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Abstract. This paper studies Optimized Schwarz methods for the Stokes-
Darcy problem. Robin transmission conditions are introduced and the coupled

problem is reduced to a suitable interface system that can be solved using

Krylov methods. Practical strategies to compute optimal Robin coefficients
are proposed which take into account both the physical parameters of the

problem and the mesh size. Numerical results show the effectiveness of our

approach. Stokes-Darcy coupling; Domain decomposition methods; Optimized
Schwarz methods; Robin interface conditions.

1. Introduction

The Stokes-Darcy problem has received a growing attention by the mathematical
community over the last decade from the seminal works by [14] and [32]. The
interest for this problem is not only due to its many possible applications, but
also to its mathematical nature. Indeed, it is a good example of multi-physics
problem where two different boundary value problems are coupled into a global
heterogeneous one. To compute the approximate solution of this problem one could
solve it in a monolithic way using either a direct or a suitably preconditioned
iterative method. However, its multi-physics nature makes it suitable to splitting
methods typical of domain decomposition techniques. These methods allow to
recover the solution of the global problem by iteratively solving each subproblem
separately and they thus permit to reuse software specifically developed to deal
with either incompressible or porous media flows. The difficulty of this approach
is to guarantee effective convergence and robustness of the iterations.

Classical Dirichlet-Neumann type methods (see [35]) for the Stokes-Darcy prob-
lem were studied in [14] and [13] showing that they may exhibit slow convergence
for small values of the viscosity of the fluid and the permeability of the porous
medium. A Robin-Robin method was then proposed as a possible alternative in
[13] and [16]. Analogous substructuring methods based on Robin interface con-
ditions were subsequently studied in [7, 8, 10] and, more recently, in [6] where a
comparison of these different methods has been carried out. All these works show
that the Robin-Robin method is more robust than the Dirichlet-Neumann one, but
it is still unclear how to choose the Robin coefficients in an optimal way taking
into account both the main physical parameters of the problem and the mesh size.
Indeed, apparently contradictory results can be found in the literature regarding
the relative magnitude of such coefficients and their dependence on the physical
and computational quantities that characterize the problem and its discretization.
In this work, we focus on the effective solution of the heterogeneous Stokes-Darcy
problem by means of a Robin-type interface coupling between the subdomains and
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we optimize the convergence properties of the coupling algorithm in the framework
of Optimized Schwarz Methods.

Differently from the classical Schwarz Algorithm (see, e.g. [38, 35, 39]), based on
Dirichlet transmission conditions (rather slow and very much dependent on the size
of the overlap), Optimized Schwarz Algorithms are based on more effective trans-
mission conditions and show significant improvement in terms both of robustness
and of computational cost (see [17, 18, 22, 21]). In addition, whilst in general the
classical Schwarz method is not convergent in the absence of overlap, Optimized
Schwarz Algorithms do not suffer from such drawback, and ensure convergence also
for decompositions into non-overlapping subdomains. Optimized Schwarz Methods
are thus a natural framework to deal with spatial decompositions of the compu-
tational domain that are driven by a multi-physics problem as the one at hand.
Originally, P.L. Lions proposed Robin conditions to obtain convergence without
overlap ([33]), while in a short note on non-linear problems [28] suggested nonlocal
operators for best performance. In [9], these optimal, non-local transmission con-
ditions were developed for advection-diffusion problems, with local approximations
for small viscosity, and low order frequency approximations were proposed in [34]
and [12]. Optimized transmission conditions for the best performance in a given
class of local transmission conditions were introduced for advection diffusion prob-
lems in [31], for the Helmholtz equation in [21], for Laplace’s equation in [20] and
for Maxwell’s equation in [1]. For complete results and attainable performance for
symmetric, positive definite problems, see [22]. The Optimized Schwarz methods
were also extended to systems of partial differential equations, such as the com-
pressible Euler equations ([18]) and the full Maxwell system (see [17]). Recently,
Optimized Schwarz strategies have been proposed for the coupling of heterogeneous
models, such as in Fluid-Structure Interaction problem ([24]) and in the coupling
of Bidomain and Monodomain models in electrocardiology ([26]).

The paper is organized as follow. After introducing the Stokes-Darcy problem
in Section 2, in Section 3 a Robin-Robin iterative method is studied. Its conver-
gence properties are enlightened by means of Fourier analysis in the framework
of Optimized Schwarz Methods, and optimal Robin parameters for the interface
conditions are devised. In Section 4 the algebraic interpretation of the method is
provided and numerical tests illustrate the convergence properties of the method
and its robustness with respect both to mesh size and to the problem coefficients.

2. Problem setting and discretization

We consider a computational domain formed by two subregions: one occupied
by a fluid, the other formed by a porous medium. More precisely, let Ω ⊂ RD

(D = 2, 3) be a bounded domain, partitioned into two non-intersecting subdomains
Ωf and Ωp separated by an interface Γ, i.e., Ω = Ωf ∪ Ωp, Ωf ∩ Ωp = ∅ and

Ωf ∩Ωp = Γ. We suppose the boundaries ∂Ωf and ∂Ωp to be Lipschitz continuous.
From the physical point of view, Γ is a surface separating the domain Ωf filled by
a fluid from the domain Ωp formed by a porous medium. We assume that Ωf has
a fixed surface, i.e., we neglect the case of free-surface flows. In Fig. 1 we show a
schematic representation of the computational domain. In the following, np and
nf denote the unit outward normal vectors to ∂Ωp and ∂Ωf , respectively, and we
have nf = −np on Γ. We suppose nf and np to be regular enough and we indicate
n = nf for simplicity of notation.
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Figure 1. Schematic representation of a 2D section of the computa-
tional domain.

The fluid in Ωf is incompressible with constant viscosity and density and it can
be described by the dimensionless steady Stokes equations: find the fluid velocity
uf and pressure pf such that

(1) −∇ · (2µf∇suf − pfI) = ff and ∇ · uf = 0 in Ωf ,

where I and ∇suf = 1
2 (∇uf + (∇uf )T ) are the identity and the strain rate tensor;

µf = (Re Eu)−1 > 0 with Re and Eu being the Reynolds’ and the Euler’s number;
ff is a given external force. (∇ and ∇· denote the dimensionless gradient and
divergence operator with respect to the space coordinates.)

The motion of the fluid through the porous medium can be described by the
dimensionless elliptic problem: find the pressure pp such that

(2) −∇ · (ηp∇pp) = −∇ · gp in Ωp

where ηp = (Re Eu Da)K, K being the diagonal dimensionless intrinsic permeabil-
ity tensor and Da the Darcy number ([3]), while gp is a given external force that
accounts for gravity. The fluid velocity in Ωp can be obtained using Darcy’s law
(see, e.g., [2]): up = −ηp∇pp + gp.

Suitable continuity conditions must be imposed across the interface Γ to describe
filtration phenomena. As a consequence of the incompressibility of the fluid we
prescribe the continuity of the normal velocity across Γ:

(3) uf · n = −(ηp∇pp) · n + gp · n on Γ.

Moreover, we impose the following condition relating the normal stresses across Γ
(see, e.g., [13, 27, 32]):

(4) −n · (2µf∇suf − pfI) · n = pp on Γ.

Finally, we introduce the so-called Beavers-Joseph-Saffman condition (see, e.g, [4,
37, 30, 14, 32]):

(5) −((2µf∇suf − pfI) · n)τ = ξf (uf )τ on Γ

where ξf = αBJ(Re Eu
√

Da
√
τ ·K · τ )−1 and αBJ is a dimensionless constant

which depends only on the geometric structure of the porous medium. We indicate
by (v)τ the tangential component of any vector v: (v)τ = v − (v · n)n on Γ.

As concerns the boundary conditions, several choices can be made (see, e.g., [15]).
For simplicity, we consider here homogeneous boundary data and, with reference
to Fig. 1 for the notation, for the Darcy problem we impose pp = 0 on ΓDp and

ηp∇pp ·np = gp ·np on ΓNp , while for the Stokes problem we set uf = 0 on ∂Ωf \Γ.
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3. Optimized Robin-Robin method

3.1. Formulation of the Robin-Robin method. Let αf and αp be two positive
parameters: αf , αp > 0. By combining (3) and (4) linearly with coefficients (−αf , 1)
and (αp, 1) we obtain two Robin interface conditions on Γ:

(6) −n ·
(
2µf∇suf − pfI

)
· n− αfuf · n = pp + αf

(
(ηp∇pp) · n− gp · n

)
,

and

(7) pp − αp
(
(ηp∇pp) · n− gp · n

)
= −n ·

(
2µf∇suf − pfI

)
· n + αpuf · n.

A Robin-Robin type algorithm amounts to set up a fixed point problem that
solves iteratively the fluid problem with boundary condition (6) and the porous
medium problem with boundary condition (7). More precisely, the algorithm reads
as follows. Given the Darcy pressure p0

p in Ωp, for m ≥ 1 until convergence find the
fluid velocity umf , the fluid pressure pmf in Ωf and the pressure pmp in Ωp such that
the following problems are satisfied:

1. Stokes problem:
(8)

−∇ · (2µf∇sumf − pmf I) = ff and ∇ · umf = 0 in Ωf
umf = 0 on ∂Ωf \ Γ

−(n · (2µf∇sumf − pmf I))τ = ξf (umf )τ on Γ

−n · (2µf∇sumf − pmf I) · n− αfumf · n = pm−1
p + αf ((ηp∇pm−1

p ) · n− gp · n) on Γ,

2. Darcy problem:
(9)

−∇ · (ηp∇pmp ) = −∇ · gp in Ωp
pmp = 0 on ΓDp

−(ηp∇pmp ) · np + gp · np = 0 on ΓNp
pmp − αp ((ηp∇pmp ) · n− gp · n) = −n · (2µf∇sumf − pmf I) · n + αpu

m
f · n on Γ.

We aim now to optimize the Robin-Robin algorithm (8)-(9) in the framework
of Optimized Schwarz Methods. Such methods, based upon interface continuity
requirements on traces and fluxes of Robin type, are a generalization of the non-
overlapping algorithm proposed for elliptic problems in [33], that ensures conver-
gence also without relaxation. Since Optimized Schwarz Methods do not require
overlap to converge, they have become quite popular in the last decade, and are a
natural framework to deal with a spatial decomposition of the domain driven by
a multi-physics problem (see [24]). Although in general Optimized Schwarz meth-
ods based on one-sided interface conditions (αf = αp) have been extensively used
along the years (see, e.g., [33, 22, 31, 11]), the use of two-sided interface condition
(αf 6= αp) has recently become increasingly popular due to better convergence prop-
erties of the associated algorithms, see [1, 17, 19, 23, 25]. Since such parameters are
in general obtained by suitable approximations of the symbols in the Fourier space
of the Steklov-Poincaré operator (or Dirichlet-to-Neumann mapping) associated to
the problem within the subdomain ([22]), the two-sided interface conditions are a
natural choice in the presence of multi-physics problems where different problems
have to be solved in different regions of the computational domain ([24, 26]). In
the rest of the section we study, by means of Fourier analysis, the convergence
properties of the Robin-Robin algorithm (8)-(9) in a simplified settings, and its
optimization in the two-sided interface conditions framework.
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3.2. A simplified problem. We introduce suitable simplifying hypotheses and
subproblems. The fluid domain is the half plane Ωf = {(x, y) ∈ R2 : x < 0}, the
porous medium is the complementary half plane Ωp = {(x, y) ∈ R2 : x > 0}, while
the interface is given by Γ = {(x, y) ∈ R2 : x = 0}. Thus, n = (1, 0), and τ = (0, 1).
We assume µf to be constant, ηp = diag(η1, η2) to be constant and anisotropic (i.e.,
η1 6= η2), and we denote uf (x, y) = [u1(x, y), u2(x, y)]T and gp = (g1, g2). In this
simplified setting, the Robin-Robin algorithm reads: given u0

f , p0
f , and p0

p, solve for
m > 0 until convergence

1. the fluid problem
(10)

−µf
(

(∂xx + ∂yy)um1
(∂xx + ∂yy)um2

)
+

(
∂xp

m
f

∂yp
m
f

)
= ff in (−∞, 0)× R

∂xu
m
1 + ∂yu

m
2 = 0 in (−∞, 0)× R

−µf (∂xu2 + ∂yu1) = ξf u
m
2 on {0} × R

(−2µf∂xu
m
1 + pmf )− αf um1 = pm−1

p − αf (−η1 ∂xp
m−1
p + g1) on {0} × R

(In the momentum equation we have used (1) to obtain −∇ · (2∇suf ) =
−∆uf .)

2. the porous-medium problem

(11)
−(∂x(η1∂x) + ∂y(η2∂y)) pmp = −(∂xg1 + ∂yg2) in (0,∞)× R
pmp + αp (−η1 ∂xp

m
p + g1) = (−2µf∂xu

m
1 + pmf ) + αp u

m
1 on {0} × R.

3.3. Convergence analysis. We will base our convergence analysis on a Fourier
transform in the direction tangential to the interface (corresponding to the y vari-
able in the case at hand), which is defined, for w(x, y) ∈ L2(R2), as

F : w(x, y) 7→ ŵ(x, k) =

∫
R
e−ikyw(x, y) dy,

where k is the frequency variable. We will then be able to quantify the error,
in the frequency space, between the normal component of the velocity at the m-
th iteration, ûm1 (x, k), and the exact value û1(x, k). As a consequence, we can
introduce, on the interface Γ, a reduction factor at iteration m, for each frequency
k, as

ρm(k) :=
|ûm1 (0, k)− û1(0, k)|
|ûm−2

1 (0, k)− û1(0, k)|
.

The Robin-Robin algorithm converges if, at each iteration m, we have ρm(k) < 1
for all the relevant frequencies of the problem, namely for kmin ≤ k ≤ kmax,
where kmin > 0 is the smallest frequency relevant to the problem and kmax is the
largest frequency supported by the numerical grid, which is of the order π/h, being
h the mesh size (see [21, 22]). The ultimate goal is then to minimize, at each
iteration step, the reduction factor ρm(k) over all the Fourier modes. Note that
the asymptotic requirements for the Fourier transformability of the solutions entail
their boundedness at infinity.

Since the problems are linear, we can study the convergence directly on the
error equation, namely the convergence to the zero solution when the forcing terms
vanish, i.e. ff = 0 and gp = 0. First, we characterize the reduction factor of the
algorithm.
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Proposition 3.1. Let ηp =
√
η1η2. Given u0

f , p
0
f , p

0
p, the reduction factor of the

algorithm (10)–(11) does not depend on the iteration and it is given by
(12)

ρ(αf , αp, k) = |g(αf , αp, k)| where g(αf , αp, k) =

(
2µf |k| − αp
2µf |k|+ αf

)
·
(

1− αf ηp |k|
1 + αp ηp |k|

)
.

Proof. Taking the divergence of (10)1 and using (10)2, the fluid problem can be
rewritten in the unknown pressure

−∆pm+1
f = 0 in Ωf .

Applying the Fourier transform in the y direction, the equation for the pressure
above becomes, for all k, an ordinary differential equation

−∂xxp̂m+1
f + k2p̂m+1

f = 0 in (−∞, 0),

whose solution is given by p̂m+1
f (x, k) = Pm+1(k) e|k|x + Qm+1(k) e−|k|x. The

boundedness assumption on the solution entails Qm+1(k) = 0, thus

(13) p̂m+1
f (x, k) = Pm+1(k) e|k|x,

and the value of Pm+1(k) is determined uniquely by the interface condition (10)4

(14) −2µf ∂xû
m+1
1 + p̂m+1

f − αf ûm+1
1 = p̂mp + αf η1 ∂xp̂

m
p .

Similarly, the equation for the Darcy pressure reads, for all k,

−η1 ∂xxp̂
m+1
p + η2 k

2p̂m+1
p = 0 in (0,+∞),

whose solution, due to the boundedness assumption, is given by

(15) p̂p(x, k) = Φm+1(k) e
−
√
η2
η1
|k|x

,

where the value of Φm+1(k) is determined uniquely by the interface condition (11)2

(16) p̂m+1
p − αp η1 ∂xp̂

m+1
p = −2µf ∂xû

m+1
1 + p̂m+1

f + αp û
m+1
1 .

In order to write the fluid component of the Robin interface conditions (10)4 and
(11)2 in terms of the sole pressure, we need to express the interface velocity û1 as
a function of p̂f .
From (10), the first equation of the fluid problem in the x direction, after applying
the Fourier transform in the y direction, reads

(17) ∂xxû
m+1
1 − k2ûm+1

1 =
k

µ
Pm+1(k) e|k|x

having noticed that ∂xp̂
m+1
f = |k|Pm+1(k) e|k|x. Due to the boundedness assump-

tion, the homogeneous solution of this equation is ûm+1
1,hom(x, k) = Am+1(k) e|k|x for

suitable Am+1(k). As the right-hand side of (17) is a solution to the homogeneous
equation, the solution to the complete equation is given by

(18) ûm+1
1 (x, k) =

(
Am+1(k) +

x

2µf
Pm+1(k)

)
e|k|x.

Inserting (13), (15) and (18) into (14) and (16), and using the fact that ∂xp̂
m+1
p =

−|k|
√

η2

η1
Φm+1(k) e−|k|x, we get

− (αf + 2µf |k|) Am+1(k) = (1− αf ηp |k|) Φm(k) in x = 0

(1 + αp ηp |k|) Φm(k) = (αp − 2µf |k|) Am−1(k) in x = 0.
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As a consequence, we have |Am+1(k)| = ρ(αf , αp, k)|Am−1(k)|, and in general
|A2m(k)| = ρm(αf , αp, k)|A0(k)|, where ρ(αf , αp, k) is given by (12). �

We want now to characterize optimal parameters αf , αp > 0 that ensure the
convergence of the algorithm for all relevant frequencies. In particular, such pa-
rameters must ensure that ρ(αf , αp, k) < 1 for all k ∈ [kmin, kmax]. (Notice that
the special choice αp = αf always guarantees the convergence of the algorithm.)

3.4. Optimization of the Robin parameters αp and αf . We focus here on
the choice of the parameters αp and αf and their optimization. We are interested
in a range of frequencies 0 < kmin ≤ |k| ≤ kmax. Considering the symmetry
of g(αf , αp, k) as a function of k, in the following we restrict ourselves to the case
k > 0 without loss of generality. Ideally, the optimal parameters force the reduction
factor ρ(αp, αf , k) to be identically zero for all k, so that convergence is attained
in a number of iterations equal to the number of subdomains (two, in the case at
hand).
The optimal parameters can be easily devised from (12)

(19) αexactp (k) = 2µf k αexactf (k) =
1

ηp k
,

but they are unfortunately not viable. In fact, they both depend on the frequency k,
and their back transforms in the physical space are either introducing an imaginary
coefficient which multiplies a first order tangential derivative (αexactp (k)) or result

in a nonlocal operator (αexactf (k)).

3.4.1. Low-order Taylor approximation. The first possible approach resides in using
approximations based on low-order Taylor expansions of the optimal values (19),
a choice that proved very effective when applied to the coupling of heterogeneous
problems (see, e.g. [26]). Expanding the exact values, one around k = kmin and
the other around k = kmax, namely

(20) α1
p = αexactp (kmin) = 2µf kmin α1

f = αexactf (kmax) =
1

ηp kmax
or

α2
p = αexactp (kmax) = 2µf kmax α2

f = αexactf (kmin) =
1

ηp kmin
,

guarantees exact convergence of the algorithm for the minimal and maximal fre-
quency. Notice that if the minimal frequency is kmin = 0, only the first combi-
nation is viable, and corresponds to a Neumann-Robin iterative algorithm. More-
over, whenever kmin > 0, a little algebraic manipulation shows that ρ(α1

f , α
1
p, k) =

ρ(α2
f , α

2
p, k), for all k ∈ [kmin, kmax].

Although the minimal and maximal frequencies are treated exactly, a Taylor
expansion offers no control on the effective convergence rate of the algorithm, which
is given by the maximum over all the relevant frequencies. As a function of k ≥
0, g(αf , αp, k) is continuous, it has two positive roots k1 = (αfηp)

−1 and k2 =
αp/(2µf ), and a local maximum in

k∗ =
αp − αf

2µf + αfαpηp
+

√(
αp − αf

2µf + αfαpηp

)2

+
1

2µfηp
.
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Rolle’s theorem allows us to conclude that k∗ lies between the zeros k1, k2 and
that g(αf , αp, k∗) > 0. Finally, it can be easily shown that 0 < g(αf , αp, k∗) < 1,
independently of the values of αf and αp. In the case of the Taylor expansion, the
zeros are in kmin and kmax, and the convergence of the Optimized Schwarz Method
is then guaranteed. Moreover, a little algebra shows that the maximum is attained
at

(21) k∗ =
kminkmax − 1

2µfηp

kmin + kmax
+

√√√√(kminkmax − 1
2µfηp

kmin + kmax

)2

+
1

2µfηp
.

and the effective convergence rate is then given by ρeff = ρ(k∗).
Notice that using a first-order Taylor expansion would just recover αexactp (k) and,

at the same time, provide an approximation for αexactf (k) ∼ 2
ηp kmax

− 1
ηp k2

max
k which

suffers from the same drawback as αexactp (k) of introducing an imaginary coefficient
in the physical space. The presence of such first-order term in the Taylor expansion
of αexactf (k) makes therefore the use of higher-order expansions pointless.

3.4.2. The classical min-max approach. The classical approach in Optimized Schwarz
literature consists in optimizing the parameters αp and αf by minimizing the con-
vergence rate over all the relevant frequencies of the problem: this amounts to solve
the min-max problem

(22) min
αf ,αp∈R+

max
k∈[kmin,kmax]

ρ(αf , αp, k).

The standard strategy in the literature is to either search for the optimized
parameter on the diagonal αf = αp (known as one-sided Robin conditions, that
use the same coefficient for both sides of the interface), or minimize the effective
convergence rate for (αf , αp) free to move in the positive quadrant of R2 (two-sided
Robin conditions, that use different coefficients on the two sides of the interface).
Usually, the first approach is simpler but provides less effective results than the
latter, which, in return, can be in general pretty complicated to solve. By exploiting
the problem characteristics, we can position ourselves halfway between the two
approaches, and reduce problem (22) to a one parameter minimization along a
curve in the positive quadrant. In the specific, from (19), we observe that the
product of the optimal values αexactf (k) and αexactp (k) is constant and equals 2µ/ηp.

We exploit such peculiarity of the problem (not occurring when the Optimized
Schwarz Methods are used on homogeneous decomposition, see e.g. [22]), and
restrict our search for optimized parameters along the curve

(23) αf αp =
2µf
ηp

.

Notice that such curve is the subset of the (αf , αp) upper-quadrant where the roots
k1 and k2, of the convergence rate ρ coincide. The following result holds for the
optimal values αexactf (k) and αexactp (k).

Lemma 3.1. For any given k ∈ (0,+∞),

∇ρ(αexactf (k), αexactp (k), k) = 0 .

Moreover, the point (αexactf (k), αexactp (k)) is an absolute minimum.
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Proof. The expression of the convergence rate ρ(αf , αp, k) depends on the sign of
the numerator in (12). We omit the dependence on k, we recall from (19) that
αexactf (k) = 1

ηp k
and αexactp (k) = 2µf k, and we identify 4 regions in the (αf , αp)

upper-right quadrant:

(1) for αf <
1

ηp k
and αp < 2µf k, ρ(αf , αp) =

(
2µf k − αp
2µf k + αf

)
·
(

1− αf ηp k
1 + αp ηp k

)
=:

ρ1(αf , αp) ;

(2) for αf <
1

ηp k
and αp ≥ 2µf k, ρ(αf , αp) =

(
αp − 2µf k

2µf k + αf

)
·
(

1− αf ηp k
1 + αp ηp k

)
=

−ρ1(αf , αp) ;

(3) for αf ≥
1

ηp k
and αp ≥ 2µf k, ρ(αf , αp) =

(
αp − 2µf k

2µf k + αf

)
·
(
αf ηp k − 1

1 + αp ηp k

)
=

ρ1(αf , αp) ;

(4) for αf ≥
1

ηp k
and αp < 2µf k, ρ(αf , αp) =

(
2µf k − αp
2µf k + αf

)
·
(
αf ηp k − 1

1 + αp ηp k

)
=

−ρ1(αf , αp) .

The gradient of ρ1(αf , αp) is given by

∇ρ1(αf , αp) =


− 1 + 2µf ηp k

2

1 + αp ηp k
· 2µf k − αp

(2µf k + αf )2

− 1 + 2µf ηp k
2

(1 + αp ηp k)2
· 1− αf ηp k

(2µf k + αf )2

 .
Thus, for a generic k, ∇ρ1(αf , αp) = 0 in αf = 1

ηp k
and αp = 2µf k, while its sign

behaves like

sign(∇ρ1(αf , αp)) = sign

[
αp − 2µf k

αf ηp k − 1

]
.

Owing to the definition of ρ(αf , αp) in the 4 regions of the (αf , αp) upper-right
quadrant, we have

(1) for αf <
1

ηp k
, αp < 2µf k, ∂αf ρ(αf , αf ) < 0, and ∂αp ρ(αf , αp) <

0 ;

(2) for αf <
1

ηp k
, αp > 2µf k, ∂αf ρ(αf , αP ) < 0, and ∂αp ρ(αf , αp) >

0 ;

(3) for αf >
1

ηp k
, αp > 2µf k, ∂αf ρ(αF , αP ) > 0, and ∂αp ρ(αf , αp) >

0 ;

(4) for αf >
1

ηp k
, αp < 2µf k, ∂αf ρ(αf , αp) > 0, and ∂αp ρ(αf , αp) <

0 .

Thus, the point (αf , αp) =
(

1
ηp k

, 2µf k
)

is a minimum for ρ(αf , αf ). In addition,

since ρ(αf , αf ) ≥ 0 and ρ
(

1
ηp k

, 2µf k
)

= 0, the minimum is absolute. �

Lemma 3.1 guarantees that, for any given k, the minimum of the convergence
rate with respect to (αf , αp) lies on the hyperbola (23). The following proposition
provides the solution of the optimization procedure along it.
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Proposition 3.2. The solution of the min-max problem

(24) min
αfαp=

2µf
ηp

max
k∈[kmin,kmax]

ρ(αf , αp, k)

is given by the pair

(25)

α∗f =
1− 2µfηp kminkmax
ηp(kmin + kmax)

+

√(
1− 2µfηp kminkmax
ηp(kmin + kmax)

)2

+
2µf
ηp

α∗p = −1− 2µfηp kminkmax
ηp(kmin + kmax)

+

√(
1− 2µfηp kminkmax
ηp(kmin + kmax)

)2

+
2µf
ηp

Moreover, ρ(α∗f , α
∗
p, k) < 1 for all k ∈ [kmin, kmax].

Proof. From Lemma 3.1 we know that, regardless where the maximum with respect
to k is, the minimum with respect to (αf , αp) is along the hyperbola (23). A simple
algebra shows that the convergence rate of the Optimized Schwarz Method along
(23) reads

(26) ρ(αf , k) =
2µf
ηp

(
ηpαf k − 1

2µfk + αf

)2

.

The function in (26) is always positive and has a minimum in k = 1
ηpαf

, where it

vanishes. Since it is continuous, its maximum is attained in one end of the interval
[kmin, kmax]:

(27) max
k∈[kmin,kmax]

ρ(αf , k) = max {ρ(αf , kmin) , ρ(αf , kmax)} .

Moreover, being

∂αf ρ =
4µf
ηp

2µfηpk
2 + 1

(2µfk + αf )3
(ηpαfk − 1) ,

it is immediate to observe that for all k ∈ [kmin, kmax], ρ(αf , k) is decreasing for

αf <
1

ηpk
and increasing for αf >

1

ηpk
. In particular, we have:

ρ(0, kmin) > ρ(0, kmax), ρ

(
1

ηpkmax
, kmin

)
> ρ

(
1

ηpkmax
, kmax

)
= 0

lim
αf→∞

ρ(αf , kmin)

ρ(αf , kmax)
< 1, ρ

(
1

ηpkmin
, kmax

)
> ρ

(
1

ηpkmin
, kmin

)
= 0,

and we can observe that

max {ρ(αf , kmin) , ρ(αf , kmax)} =

{
ρ(αf , kmin) for αf < α∗f

ρ(αf , kmax) for αf ≥ α∗f
where α∗f > 0 is the value at which the convergence rate exhibits equioscillation
between the minimal and maximal frequency, i.e.,

(28) ρ(α∗f , kmin) = ρ(α∗f , kmax) .

Simple algebraic manipulations show that finding the optimal value of αf that
satisfies (28) is equivalent to solving the following algebraic equation

(29) α2
f + 2αf

2µfηkminkmax − 1

η(kmin + kmax)
− 2µf

η
= 0 ,
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whose positive solution α∗f is given in (25). The expression for α∗p in (25) is obtained

by replacing α∗f into (23). To guarantee that ρ(α∗f , k) < 1 for all k ∈ [kmin, kmax],

since both (27) and (28) hold, we just have to prove that either ρ(α∗f , kmin) < 1 or

ρ(α∗f , kmax) < 1. First, notice that ρ(α∗f , k) < 1 if and only if(√
2µf
ηp

1− ηpα∗fk
2µfk + α∗f

− 1

) (√
2µf
ηp

1− ηpα∗fk
2µfk + α∗f

+ 1

)
< 0 .

This inequality can be equivalently rewritten as

2µf (η2
p(α∗f )2k2 + 1)− ηp(4µ2

fk
2 + (α∗f )2 + 8µfα

∗
fk) < 0 .

Using the expression of (α∗f )2 from (29) and after a few simplifications, we obtain

−(1− 2µfηpkminkmax)(1− 2µfηpk
2)− 4µfηpk(kmin + kmax) < 0 .

It is straightforward to see that if we set, e.g., k = kmin we find

−1− 4µ2
fηpk

3
minkmax − 2µfηpkmin(kmin + kmax) < 0

which is obviously true. �

Remark 3.1. (i) The ratio α∗f/α
∗
p only depends on the physical coefficients µf , ηp,

and on the mesh size h. In fact, from equations (25), we observe that

α∗f − α∗p = 2
1− 2µfηp kminkmax
ηp(kmin + kmax)

,

whose sign is ruled by the sign of the numerator. In particular, in the case kmin =
π/L (L being the length of the interface Γ) and kmax = π/h, we have

(30) α∗f < α∗p if h <
2µfηp π

2

L
and α∗f > α∗p if h >

2µfηp π
2

L
.

(ii) In the limit h→ 0, the convergence rate becomes ρ(α0
f , α

0
p, k), where

(31) α0
f = −2µfπ

L
+

√(
2µfπ

L

)2

+
2µf
ηp

, α0
p =

2µfπ

L
+

√(
2µfπ

L

)2

+
2µf
ηp

,

entailing α0
f < α0

p. This is not surprising: in fact, when h → 0, kmax → ∞ and

limk→∞ ρ(αf , αp, k) = αf/αp. Thus, the larger the maximal frequency supported by
the numerical grid, the larger αp with respect to αf to guarantee that the reduction
factor is below 1.

3.4.3. Minimization of the mean convergence rate. Both the Taylor expansion and
the equioscillation approach ensure that the Optimized Schwarz algorithm is con-
vergent in its iterative form. However, when the Optimized Schwarz Method is used
as a preconditioner for a Krylov method to solve the interface problem, these two
choices do not necessarily guarantee the fastest convergence. A common feature of
the Taylor expansion and the equioscillation approach is that the amount of fre-
quencies showing a not so small convergence rate is not negligible (see Figure 2). In
this section we present an alternative approach: by relaxing the constraint on the
effective convergence rate, we look for parameters that ensure a better convergence
for a larger number of frequencies in the error.
We still look for αf and αp along the curve (23) and we restrict ourselves to the set

(32) Af = {αf > 0 : ρ(αf , k) ≤ 1 ∀k ∈ [kmin, kmax]} .
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Notice that the convergence of the Robin-Robin method in its iterative form would
be ensured only in the case the inequality in the definition of Af is strict. However,
from the previous section we know that there can be at most one frequency whose
corresponding convergence rate equals 1, either in kmin or in kmax. When the
Optimized Schwarz Method is used as a preconditioner for a Krylov method, the
latter can handle isolated problems in the spectrum. This last approach is actually
the most popular in the literature (see, e.g., [21, 17, 25]).

Lemma 3.2. The set Af is one of the following intervals.

(1) If
√

2µfηpkmin − 1 > 0,

(33) Af =

(
0,

√
2µf
ηp

min

(√
2µfηpkmin + 1√
2µfηpkmin − 1

,

√
2µfηpkmax + 1√
2µfηpkmax − 1

)]
(2) If

√
2µfηpkmax − 1 < 0,

(34) Af =

[√
2µf
ηp

max

(
−
√

2µfηpkmin − 1√
2µfηpkmin + 1

,−
√

2µfηpkmax − 1√
2µfηpkmax + 1

)
,+∞

)
(3) If

√
2µfηpkmin − 1 < 0 and

√
2µfηpkmax − 1 > 0,

(35) Af =

(
0,

√
2µf
ηp

√
2µfηpkmax + 1√
2µfηpkmax − 1

]
∩

[
−

√
2µf
ηp

√
2µfηpkmin − 1√
2µfηpkmin + 1

,+∞

)
(4) If

√
2µfηpkmin − 1 = 0,

(36) Af =

(
0,

√
2µf
ηp

√
2µfηpkmax + 1√
2µfηpkmax − 1

]
(5) If

√
2µfηpkmax − 1 = 0,

(37) Af =

[
−

√
2µf
ηp

√
2µfηpkmin − 1√
2µfηpkmin + 1

,+∞

)
.

Proof. The condition ρ(αf , k) ≤ 1 can be equivalently reformulated as(
αf
√
ηp
(√

2µfηpk + 1
)

+
√

2µf
(√

2µfηpk − 1
))(

αf
√
ηp
(√

2µfηpk − 1
)
−
√

2µf
(√

2µfηpk + 1
))
≤ 0 .

The term
√

2µfηpk+ 1 is always positive, while
√

2µfηpk− 1 may change its sign,
so we must discuss different cases. Owing to (27) we are ensured that ρ(αf , k) ≤ 1
for all k ∈ [kmin, kmax] provided the inequality holds in both kmin and kmax, thus
we consider only both k = kmin and k = kmax.
(i) If

√
2µfηpkmin − 1 > 0, then also

√
2µfηpkmax − 1 > 0, so that Af is the set

(33).
(ii) If

√
2µfηpkmax − 1 < 0, also

√
2µfηpkmin − 1 < 0, and Af is the set (34).

(iii) If
√

2µfηpkmin − 1 < 0, then either
√

2µfηpkmax − 1 < 0, in which case we

obtain again (34), or
√

2µfηpkmax − 1 > 0 and Af is the set (35).

(iv) If
√

2µfηpkmax − 1 > 0, either
√

2µfηpkmin − 1 > 0, in which case we obtain
(33), or√

2µfηpkmin − 1 < 0 and we get (35).

(v) If
√

2µfηpkmin−1 = 0, kmax > kmin = 1/
√

2µfηp so that
√

2µfηpkmax−1 > 0.
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Thus, Af is characterized as (36).

(vi) Finally, if
√

2µfηpkmax−1 = 0, kmin < kmax = 1√
2µfηp

so that
√

2µfηpkmin−
1 < 0. Thus, Af is the set (37). �

In order to improve the overall convergence for a Krylov method, we minimize,
on the set Af , the expected value of ρ(αf , k) in the interval [kmin, kmax]:

(38) E(αf ) := E[ρ(αf , k)] =
1

kmax − kmin

∫ kmax

kmin

ρ(αf , k) dk .

Owing to (26), the expected value of ρ(αf , k) in [kmin, kmax] can be explicitly
computed with the help of a little calculus, and we have

E(αf ) =
1

2µf

(
α2
fηp +

(αfηp + 2µf )2

ηp(2µfkmax + αf )(2µfkmin + αf )
−

αf (α2
fηp + 2µf )

µf (kmax − kmin)
log

(
2µfkmax + αf
2µfkmin + αf

))
.

The function E(αf ) is continuous, positive (being the integral of a non-negative
function), E(0) = 1/(2µfηpkminkmax), limαf→+∞E(αf ) = +∞ and ∂αfE(0) < 0.

Thus, E(αf ) has at least one (local) minimum αoptf < +∞ in Af that may coincide
with one of the extrema of Af if the latter is a bounded set. In table 1 we report the

optimization interval Af and the resulting optimized parameter αoptf for different
values of the problem coefficients µf and ηp. In addition, in Fig. 2 we plot the
convergence rates, as a function of k, for the zero-order Taylor expansion (T), the

solution (25) of the min-max problem via equioscillation (E), and αoptf (M), for two
set of coefficients µf and ηp.

Table 1. Optimization interval Af and optimized parameter αoptf

for different values of the coefficients µf and ηp and h = 2−5.
The column (m,M) reports the signs of (2µfηp kmin − 1) and
(2µfηp kmax − 1), respectively, where kmin = π and kmax = π/h.

µf ηp (m,M) Af αopt
f

1 1 (+,+) (0, 1.4342] 0.0357

1 1e-2 (-,+) [5.4414, 16.2821] 5.4414

1 1e-4 (-,+) [129.3895, 812.1057] 217.3489

1e-1 1 (+,+) (0, 0.4676] 0.0364

1e-2 1 (-,+) [0.0544, 0.1628] 0.0544

1e-1 1e-2 (-,+) [3.3703, 7.0307] 3.3703

1e-1 1e-3 (-,+) [12.9390, 81.2106] 21.7349

1e-1 1e-4 (-,-) [43.4821,+∞) 195.9084

4. Numerical results

In this section we present some numerical tests to assess the performance of
the Optimized Schwarz method. In particular, we focus on the effectiveness and
robustness of the method with respect both to the mesh size h and to the physical
parameters µf and ηp.
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Figure 2. Convergence rates, as a function of k, for the parame-
ters obtained through zero-order Taylor expansion (T, dotted line),
the solution of the min-max problem via equioscillation (E, dashed

line), and αoptf (M, solid line). Left: µf = 1, ηp = 1e-2, h = 2−5.

Right: µf = 1e-1, ηp = 1, h = 2−5.

4.1. Finite element discretization and algebraic form. We consider a finite
element discretization based on Taylor-Hood elements for the Stokes problem (see,
e.g., [5]) and on quadratic Lagrangian elements for the scalar elliptic form of the
Darcy equation. Let the indices If , Ip and Γ denote the internal degrees of freedom
in Ωf , Ωp and on the interface. Let λp and λf be the vectors of components

∫
Γ
λpψi

and
∫

Γ
λfψi, where λp and λf are the interface variables λp = pp +αf (ηp∇pp ·n−

gp · n) and λf = −n · (2µf∇suf − pfI) · n + αpuf · n on Γ, and ψi is a suitable
finite element basis function on Γ. Letting MΓΓ be a mass matrix on Γ, we can
write the algebraic form of the algorithm (8)-(9) as follows: given λ0

p, for m ≥ 1
until convergence

1. solve the Stokes problem

(39)

(A
µf
f )If If (A

µf
f )IfΓ (Gf )If

(A
µf
f )ΓIf (A

µf
f )ΓΓ + αfMΓΓ (Gf )Γ

(Gf )TIf (Gf )TΓ 0

ums,If
ums,Γ
pmf

 =

fs,If
fs,Γ
0

−
 0
λm−1
p

0


where us,Γ is the vector of the degrees of freedom of the normal velocity on
Γ;

2. compute

(40) λmf = λm−1
p + (αf + αp)MΓΓums,Γ

3. solve the Darcy problem

(41)

(
(A

ηp
p )IpIp (A

ηp
p )IpΓ

(A
ηp
p )ΓIp (A

ηp
p )ΓΓ + α−1

p MΓΓ

)(
pmp,Ip
pmp,Γ

)
=

(
gp,Ip
gp,Γ

)
+ α−1

p

(
0
λmf

)
where pp,Γ is the vector of the degrees of freedom of the pressure on Γ;

4. compute

(42) λmp =

(
1 +

αf
αp

)
MΓΓpmp,Γ −

αf
αp
λmf .

Let Rf,Γ be the algebraic restriction operator that to the Stokes velocity and
pressure in Ωf associates the Stokes normal velocity on the interface Γ. Moreover,
let Rp,Γ be the algebraic restriction operator that to the Darcy pressure in Ωp
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associates the Darcy pressure on the interface Γ. Then, we can introduce the
discrete Robin-to-Dirichlet operators

Sf = Rf,Γ

(A
µf
f )If If (A

µf
f )IfΓ (Gf )If

(A
µf
f )ΓIf (A

µf
f )ΓΓ + αfMΓΓ (Gf )Γ

(Gf )TIf (Gf )TΓ 0

−1

RTf,Γ

Sp = α−1
p Rp,Γ

(
(A

ηp
p )IpIp (A

ηp
p )IpΓ

(A
ηp
p )ΓIp (A

ηp
p )ΓΓ + α−1

p MΓΓ

)−1

RTp,Γ .

Simple algebraic computations allow to reinterpret (39)-(42) as a Gauss-Seidel it-
eration to solve the interface linear system

(43) ARR

(
λf
λp

)
=

(
−(αf + αp)MΓΓfΓ(

1 +
αf
αp

)
MΓΓgΓ

)
where

(44) ARR =

(
−I I − (αf + αp)MΓΓSf

αf
αp
I −

(
1 +

αf
αp

)
MΓΓSp I

)
and fΓ and gΓ are vectors depending on the data of the problem. ARR is non-
symmetric and indefinite. In fact, ifNΓ is the number of rows of λf (or, equivalently,
λp) and (x, y) is an arbitrary non-null vector in R2NΓ , then, denoting by (·, ·)2 and
‖ · ‖2 the Euclidean scalar product and norm, we obtain(
xT , yT

)
ARR

(
x
y

)
= ‖y‖22−‖x‖22+

(
1 +

αf
αp

)(
(x,y)2 − αpxTMΓΓSfy − yTMΓΓSpx

)
,

whose sign may be either positive or negative.

4.2. Test 1. We assess the effectiveness of the Optimized Schwarz method on a
model problem with known analytic solution. The computational domains are Ωf =
(0, 1)×(1, 2) and Ωp = (0, 1)×(0, 1) separated by the interface Γ = (0, 1)×{1}. The
computational grids are uniform, structured, made of triangles and characterized
by mesh size h = 2−(s+2) with s = 1, . . . , 6. We set ηp constant (assuming η1 = η2),
αBJ = 1, kmin = π and kmax = π/h. The boundary conditions and the forcing
terms are such that the exact solution is uf = (

√
µfηp, αBJx), pf = 2µf (x + y −

1)+(3ηp)
−1, pp = (−αBJx(y−1)+y3/3−y2 +y)/ηp+2µfx. We solve the interface

system (43) using GMRES ([36]) with tolerance 1e-9 on the relative residual starting
the iterations from (λf , λp)

T = 0.
In Figs. 3–4 we plot the values of αf and αp computed using the three approaches

studied in Sects. 3.4.1–3.4.3 and the corresponding number of GMRES iterations
for different values of µf , ηp and h. The method based on low-order Taylor approx-
imation is not very effective, since the number of iterations grows significantly in
some cases, especially for small values of the physical parameters. The coefficients
computed both with equioscillation and with the mean minimization criterion seem
to guarantee robustness with respect to h, i.e., the iteration counts appear to sta-
bilize as the mesh size becomes reasonable in terms of accuracy of the solution, and
this behaviour remains evident as h→ 0. However, there is still dependence on the
value of the physical parameters. Finally, notice that the parameters obtained by
equioscillation obey the inequalities (30), i.e., αf is larger than αp if the mesh size
h is large enough compared to the physical parameters of the problem, while αf
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becomes smaller than αp if h is taken small enough. Although an analytic expres-
sion is not available for αf and αp in the case of mean minimization, we can infer
from the graphs that they behave in an analogous way as concerns their mutual
magnitude.

In table 2 we show the effective convergence rate ρmax = maxk∈[kmin,kmax] ρ(αf , αp, k),

the mean convergence rate E(αf , αp) = (kmax − kmin)−1
∫ kmax
kmin

ρ(αf , αp, k) dk and

the iteration count for different values of µf and ηp, h = 2−5 and the three choices
of the optimal parameters: low-order Taylor expansion (T) (20), equioscillation (E)
(25), and mean minimization (M). We can observe that minimizing the effective
convergence rate is not necessary a winning strategy. In general, minimizing the
mean convergence rate is providing better results when an iterative method is used
to solve the interface problem, even in the case when the effective convergence rate
equals 1.

Table 2. Effective convergence rate ρmax, mean convergence rate
E(αf , αp) and iteration count for different values of µf and ηp, h =
2−5 and the three choices of αf , αp: low-order Taylor expansion
(T), equioscillation (E), and mean minimization (M).

µf ηp αf αp ρmax E(αf , αp) Iter

0.0099 6.2832 0.0116 0.0026 8 (T)
1 1 0.1622 12.3285 0.0116 0.0089 8 (E)

0.0357 56.0435 0.0395 0.0009 8 (M)

0.9947 6.2832 0.3613 0.1363 22 (T)
1 1e-2 9.9150 20.1714 0.3613 0.2320 18 (E)

5.4414 36.7552 1.0000 0.0729 14 (M)

99.4718 6.2832 0.2414 0.1581 46 (T)
1 1e-4 258.1914 77.4619 0.2414 0.0853 30 (E)

217.3489 92.0180 0.3472 0.0775 26 (M)

0.0099 0.6283 0.0945 0.0239 12 (T)
1e-1 1 0.1484 1.3477 0.0945 0.0706 12 (E)

0.0364 5.4896 0.3549 0.0089 10 (M)

0.0099 0.0628 0.3613 0.1363 22 (T)
1e-2 1 0.0992 0.2017 0.3613 0.2320 18 (E)

0.0544 0.3676 1.0000 0.0729 14 (M)

0.9947 0.6283 0.4806 0.2740 38 (T)
1e-1 1e-2 4.8415 4.1309 0.4806 0.2249 24 (E)

3.3703 5.9342 1.0000 0.1313 20 (M)

9.9472 0.6283 0.2414 0.1581 46 (T)
1e-1 1e-3 25.8191 7.7462 0.2414 0.0853 30 (E)

21.7349 9.2018 0.3472 0.0775 26 (M)

99.4718 0.6283 0.0429 0.0286 32 (T)
1e-1 1e-4 201.6164 9.9198 0.0429 0.0143 32 (E)

195.9084 10.2089 0.0456 0.0143 32 (M)
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Finally, in Fig. 5 we consider four possible combinations of µf and ηp and
h = 2−5 and we show the number of iterations for a range of values αf and αp. In
all cases, the optimal coefficients devised by minimizing the convergence rate either
fall in the regions of minimum number of iterations or are in the closest ones to it.

Figure 3. Left: parameters αf (circles) and αp (diamonds) versus
h for different values of µf and ηp. Right: corresponding number
of iterations versus h. Red lines: low-order Taylor expansion; blue:
equioscillation; magenta: mean minimization.



18 M. DISCACCIATI AND L. GERARDO-GIORDA

Figure 4. Left: parameters αf (circles) and αp (diamonds) versus
h for different values of µf and ηp. Right: corresponding number
of iterations versus h. Red lines: low-order Taylor expansion; blue:
equioscillation; magenta: mean minimization.

4.3. Test 2. We simulate a 2D cross-flow membrane filtration problem similarly
to [29]. The fluid domain is Ωf = (0, 0.015) × (0.0025, 0.0075) m, the porous
medium domain is Ωp = (0.0035, 0.0105) × (0, 0.0025) m and the interface is Γ =
(0.0035, 0.0105) × 0.0025 m. The boundary conditions are set as follows: on
Γinf = {0} × (0.0025, 0.0075) we impose the parabolic inflow velocity profile uf =
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Figure 5. Number of iterations for h = 2−5 and different values
of αf and αp. The dotted line represents the curve αfαp = 2µf/ηp
(23). The red circle corresponds to (αf , αp) computed using the
low-order Taylor expansion (20), the blue circle to the case of
equioscillation (25) and the magenta circle to the mean minimiza-
tion.

(−16000y2 + 160y − 0.3, 0) m/s; on Γoutf = {0.015} × (0.00625, 0.0075), (2µ∇suf −
pfI)·n = 0 kg/(m·s); on ∂Ωf\(Γinf ∪Γoutf ∪Γ), uf = 0 m/s; on Γbp = (0.0035, 0.0105)×
{0}, pp = 0 kg/(m·s); on ∂Ωp \ (Γbp ∪ Γ), up · n = 0 m/s. Since gravitational ef-

fects are neglected, both ff and gp are null. The fluid has density 1000 kg/m3 and
dynamic viscosity 0.001 kg/(m·s). The permeability is either K1 = 1e-6 diag(1, 1)
m2 or K2 = 1e-12 diag(1, 1) m2. Finally, αBJ = 1. Using Xf = 0.005 m and
Uf = 0.1 m/s for adimensionalization, we obtain µf = 0.002, ηp = 20 for K1 and
ηp = 2e-5 for K2. Table 3 reports the coefficients αf and αp together with the
number of GMRES iterations required to converge to the tolerance 1e-9 on the
relative residual for the two different values of the permeability. We can see that
the mean minimization approach guarantees convergence in a number of iterations
almost independent of the computational grid and it better performs than both the
low-order Taylor and the equioscillation methods at least is ηp is quite large. The
computed solutions are shown in Figs. 6 and 7.

5. Conclusions

In this paper an Optimized Schwarz method for the Stokes-Darcy problem was
studied. Different strategies have been provided to practically compute optimal
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Table 3. Parameters αf , αp and GMRES iterations for the cases
of low-order Taylor expansion, equioscillation and mean minimization.
Meshes with h = 2−(2+s). dofs is the number of interface unknowns.
Top: µf = 0.002, ηp = 20. Bottom: µf = 0.002, ηp = 2e-5.

s dofs αf αp iter αf αp iter αf αp iter
(low-order Taylor) (equioscillation) (mean minimization)

1 50 1.99e-03 8.98e-03 21 9.11e-03 2.19e-02 18 5.18e-03 3.86e-02 13
2 98 9.95e-04 8.98e-03 21 8.43e-03 2.37e-02 17 3.34e-03 5.99e-02 13
3 194 4.97e-04 8.98e-03 21 8.10e-03 2.47e-02 17 3.16e-03 6.33e-02 13
4 386 2.49e-04 8.98e-03 21 7.94e-03 2.52e-02 17 3.16e-03 6.33e-02 13

s dofs αf αp iter αf αp iter αf αp iter
(low-order Taylor) (equioscillation) (mean minimization)

1 50 1.99e+03 8.98e-03 10 3.65e+03 5.48e-01 10 1.99e+03 1.01e-01 10
2 98 9.95e+02 8.98e-03 10 1.90e+03 1.05e-01 10 9.95e+02 2.01e-01 10
3 194 4.97e+02 8.98e-03 12 9.73e+02 2.06e-01 12 4.97e+02 4.02e-01 12
4 386 2.49e+02 8.98e-03 14 4.92e+02 4.06e-01 14 2.49e+02 8.04e-01 14

parameters for the Robin interface conditions to guarantee the convergence of the
method. The methods we propose take into account both the physical parameters
typical of this coupled problem (i.e., the fluid viscosity and the permeability of
the porous medium) and the size h of the computational grid used for simulations.
Previous results ([16]) showed that for a fixed computational mesh and fluid viscos-
ity and permeability tending to zero, convergence of the Robin-Robin method was
guaranteed if αf > αp. However, [10] proved that geometric convergence could be
obtained in some cases for an appropriate choice of αf < αp. The analysis carried
out in this paper helps to clarify the issue of the relative size of the parameters by
clearly highlighting that their values may significantly change depending not only
on the physical parameters of the problem but also on the computational grid used
for the finite element approximation. In particular, (30) shows that, if the product
of the physical parameters is small enough compared to h, then αf > αp guaran-
tees an optimal convergence of the Robin-Robin algorithm, while for fine enough
meshes, αp may be taken larger than αf . Finally, in this paper the Robin-Robin
method is reinterpreted as an iterative method to solve a suitable interface linear
system (43) for which Krylov space methods can be used to enhance convergence.
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