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ABSTRACT

Purpose: To present Poisson exact goodness-of-fit tests as alternatives and com-

plements to the asymptotic u-test, which is the most widely used in cytogenetic

biodosimetry, to decide whether a sample of chromosomal aberrations in blood cells

comes from an homogeneous or inhomogeneous exposure.

Materials and Methods: Three Poisson exact goodness-of-fit test from the lit-

erature are introduced and implemented in the R environment. A Shiny R Studio

application, named GOF Poisson, has been updated for the purpose of giving sup-

port to this work. The three exact tests and the u-test are applied in chromosomal

aberration data from clinical and accidental radiation exposure patients.

Results: It is observed how the u-test is not an appropriate approximation in small

samples with small yield of chromosomal aberrations. Tools are provided to compute

the three exact tests, which is not as trivial as the implementation of the u-test.

Conclusions: Poisson exact goodness-of-fit tests should be considered jointly to

the u-test for detecting inhomogeneous exposures in the cytogenetic biodosimetry

practice.
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aberrations.

1. Introduction

Counts of dicentric chromosomes in peripheral blood lymphocytes allow distinguish be-

tween homogeneous and non-homogeneous irradiations in biological dosimetry. Chro-

mosome alterations are produced randomly after an homogeneous irradiation. It is

typically assumed, for low linear energy transfer exposures, the distribution of di-

centrics per blood cell follows a Poisson distribution (Edwards et al. 1979) and in this

sense the detection of overdispersion (variance greater than the mean) indicates non-

homogeneous irradiations. The so-called u-test (IAEA 2011), which it is a normalized

unit of the dispersion index (the ratio of the variance to the mean), is the classical way

to check whether a sample of dicentrics follows a Poisson distribution and was initially

introduced for biological dosimetry studies by (Savage 1970). The Poisson distribution

assumes the variance is equal to the mean and consequently the value of the u statistic

is 0. The capacity to determine the absorbed dose by the irradiated fraction have been

assessed both in partial irradiation simulations (Lloyd et al. 2000; Barquinero et al.

1995) and in dose reconstruction after radiation accidents (Beinke et al. 2015). It is

considered that a correct estimation of an absorbed dose requires at least the analysis

of 500 blood cells or to score at least 100 dicentrics (IAEA 2011). However, after an

accident with multiple victims the ability of blood samples analysis of a laboratory

may be affected. One strategy to face this problem is to decrease the number of an-

alyzed cell for each individual and consequently reduce the time involved to a first

categorization. This categorization is based on a not very accurate dose estimation.

However, it allows to make a useful initial threshold to optimize the clinical response

to the radiation accident (IAEA 2011). To analyze less blood cells implies to score

less dicentrics. This decreasing of the scored dicentrics implies a higher difficulty to

correctly detect over-dispersion. Goodness-of-fit tests for Poisson samples with small

counts was initially analyzed by (Fisher 1950; Rao and Chakravarti 1956).

There are several goodness-of-fit tests to assess whether a count sample follows

a Poisson distribution. These tests are based on different properties of the Poisson
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model, as the equi-dispersion (the variance equals to the mean) and the frequency

of zeros. The general asymptotic goodness-of-fit test (the classical χ2-test) for the

Poisson distribution is not used here because it has been proved to be inaccurate for

small samples, particularly for the case of chromosomal aberration counts (Rao and

Chakravarti 1956; Savage 1970; Merkle 1981). The u-test is asymptotic, because it is

not based on the exact distribution of a measure (for instance the dispersion index) and

it is based on the normal approximation of an exact distribution. Concretely, (Merkle

1981) claimed about the usage of exact test for samples with a small total of counts for

the analysis of dicentric chromosomes, in contrast to the approximate tests, like the u-

test, due to the discrepancy of values. Exact tests and their asymptotic versions about

different properties of the Poisson distribution (equidispersion or the probability of the

number of zeros given the sample sum) are referred in this work. Application examples

will be shown based on radiation induced chromosome aberration from radiological

accidents and clinical applications of biological dosimetry. The first step here is to

know the probability of a Poisson realization, given the sample sum.

2. Probability of a Poisson realization conditional to the sample sum

Given n Poisson realizations X = {x1, x2, . . . , xn} represented by its frequencies F =

{f0, f1, f2, . . . , fm}, i.e. f0 is the number of 0’s, f1 is the number of 1’s and so (m is

the maximum observed count). The probability of the frequencies F given the sample

sum S =
∑n

i=1 xi was studied by (Fisher 1950),

P (F |S) = n!(
m∏
i=0

fi!

) · S!(
m∏
i=1

i!fi

)
· nS

. (1)

For instance, the probability of a sample of 50 Poisson realizations of all 0’s except

one with 2 counts following Equation (1) is

P ({f0 = 49, f2 = 1}) = 50!

49! · 1!
· 2!

2! · 502
=

1

50
= 0.02.
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This means that for a Poisson sample with sample size 50 and sum 2, the probability

of a sample with 49 realizations equals to 0 and 1 equals to 2 is 0.02. The other choice

of frequencies is 2 realizations equals to 1 and the rest of them 0, and consequently its

probability is P ({f0 = 48, f1 = 2}) = 1− P ({f0 = 49, f2 = 1}) = 0.98.

3. Exact tests for Poisson distribution

The exact D-test proposed by (Fisher 1950) is derived from the classical χ2-test,

and consists on the cumulative exact probability of the so-called D-statistic, D =∑
(xi − x̄)2/x̄. Note D = (n− 1) · var(X), and both the variance and the the sample

square sum (D′ =
∑

x2i ) are equivalent statistics. The u-statistic is the asymptotic

typified normal approximation of the D-statistic, and was applied by (Papworth 1983)

to chromosomal aberrations frequencies. For the purpose to compare with theD-test in

checking over-dispersion, here the u-test is going to be used as right-tailed, in contrast

to the most used two-tailed in biodosimetry.

Later (Rao and Chakravarti 1956) proposed the frequency of zero observations and

the statistic L′ =
∑

xi log xi for exact tests. The frequency of zero test checks for

reliable zero proportion and the L′-test checks the homogeneity of data, i.e. the Poisson

distribution means of all realization are equal. The L′-test is based on the likelihood

ratio test and in (Rao and Chakravarti 1956) it is stated that “is preferable to D for

discriminating a compound Poisson distribution from a simple Poisson”. The f0 test

has been recently studied in depth by (Fernández-Fontelo et al. 2017).

Fisher designed the exact test considering all the possible samples with equal size

and total. For instance, if we observe 3 chromosomal aberrations in 50 blood cells,

there are three different samples with size 50 which sum 3, see Table 1.

Each distribution has an associated statistic D (or equivalently D′), L′ and f0,

and following Expression 1 each distribution has an associated probability. To con-

trast (under-) over-dispersion for X, it is calculated the cumulative probability of the

realizations with (lower) greater or equal D. Analogously, to contrast zero-inflation

(-deflation), it is calculated the cumulative probability of the realizations with greater

(lower) or equal f0. And to test heterogeneity, it is calculated the cumulative prob-
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ability of the realizations with greater or equal L′. Note L′ test only makes sense as

right-tailed to check for heterogeneity. In Table 1 it is showed the associated probabil-

ities for f0, D
′ and L′ are the same, but this is not a general rule.

4. Application of the exact D′ and L′ tests to chromosomal aberrations

data

The exact D test was applied to samples of chromosomal aberrations by (Pap-

worth 1983) to validate the p-values obtained from the u-test, (Savage 1970). An-

other application of the exact D-test was performed by (DuFrain et al. 1980) to

over-dispersed data of chromosomal aberrations in human lymphocytes exposed to

α-particles. (Merkle 1981) applied the exact test to investigate the behavior of sev-

eral test for the Poisson goodness of fit. A computer program for the exact test was

published in (Papworth 1983) based on the test proposed by (Fisher 1950) and the ex-

istence of the program was mentioned in (Merkle 1981) as a note added in proof. The

program was written in FORTRAN language to obtain the exact probability values

(Papworth 1983). This program has the particular characteristic of flexibility that al-

lows the user to change the hypothesis direction and to use a different statistic instead

of D. More recently, in (Fernández-Fontelo et al. 2017) the authors studied the proper-

ties of the exact test based on the f0 statistic for the cytogenetic biodosimetry practice.

This paper provides a software support in form of a Shiny RStudio application called

GOF Poisson. This application, free available at http://asapps.bcamath.org:5053/,

has been updated for supporting this publication too. It includes the one-tailed exact

tests for the f0, D
′ and L′ statistics, among others.

5. Asymptotic u-test in the case of small counts of aberrations

In the Appendix authored by D. G. Papworth in (Savage 1970) is suggested as a

minimum requirement for the u test to be valid that at least one of the quantities the

yield y = S/n or the sample size n to be large. The case of y << 1 is usual at low doses

in cytogenetic samples, and then the most likely outcome is that the total number of
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aberrations observed is made up exclusively of cells with only one aberration in it, even

for large n. For small counts the true distribution of u is therefore heavily skewed to

the right and does not approach the normal distribution for any practically feasible n

(Merkle 1981). Graphically, the assumption of normal distribution ofD-statistic (the u-

statistic is based in this asymptotic approximation) can be appreciated in the Figure 1

for n = 500 and in the Figure 2 for n = 50. The y values lower than 0.1 represent

samples of chromosomal aberrations from 0 to 50 aberrations in the conventional

scoring of 500 metaphases. In relation to radiation doses, y << 1 represent doses

lower than 1 Gy for the case of Co-60 or X-rays irradiation. When y > 0.1 some

deviations from normality are appreciated.

6. Applied examples

The right-tailed test analyzed in this work are applied in data from recent literature

and unpublished data (samples 4, 5, 6 and 7 in Table 2). Those p-values lower than

0.001 are represented by the lowest power of 10 which is bigger than the p-value.

6.1. Cases in accidental and clinical radiation exposures

Table 2 shows several cytogenetic examinations of overexposed individuals’ blood lym-

phocytes.

Sample 1 is the dicentric distribution from the accidental γ-radiation exposure of

an industrial radiography described by (Beinke et al. 2015). Samples 2 and 3 are the

dicentric plus ring distribution of the same patient analysed by two different labo-

ratories of the 2011 radiation accident suffered in Stamboliyski (Bulgaria) (Grégoire

2013).

Samples 4 and 6 come from patients with differentiated thyroid cancer (DTC)

treated with 131Itherapy, within the therapeutic scheme following thyroidectomy, for

the ablation of thyroid remnants and treatment of metastatic disease. The aim of this

therapy is to achieve a lethal dose in the tumor tissue, without exceeding the dose of

tolerance in healthy tissues (doses > 2 Gy in bone marrow could lead to myelotoxicity).

Absorbed dose to the whole body and bone marrow by applying biological dosimetry
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techniques, including the evaluation of dose distribution in the body, contributed to

optimize the 131I therapeutic administration.

Sample 5 comes from the biodosimetric evaluation of a radiological accident occurred

in Argentina, with an industrial gammagraphy source of 192Ir (32 Ci).

Sample 7 corresponds to the data of the Biological Dosimetry of a Nuclear Power

Plant worker in Argentina due to an incident of internal contamination with trirtium.

The p-values of the right-tailed f0, u, D
′ and L′ statistics are also shown. Although

most f0, u, D
′ and L′ p-values agree in rejecting or not the Poisson assumption (for a

5% significance level), the difference between the asymptotic test u and the exact tests

f0, D
′ and L′ is notorious except for samples 2 and 3 (note they have mean greater

than 1).

The distribution of u is simulated for samples 1 (Figure 3) and 2 (Figure 4) in

Table 2 in three ways. In all them the u-statistic is calculated from samples which

simulate the dicentric distribution of both samples. These samples are simulated by:

• n Poisson draws with intensity y;

• a multinomial draw for S trials within n elements with equal event probabilities;

• n resamples with substitution from the original sample.

In figure 3, the three histograms present a significant departure from the typified

normal distribution. This indicates the normal asymptotic approximation of theD-test

is not appropriate. The histogram of the resampling draws looks different to the other,

which are based on the Poisson assumption and its maximum likelihood estimator (the

sample mean) and the Poisson assumption conditional to its sufficient statistic, the

sample sum. This difference is also indicating that the Poisson assumption is not

appropriate for this sample.

In figure 4, the two first histograms are closer to the the typified normal distribution.

Again, the histogram of the resampling draws looks different to the other, which is

indicating that this sample is not over-dispersed Poisson, but it is under-dispersed,

but this is not analysed in this work.

Attending sample 1 in Table 2, the probability of observing a Poisson sequence of

size 2048 and a total count of 7 with D′ ≥ 9 is 0.01. This rejects the null hypothesis of

7



equi-dispersion, for a 5% significance level. The u-test also rejects this null hypothesis,

but is not approximating accurately to the distribution probability of the statistic D.

The u-test p-values for samples 2 and 3 are closer to the D′-test ones, despite sample

sizes are not big, they have sample mean over 1. This agrees with (Merkle 1981), where

it is indicated the u-test approximates better for higher yield.

Sample 4 is the unique case of the table with discrepancy between the significance

of both u- and D′-test, for a 5% significance level. The D-test does not reject the

Poisson assumption, but the p-value is low, 0.055, whereas the u-test p-value clearly

rejects the assumption, (< 10−4).

In samples 5, 6 and 7 the Poisson assumption is clearly rejected by all tests, but

again, the differences between the u-test with the three exact tests p-values are huge.

6.2. RTGene project data

In the study (Moquet et al. 2018), dicentric assay data was analyzed from 20 radio-

therapy patients. Table 3 shows the dicentric distributions of these patients and the

p-values of f0, u, D
′ and L′ tests. Again, those p-values lower than 0.001 are repre-

sented by the lowest power of 10 which is bigger than the p-value.

In this example all f0-, u-, D
′- and L′-test p-values agree in rejecting or not the Pois-

son assumption (for a 5% significance level), the differences between the asymptotic

one and the three exact are notorious in all samples except sample 6.

7. Final remarks

For small sample sizes, i.e. y < 0.1, the exact and asymptotic p-values can be quite

different and can lead to different conclusions about the hypothesis of interest. More-

over the normal distribution assumption of u statistic if not meet when y < 0.1. In the

case of very small counts of aberrations the simulation performed confirms the Merkle

concerns about the behavior of u-statistic and the use of exact p-values for the Poisson

equi-dispersion hypothesis is highly recommended.

In the duality of the exact D test and its approximation, the u-test, authors rec-

ommend to use both. Of course, the D test is more accurate, but the u-test tends to
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be more sensitive in detecting inhomogeneous exposures, and it has been applied for

decades in biodosimetry, so the experience of cytogenetic experts using this test, is an

added value for it. The f0 and L tests are respectively focused on the zero proportion

(for detecting partial body irradiation) and the homogeneity of data (for detecting

inhomogeneous exposure), so they should be considered too. Over-dispersion, zero-

inflation and heterogeneity are closely related, so in many scenarios, the three exact

tests lead to the same conclusion.

These methodologies provide information that may be useful to guide medical treat-

ment in cases of inhomogeneous exposures since it would allow correlating this informa-

tion with residual hematopoiesis in cases of victims who manifest the haematopoietic

form of the acute radiation syndrome.

The R files which reproduce the results in this work are available under request to

the corresponding author.
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Figure 1. Cumulative probabilities of the normalized (solid line) and the simulated (105 draws) exact (circles)
D-statistic for sample size n = 500 and different yield values y = {0.06, 0.1, 0.2, 0.5, 1, 3}.
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Figure 2. Cumulative probabilities of the normalized (solid line) and the simulated (106 draws) exact (circles)
D-statistic for sample size n = 50 and different yield values y = {0.06, 0.1, 0.2, 0.5, 1, 3}.
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Figure 3. Histogram of 104 simulations of u-statistic by three different methods of drawing the true sample
in (Beinke et al. 2015). Dashed lines represent the typified Gaussian density.
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Table 1. Possible distributions of counts for sample of size 50 and total 3.

f0 f1 f2 f3 D′ L′ Probability Cumulative probability

47 3 0 0 3 0 0.9408 1
48 1 1 0 5 1.3863 0.0588 0.0592
49 0 0 1 9 3.2958 0.0004 0.0004
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Table 2. Chromosomal aberrations distributions of different in vivo accidental and clinical exposures.

Sample f0 f1 f2 f3 f4 f5 S n y u (p-value) D′ (p-value) L′ (p-value)

1 2042 (0.010) 5 1 0 0 0 7 2048 0.003 9.777 (< 10−22) 9 (0.010) 1.386 (0.010)
2 2 (0.996) 12 5 3 0 0 31 22 1.409 -1.589 (0.944) 59 (0.938) 16.819 (0.986)
3 13 (0.615) 20 19 8 2 2 100 64 1.562 -0.269 (0.606) 250 (0.604) 79.891 (0.581)
4 493 (0.055) 6 1 0 0 0 8 500 0.016 3.993 (< 10−4) 10 (0.055) 1.386 (0.055)
5 998 (< 10−7) 1 0 0 1 0 5 1000 0.005 59.93 (< 10−323) 17 (< 10−8) 5.545 (< 10−8)
6 487 (< 10−4) 10 2 1 0 0 17 500 0.034 9.075 (< 10−19) 27 (< 10−4) 6.068 (< 10−4)
7 695 (< 10−7) 4 0 0 0 1 9 700 0.013 43.900 (< 10−323) 29 (< 10−9) 8.047 (< 10−9)
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Table 3. Dicentric distributions of different RTGene patients.

Sample f0 (p-value) f1 f2 f3 f4 f5 f6 f7 f8 S n y u (p-value) D′ (p-value) L′ (p-value)

1 484 (< 10−3) 12 4 0 0 0 0 0 0 20 500 0.040 5.878 (< 10−8) 28 (0.001) 5.545 (< 10−3)
2 114 (< 10−7) 31 16 6 3 0 1 0 0 99 171 0.579 7.274 (< 10−12) 233 (< 10−6) 69.342 (< 10−7)
3 484 (0.003) 14 1 1 0 0 0 0 0 19 500 0.038 6.261 (< 10−9) 27 (< 10−3) 4.628 (< 10−3)
4 481 (0.001) 15 4 0 0 0 0 0 0 23 500 0.046 4.917 (< 10−6) 31 (0.003) 5.545 (0.001)
5 482 (0.293) 17 1 0 0 0 0 0 0 19 500 0.038 1.126 (0.130) 21 (0.293) 1.38 (0.293)
6 155 (0.181) 60 14 4 0 0 0 0 0 100 233 0.429 1.034 (0.151) 152 (0.172) 32.591 (0.145)
7 468 (0.029) 28 4 0 0 0 0 0 0 36 500 0.072 2.443 (0.007) 44 (0.040) 5.545 (0.029)
8 151 (< 10−15) 24 15 7 2 1 2 0 0 100 202 0.495 12.859 (< 10−37) 276 (< 10−10) 84.504 (< 10−15)
9 421 (< 10−13) 46 15 3 1 0 2 0 0 101 488 0.207 15.451 (< 10−53) 221 (< 10−12) 57.728 (< 10−15)

10 452 (< 10−4) 38 8 2 0 0 0 0 0 60 500 0.120 5.565 (< 10−7) 88 (< 10−3) 17.682 (< 10−4)
11 144 (< 10−8) 39 8 6 4 1 1 0 0 100 203 0.493 10.276 (< 10−24) 250 (< 10−8) 71.844 (< 10−10)
12 240 (< 10−6) 51 9 6 2 1 0 0 0 100 309 0.324 8.254 (< 10−16) 198 (< 10−7) 51.389 (< 10−7)
13 77 (< 10−6) 29 13 7 3 3 0 0 0 103 132 0.780 6.716 (< 10−11) 267 (< 10−5) 81.870 (< 10−7)
14 126 (< 10−9) 30 16 2 4 2 1 0 0 100 181 0.552 10.288 (< 10−24) 262 (< 10−8) 77.798 (< 10−11)
15 188 (0.017) 58 14 2 2 0 0 0 0 100 264 0.379 3.066 (0.001) 164 (0.005) 37.090 (0.007)
16 432 (< 10−6) 54 11 2 0 0 0 0 1 90 500 0.180 13.083 (< 10−38) 180 (< 10−10) 38.476 (< 10−9)
17 118 (< 10−4) 40 15 5 1 1 1 0 0 100 181 0.552 6.453 (< 10−10) 222 (< 10−5) 61.617 (< 10−5)
18 438 (< 10−12) 41 15 4 2 0 0 0 0 91 500 0.182 10.777 (< 10−26) 169 (< 10−8) 45.068 (< 10−12)
19 453 (< 10−38) 25 9 4 3 4 2 0 0 99 500 0.198 31.911 (< 10−223) 317 (< 10−15) 95.985 (< 10−16)
20 213 (< 10−9) 39 14 8 1 1 0 0 0 100 276 0.362 8.532 (< 10−17) 208 (< 10−7) 59.367 (< 10−9)
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