (the
conjecture is made explicit in [48]). Indeed, the method mentioned above could not
be used since (1.2) was not available. In particular, no good-λ estimate relating TΩ

and M like (1.1) is known to hold (See Conjecture 1.3 below). Similar comments can
be made for B(n−1)/2, which is also a bounded operator on Lp(w), with w ∈ Ap (see
[52]).

1.1. Qualitative estimates. In this subsection we present some new weighted esti-
mates for rough operators and we also present some known results for such operators,
as consequences of the former. The first result to be shown will be (despite the title of
the present subsection), a quantitative version of the Coifman–Fefferman’s inequality
(1.2), for 1 ≤ p <∞.

Theorem 1.1. Let T be either TΩ with Ω ∈ L∞ satisfying
∫
Sn−1 Ω = 0 or B(n−1)/2.

Let p ∈ [1,∞) and let w ∈ A∞, then

(1.6) ‖Tf‖Lp(w) ≤ cp,T [w]2A∞ ‖Mf‖Lp(w)

for any smooth function such that the left-hand side is finite.

The novelty here is that we avoid completely the use of the good-λ method. Indeed,
we combine the sparse formula in Theorem 2.3 below from [9], together with a Carleson
embedding type argument in the case p = 1 and the technique of principal cubes
introduced in [42] for the case p > 1.

A natural question is wether estimate (1.6) holds as well for 0 < p < 1. Indeed, this
is true in this range and it follows from the case p = 1 by means of an extrapolation
theorem for A∞ weights from [13, 16] as stated in the next Corollary. The difference
is that in this case the results are just qualitative since it is not clear how to obtain
good bounds from the extrapolation method. On the other hand, the method is very
flexible allowing many other spaces and further extensions.

Corollary 1.2. Let T be either TΩ with Ω ∈ L∞ satisfying
∫
Sn−1 Ω = 0 or B(n−1)/2.

Let p, q ∈ (0,∞) and w ∈ A∞. There is a constant c depending on the A∞ constant
such that:
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a) Scalar context.

(1.7) ‖Tf‖Lp(w) ≤ c ‖Mf‖Lp(w)

and

(1.8) ‖Tf‖Lp,∞(w) ≤ c ‖Mf‖Lp,∞(w),

for any smooth function such that the left-hand side is finite.
b) Vector-valued extension.

(1.9)
∥∥∥(∑

j

|Tfj|q
)1/q∥∥∥

Lp(w)
≤ c

∥∥∥(∑
j

(Mfj)
q
)1/q∥∥∥

Lp(w)

and

(1.10)
∥∥∥(∑

j

|Tfj|q
)1/q∥∥∥

Lp,∞(w)
≤ c

∥∥∥(∑
j

(Mfj)
q
)1/q∥∥∥

Lp,∞(w)
,

for any smooth vector function such that the left-hand side is finite.

Conjecture 1.3. We conjecture that the constant in (1.6) (or (1.7) and (1.8)) is a
multiple of p [w]A∞, as in the case of Calderón-Zygmund operators. In the latter case,
the proof of such an estimate relies upon a variation, obtained in [37, p. 152], of the
following sharp exponential estimate from Buckley’s work [4]: for every λ > 0 and
small ε > 0∣∣{y ∈ Rn : |Tf(y)| > 3λ,Mf(y) ≤ ε λ

}∣∣ ≤ c e−c/ε
∣∣{y ∈ Rn : Mf(y) > λ

}∣∣.
We also conjecture that this good-λ estimate with exponential decay holds for the op-
erators in Theorem 1.1 and hence the linear dependence on the A∞ constant holds as
well.

Similar estimates as in the corollary hold for many other spaces X(w) where X is
an appropriate generalized rearrangement-invariant function space like Orlicz spaces,
classical or generalized Lorentz spaces or Marcinkiewicz spaces, instead of strong or
weak or Lp spaces. All these are consequences of the main results from [16, Theorem
2.1], where modular type estimates can be found as well, see [16, Theorem 3.1]. A
similar result holds for (unweighted) variable Lp spaces following the main idea from
[12]. See Appendix A for some special examples.

Of course, Corollary 1.2 improves in several directions the main result in [21], namely
if w ∈ Ap, p > 1, then T : Lp(w)→ Lp(w) continuously. We also remark that it is not
clear how to prove estimates (1.9) or (1.10) directly from the good-λ between T and
M even in the classical situation of T being a Calderón-Zygmund operator T .

As for the case p = 1, from (1.8) we have the following:

‖Tf‖L1,∞(w) ≤ cw ‖Mf‖L1,∞(w), w ∈ A∞,

with constant cw depending on the A∞ constant of w. Then by the classical Fefferman-
Stein’s inequality, we obtain

‖Tf‖L1,∞(w) ≤ cw ‖f‖L1(Mw),

and hence, if further w ∈ A1, we have

(1.11) ‖T‖L1(w)→L1,∞(w) ≤ cw [w]A1 ,
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namely, if w ∈ A1, then T : L1(w) → L1,∞(w) with the operator norm bound
depending on the A1 constant of the weight w. Inequality (1.11) yields a different
and improved proof of [9, Thm. E, Appendix B] and also a new qualitative proof
of the weighted weak type (1, 1) estimate for TΩ established in [22]. Furthermore, a
similar, and new result holds for the vector-valued extension of (1.11) combining (1.10)
with the vector-valued extension of the Fefferman–Stein’s inequality for the maximal
function established in [45]. More precisely we have for q ∈ (1,∞) and w ∈ A∞∥∥∥(∑

j

|Tfj|q
)1/q∥∥∥

L1,∞(w)
≤ c

∥∥∥(∑
j

(fj)
q
)1/q∥∥∥

L1(Mw)
.

However, and by means of other methods, a much more precise quantitative version
of (1.11) will be provided in Subsection 1.2 (see Theorem 1.11).

We finish this subsection with two more non-standard consequences from (1.7). The
first one is the following two-weight estimate which solves affirmatively the conjecture
mentioned above about inequality (1.3) for rough singular integral operators.

Corollary 1.4. Let T be either TΩ with Ω ∈ L∞ satisfying
∫
Sn−1 Ω = 0 or B(n−1)/2.

If p ∈ (1,∞), then

‖Tf‖Lp(w) ≤ cn,p,T‖f‖Lp(Mbpc+1w) w ≥ 0.

The above inequality is sharp in the sense that we cannot replace M bpc+1 by M bpc.

We remark that a very interesting similar result to Corollary 1.4 was obtained
recently by D. Beltran in [3, Corollary 1.4] for the Carleson operator C. A bit sur-
prisingly, the Carleson operator cannot satisfy neither an inequality like (1.2) nor a
good-λ inequality between C and the Hardy-Littlewood maximal function M : other-
wise, C would be of weak type (1, 1) (since estimate (1.8) would hold) but, as it is well
known, this property is false.

A quantitative version of Corollary 1.4, whose proof requires a different argument,
will be provided in Corollary 1.9 of Subsection 1.2.

The second non-standard consequence from (1.7) is that we can extend the conjec-
ture formulated by E. Sawyer [50] for the Hilbert transform to rough singular integrals.
E. Sawyer proved for the maximal function in the real line that if u, v ∈ A1 then

(1.12)
∥∥∥Mf

v

∥∥∥
L1,∞(uv)

≤ c‖f‖L1(uv)

and posed the question whether a similar estimate with M replaced by the Hilbert
transform would hold or not. A positive answer to this question was given in [14] where
a more general version of this problem was obtained for Calderón-Zygmund operators
and the maximal function in higher dimensions. Furthermore, the main result of
[14] also solved and extended conjectures proposed by Muckenhoupt-Wheeden in [42]
enlarging the class of weights for which this estimate holds, namely u ∈ A1, and
v ∈ A1 or uv ∈ A∞. This was further generalized in [44].

Very recently, a conjecture extending the one proposed by Sawyer and raised in [14],
has been solved by the first two authors together with S. Ombrosi. This new recent
result extends the class of weights for which Sawyer’s inequality (1.12) holds and it is
the following (see [40]).
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Let u ∈ A1 and v ∈ A∞. Then there is a finite constant c depending
on the A1 constant of u and the A∞ constant v such that

(1.13)
∥∥∥M(fv)

v

∥∥∥
L1,∞(uv)

≤ c‖f‖L1(uv).

Using this result we have the following.

Theorem 1.5. Let T be either TΩ with Ω ∈ L∞ satisfying
∫
Sn−1 Ω = 0 or B(n−1)/2.

Let u ∈ A1 and suppose that v is a weight such that for some δ > 0, vδ ∈ A∞. Then,
there is a constant c such that

(1.14)
∥∥∥Tf
v

∥∥∥
L1,∞(uv)

≤ c
∥∥∥Mf

v

∥∥∥
L1,∞(uv)

.

Hence, if u ∈ A1 and v ∈ A∞, then there is a constant c such that

(1.15)

∥∥∥∥T (fv)

v

∥∥∥∥
L1,∞(uv)

≤ c ‖f‖L1(uv).

Proof. The proof of (1.14) is a corollary of (1.7) (actually the range p ∈ (0, 1) is the
relevant one) after applying [13, Thm. 1.1] or the more general case [16, Thm. 2.1].

On the other hand, combining (1.13) together with (1.8) (which we recall that it
follows from (1.6)), the inequality (1.15) holds.

�

1.2. Quantitative estimates. In the last decade, plenty of works about weighted
estimates have been devoted to the study of the quantitative dependence on the Ap
constant, on the A1 constant, and also on mixed constants involving the A∞ constant,
of the weighted Lp boundedness constant of several operators. Quite recently, some
results in that direction for rough singular integrals have appeared in works such as
[9, 31, 48]. Motivated by the latter (in particular by the most recent [9]), in this
section we present several results showing improvements on the dependence on the Ap
and A1 constant of T , where T is either a rough homogeneous singular integral or the
Bochner–Riesz multiplier at the critical index. Our first result regards the improved
Ap type estimate:

Theorem 1.6. Let T be either TΩ with Ω ∈ L∞ satisfying
∫
Sn−1 Ω = 0 or B(n−1)/2,

and w ∈ Ap. Let us denote σ := w
1

1−p . Then

‖T‖Lp(w) ≤ CT [w]
1
p

Ap
([w]

1
p′

A∞
+ [σ]

1
p

A∞
) min{[w]A∞ , [σ]A∞}, 1 < p <∞.

In particular,

‖T‖Lp(w) ≤ CT [w]
p
p−1

Ap
, 1 < p <∞.

We also have the following weak type estimate

‖T‖Lp(w)→Lp,∞(w) ≤ CT [w]
min{2, p

p−1
}

Ap
.

Remark 1.7. Since

max
{

1,
1

p− 1

}
<

p

p− 1
≤ 1

p− 1
max{2, p} ≤ 2 max

{
1,

1

p− 1

}
,

our bound improves the known result in [31] and also the very recent result in [9],
however we don’t reach the exponent max{1, 1

p−1
} provided it is possible to obtain such

an estimate.
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For the following theorem, we refer Subsection 2.3 for definitions and details related
to Young functions and associated maximal functions.

Theorem 1.8. Let 1 < p < ∞ and A be a Young function. Let T be either TΩ with
Ω ∈ L∞ satisfying

∫
Sn−1 Ω = 0 or B(n−1)/2. Then, for any f ∈ C∞c (Rn),

(1.16) ‖Tf‖Lp(w) ≤ CT (p′)2‖MĀ‖Lp′‖f‖Lp(MAp (w)).

From the preceding theorem, by using (2.3) in below, if we chooseA(t) = tp
(
1 + log+ t

)p−1+δ

with δ ∈ (0, 1] we obtain the following result, which is in turn a quantitative version
of Corollary 1.4.

Corollary 1.9. Let 1 < p <∞ and T be either TΩ with Ω ∈ L∞ satisfying
∫
Sn−1 Ω = 0

or B(n−1)/2. Then, for any f ∈ C∞c (Rn),

(1.17) ‖Tf‖Lp(w) ≤ CT (p′)2p2
(1

δ

) 1
p′ ‖f‖Lp(M

L(logL)p−1+δw).

The inequality above is sharp in the sense that δ = 0 is false.

At this point we conjecture that (1.17) should hold with pp′ instead of (pp′)2. We
can also derive an improvement of some results obtained in [48] concerning the A1

constant.

Corollary 1.10. Let 1 < p <∞ and T be either TΩ with Ω ∈ L∞ satisfying
∫
Sn−1 Ω =

0 or B(n−1)/2. Then, for any f ∈ C∞c (Rn),

(1.18) ‖Tf‖Lp(w) ≤ CTp(p
′)2(r′)

1
p′ ‖f‖Lp(Mr(w)).

If, moreover, w ∈ A∞ then

(1.19) ‖Tf‖Lp(w) ≤ CTp(p
′)2[w]

1
p′

A∞
‖f‖Lp(Mw).

Furthermore, if w ∈ A1 then

(1.20) ‖T‖Lp(w) ≤ CTp(p
′)2[w]

1
p

A1
[w]

1
p′

A∞
≤ CTp(p

′)2[w]A1 .

Also, as a direct consequence of [20, Corollary 4.3], if w ∈ Aq, for 1 ≤ q < p, then

‖T‖Lp(w) ≤ cn,p,qCT [w]Aq .

In all the inequalities above, CT is the one in (2.2).

We would like to point out the fact that similar results for Carleson operators were
obtained in [17] and later on in [3].

In the previous subsection we showed that a new qualitative proof of the endpoint
estimate obtained in [22] could be obtained via extrapolation (see the explanation just
after Corollary 1.2). Now we present a quantitative version of the weighted weak type
(1, 1) estimate, which is formulated as follows.

Theorem 1.11. Let w ∈ A1 and T be either TΩ with Ω ∈ L∞ satisfying
∫
Sn−1 Ω = 0

or B(n−1)/2. Then

‖T‖L1(w)→L1,∞(w) ≤ CT [w]A1 [w]A∞ log2([w]A∞ + 1).
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Let us compare this result with the corresponding result for Calderón-Zygmund
operators, which was first proved in [37] (see also [36, 29, 18]) and which is optimal,
see [35]. In our case, we have the extra constant [w]A∞ due to the roughness of the
kernel. However, we believe that this is the best possible bound we can expect with
the current techniques. Indeed, it is not explicitly stated in [53, 22, 23, 5] how the
weighted weak type (1, 1) bound depends on the constant. But it is possible to check
that our result improves the implicit constant obtained in those papers. We also
remark that it is possible to obtain the same bound for any operator which has the
same sparse bound, see Appendix C. Finally, we also study independently TΩ for the
case of Ω ∈ Lq(Sn−1), 1 < q <∞ (see [19] and [54] for more backgrounds). Specifically,
we prove the following result for sparse operatorAr,S , which can be interesting by itself
(for definitions and basics about sparse families, see Subsection 2.2).

Theorem 1.12. Let r > 1, w be a weight and S be a sparse family. Let A be a Young
function such that Ā ∈ Bp′. For f ≥ 0, set

Ar,S(f)(x) =
∑
Q∈S

〈f r〉
1
r
QχQ(x).

Then for p > r, there holds

‖Ar,S(f)‖Lp(w) ≤ (cnp
′)
r(p−1)
p−r

(p
r

)′‖MĀ‖Lp′‖f‖Lp(MApw).

We remark that the qualitative version of Theorem 1.12 is also obtained by Beltran
[3] by using two weight bump theorem. We shall give two proofs for Theorem 1.12, one
using the Rubio de Francia algorithm and the other one given in the Appendix B using
the two weight bump theorem. Combining Theorem 1.12 and the sparse domination
principle in [9], we obtain the following:

Theorem 1.13. Given 1 < q <∞, let Ω ∈ Lq,1 logL(Sn−1) have zero average and w
be a weight. Let A be a Young function such that Ā ∈ Bp′. Then for p > q′, there
holds

‖TΩ(f)‖Lp(w) ≤ cnq‖Ω‖Lq,1 logL(Sn−1)

( p
q′
)′

(cnp
′)
q′(p−1)

p−q′ ‖MĀ‖Lp′‖f‖Lp(MApw),

for any f ∈ C∞c (Rn).

By Ω ∈ Lq,1 logL(Sn−1) we mean that the following norm is finite (cf. [9])

‖Ω‖Lq,1 logL(Sn−1) := q

∫ ∞
0

t log(e+ t)|{θ ∈ Sn−1 : |Ω(θ)| > t}|
1
q
dt

t
.

Then immediately we have the following estimate.

Corollary 1.14. Given 1 < q <∞, let Ω ∈ Lq,1 logL(Sn−1) have zero average and w
be a weight. Then for p > q′, we have

‖TΩf‖Lp(w) ≤ cn,p,q‖Ω‖Lq,1 logL(Sn−1)‖f‖Lp(Mbpc+1w).

Moreover, when A(t) = tpr, we obtain the following estimate:

Corollary 1.15. Given 1 < q <∞, let Ω ∈ Lq,1 logL(Sn−1) have zero average and w
be a weight. If 1 < r <∞, then for p > q′

‖TΩ(f)‖Lp(w) ≤ cnq‖Ω‖Lq,1 logL(Sn−1)p(r
′)

1
p′
( p
q′

)′
(cnp

′)
q′(p−1)

p−q′ ‖f‖Lp(Mrw),
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which immediately implies

‖TΩ(f)‖Lp(w) ≤ cn,p,q‖Ω‖Lq,1 logL(Sn−1)[w]
1
p

A1
[w]

1
p′

A∞
‖f‖Lp(w), p > q′.

Then we also have that

‖TΩ(f)‖Lp(w) ≤ cn,p,q‖Ω‖Lq,1 logL(Sn−1)[w]A1‖f‖Lp(w), p > q′.

and as a direct consequence of [20, Corollary 4.3], if w ∈ As, with 1 ≤ s < p then

‖TΩ(f)‖Lp(w) ≤ cn,p,q,s‖Ω‖Lq,1 logL(Sn−1)[w]As‖f‖Lp(w), p > q′.

We sketch now the ideas used to prove our results. For the proof of Theorem 1.1,
we prove the result for p = 1 and p > 1 separately. In both cases, the starting point
is the sparse domination by Conde–Alonso e.a. [9], whose statement we recall in
Subsection 2.2 for the sake of completeness. Then, for p = 1, a Carleson embedding
type argument is used, whereas for p > 1 we use an argument involving principal cubes.
The refinement in the strong Ap estimate and the weak type inequality contained in
Theorem 1.6 are deduced by taking the sparse domination in [9] and then we follow
arguments in [38]. The proof of Theorem 1.8 is a combination of Rubio de Francia
algorithm and again the sparse domination in [9]. The weighted weak type (1, 1)
estimate of Theorem 1.11 is based on Corollary 1.10 (which follows as a consequence
of Theorem 1.8), the strategy used by Seeger in [51] and the approach in the work
by Fan and Sato [22] (based, in its turn, on the previous works by Seeger [51] and
Vargas [53]). Finally, the result concerning rough homogeneous singular integrals when
Ω ∈ Lq,1 logL(Sn−1) merges the Rubio de Francia algorithm, the sparse domination
and again ideas in [38].

The structure of the paper is as follows. In Section 2 we collect several definitions
and known results that will be the cornerstones in our proofs. Moreover, some aspects
of Young functions and associated maximal functions are expounded. In section 3 we
prove Theorem 1.1. Theorem 1.6 is proven in Section 4. Section 5 contains the proof
of Theorem 1.8. The proof of Theorem 1.11 is shown in Section 6 and the result
regarding Ω ∈ Lq,1 logL(Sn−1) in Theorem 1.12 is included in Section 7.

Throughout the paper we will use fairly standard notation. By c, cn, cT . . . we mean
positive constants that are either universal or depending on the subindices, but not
depending on the essential variables. These constants may vary at each occurrence.
For an operator T , we will denote by ‖T‖B1→B2 , or just ‖T‖B1 if B1 = B2, the norm
of the operator, i.e., the least constant N such that ‖Tf‖B2 ≤ N‖f‖B1 . We will
denote the average of a function f over a cube Q by 〈f〉Q := |Q|−1

∫
Q
f(x) dx. For

any function f and a weight w, we shall use 〈f〉wQ := w(Q)−1
∫
Q
f(x)w(x) dx, where

w(Q) :=
∫
Q
w(x) dx. Moreover, for 1 < s <∞, the notation 〈f〉s,Q means (〈|f |s〉Q)1/s.

2. Some definitions and key results

In this section we gather some results and definitions that will be fundamental for
the proofs of our main results.

2.1. Some basics of the Ap theory of weights. For 1 < p < ∞, we say that a
locally integrable function w ≥ 0 belongs to the Muckenhoupt Ap class if

[w]Ap := sup
Q

( 1

|Q|

∫
Q

w
)( 1

|Q|

∫
Q

w1−p′
)p−1

<∞,
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where p′ is such that 1
p

+ 1
p′

= 1. We call [w]Ap the Ap constant or characteristic. If

p = 1 we say that w ∈ A1 if there exists a constant κ > 0 such that

(2.1) Mw(x) ≤ κw(x) a.e. x ∈ Rn.

We define the A1 constant or characteristic [w]A1 as the infimum of all κ such that
(2.1) holds. It is also a well known fact that the Ap classes are increasing, namely that
p ≤ q ⇒ Ap ⊂ Aq. We can define in a natural way the A∞ class as A∞ =

⋃
p≥1Ap.

Associated to this A∞ class it is also possible to define an A∞ constant as

[w]A∞ := sup
Q

1

w(Q)

∫
Q

M(wχQ)dx.

This constant was essentially introduced by N. Fujii in [24] and rediscovered by Wilson
in [55].

Another basic tool for us is the following classical reverse Hölder inequality with
optimal bound, as obtained in [28] (see also [30]).

Lemma 2.1. Let w ∈ A∞. There exists τn > 0 such that for every δ ∈
[
0, 1

τn[w]A∞

]
and every cube Q (

1

|Q|

∫
Q

w1+δ

) 1
1+δ

≤ 2

|Q|

∫
Q

w.

Finally, we will also use a variant of Rubio de Francia algorithm (see [25, Section
5] for the original algorithm).

Lemma 2.2 ([15, 37]). Denote S(h) = v−
1
pM(hv

1
p ), where v is a weight and 1 < p <

∞. Define a new operator R by

R(h) =
∞∑
k=0

1

2k
Skh

‖S‖kLp(v)

.

Then, for every h ∈ Lp(v), this operator has the following properties:

(1) 0 ≤ h ≤ R(h),
(2) ‖R(h)‖Lp(v) ≤ 2‖h‖Lp(v),

(3) R(h)v
1
p ∈ A1 with

[
R(h)v

1
p
]
A1
≤ cnp

′. Furthermore, when v = MAw for some

Young function A, we also have that [Rh]A∞ ≤ cn[Rh]A3 ≤ cnp
′.

2.2. A sparse domination result. We present here a pointwise estimate recently
obtained in [9]. First we recall that a family S contained in a dyadic lattice D is a
η-sparse family (0 < η < 1) if for each Q ∈ S there exists EQ such that

(1) η|Q| ≤ |EQ|.
(2) The sets EQ are pairwise disjoint.

For a more detailed account about dyadic lattices and sparse families we remit to [34].
Now we are in the position to state the result we borrow from [9].

Theorem 2.3 ([9, Theorems A and B]). Let T be defined as in (1.4) or (1.5). Then
for all 1 < p <∞, f ∈ Lp(Rn) and g ∈ Lp′(Rn), we have that∣∣∣ ∫

Rn
T (f)gdx

∣∣∣ ≤ cnCT s
′ sup
S

∑
Q∈S

(∫
Q

|f |
)( 1

|Q|

∫
Q

|g|s
)1/s

,
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where each S is a sparse family of a dyadic lattice D,{
1 < s <∞ if T = B(n−1)/2 or T = TΩ with Ω ∈ L∞(Sn−1)

q′ ≤ s <∞ if T = TΩ with Ω ∈ Lq,1 logL(Sn−1)

and

(2.2) CT =


‖Ω‖L∞(Sn−1), if T = TΩ with Ω ∈ L∞(Sn−1)

‖Ω‖Lq,1 logL(Sn−1) if Ω ∈ Lq,1 logL(Sn−1)

1 if T = B(n−1)/2.

We remark the same bilinear form also applies to the case of maximally truncated
oscillatory singular integrals, see [33].

2.3. Young functions and related maximal functions. We recall that a Young
function is a convex, strictly increasing function A : [0,∞)→ [0,∞) such that A(0) =
0 and A(t) → ∞ as t → ∞. It’s clear from the definition that A−1(t) is well defined
and is also increasing. A Young function A is said to be doubling if there exists a
positive constant C such that A(2t) ≤ CA(t).

For each Young function we can define its complementary function

Ā(s) = sup
t>0
{st− A(t)} , s ≥ 0.

We observe that Ā is finite-valued if and only if limt→∞
A(t)
t

= supt>0
A(t)
t

= ∞, but
this will be the case for all the Young functions we are going to deal with. We also

know that Ā is strictly increasing if and only if limt→0
A(t)
t

= inft>0
A(t)
t

= 0. In that
case, which will be also the case of all the explicit examples we will introduce, Ā is
also a Young function and enjoys the following properties

st ≤ A(t) + Ā(s), t, s ≥ 0,

and
t ≤ A−1(t)Ā−1(t) ≤ 2t, t > 0.

Associated to a Young function A, or more generally to any positive function A, we
can define the A-norm of a function f over a cube Q as

‖f‖A(L),Q = ‖f‖A,Q := inf

{
λ > 0 :

1

|Q|

∫
Q

A

(
|f(x)|
λ

)
dx ≤ 1

}
.

Each Young function and its complementary function satisfy the following generalized
Hölder inequality

1

|Q|

∫
Q

|fg|dx ≤ 2‖f‖A,Q‖g‖Ā,Q.

We can also define in a natural way the corresponding maximal operators, namely,
given a Young function, we define the maximal operator

MA(L)f(x) = MAf(x) := sup
Q3x
‖f‖A,Q.

In the case MLr with r > 0 we will keep the standard notation Mr. The Lp bound-
edness of the maximal operators we have just defined was thoroughly studied and
characterized in [47]. Here we state some precise versions of sufficient conditions for
the Lp boundedness of such operators that were obtained in [29].
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Let 1 < p <∞. A doubling Young function A satisfies the Bp condition if there is
a positive constant c such that

βp(A) :=

∫ ∞
c

A(t)

tp
dt

t
≈
∫ ∞
c

( tp
′

Ā(t)

)p−1dt

t
<∞.

In such case, we will say that A ∈ Bp.

Lemma 2.4 ([29, Lemmas 2.1 and 2.2]). Let A be a Young function. Then

‖MA‖Lp ≤ cnβp(A).

By using Lemma 2.4, it was established in [29] that, for A(t) = tp(1 + log+ t)p−1+δ

with 1 < p <∞ and 0 < δ ≤ 1,

(2.3) ‖MĀ‖Lp′ ≤ cnp
2

(
1

δ

) 1
p′

.

We observe also that by standard computations we have, for A(t) = tpr with 1 <
p, r <∞, that

(2.4) Ā(t) = t(rp)
′
(

1

rp

) 1
rp−1

(
1− 1

rp

)
≤ t(rp)

′
.

Therefore MĀ ≤M(rp)′ . Again standard computations show that

(2.5) ‖M(rp)′‖Lp′ ≤ cnp(r
′)

1
p′ .

For more details about Young functions and other related topics we encourage the
reader to consult the classical book by M. M. Rao and Z. D. Ren [49].

3. Proof of Theorem 1.1

As explained in Section 1, we prove Theorem 1.1 for p = 1 and p > 1 separately.
We deal with the case of p = 1 first. Since w ∈ A∞ we use the reverse Hölder

inequality property (Lemma 2.1). Hence if s = 1 + 1
τn[w]A∞

, then(
1

|Q|

∫
Q

ws
) 1

s

≤ 2

|Q|

∫
Q

w.

Thus we have that s′ ' [w]A∞ and w ∈ Lsloc(Rn). Now we let gR = wχQR where QR

is the cube centered at 0 with sidelength R. Then gR ∈ Ls(Rn) and hence if f is
smooth |〈Tf, gR〉| < ∞ by Hölder’s inequality and the boundedness of T in any Lq,
q ∈ (1,∞). Taking into account these facts, and after applying first Theorem 2.3, we
have

|〈Tf, gR〉| ≤ cT s
′
∑
Q∈S

|Q|〈f〉Q〈gR〉s,Q.

≤ cT s
′
∑
Q∈S

|Q|〈f〉Q〈w〉s,Q.

≤ 2cT [w]A∞
∑
Q∈S

〈f〉Qw(Q).

We are now in position to use the Carleson embedding type argument as in [29, Lemma
4.1], hence

|〈Tf, gR〉| ≤ cT [w]2A∞ ‖Mf‖L1(w).
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To conclude we just let R → ∞ recalling that by assumption the left-hand side is
finite, namely ‖Tf‖L1(w) <∞. All in all, we have proved

‖Tf‖L1(w) ≤ cT [w]2A∞ ‖Mf‖L1(w).

Now for p > 1. Observe that C∞c is dense in Lp
′
(w), for w ∈ A∞. Moreover, given

g ∈ C∞c , we have that gwχw≤R ∈ Lp
′
, where χw≤R := {x : w(x) ≤ R}. By the sparse

domination formula in Theorem 2.3, we get

|〈Tf, gwχw≤R〉| ≤ cT s
′
∑
Q∈S

〈|f |〉Q〈|gw|s〉
1
s
Q|Q|.

Then, Hölder’s inequality yields

〈|gw|s〉
1
s
Q ≤ 〈|g|

srw〉
1
sr
Q 〈w

(s− 1
r

)r′〉
1
sr′
Q .

Let

(3.1) s = 1 +
1

8pτn[w]A∞
, r = 1 +

1

4p
.

Then it is easy to check that

sr < 1 +
1

2p
< p′, and (s− 1

r
)r′ = s+

s− 1

r − 1
< 1 +

1

τn[w]A∞
.

By monotonicity convergence theorem we can assume that for any cube Q ∈ S,
`(Q) ≤ 2N for some N ∈ N. Then combining the arguments above we obtain

|〈Tf, gwχw≤R〉| ≤ cp,T [w]A∞
∑
Q∈S

〈|f |〉Q〈|g|srw〉
1
sr
Q 〈w〉

1− 1
sr

Q |Q|

= cp,T [w]A∞
∑
Q∈S

〈|f |〉Q
( 1

w(Q)

∫
Q

|g|srwdx
) 1
sr
w(Q)

≤ cp,T [w]A∞
∑
F∈F

〈|f |〉F
( 1

w(F )

∫
F

|g|srwdx
) 1
sr
∑
Q∈S

π(Q)=F

w(Q)

≤ cp,T [w]2A∞

∑
F∈F

〈|f |〉F
( 1

w(F )

∫
F

|g|srwdx
) 1
sr
w(F )

= cp,T [w]2A∞

∫ ∑
F∈F

〈|f |〉F
( 1

w(F )

∫
F

|g|srwdx
) 1
sr
χF (x)wdx

≤ cp,T [w]2A∞

∫
Rn
M(f)Mw

sr(g)wdx

≤ cp,T [w]2A∞‖Mf‖Lp(w)‖g‖Lp′ (w),

where F is the family of the principal cubes in the usual sense, namely,

F =
∞⋃
k=0

Fk

with F0 := {maximal cubes in S} and

Fk+1 :=
⋃
F∈Fk

chF(F ), chF(F )= {Q ( F maximal s.t. τ(Q) > 2τ(F )}
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where τ(Q) = 〈|f |〉Q
(

1
w(Q)

∫
Q
|g|srwdx

) 1
sr

and π(Q) is the minimal principal cube

which contains Q. Since we have assumed that ‖Tf‖Lp(w) is finite, then 〈|Tf |, |g|w〉
is also finite, by dominated convergence theorem. Thus, we conclude that

|〈Tf, gw〉| ≤ cp,T [w]2A∞‖Mf‖Lp(w)‖g‖Lp′ (w).

Finally by taking the supremum over ‖g‖Lp′ (w) = 1 we complete the proof.

4. Proof of Theorem 1.6

We begin observing that Theorem 2.3 with s = 1 + ε yields

|〈Tf, g〉| ≤ cn,T
ε

∑
Q∈S

|Q|〈f〉Q〈g〉1+ε,Q.

By the arguments in [38, Theorem 1.2], we can obtain

|〈Tf, g〉| ≤ cn,T,p
ε

[v]
1

1+ε
− 1
p′

Ar
([u]

1
p

A∞
+ [v]

1
p′

A∞
)‖f‖Lp(w)‖g‖Lp′ (σ),

where

r =

(
(1 + ε)′

p

)′
(p− 1) + 1 = p+

εp

p′ − (1 + ε)

v = σ
1+ε

1+ε−p′ = w
1+ εp′

p′−(1+ε) , u = w
1

1−p = σ.

By definition,

[v]
1

1+ε
− 1
p′

Ar
= sup

Q

( 1

|Q|

∫
Q

w
1+ εp′

p′−(1+ε)

) 1
1+ε
− 1
p′
( 1

|Q|

∫
Q

σ
)(r−1)( 1

1+ε
− 1
p′ )

= sup
Q

( 1

|Q|

∫
Q

w
1+ εp′

p′−(1+ε)

) 1
p

1

1+
εp′

p′−(1+ε)

( 1

|Q|

∫
Q

σ
) 1
p′
.

By Lemma 2.1, let
εp′

p′ − (1 + ε)
=

1

τn[w]A∞
.

Then

[v]
1

1+ε
− 1
p′

Ar
≤ 2[w]

1
p

Ap
, [v]A∞ ≤ cn[w]A∞ .

Altogether,

|〈Tf, g〉| ≤ cn,T [w]
1
p

Ap
[w]A∞([w]

1
p′

A∞
+ [σ]

1
p

A∞
)‖f‖Lp(w)‖g‖Lp′ (σ).

The above estimate implies that

‖T (f)‖Lp(w) ≤ cn,T [w]
1
p

Ap
[w]A∞([w]

1
p′

A∞
+ [σ]

1
p

A∞
)‖f‖Lp(w).

Since T is essentially a self-dual operator (observe that T t is associated to the kernel
Ω̃(x) := Ω(−x)), by duality, we have

‖T‖Lp(w) = ‖T t‖Lp′ (σ) ≤ cn,T [σ]
1
p′

Ap′
[σ]A∞([w]

1
p′

A∞
+ [σ]

1
p

A∞
)

= cn,T [w]
1
p

Ap
[σ]A∞([w]

1
p′

A∞
+ [σ]

1
p

A∞
).
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Thus altogether, we obtain

‖T‖Lp(w) ≤ cn,p,T [w]
1
p

Ap
([w]

1
p′

Ap
+ [σ]

1
p

A∞
) min{[σ]A∞ , [w]A∞}

≤ cn,p,T [w]
p
p−1

Ap
.

Now let us consider the weak type inequality. It is enough to consider the case
1 < p < 2. By the sparse domination formula in Theorem 2.3, we get

|〈Tf, gw〉| ≤ cT s
′
∑
Q∈S

〈|f |〉Q〈|gw|s〉
1
s
Q|Q|.

By similar arguments as that in Theorem 1.1 yields

|〈Tf, gw〉| ≤ cp,T [w]A∞
∑
Q∈S

〈|f |〉Q〈|g|srw〉
1
sr
Q 〈w〉

1− 1
sr

Q |Q|

= cp,T [w]A∞
∑
Q∈S

〈|f |〉Q
( 1

w(Q)

∫
Q

|g|srwdx
) 1
sr
w(Q)

≤ cp,T [w]A∞

∫
Rn

∑
Q∈S

〈|f |〉QχQ(Mw
srg)wdx

≤ cp,T [w]A∞
∥∥∑
Q∈S

〈|f |〉QχQ
∥∥
Lp,∞(w)

‖Mw
srg‖Lp′,1(w),

where the value of s and r are defined in (3.1). Thus, using that the sparse operators
are of weak type (p, p) with respect to w ∈ Ap with constant bounded by a universal

mutiple of [w]
1
p′

A∞
[w]

1
p

Ap
when p > 1, we have

|〈Tf, gw〉| ≤ cp,T [w]
1+ 1

p′

A∞
[w]

1
p

Ap
‖f‖Lp(w)‖g‖Lp′,1(w),

since one can show that Mµ
t : Lq,1(µ) → Lq,1(µ), t ≥ 1, t < q < ∞ with norm

bounded by a dimensional multiple of ( q
t
)′. Here Mµ

t f = Mµ(f t)1/t and Mµ is the
maximal function with respect to the measure µ and attached to the dyadic lattice
that contains S. To prove the bound ( q

t
)′ we can use the well known fact that it is

enough to restrict to characteristics of sets when dealing with the Lorentz space Lq,1,
q > 1. An application of the usual weak type (1, 1) property of Mµ yields immediately
the bound. Another argument can be found in [14, Proposition A.1]. In our case from

that estimate it follows that ‖Mw
sr‖Lp′,1(w) . ( p

′

sr
)′ < 2p′ since p < 2. Indeed, ( p

′

sr
)′ < 2p′

is equivalent to sr+ 1
2
< p′, but this follows by (3.1) since sr+ 1

2
< 1 + 1

2
+ 1

2
= 2 < p′.

Finally, by taking supremum over ‖g‖Lp′,1(w) = 1 we have that

‖Tf‖Lp,∞(w) ≤ cn,p‖Ω‖L∞(Sn−1)[w]
1+ 1

p′

A∞
[w]

1
p

Ap
‖f‖Lp(w) ≤ cn,p‖Ω‖L∞(Sn−1)[w]2Ap‖f‖Lp(w).

Taking into account the strong type estimate we deduce the announced weak type
estimate.

5. Proof of Theorem 1.8 and Corollaries 1.9 and 1.10

We begin with the proof of (1.16). We follow ideas from [36, 37, 29] combined with
the pointwise estimate in Theorem 2.3. Since T is essentially a self-dual operator, if
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we call Ap(t) = A(t1/p) then, by duality, it suffices to prove the following estimate∥∥∥∥ Tf

MApw

∥∥∥∥
Lp′ (MApw)

≤ c(p′)2‖MĀ‖Lp′
∥∥∥∥ fw
∥∥∥∥
Lp′ (w)

.

Let us denote v := MApw. We compute the norm of the left-hand side by duality.
Indeed, by the duality of C∞c (Rn) in weighted Lp spaces we have that∥∥∥∥Tfv

∥∥∥∥
Lp′ (v)

= sup
‖h‖Lp(v)=1

∣∣∣ ∫
Rn
Tf(x)h(x)dx

∣∣∣ = sup
h∈C∞c (Rn)
‖h‖Lp(v)=1

∣∣∣ ∫
Rn
Tf(x)h(x)dx

∣∣∣.
We define operators S(h) and R(h) as in Lemma 2.2 (observe that, since h ∈ C∞c ,
then h ∈ Lp′(Rn)). Then, using Theorem 2.3 and the first property of the operator R
in Lemma 2.2 we have that∣∣∣ ∫

Rn
T (f)hdx

∣∣∣ ≤ cn,T s
′ sup
S

∑
Q∈S

(∫
Q

|f |
)( 1

|Q|

∫
Q

hs
)1/s

≤ cn,T s
′ sup
S

∑
Q∈S

(∫
Q

|f |
)( 1

|Q|

∫
Q

(Rh)s
)1/s

(5.1)

with 1 < s <∞ to be chosen. Hence, it suffices to control∑
Q∈S

( ∫
Q

|f |
)( 1

|Q|

∫
Q

(Rh)s
)1/s

for every sparse family S. To do this we are going to use the reverse Hölder inequality,
namely, Lemma 2.1. We choose s = 1 + 1

τn[Rh]A∞
so that s′ ' [Rh]A∞ ≤ cnp

′. Then,

by reverse Hölder inequality, we get
(5.2)∑
Q∈S

(∫
Q

|f |
)( 1

|Q|

∫
Q

(Rh)s
)1/s

≤ 2
∑
Q∈S

∫
Q

|f | 1

|Q|

∫
Q

Rh = 2
∑
Q∈S

1

|Q|

∫
Q

|f ||Rh(Q).

Using [29, Lemma 4.1] with the weight w = Rh, we have that

(5.3)
∑
Q∈S

1

|Q|

∫
Q

|f ||Rh(Q) ≤ cn[Rh]A∞‖Mf‖L1(Rh) ≤ cnp
′‖Mf‖L1(Rh).

From this point, by Hölder’s inequality and the second property of the operator R in
Lemma 2.2,

(5.4) ‖Mf‖L1(Rh) ≤
(∫

Rn
(Mf)p

′
(v)1−p′

) 1
p′
(∫

Rn
(Rh)pv

) 1
p

≤ 2

∥∥∥∥Mf

v

∥∥∥∥
Lp′ (v)

.

Hence, combining estimates (5.1), (5.2), (5.3), and (5.4), we have that∥∥∥Tf
v

∥∥∥
Lp
′
(v)
≤ c(p′)2

∥∥∥Mf

v

∥∥∥
Lp
′
(v)
.

Let us recover the initial notation for v := MApw. To end the proof of (1.16), we have
to prove that

(5.5)
∥∥∥ Mf

MApw

∥∥∥
Lp′ (MApw)

≤ c‖MĀ‖Lp′
∥∥∥ f
w

∥∥∥
Lp′ (w)
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which in turn is equivalent to prove that

‖M(fw)‖Lp′ ((MApw)1−p′ ) ≤ c‖MĀ‖Lp′
∥∥∥f∥∥∥

Lp′ (w)

but this inequality was obtained in [29, pp. 618–619]. So this ends the proof of (1.16).
If we choose A(t) = tp(1 + log+ t)p−1+δ with δ > 0, since we know that

‖MĀ‖Lp′ ≤ cnp
2

(
1

δ

) 1
p′

,

this yields (1.17), which was stated to be sharp in [29]. If we choose A(t) = tpr we know
that, taking into account (2.4), MĀ ≤M(rp)′ . Now recalling (2.5) and applying (1.16)
for A(t) = tpr, we obtain (1.18). If we assume that w ∈ A∞, choosing r = 1 + 1

τn[w]A∞
in (1.18) we have that r′ ' [w]A∞ and it readily follows from the reverse Hölder
inequality (Lemma 2.1) that Mrw ≤ 2Mw for every x ∈ Rn. This yields (1.19).
Furthermore, if w ∈ A1, from (1.19) and the definition of the A1 constant, we obtain
(1.20). This finishes the proofs of Theorem 1.8 and Corollaries 1.9 and 1.10

6. Proof of Theorem 1.11

In this section we shall give a proof for Theorem 1.11. We start with T = TΩ.
To study the weighted weak (1, 1) bound, one needs to estimate the constant in the
following inequality:

sup
α>0

αw({x ∈ Rn : |TΩ(f)(x)| > α}) ≤ Cw‖f‖L1(w).

To this end, we need to use some estimates obtained by Seeger [51]. Denote

Kj(x) = K(x)(φ(2−j+1|x|)− φ(2−j+2|x|)),
where φ ∈ C∞((0,∞)) satisfying φ(t) = 1 when t ≤ 1 and φ(t) = 0 when t ≥ 2. Then
it is obvious that

(6.1) suppKj ⊂ {x : 2j−2 ≤ |x| ≤ 2j},
and

(6.2) sup
0≤`≤N

sup
j
rn+`

∣∣∣∣∣
(
∂

∂r

)`
Kj(rθ)

∣∣∣∣∣ ≤ CN,n‖Ω‖L∞ .

Given α > 0, without loss of generality we assume f ≥ 0 and we form the Calderón-
Zygmund decomposition of f at height α/‖Ω‖L∞ . In this way, there is a collection of
non-overlapping dyadic cubes {Q} such that f = g+ b, where α

‖Ω‖L∞
< 〈f〉Q ≤ 2nα

‖Ω‖L∞
and, for the good part,

0 ≤ g ≤ 2nα

‖Ω‖L∞
,

whereas, for the bad part,

b =
∑
Q

bQ =
∑
j

∑
Q:`(Q)=2j

bQ =:
∑
j

Bj,

and moreover,

supp bQ ⊂ Q, and ‖bQ‖L1 ≤ 2n+1α

‖Ω‖L∞
|Q|.
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Then

w({x ∈ Rn : |TΩf(x)| > α})

≤ w
({
x /∈ E : |TΩg(x)| > α

2

})
+ w

({
x /∈ E : |TΩb(x)| > α

2

})
+ w(E)

=: I + II + w(E),

where E := ∪Q3Q and we have

w(E) ≤
∑
Q

w(3Q)

|3Q|
3n|Q| ≤

∑
Q

3n[w]A1

‖Ω‖L∞
α

∫
Q

f inf
3Q
w(x)

≤ 3n[w]A1

‖Ω‖L∞
α
‖f‖L1(w).

It remains to estimate I and II. For I, by Chebyshev inequality, estimate (1.18)
in Corollary 1.10, the fact that |g(x)| ≤ 2nα/‖Ω‖L∞ , and an argument in [46, pp.
302–303] (see also [6, p. 282]), we have

I ≤ cp0n α
−p0
∫
Rn\E

|TΩg(y)|p0w(y) dy

≤ α−p0(cn‖Ω‖L∞p0(p′0)2)p0(r′)p0−1

∫
Rn
|g(y)|p0Mr(wχRn\E)(y) dy

≤ α−p0(cn‖Ω‖L∞p0(p′0)2)p0(r′)p0−1 αp0−1

‖Ω‖p0−1
L∞

∫
Rn
|g(y)|Mr(wχRn\E)(y) dy

≤ cn‖Ω‖L∞
α

(
p0(p′0)2

)p0(r′)p0−1

∫
Rn
|f(y)|Mrw(y) dy

≤ cn‖Ω‖L∞
α

(
p0(p′0)2

)p0(r′)p0−1[w]A1‖f‖L1(w)

≤ cn‖Ω‖L∞
α

[w]A1(log([w]A∞ + 1))2‖f‖L1(w),

where in the last step, we have chosen p0 = 1 + 1
log([w]A∞+1)

and r = 1 + 1
τn[w]A∞

, the

exponent from the optimal reverse Hölder property as in Lemma 2.1. To estimate II,
by the decomposition of the kernel, for x /∈ E we have

T (b)(x) =
∑
j∈Z

Kj ∗
(∑
s∈Z

Bj−s

)
(x) =

∑
s∈Z

∑
j∈Z

Kj ∗Bj−s(x) =
∑
s≥0

∑
j∈Z

Kj ∗Bj−s(x).

To proceed our argument, we need to use an auxiliary operator Γsj (for the precise
definition, we refer the reader to [51, pp. 97–98], we are following the same notation
therein). Since we have checked that Kj satisfies (6.1) and (6.2), then it was shown
by Seeger [51] that when N is sufficiently large (but depends only on dimension), then
there exists ε > 0 such that

(6.3)

∥∥∥∥∥∑
j

Γsj ∗Bj−s

∥∥∥∥∥
2

L2

≤ cn2−sεα
∑
Q

‖bQ‖L1 ,

and

(6.4)
∥∥(Kj − Γsj) ∗ bQ

∥∥
L1 ≤ cn2−sε‖bQ‖L1 .
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Indeed, inequalities (6.3) and (6.4) are contained essentially in [51, Lemma 2.1] and
[51, Lemma 2.2], respectively. The latter implies immediately that

(6.5)

∥∥∥∥∥∑
j

(Kj − Γsj) ∗Bj−s

∥∥∥∥∥
L1

≤ cn‖Ω‖L∞2−sε
∑
Q

‖bQ‖L1 ,

where bQ are the bad functions from the Calderón–Zygmund decomposition of f de-
scribed above. Let

Es
α :=

{
x /∈ E :

∣∣∑
j

Kj ∗Bj−s
∣∣ > α

}
.

Then for any α > 0, we have, by (6.3) and (6.5),

(6.6) |Es
α| ≤

cn‖Ω‖L∞
α

2−sε
∑
Q

‖bQ‖L1 ≤ cn2−sε
∑
Q

|Q|.

On the other hand, taking into account (6.1), it is easy to check that

(6.7)

∑
j

‖Kj ∗Bj−s‖L1(w)

≤
∑
j

∑
Q:`(Q)=2j−s

∫∫
|Kj(x− y)||bQ(y)|dyw(x)dx

≤ ‖Ω‖L∞
∑
j

∑
Q:`(Q)=2j−s

∫
|bQ(y)|

∫
|x−y|≤2j

2−jnw(x)dx dy

≤ ‖Ω‖L∞
∑
j

∑
Q:`(Q)=2j−s

∫
|bQ(y)| inf

y′∈Q

∫
|x−y′|≤cn2j+1

2−jnw(x)dx dy

≤ cn‖Ω‖L∞
∑
Q

‖bQ‖L1 inf
Q
Mw

≤ cn α
∑
Q

|Q| inf
Q
Mw.

Now we are in the position to use interpolation with change of measure. We follow
the strategy of [22]. By [22, Lemma 6], (6.6) and (6.7) imply∫

Esα

min(w(x), u)dx ≤ cn
∑
Q

|Q|min(u2−sε, inf
Q
Mw).

Since, for A > 0, ∫ ∞
0

min(A, u)u−1+θ du

u
=

1

θ(1− θ)
Aθ,

then we get∫
Esα

w(x)θdx = θ(1− θ)
∫
Esα

∫ ∞
0

min(w(x), u)u−1+θ du

u
dx

≤ cnθ(1− θ)
∑
Q

|Q|
∫ ∞

0

min(u2−sε, inf
Q
Mw)u−2+θdu

≤ cn2−sε(1−θ)α−1‖Ω‖L∞
∫
|f(x)|(Mw)θdx.
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Rescaling the weight w we obtain

(6.8) w(Es
α) ≤ cn2−sε(1−θ)α−1‖Ω‖∞

∫
|f(x)|(M1/θw)dx.

To get a better constant than [22], in the last step, we shall split the summation in
two terms. For s0 which will be determined later, we have

w
({
x /∈ E : |

∑
s

∑
j

Kj ∗Bj−s| > α
})

≤ w
({
x /∈ E : |

s0∑
s=1

∑
j

Kj ∗Bj−s| >
α

2

})
+ w

({
x /∈ E : |

∞∑
s=s0+1

∑
j

Kj ∗Bj−s| >
α

2

})
≤ 2

α

s0∑
s=1

‖
∑
j

Kj ∗Bj−s‖L1(w)

+
∞∑

s=s0+1

w
({
x /∈ E : |

∑
j

Kj ∗Bj−s| >
cε(1− θ)α

2
2−(s−s0)ε(1−θ)/3

})
=: III + IV,

where for the second term in the first inequality we turned α into cε(1−θ)2−sε(1−θ)/3α,
with c > 0 an absolute constant such that cε(1−θ)

∑
s≥1 2−sε(1−θ)/3 = 1. The estimate

of III is easy,

III ≤ s0cn‖Ω‖L∞α−1
∑
Q

‖bQ‖L1 inf
Q
Mw ≤ s0cn‖Ω‖L∞α−1[w]A1‖f‖L1(w).

To estimate IV , by (6.8), we have

IV ≤
∞∑

s=s0+1

cn
αε(1− θ)

2−s0ε(1−θ)/32−2sε(1−θ)/3‖Ω‖L∞
∫
|f(x)|(M1/θw)dx

≤
∞∑

s=s0+1

cn
αε(1− θ)

2−s0ε(1−θ)2−2(s−s0)ε(1−θ)/3‖Ω‖L∞
∫
|f(x)|(M1/θw)dx

≤ cn
αε2(1− θ)2

2−s0ε(1−θ)‖Ω‖L∞
∫
|f(x)|(M1/θw)dx

By the reverse Hölder inequality, one can take

θ ' cn[w]A∞
1 + cn[w]A∞

.

Then

(M1/θw)(x) ≤ c[w]A1w(x).

Since ε is an absolute constant, finally, we can take

s0 :=
1

ε(1− θ)
log2([w]A∞ + 1) h [w]A∞ log2([w]A∞ + 1).
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Then altogether,

w
({
x /∈ E :|

∑
s≥0

∑
j

Kj ∗Bj−s| > α
})

≤ cnα
−1[w]A1 [w]A∞ log2([w]A∞ + 1)‖Ω‖L∞‖f‖L1(w).

It remains to study the case for B(n−1)/2. The main difference is the estimate of the
following term

w({x /∈ E : |B(n−1)/2(b)(x)| > α

2
}).

Since it’s well known (see [27, p. 340] and also [7]) that the kernel of B(n−1)/2 is of
the form

cn
cos(2π|x| − πn/2)

|x|n
χ{|x|≥1} +O

( 1

1 + |x|n+1

)
,

the error term is bounded by the maximal function pointwise, so we only need to care
about the first term. Define

Hj(x) := cn
cos(2π|x| − nπ/2)

|x|n
(φ(2−j+1|x|)− φ(2−j+2|x|)), j ≥ 1.

It is easy to check that Hj still satisfies the assumption (6.1) and (6.2), so the estimate
is almost the same and we conclude the proof of Theorem 1.11.

7. Proof of Theorem 1.12

In this section we are concerned with the proof of Theorem 1.12. Namely, we shall
get the following inequality

(7.1) ‖Ar,S(f)‖Lp(w) ≤ C(p, r, A)‖f‖Lp(MApw),

where Ā ∈ Bp′ (see Subsection 2.3) and f ≥ 0. We plan to use the so-called ‘maximal
function trick’ (see e.g. [38]) to simplify the inequality. For simplicity, denote again

v := MApw and let u = v
r
r−p . Then we can rewrite (7.1) as∥∥∥∑

Q∈S

(〈f ru−1〉uQ)
1
r 〈u〉

1
r
QχQ

∥∥∥
Lp(w)

≤ C(p, r, A)‖f ru−1‖
1
r

Lp/r(u)
.

By a change of variable, this is equivalent to∥∥∥∑
Q∈S

(〈f r〉uQ)
1
r 〈u〉

1
r
QχQ

∥∥∥
Lp(w)

≤ C(p, r, A)‖f r‖
1
r

Lp/r(u)
= C(p, r, A)‖f‖Lp(u).

Then it suffices to prove the following inequality

(7.2)
∥∥∥∑
Q∈S

〈f〉uQ〈u〉
1
r
QχQ

∥∥∥
Lp(w)

≤ C(p, r, A)

(p/r)′
‖f‖Lp(u).

Indeed, notice that once (7.2) holds, then∥∥∥∑
Q∈S

(〈f r〉uQ)
1
r 〈u〉

1
r
QχQ

∥∥∥
Lp(w)

≤
∥∥∥∑
Q∈S

〈Mu
r (f)〉Q〈u〉

1
r
QχQ

∥∥∥
Lp(w)

≤ C(p, r, A)

(p/r)′
‖Mu

r (f)‖Lp(u)

≤ C(p, r, A)‖f‖Lp(u),
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where

Mu
r (f)(x) := sup

Q3x
(〈|f |r〉uQ)

1
r .

So let us prove (7.2). By a change of variable again, (7.2) is equivalent to the following

(7.3)
∥∥∥∑
Q∈S

〈f〉Q〈u〉
1
r
−1

Q χQ

∥∥∥
Lp(w)

≤ C(p, r, A)

(p/r)′
‖f‖Lp(u1−p).

Thus now we only need to focus on (7.3). For convenience, set

TS(f) =
∑
Q∈S

〈f〉Q〈u〉
1
r
−1

Q χQ.

By duality, (7.3) is equivalent to

(7.4) ‖TS(f)‖Lp′ (u) ≤
C(p, r, A)

(p/r)′
‖f‖Lp′ (w1−p′ ).

Starting from the left-hand side of (7.4), by duality again, we have

‖TS(f)‖Lp′ (u) = sup
‖h‖Lp(u1−p)=1

∫
|TS(f)| · |h|

≤ sup
‖h‖Lp(u1−p)=1

∑
Q∈S

〈f〉Q〈u〉
1
r
−1

Q

∫
Q

|h|.

Notice that since for any 0 < δ < 1, vδ = (MAp(w))δ is an A1 weight with [vδ]A1 ≤ cn
1−δ ,

see e.g. [15, pp. 110-113]. By Hölder inequality, since pr > p− r, we have

〈u〉
1
r
−1

Q =
1

〈(v−1)
r
p−r 〉

1
r′
Q

=
1

〈(v−
1
p )

pr
p−r 〉

1
r′
Q

≤ 1

〈v−
1
p 〉

pr
(p−r)r′

Q

≤ 〈v
1
p 〉

pr
(p−r)r′

Q ≤ (cnp
′)

pr
(p−r)r′ inf

x∈Q
v(x)

r−1
p−r .

Now we form the Rubio de Francia algorithm (Lemma 2.2). For simplicity, set

hp,r,v(x) = |h(x)|v(x)
r−1
p−r .

It is easy to check that ‖hp,r,v‖Lp(v) = ‖h‖Lp(u1−p) = 1. Then define the operator
R(hp,r,v) as in Lemma 2.2. Finally we have, by the properties of R(hp,r,v),∑

Q∈S

〈f〉Q〈u〉
1
r
−1

Q

∫
Q

|h| ≤ (cnp
′)
p(r−1)
p−r

∑
Q∈S

〈f〉Q
∫
Q

hp,r,v

≤ (cnp
′)
p(r−1)
p−r

∑
Q∈S

〈f〉QR(hp,r,v)(Q)

≤ cnp
′(cnp

′)
p(r−1)
p−r

∫
M(f)R(hp,r,v)

≤ (cnp
′)
r(p−1)
p−r ‖M(f)‖Lp′ (v1−p′ )‖R(hp,r,v)‖Lp(v)

≤ (cnp
′)
r(p−1)
p−r ‖MĀ‖Lp′‖f‖Lp′ (w1−p′ ),
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where in the last step we have used (5.5). Altogether, we obtain

‖Ar,S(f)‖Lp(w) ≤ (cnp
′)
r(p−1)
p−r

(p
r

)′‖MĀ‖Lp′‖f‖Lp(MApw).

Remark 7.1. By the result in [39], our result applies to singular integral operators
with Lr-Hörmander condition as well. Specifically, our result applies to Fourier mul-
tipliers with Hörmander condition.

Appendix A. Some applications of Theorem 1.1

In this appendix we further exploit Theorem 1.1 by showing a couple of two different
types of examples. The first one is related to general Banach Function Spaces (BFS)
X as can be seen from [1]. We follow here the theory developed in [15, 16]. For
the second type of examples we consider variable Lp spaces following [12]. In both
applications the duality plays a central role.

We will denote throughout this appendix that T is either TΩ with Ω ∈ L∞ satisfying∫
Sn−1 Ω = 0 or B(n−1)/2. The initial key inequality is the case p = 1 from Theorem 1.1,

namely

(A.1) ‖Tf‖L1(w) ≤ c‖Mf‖L1(w)

for any w ∈ A∞ and for any smooth function such that the left-hand side is finite.
Further, from the same theorem we have a good control of the constant, c ≈ [w]2A∞ .
However, we don’t need to be so precise in this appendix. More important, we need
the following vector-valued extension from part b) of Theorem 1.2:

(A.2)
∥∥∥(∑

j

|Tfj|q
)1/q∥∥∥

L1(w)
≤ c

∥∥∥(∑
j

(Mfj)
q
)1/q∥∥∥

L1(w)

which holds for any q ∈ (0,∞) and for w ∈ A∞.

A.1. Banach function spaces.

Theorem A.1. Let X be a BFS such that M : X ′ → X ′ where X ′ is the associate
space to X. Then,

a) Scalar context.

‖Tf‖X ≤ c ‖Mf‖X ,
for any smooth function such that the left-hand side is finite.

b) Vector-valued extension. If q ∈ (0,∞) then∥∥∥(∑
j

|Tfj|q
)1/q∥∥∥

X
≤ c

∥∥∥(∑
j

(Mfj)
q
)1/q∥∥∥

X

and if q > 1 this is bounded by c‖M(‖f‖`q)‖X .

Therefore, we get the following:

Corollary A.2. Let T be as above. Let X be a rearrangement invariant BFS such
that the Boyd indices αX and αX satisfy

0 < αX ≤ αX < 1
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namely, M : X → X and and M : X ′ → X ′, then

T : X → X

and
T : X`q → X`q .

The corollary follows directly from Lorentz-Shimogaki’s characterization of the re-
arrengement invariant BFS for which the Hardy–Littlewood maximal is bounded as
can be found in [1].

Proof of Theorem A.1. a) The ‖Tf‖X can be writen as

‖Tf‖X = sup
∣∣∣ ∫

Rn
Tf g

∣∣∣
where the supremum is taken over all functions g ∈ X ′ with ‖g‖X′ = 1. Let us fix one
of these g. We now adapt Rubio de Francia’s algorithm to this context: consider

G =
∞∑
k=0

Mk(g)

(2‖M‖X′)k

where Mk is the operator M iterated k times and A is the norm of M as bounded
operator on X ′. It is immediate to see that:

a) g ≤ G
b) ‖G‖X′ ≤ 2 ‖g‖X′
c) G ∈ A1, in fact MG ≤ 2‖M‖X′ G
In particular since G ∈ A∞ we can apply (A.1)∫

Rn
|Tf | |g| ≤

∫
Rn
|Tf |G ≤ C

∫
Rn
Mf G ≤ C ‖Mf‖X‖G‖X′ ≤ C ‖Mf‖X‖g‖X′ .

Then, taking the supremum over all g ∈ X ′ we deduce the theorem.
b) The proof of the first inequality it is identical to the proof of the scalar situation

using (A.2). For the second we will use the following pointwise estimate contained in
[16]: there exists a constant c > 0 depending on q, δ, n, such that

M#
δ

(
M qf

)
(x) ≤ cM(‖f‖`q)(x), x ∈ Rn, q > 1.

where we use the notation

M qf(x) =

(
∞∑
i=1

Mfj(x)q

)1/q

,

and
M#

δ g(x) = M#(|g|δ)(x)
1
δ ,

where the Fefferman-Stein sharp maximal function is given by

M#f(x) = sup
x∈B

1

|Q|

∫
Q

|f(y)− fQ| dy.

Assuming for the moment this result, we use the well known Fefferman-Stein esti-
mate [32], ∫

Rn
|f(x)|pw(x) dx ≤ C

∫
Rn
M#f(x)pw(x) dx,
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for any A∞-weight w, any p, 0 < p < ∞ and for any function f such that left-hand
side is finite. Hence, if 0 < δ < 1,∫

Rn
M qf(x)pw(x) dx =

∫
Rn

(
M qf(x)δ

) p
δ w(x) dx

≤ C

∫
Rn
M#

δ (M qf)(x)pw(x) dx

≤ C

∫
Rn
M(‖f‖`q)(x)pw(x) dx.

The proof is finished.
�

A.2. Lp variable theory.
Given a measurable function p : Rn → [1,∞), Lp(·)(Rn) denotes the set of measur-

able functions f on Rn such that for some λ > 0,∫
Rn

(
|f(x)|
λ

)p(x)

dx <∞.

This set becomes a Banach function space when equipped with the norm

‖f‖p(·),Rn = inf

{
λ > 0 :

∫
Rn

(
|f(x)|
λ

)p(x)

dx ≤ 1

}
.

These spaces are referred to as variable Lp spaces and they generalize the standard
Lp spaces. They have many properties in common with the standard Lp spaces.

We define P(Rn) to be the set of measurable functions p : Rn → [1,∞) such that

p− = ess inf{p(x) : x ∈ Rn} > 1, p+ = ess sup{p(x) : x ∈ Rn} <∞.
Under these conditions Lp(·)(Rn) becomes a uniformly convex, reflexive space whose
dual space (Lp(·)(Rn))∗ is equal to Lp

′(·)(Rn), where p′(·) is the conjugate exponent
function defined by

1

p(x)
+

1

p′(x)
= 1, x ∈ Rn.

Let B(Rn) be the set of p(·) ∈ P(Rn) such that the maximal function M is bounded
on Lp(·)(Rn). Some examples of these functions are those satisfying the following
log-Hölder continuous property,

(A.3) |p(x)− p(y)| ≤ C

| log |x− y||
, |x− y| ≤ 1/2,

(A.4) |p(x)− p(y)| ≤ C

log(e+ |x|)
, |y| ≥ |x|.

See [10] and [11] for more information about these spaces.
Because our proofs rely on duality arguments, we will not need that the maximal

operator is bounded on Lp(·)(Rn) but on its associate space Lp
′(·)(Rn).

Since

|p′(x)− p′(y)| ≤ |p(x)− p(y)|
(p− − 1)2

,

it follows at once that if p(·) satisfies (A.3) and (A.4), then so does p′(·), i.e., if these
two conditions hold, then M is bounded on Lp(·)(Rn) and Lp

′(·)(Rn).
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The following extrapolation theorem from [12] is the key estimate.

Theorem A.3. Let F be a family of pairs of measurable functions (f, g) and suppose
that for every weight w ∈ A1,∫

Rn
f(x)w(x) dx ≤ C0

∫
Rn
g(x)w(x) dx, (f, g) ∈ F ,

where C0 depends only on the A1 constant of w. Let p(·) ∈ P(Rn) be such that
p′(·) ∈ B(Rn). Then for all (f, g) ∈ F such that f ∈ Lp(·)(Ω),

‖f‖p(·),Ω ≤ C ‖g‖p(·),Ω,
where the constant C is independent of the pair (f, g).

Theorem A.4. Let p(·) ∈ P(Rn) be such that p′(·) ∈ B(Rn). Then:

a) Scalar context.

‖Tf‖Lp(·)(Rn) ≤ c ‖Mf‖Lp(·)(Rn),

for any smooth function such that the left-hand side is finite.
b) Vector-valued extension. If q ∈ (0,∞) then∥∥∥(∑

j

|Tfj|q
)1/q∥∥∥

Lp(·)
≤ c

∥∥∥(∑
j

(Mfj)
q
)1/q∥∥∥

Lp(·)

and if q > 1 this is bounded by c ‖M(‖f‖`q)‖Lp(·).

The proof follows the same scheme as the proof of Theorem A.1 from the previous
section using the main ideas from [12].

Therefore, we get the following.

Corollary A.5. Let p(·) ∈ P(Rn) be such that both p(·) and p′(·) belong to B(Rn).
Then if X = Lp(·)(Rn) we have that T : X → X and also T : X`q → X`q .

Appendix B. An alternative proof of Theorem 1.12

In this appendix, we provide a different proof of our Theorem 1.12. It is actually
given in [3], but without control on the constant. Take B̄(t) = t

1
2

( p
r

+1), it is easy to
check B̄(t) ∈ Bp/r. Observe that for any weight w and Young function A such that
Ā ∈ Bp′ , we have

sup
Q
‖w1/p‖A,Q‖(MApw)−r/p‖1/r

B,Q ≤ sup
Q

inf
x∈Q

(MApw)
1
p‖(MApw)−r/p‖1/r

B,Q ≤ 1.

Recall that v = MApw. Now we have,

‖Ar,S(f)‖Lp(w) = sup
‖g‖

Lp
′=1

∫
Ar,S(f)w

1
p g

= sup
‖g‖

Lp
′=1

∑
Q∈S

〈f rv
r
pv−

r
p 〉

1
r
Q

∫
Q

w
1
p g

≤ 4 sup
‖g‖

Lp
′=1

∑
Q∈S

‖f rv
r
p‖

1
r

B̄,Q
‖v−

r
p‖

1
r
B,Q‖w

1
p‖A,Q‖g‖Ā,Q|Q|

≤ 8 sup
‖g‖

Lp
′=1

∑
Q∈S

‖f rv
r
p‖

1
r

B̄,Q
‖g‖Ā,Q|EQ|
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≤ 8 sup
‖g‖

Lp
′=1

∫
MB̄(f rv

r
p )

1
rMĀ(g)

≤ cn‖MĀ‖Lp′ (βp/r(B̄))
1
r ‖f‖Lp(v),

where in the last step, we have used the Hölder’s inequality and Lemma 2.4. A direct
calculation yields

βp/r(B̄) =

∫ ∞
1

t
1
2

( p
r

+1)

tp/r
dt

t
=

2r

p− r
.

Altogether, we obtain

(B.1) ‖Ar,S(f)‖Lp(w) ≤ cn

( 2r

p− r

) 1
r ‖MĀ‖Lp′‖f‖Lp(v).

For the Calderón-Zygmund case, namely, r = 1, (B.1) turns to

‖Ar,S(f)‖Lp(w) ≤ cnp
′‖MĀ‖Lp′‖f‖Lp(v).

For TΩ with Ω ∈ L∞, choosing r = 1 + p−1
2

, we obtain

‖TΩ(f)‖Lp(w) ≤ cn(p′)2‖MĀ‖Lp′‖f‖Lp(v),

which coincides with our previous result.

Appendix C. Theorem 1.11 for more general operators

We present a proof of a version of Theorem 1.11 for more general operators, sug-
gested to us by the referee. It shows that, in fact, the quantitative weak-type estimate
is a direct consequence of the sparse bound.

Theorem C.1. Let T be an operator that satisfies, for 1 < s < 2, the sparse bound

|〈Tf, g〉| ≤ cT s
′ sup
S

∑
Q∈S

|Q|〈f〉Q〈g〉s,Q.

Then

‖T‖L1(w)→L1,∞(w) ≤ cT [w]A1 [w]A∞ log2([w]A∞ + 1).

Proof. We need the following observation: let r = 1 + 1
τn[w]A∞

be the reverse Hölder

constant, i.e., 〈w〉r,Q ≤ 2〈w〉Q. Then define s = 1 + 1
2τn[w]A∞

. It is easy to see that

s′ = cn[w]A∞ . Thus, since 2(s− 1) + 1 = r, we have( 1

w(Q)

∫
Q

w(s−1)2dw
) 1

2 ≤ 2r/2〈w〉
r−1
2

Q = 2r/2〈w〉−1
Q 〈w〉

s
Q ≤ 2〈w〉−1

Q 〈w
s〉Q

= 2
1

w(Q)

∫
Q

ws−1dw.

Then standard arguments give us, for any set E ⊂ Q0,

(C.1)
ws(E)

ws(Q0)
.
[ w(E)

w(Q0)

] 1
2
.

With this aside done, we turn to the main line of the argument. Let f ∈ L1(w) be
positive with norm one. We will use the restricted weak-type approach (see [26, p. 80]
to bound the weak-type norm. Hence, it is enough to show that for any set G ⊂ Rn,
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open and of finite w-measure, there is a w-major set G′ ⊂ G, i.e that w(G′) ≥ w(G)/2,
so that for |g| ≤ χG′ =: h,

|〈Tf, gw〉| ≤ CT [w]A1 [w]A∞ log2([w]A∞ + 1).

Take G′ = G \ {MDf > 2 [w]A1w(G)−1} where MD is the maximal function associ-
ated to S. Apply the assumed sparse bound, where we choose s so that s′ = cn[w]A∞ .

|〈Tf, gw〉| . [w]A∞
∑
Q∈S

|Q|〈f〉Q〈hw〉s,Q

. [w]A∞
∑
Q∈S

w(Q)〈f〉Q〈h〉w
s

s,Q.

Let Sj,k be those Q ∈ S such that

(C.2) 2−j−1[w]A1w(G)−1 < 〈f〉Q ≤ 2−j[w]A1w(G)−1, 2−k−1 < 〈h〉wQ ≤ 2−k.

Notice that the definition of G′ forces j ≥ −1, and the definition of h forces k ≥ 0.
Then on one hand,∑
Q∈Sj,k

w(Q) ' 2j[w]−1
A1
w(G)

∑
Q∈Sj,k

w(Q)〈f〉Q

. 2j[w]−1
A1
w(G)

∑
Q∈Sj,k

〈w〉Q
∫
ESj,k (Q)

f ≤ 2j[w]−1
A1
w(G)

∫
fMw ≤ 2jw(G),

where ESj,k(Q) := Q \
⋃
Q′∈Sj,k,Q′(QQ

′. On the other hand, let
⋃∞
t=1 Stj,k be its gen-

erational decomposition. That is, S1
j,k are the maximal elements, S2

j,k are the next-
maximal and so on. Note that for t = 1

σ(j, k, 1) :=
∑
Q∈S1j,k

w(Q) ≤ w{MD
w h > 2−k−1} . 2kw(G)

Now, we use the A∞ condition on w to see that

σ(j, k, t) :=
∑
Q∈Stj,k

w(Q) . 2−ct/[w]A∞σ(j, k, 1).

Therefore, ∑
Q∈Sj,k

w(Q) =
∑
t≥1

σ(j, k, t) . [w]A∞2kw(G).

Finally, we use the relative A∞ condition (C.1) to see that for Q ∈ Sj,k, we have
〈h〉wss,Q . 2−k/4. Indeed, if we let E = G′ ∩Q, we have

〈h〉wss,Q =

(
ws(E)

ws(Q)

) 1
s

.
[w(E)

w(Q)

] 1
2s

=
(
〈h〉wQ

) 1
2s

and hence apply (C.2) and that s < 2.
Putting these pieces together, the sum to bound is

|〈Tf, gw〉| . [w]A1 [w]A∞
w(G)

∑
k≥0

∑
j≥−1

min{2jw(G), [w]A∞2kw(G)}2−j−
k
4
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= [w]A1 [w]A∞
∑
k≥0

23k/4
∑

j>k+log2([w]A∞+1)

[w]A∞2−j

+ [w]A1 [w]A∞
∑
k≥0

2−k/4
∑

−1≤j≤k+log2([w]A∞+1)

1

. [w]A1 [w]A∞ log2([w]A∞ + 1).

The proof is complete. �
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[25] José Garćıa-Cuerva and José L. Rubio de Francia, Weighted Norm Inequalities and Related
Topics, North Holland Mathematics Studies, 116. Mathematical Notes, 104. North-Holland
Publishing Co., Amsterdam, 1985.

[26] Loukas Grafakos, Classical Fourier analysis. Third edition. Graduate Texts in Mathematics,
250. Springer, New York, 2014.

[27] Loukas Grafakos, Modern Fourier analysis. Third edition. Graduate Texts in Mathematics,
250. Springer, New York, 2014.
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operators related to a problem of Muckenhoupt and Wheeden, Math. Res. Lett. 16 (2009),
149–156.

[38] Kangwei Li, Two weight inequalities for bilinear forms, Collect. Math., 68 (2017), 129–144.
[39] Kangwei Li, Sparse domination theorem for multilinear singular integral operators with Lr-
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