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Abstract. Tête-à-tête graphs and relative tête-à-tête graphs were introduced by N. A’Campo
in 2010 to model monodromies of isolated plane curves. By recent work of Fdez de Bobadilla,
Pe Pereira and the author, they provide a way of modeling the periodic mapping classes that
leave some boundary component invariant. In this work we introduce the notion of general
tête-à-tête graph and prove that they model all periodic mapping classes. We also describe
algorithms that take a Seifert manifold and a horizontal surface and return a tête-à-tête graph
and vice versa.
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1. Introduction

In [A’C10] N. A’Campo introduced the notion of pure tête-à-tête graph in order to model
monodromies of plane curves. These are metric ribbon graphs Γ without univalent vertices that
satisfy a special property called the tête-à-tête property. One usually sees the ribbon graph
as a strong deformation retract of a surface Σ with non-empty boundary, which is called the
thickening. The tête-à-tête property says that if you pick a point p, then walk distance of π in
any direction from that point and you always turn right at vertices, you get to the same point
no matter the initial direction. This property defines an element in the mapping class group
MCG+(Σ, ∂Σ) which is freely periodic.

In [Gra15], C. Graf proved that if one allows univalent vertices in tête-à-tête graphs, then
the set of mapping classes produced by tête-à-tête graphs are all freely periodic mapping classes
of MCG+(Σ, ∂Σ) with positive fractional Dehn twist coefficients. In [FdBPPPC17] this result
was improved by showing that one does not need to enlarge the original class of metric ribbon
graphs used to prove the same theorem.

A bigger class of graphs was introduced in [A’C10], the relative tête-à-tête graphs. These are
pairs (Γ, A) formed by a metric ribbon graph Γ and a subset A ⊂ Γ which is a collection of
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circles. Seen as a strong deformation retract of a surface, this pair is properly embedded, i.e.
(Γ, A) ↪→ (Σ, ∂Σ) and ∂Σ \A 6= ∅. They satisfy the relative tête-à-tête property which is similar
to the tête-à-tête property and defines an element in MCG+(Σ, ∂Σ \A) which is freely periodic.
In [FdBPPPC17] it was proved that the set of mapping classes modeled by relative tête-à-tête
graphs are all freely periodic mapping classes of MCG+(Σ, ∂Σ\A) with positive fractional Dehn
twist coefficients at the boundary components in ∂Σ \A.

At this point there is a natural question which was already posed in [Gra14], how can one
complement the definition of tête-à-tête graph to be able to model all periodic mapping classes?
(even if they do not leave any boundary component invariant). To cover these cases, we introduce
general tête-à-tête graphs (see Definition 2.4). These are metric ribbon graphs with some special
univalent vertices P ⊂ ∂Σ and a permutation acting on these vertices. An analogous general
tête-à-tête property is defined. A general tête-à-tête graph defines a periodic mapping class in
MCG+(Σ).

As our main result, we prove:

Theorem A. The mapping class of any periodic automorphism φ : Σ → Σ of a surface can be
realized via general tête-à-tête graphs. Moreover, the general tête-à-tête graph can be extended
to a pure or relative tête-à-tête graph, thus realizing the automorphism as a restriction to Σ of
a periodic automorphism on a surface Σ̂ ⊃ Σ that leaves each boundary component invariant.

The mapping torus of a periodic surface automorphism is a Seifert manifold and a orientable
horizontal surface of a fiber-oriented Seifert manifold has a periodic monodromy induced on it.
Hence, it is natural to assign a tête-à-tête graph to a Seifert manifold and a horizontal surface
on it and vice versa. The rest of the work is devoted to understanding this relation.

In Section 3 we briefly review the theory of Seifert manifolds and plumbing graphs. The
theory of Seifert manifolds is classical and there is plenty of literature about it (see for example
[Neu81], [NR78], [Neu97], [JN83], [HNK71], [Hat07] or [Ped09]). Because of this, we try to avoid
repeating well-known results. However, there is not such thing as standard conventions in Seifert
manifolds. Since the conventions that we choose are very important for Section 5, we take some
time to fix them carefully.

In Section 4, we review the theory about horizontal surfaces in a Seifert manifoldM . This has
been studied from different points of view in the literature. For example, in [EN85] it is proved
a classification in the more general case when M is an integral homology sphere. In [Pic01]
Pichon provides existence of fibrations of any graph manifold M by producing algorithmically
a complete list of the conjugacy and isotopy invariants of the automorphisms whose associated
mapping torus is diffeomorphic to M . We review some of this results and write them in a
language that best suits our notation and conventions. Among these results is a classification of
horizontal surfaces of a Seifert manifold with boundary.

In Section 5 we detail two algorithms. One takes a Seifert manifold and a horizontal surface as
input and returns as output a general, relative or pure tête-à-tête graph realizing the horizontal
surface and its monodromy. This algorithms differs from similar results in the literature in
that our method produces directly the monodromy (in this case the tête-à-tête graph) without
computing the conjugacy and isotopy invariants of the corresponding periodic mapping class.
The other algorithm works in the opposite direction by taking a general, relative or pure tête-
à-tête graph and producing the corresponding Seifert manifold and horizontal surface.

Finally, Section 6 contains a couple of detailed examples in which we apply the two algorithms.
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2. General tête-à-tête structures

In this section we study any orientation preserving periodic homeomorphism. Let φ : Σ→ Σ
be such homeomorphism. We realize its boundary-free isotopy type and its conjugacy class in
MCG(Σ) by a generalization of tête-à-tête graphs, using a technique that reduces to the case of
homeomorphisms of a larger surface that leave all boundary components invariant.

Contrarily to what was done in [FdBPPPC17], we allow ribbon graphs with some special
univalent vertices.

Definition 2.1. A ribbon graph with boundary is a pair (Γ,P) where Γ is a ribbon graph, and
P is the set of univalent vertices, with the following additional property: given any vertex v of
valency greater than 1 in the cyclic ordering of adjacent edges e(v) there are no two consecutive
edges connecting v with vertices in P.

In order to define the thickening of a ribbon graph with boundary we need the following
construction:

Let Γ′ be a ribbon graph (without univalent vertices) and let Σ be its thickening. Let

gΓ′ : ΣΓ′ → Σ

be the gluing map. The surface ΣΓ′ splits as a disjoint union of cylinders
∐
i Σ̃i. Let w be a

vertex of Γ′. The cylinders Σ̃i such that w belongs to gΓ′(Σ̃i) are in a natural bijection with the
pairs of consecutive edges (e′, e′′) in the cyclic order of the set e(w) of adjacent edges to w.

Let (Γ,P) be a ribbon graph with boundary. The graph Γ′ obtained by erasing from Γ the set
E of all vertices in P and its adjacent edges is a ribbon graph. Consider the thickening surface
Σ of Γ′. Let e be an edge connecting a vertex v ∈ P with another vertex w, let e′ and e′′ be the
immediate predecessor and successor of e in the cyclic order of e(w). By the defining property
of ribbon graphs with boundary they are consecutive edges in e(w) \E, and hence determine a
unique associated cylinder which will be denoted by Σ̃i(v).

Each cylinder Σ̃i has two boundary components, one, denoted by Γ̃i corresponds to the
boundary component obtained by cutting the graph, and the other, called Ci, corresponds to
a boundary component of Σ. Fix a cylinder Σ̃i. Let {v1, ..., vk} be the vertices of P whose
associated cylinder is Σ̃i. Let {e1, ..., ek} be the corresponding edges, let {w1, ..., wk} be the
corresponding vertices at Γ′, and let {w′1, ..., w′k} be the set of preimages by gΓ′ contained in
Σ̃i. The defining property of ribbon graphs with boundary imply that w′i and w

′
j are pairwise

different if i 6= j. Furthermore, since {w′1, ..., w′k} is included in the circle Γ̃i, which has an
orientation inherited from Σ, the set {w′1, ..., w′k}, and hence also {e1, ..., ek} and {v1, ..., vk} has
a cyclic order. We assume that our indexing respects it.

Fix a product structure S1×I for each cylinder Σ̃i, where S1×{0} corresponds to the boundary
component Γ̃i, and S1 × {1} corresponds to the boundary component of Ci.

Using this product structure we can embed Γ in Σ: for each vertex v ∈ P consider the
corresponding cylinder Σ̃i(v), let w′ be the point in Γ̃i(v) determined above. We embed the
segment gΓ′(w

′ × I) in Σ.
Doing this for any vertex v we obtain an embedding of Γ in Σ such that all the vertices P

belong to the boundary ∂Σ, and such that Σ admits Γ as a regular deformation retract.

Definition 2.2. Let (Γ,P) be a ribbon graph with boundary. We define the thickening surface
Σ of (Γ,P) to be the thickening surface of Γ′ together with the embedding (Γ,P) ⊂ (Σ, ∂Σ)
constructed above. We say that (Γ,P) is a general spine of (Σ, ∂Σ).

Definition 2.3 (General safe walk). Let (Γ,P) be a metric ribbon graph with boundary. Let σ
be a permutation of P.

We define a general safe walk in (Γ,P, σ) starting at a point p ∈ Γ \ v(Γ) to be a map
γp : [0, π]→ Γ such that

1) γp(0) = p and |γ′p| = 1 at all times.
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2) when γp gets to a vertex of valency ≥ 2 it continues along the next edge in the cyclic
order.

3) when γ gets to a vertex in P, it continues along the edge indicated by the permutation σ.

Definition 2.4 (General tête-à-tête graph). Let (Γ,P, σ) be as in the previous definition. Let
γp, ωp be the two safe walks starting at a point p in Γ \ v(Γ).

We say Γ has the general tête-à-tête property if
• for any p ∈ Γ \ v(Γ) we have γp(π) = ωp(π)

Moreover we say that (Γ,P, σ) gives a general tête-à-tête structure for (Σ, ∂Σ) if (Σ, ∂Σ) is the
thickening of (Γ,P).

In the following construction we associate to a general tête-à-tête graph (Γ,P, σ) a homeo-
morphism of (Γ,P) which restricts to the permutation σ in P; we call it the general tête-à-tête
homeomorphism of (Γ,P, σ). We construct also a homeomorphism of the thickening surface
which leaves Γ invariant and restricts on Γ to the general tête-à-tête homeomorphism of (Γ,P, σ).
We construct the homeomorphism on the graph and on its thickening simultaneously.

Consider the homeomorphism of Γ′ \ v(Γ) defined by

p 7→ γp(π).

The same proof of [FdBPPPC17, Lemma 3.6] shows that there is an extension of this homeo-
morphism to a homeomorphism

σΓ : Γ→ Γ.

The restriction of the general tête-à-tête homeomorphism that we are constructing to Γ′ coincides
with σΓ. The mapping σΓ leaves Γ′ invariant for being a homeomorphism. Let Γ̃′ be the union
of the circles Γ̃i. The homeomorphism σΓ|Γ′ lifts to a periodic homeomorphism

σ̃ : g−1
Γ′ (Γ̃′)→ g−1

Γ′ (Γ̃′),

which may exchange circles in the following way. For any p ∈ Γ̃′, the points in g−1
Γ′ (p) corresponds

to the starting point of safe walks in Γ̃′ starting at p. A safe walk starting at p is determined
by the point p and an starting direction at an edge containing p.

As we have seen, if (Γ,P, σ) is a general tête-à-tête structure for (Σ, ∂Σ) then the surface
ΣΓ′ is a disjoint union of cylinders. The lifting σ̃ extends to ΣΓ′ similarly as with the definition
of the homeomorphism corresponding to a tête-à-tête structure defined in [FdBPPPC17]. This
extension interchanges some cylinders Σ̃i and goes down to an homeomorphism of Σ. We denote
it by φ(Γ,P,σ). If necessary, we change the embedding of the part of Γ not contained in Γ′ in Σ
such that it is invariant by φ(Γ,P,σ). This is done by an adequate choice of the trivializations of
the cylinders.

Definition 2.5. The homeomorphism φ(Γ,P,σ) is by definition the homeomorphism of the thick-
ening, and its restriction to Γ the general tête-à-tête homeomorphism of (Γ,P, σ).

With the notation and definitions introduced we are ready to state and proof the main result
of the work.

Theorem 2.6. Given a periodic homeomorphism φ of a surface with boundary (Σ, ∂Σ) which is
not a disk or a cylinder, the following assertions hold:
(i) There is a general tête-à-tête graph (Γ,P, σ) such that the thickening of (Γ,P) is (Σ, ∂Σ),

the homeomorphism φ leaves Γ invariant and we have the equality φ|Γ = φ(Γ,P,σ)|Γ.
(ii) We have the equality of boundary-free isotopy classes [φ|Γ] = [φ(Γ,P,σ)].
(iii) The homeomorphisms φ and φ(Γ,P,σ) are conjugate.

Proof. In the first part of the proof we extend the homeomorphism φ to a homeomorphism φ̂
of a bigger surface Σ̂ that leaves all the boundary components invariant. Then, we find a tête-
à-tête graph Γ̂ for φ̂ such that Γ̂ ∩ Σ, with a small modification in the metric and a suitable
permutation, is a general tête-à-tête graph for φ.
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Let n be the order of the homeomorphism. Consider the permutation induced by φ in the
set of boundary components. Let {C1, ..., Cm} be an orbit of cardinality strictly bigger than 1,
numbered such that φ(Ci) = Ci+1 and φ(Cm) = C1. Take an arc α ⊂ C1 small enough so that
it is disjoint from all its iterations by φ. Define the arcs αi := φi(α) for i ∈ {0, ..., n− 1}, which
are contained in ∪iCi. Obviously we have the equalities αi+1 = φ(αi) and φ(αn−1) = α0 = α.

α1

α2
α3

α4

α5 α6

a1

a2

a3

a4

a5

a6

A1

A2

A3
A4

A5

A6

Figure 2.1. Example of a star-shaped piece S with 6 arms on the left and boundary com-
ponents components on the right. The arcs along which the two pieces are glued, are marked
in red. In blue and red are the boundaries of the two disks that we used to cap off the new
boundaries.

We consider a star-shaped piece S of n arms as in Figure 2.1. We denote by D the central
boundary component. Let a0, . . . , an−1 be the boundary of the arms of the star-shaped piece
labeled in the picture, oriented counterclockwise. We consider the rotation r of order n acting
on this piece such that r(ai) = ai+1. Note that this rotation leaves D invariant.

We consider the surface Σ̂ obtained by gluing Σ and S identifying ai with αi reversing the
orientation, and such that φ and the rotation r glue to a periodic homeomorphism φ̂ in the
resulting surface.

The boundary components of the new surface are precisely the boundary components of Σ
different from {C1, ..., Cm}, the new boundary component D, and the boundary components
C ′1,...,C ′k that contain the part of the Ci’s not included in the union ∪n−1

i=0 α
i.

The homeomorphism φ̂ leavesD invariant and may interchange the new boundary components
C ′1,...,C ′k. We cup each component C ′i with a disk Di and extend the homeomorphism by the
Alexander trick, obtaining a homeomorphism φ̂ of a bigger surface Σ̂. The only new ramification
points that the action of φ̂ may induce are the centers ti of these disks. We claim that, in fact,
each of the ti’s is a ramification point.

Denote the quotient map by
p : Σ̂→ Σ̂φ̂.

In order to prove the claim notice that the difference Σ̂ \ Σ is homeomorphic to a closed
surface with m+ 1 disks removed. On the other hand the difference of quotient surfaces Σ̂φ̂ \Σφ

is homeomorphic to a cylinder. Since m is strictly bigger than 1, Hurwitz formula for p forces
the existence of ramification points. Since p is a Galois cover each ti is a ramification point.

The new boundary component of Σ̂φ̂ corresponds to p(D), where D is invariant by φ̂. The
point q1 := p(ti) is then a branch point of p.

We do this operation for every orbit of boundary components in Σ of cardinality greater than
1. Then we get a surface Σ̂ and an extension φ̂ of φ that leaves all the boundary components
invariant. The quotient surface Σ̂φ̂ is obtained from Σφ attaching some cylinders Cj to some
boundary components. Let

p : Σ̂→ Σ̂φ̂

denote the quotient map. Comparing p|Σ and p|Σ̂, we see that we have only one new branching
point qj in every cylinder Cj .
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Now we construct a tête-à-tête graph for φ̂modifying slightly the construction of [FdBPPPC17,
Theorem 5.12].

To fix ideas we consider the case in which the genus of the quotient Σ̂φ̂ is positive. The modifi-
cation of the genus 0 case is exactly the same. As in [FdBPPPC17, Theorem 5.12] we use a planar
representation of Σφ as a convex 4g-gon in R2 with r disjoint open disks removed from its convex
hull and whose edges are labeled clockwise like a1b1a

−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g , we number
the boundary components Ci ⊂ ∂Σ, 1 ≤ i ≤ r, we denote by d the arc a2b2a

−1
2 b−1

2 . . . agbga
−1
g b−1

g ,
and we consider l1,...,lr−1 arcs as in Figure 2.2. We denote by c1,...,cr the edges in which a−1

1
(and a1) is subdivided according to the component p(Ci) they enclose.

We impose the further condition that each of the regions in which the polygon is subdivided
by the li’s encloses not only a component p(Ci), but also the branching point qi that appears
in the cylinder Ci. We assume that the union of d, a1b1a

−1
1 b−1

1 and the li’s contains all the
branching points of p except the qi’s.

In order to be able to lift the retraction we need that the spine that we draw in the quotient
contains all branching points. In order to achieve this we add an edge si joining qi and some
interior point q′i of li for i = 1, . . . , r − 1 and joining qr with some interior point q′r of lr−1. We
may assume that q′i is not a branching point. We consider the circle p(Ci) and ask si to meet it
transversely to it at only 1 point. See Figure 2.3. We consider the graph Γ′ as the union of the
previous segments and the si’s. Clearly the quotient surface retracts to it. Since it contains all
branching points, its preimage Γ̂ is a spine for Σ̂. It has no univalent vertices since the qi’s are
branching points of a Galois cover.

d

c1
c2

cr

a1

b1

a−1
1 b−1

1

. . .

s1 s2

sr

lr−1

l2

l1

a1

a2

a′2

ar

l1 l2 lr−1

s1 s2 sr

Figure 2.2. Drawing of Γ′ for the case genus(Σ̂φ̂) ≥ 1 in the first image and genus(Σ̂φ̂) = 0
in the second.

In order to give a metric in the graph we proceed as follows. We give the segments d and Ci’s
the same length they had in the proof of [FdBPPPC17, Theorem 5.12]. We impose every si to
have length some small enough ε and the part of si inside the cylinder Ci to have length ε/2 (see
Figure 2.3). We give each segment li length L− 2ε. It is easy to check that the preimage graph
Γ̂ with the pullback metric is tête-à-tête .

Now we consider the graph Γ := Γ̂∩Σ with the restriction metric, except on the edges meeting
∂Σ whose length is redefined to be ε. Along the lines of the proof of [FdBPPPC17, Theorem
5.12] we get that φ(Γ,P,σ) and φ are isotopic and conjugate. If we denote by P the set of univalent
vertices of Γ, it is an immediate consequence of the construction that (Γ,P, σ) with the obvious
permutation σ of P is a general tête-à-tête graph with φ(Γ,P,σ)|Γ = φ|Γ. �
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p(Ci)

p(D)

q1 := p(ti)

l1

s1 ⊂ Γφ̂
ǫ/2

ǫ/2

Figure 2.3. Neighborhood of q1 = p(ti) in Σ̂φ̂ and edge s1 joining q1 and l1.

Example 2.7. We show an example that illustrates these ideas. Let Σ be surface of genus 1
and 3 boundary components C0, C1, C2 embedded in R3 as in the picture 2.4. Let φ : Σ→ Σ be
the restriction of the space rotation of order 3 that exchanges the 3 boundary components. We
observe that in particular φ3|Ci = id for i = 0, 1, 2.

We consider the star-shaped piece S with 3 arms together with the order 3 rotation r that
exchanges the arms (see the picture Figure 2.4).

2π/3

Figure 2.4. On the left, the torus Σ with 3 disks removed and the orbit of an arc marked, that
is, 3 arcs in red. In the center, the star-shaped piece S with 3 arms to be glued to the torus
along those arcs. On the right, the surface we get after gluing, with 2 boundary components,
one of them invariant by the induced homeomorphism.

We glue S to Σ as the theorem indicates: we mark a small arc α0 ⊂ C2 and all its iterated
images by the rotation. Then we glue α0, α1, α2 to a0, a1, a2 respectively by orientation reversing
homeomorphisms. We get a new surface Σ̂ := Σ ∪ S with 2 boundary components. We cap the
boundary component that intersects C0∪C1∪C2 with a disk D2 and extend the homeomorphism
to the interior of the disk getting a new surface Σ̂ and a homeomorphism φ̂.

Using Hurwitz formula 2−2g−4 = 0−2 we get that the surface we are gluing to Σ has genus
0 and hence it is a sphere with 4 boundary components. See picture Figure 2.5. Three of them
are identified with C0, C1, C2, and the 4-th is called C and is the only boundary component of
Σ̂.

We compute the orbit space Σ̂φ̂ by the extended homeomorphism φ̂ and get a torus with 1
boundary component. We consider the graph Γ′ as in picture Figure 2.6. We put a metric in
this graph. We set every edge of the hexagon to be π/6 − ε/3 long and the path joining the
hexagon with the branch point to be ε long. In this way, if we look at the result of cutting Σ̂φ̂

along the graph φ̂ we see that the only boundary component that maps to the graph by the
gluing map has length 6(π/6− ε/3) + 2ε = π.

The preimage Γ̂ of Γ′ by the quotient map is a tête-à-tête graph whose thickening is ˆ̂Σ.
Its associated homeomorphism φ̂ leaves Σ invariant and its restriction to it coincides with the
rotation φ. Moreover (Γ̂∩Σ, Γ̂∩∂Σ) is a general spine of (Σ, ∂Σ). Modifying the induced metric
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S
⋃
D2

B

B̃

Figure 2.5. On the left, the torus with 3 disks removed and 3 the orbit of an arc marked. On
the right, the star-shaped piece with 3 arms to be glued to the torus along those arcs.

Bφ

(S
⋃
D2)φ̃

B̃φ̃

a1

a2

a3

a−11

a−12

a−13

Figure 2.6. On the lower part we have the original surface. On the upper part we have the
surface that we attach, in this case a sphere with 4 holes removed.

in Γ̂∩Σ as in the proof of the Theorem and adding the order 3 cyclic permutation to the valency
1 vertices we obtain a tête-à-tête graph whose associated homeomorphism equals φ.

1

2
3

ε

π/6− ε/3

Figure 2.7. On the left, the torus with 3 disks removed and 3 the orbit of an arc marked. On
the right, the star-shaped piece with 3 arms to be glued to the torus along those arcs.

3. Seifert manifolds and plumbing graphs

In this subsection we recall some theory about Seifert manifolds and plumbing graphs and fix
the conventions used in this work. For more on this topic, see [Neu81], [NR78], [Neu97], [JN83],
[HNK71], [Hat07] or [Ped09]. In many aspects we follow [Ped09].

3.1. Seifert manifolds. Let p, q ∈ Z with q > 0 and gcd(p, q) = 1. Let D2 × [0, 1] be a solid
cylinder. We consider the natural orientation on D2 × [0, 1].
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Let (t, θ) be polar coordinates for D2. Let rp/q : D2 → D2 be the rotation (t, θ) 7→ (t, θ +

2πp/q). Let Tp,q be the mapping torus of D2 induced by the rotation rp/q, that is, the quotient
space

D2 × [0, 1]

(t, θ, 1) ∼ (t, rp/q(θ), 0)
.

If p, p′ ∈ Z with p ≡ p′ mod q, then the rotations rp/q and rp′/q are exactly the same map so
Tp′,q = Tp,q. The resulting space is diffeomorphic to a solid torus naturally foliated by circles
which we call fibers. We call this space a solid (p, q)-torus or a solid torus of type (p, q). It has
an orientation induced from the orientation of D2 × [0, 1] ⊂ R3. The torus ∂Tp,q is oriented as
boundary of Tp,q.

We call the image of {(0, 0)} × [0, 1] ⊂ D2 × [0, 1] in Tp,q the central fiber . We say that q is
the multiplicity of the central fiber. If q = 1 we call the central fiber a typical fiber and if q > 1
we call the central fiber a special fiber. Also any other fiber than the central fiber is called a
typical fiber.

If a and b are two closed curves in ∂Tp,q, let [a] · [b] denote the oriented intersection number
of their classes in H1(∂Tp,q;Z). We describe 4 classes of simple closed curves on H1(∂Tp,q,Z):

(1) A meridian curve m := ∂D2 × {y}. We orient it as boundary of D2 × {y}.
(2) A fiber f on the boundary ∂Tp,q. We orient it so that the radial projection on the central

fiber is orientation preserving. It satisfies that [m] · [f ] = q.
(3) A longitude l is a curve such that [l] is a generator of H1(Tp,q;Z) and [m] · [l] = 1.
(4) A section s. That is a closed curve that intersects each fiber exactly once. It is well

defined up integral multiples of f . It is oriented so that [s] · [f ] = −1.

f

l

m

Figure 3.1. A torus T2,5 with some closed curves marked on its boundary. In orange a fiber
f , in blue a meridian m and in red a longitude l.

We have defined two basis of the homology of ∂Tp,q, so we have that there must exist unique
a, b ∈ Z such that the equation

(3.1) ([s][f ]) = ([m][l])

(
a p
b q

)

holds in H1(∂Tp,q;Z). The matrix is nothing but a change of basis.
The matrix of the equation has determinant −1 because [s], [f ] is a negative basis in the

homology group H1(∂Tp,q;Z) . Therefore bp ≡ 1 mod q. Changing the class [s] by adding
integer multiples of [f ] to it, changes b by integer multiples of q.

We now fix conventions on Seifert manifolds. Let B′ be an oriented surface of genus g and
r + k boundary components, M ′ := B′ × S1 and s′ : M ′ × S1 → B′ the projection onto B′. Let
(α1, β1), . . . , (αk, βk) be k pairs of integers with αi > 0 for all i = 1, . . . , k. Let N1, . . . Nk be k
boundary tori onM ′. On each of them consider the following two curves si := B′×{0}∩Ni and
any fiber fi ⊂ Ni. Orient them so that {[si], [fi]} is a positive basis of Ni as boundary of M ′.
For each i, consider a solid torus Ti = D2×S1 and the curves m = ∂D2×{0} and l := {pt}×S1

oriented so that {[m], [l]} is a positive basis of Ti. Attach Ti to Ni along its boundary by
(
−αi c
−βi d

)
: ∂Ti → Ni
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with respect to the two given basis. The numbers c and d are integers such that the matrix has
determinant −1. Note that, since the first column defines the attaching of the meridian, the
gluing is well defined up to isotopy.

The foliation on Ni extends to all Ti and gives it a structure of a fibered solid torus. After
gluing and extending the foliation to all k tori, we get a manifold M and a collapsing map
s : M → B where B is the surface of genus g and r boundary components.

If a manifold M can be constructed like this, we say that it is a Seifert manifold and the map
s : M → B is a Seifert fibering for M . We denote the resulting manifold after gluing k tori by

M(g, r, (α1, β1), . . . , (αk, βk)).

Each pair (αi, βi) is called Seifert pair and we say that it is normalized when 0 ≤ βi < αi.
We have, by definition and the discussion above, the following lemma and corollary.

Lemma 3.2. Let M → B be a Seifert fibering. If a fiber f has a neighborhood diffeomorphic
to a (p, q)-solid torus, then the there exists b ∈ Z such that the (possibly unnormalized) Seifert
invariant corresponding to f is (q,−b) with bp ≡ 1 mod q. Conversely, the special fiber f
corresponding to a Seifert pair (α, β) has a neighborhood diffeomorphic as a circle bundle to a
(−c, αi)-solid torus with cβ ≡ 1 mod α.

Corollary 3.3. Let φ : Σ→ Σ be an orientation preserving periodic automorphism of a surface
Σ of order n and let Σφ be the corresponding mapping torus. Let x ∈ Σ be a point whose isotropy
group in the group < φ > has order k with n = k ·s. Then φs acts as a rotation in a disk around
x with rotation number p/k for some p ∈ Z and the (possibly unnormalized) Seifert pair of Mφ

corresponding to the fiber passing through x is (k,−b) with bp ≡ 1 mod k.

Proof. That φs acts as a rotation in a disk D ⊂ Σ around x with rotation number p/k for some
p ∈ Z>0 follows from the fact that x is a fixed point for φn/k. By construction of the mapping
torus of Σ we observe that the two mapping tori Mφ|D ' Dφn/k are diffeomorphic where D is a
small disk around x. By definition of fibered torus we have that Dφn/k ' Tp,k. The rest follows
from Lemma 3.2 above. �

3.2. Plumbing graphs. A plumbing graph is a decorated graph that encodes the information
to recover the topology of a certain 3-manifold. As with Seifert manifolds, we fix notation and
conventions.

Definition 3.4. A plumbing graph is a decorated graph Λ that encodes the information to recover
the topology of a certain 3-manifold.

It has vertex set V t A with A possibly empty. The valency rv of a vertex v is the number
of edges stemming out of v where loops are counted twice. Vertices in A are represented by
arrowheads and always have valency 1.

Now we describe the decoration of Λ and its meaning.
(1) Each vertex v ∈ V is decorated with 2 integers ev (placed on top) and gv placed on bottom.

Let rv be its valency. It represents the circle bundle Yv over the surface of genus gi and
ri boundary components such that (after picking a section on each boundary torus) the
global Euler number is well defined and equal to ei. When g is omitted it is assumed to
be 0. We consider the sections as part of the data that comes with a plumbing graph.
One can always change the section at a given boundary torus provided that the section of
another boundary torus in the same circle bundle is also changed accordingly to preserve
the Euler number. A collection of sections defines an identification (up to isotopy) of
each boundary torus with S1 × S1 that sends the section to the first factor and the fiber
to the second. This identification is called frame.

(2) Each edge is weighted by a sign + or − (when omitted, + is assumed). It tells us that
the circle bundles corresponding to the ends of the edge are glued along a boundary torus
by the gluing map J(x, y) = (y, x) if the sign is +, and −J if the sign is −. This map
is defined with respect to the chosen frame on each boundary torus. The section has
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been fixed in (1) and the fiber does not change the diffeomorphism type of the resulting
manifold after the gluing.

(3) An arrowhead (or vertex in A) represents that an open fibered solid torus is removed
from the corresponding circle bundle from where the edge comes out.

The construction of the 3-manifold associated to a plumbing graph is clear from the description
of its decoration above. Also, in this work we only consider plumbing graphs with non-empty
arrowhead-set A. Furthermore, the plumbing graphs that we use are a special subset of the
plumbing graphs:those that represent Seifert manifolds.

We point out a minor correction to an argument in [Neu81] and reprove a known lemma which
is crucial in Section 5 (see discussion afterwards in Remark 3.8).

Lemma 3.5. Let Λ be a plumbing graph.
1) If a portion of Λ has the following form:

... ...
n1 −e1 −e2 −ek n2. . .−e2

Then the piece corresponding to the node n1 is glued to the piece corresponding to the
node n2 along a torus by the matrix G =

(
a b
c d

)
with det(G) = −1 and where −b/a =

[e1, . . . , ek] with the numbers in brackets being the continued fraction
−b
a

= e1 −
1

e2 − 1
e3− 1

...

.

2) If a portion of Λ has the following form:

...
n1 −e1 −e2 −ek. . .−e2

Then the piece corresponding to the node ni is glued along a torus to the boundary of a solid
torus D2 × S1 by the matrix

(
a b
c d

)
with −d/c = [e1, e2, . . . , ek].

Proof. Let T := D2 × S1 be a solid torus naturally foliated by circles by its product structure.
Let s be the closed curve ∂D2 × {0} and let f be any fiber on the boundary of the solid torus.
Orient them so that {[s], [f ]} is a positive basis of H1(∂T ;Z). If T , T ′ are two copies of the solid
torus. Then Mi is the S1-bundle T tEi T ′ where Ei : ∂T → ∂T ′ is the matrix

(
−1 0
ei 1

)

used in the gluing along the boundaries. In particular [f ] = [f ′] in H1(Mi;Z). The −1 in the
upper left part reflects the fact that s inherits different orientations from the two tori.

We treat the case 1) first. If Mi is the piece corresponding to the node ni with i = 1, 2 we
have that the gluing from M1 to M2 is

M1 tJ (A× S1 tE1 A× S1) tJ · · · tJ (A× S1 tEk A× S1) tJ M2

Where A × S1 is the trivial circle bundle over the annulus A := [1/2, 1] × S1. Let (r, θ) be
polar coordinates for A. The two tori forming the boundary of A×S1 are oriented as boundaries
of A× S1. Observe that the map r((1/2, θ), η) = ((1, θ), η) is orientation reversing.

We define s = {S1
1/2} × {0} and f = {(1/2, 0} × S1 and orient them so that the ordered

basis {[s], [f ]} is a positive basis for H1(S1
1/2 × S1;Z). We define similarly s′ = {S1

1} × {0},
f ′ = {(1, 0} × S1 and orient them so that {[s′].[f ′]} is a positive basis for H1(S1

1 × S1;Z).
Then the homology classes [r(s)] and [r(f)] form a negative basis. In fact [s′] = −[r(s)] and
[f ] = [r(f)]. This is the reason of the matrices

(−1 0
0 1

)
in the Equation (3.6) below.



12 PABLO PORTILLA CUADRADO

So the gluing matrix G from a torus in the boundary of M1 to a torus in the boundary of M2

is given by the following composition of matrices:

G = ( 0 1
1 0 )

(−1 0
0 1

) (−1 0
ek 1

) (−1 0
0 1

)
( 0 1

1 0 ) · · · ( 0 1
1 0 )

(−1 0
0 1

) (−1 0
e1 1

) (−1 0
0 1

)
( 0 1

1 0 )

= ( 0 1
1 0 )

( −1 0
−ek 1

)
( 0 1

1 0 ) · · · ( 0 1
1 0 )

( −1 0
−e1 1

)
( 0 1

1 0 )

= ( 0 1
1 0 )

(
0 −1
1 −ek

)
· · ·
(

0 −1
1 −e1

)
(3.6)

Observe that each matrix in the definition of G has determinant −1 so det(G) = −1 because
there is an odd number. Hence G inverts orientation on the boundary tori, preserving the
orientation on the global 3 manifold. The result about the continued fraction follows easily by
induction on k.

Now we treat similarly the case 2). The gluing from a boundary torus from M1 to ∂D2 × S1

is
M1 tJ (A× S1 tE1 A× S1) tJ · · · tJ (A× S1 tEk D2 × S1).

Hence, by a similar argument to the previous case, the matrix that defines the gluing is

G =
(−1 0
ek 1

) (−1 0
0 1

)
( 0 1

1 0 ) · · · ( 0 1
1 0 )

(−1 0
0 1

) (−1 0
e1 1

) (−1 0
0 1

)
( 0 1

1 0 )

=
(−1 0
ek 1

) (−1 0
0 1

)
( 0 1

1 0 )
(

0 −1
1 −ek−1

)
· · ·
(

0 −1
1 −e1

)

=
(

0 1
1 −ek

) ( 0 −1
1 −ek−1

)
· · ·
(

0 −1
1 −e1

)
(3.7)

By the expression in the last line we see that all matrices involved but the one on the left,
have determinant 1 so we get det(G) = −1. Again, by induction on k the result on the continued
fraction follows straight from the las line. �

Remark 3.8. Note the differences of the Lemma above with Lemma 5.2 and the discussion
before it in [Neu81]: there the author does not observe that in each piece A × S1, the natural
projection from one boundary torus to the other is orientation reversing. So the matrices

(−1 0
0 1

)

are not taken into account there.
In a more extended manner. The problem is with the claim that the matrix C (in equation

(∗) pg.319 of [Neu81]) is the gluing matrix. The equation above equation (∗) in that page,
describes the gluing between the two boundary tori as a concatenated gluing of several pieces.
In particular you glue a piece of the form A × S1 with another piece of the same form using
the matrix Hk and then you glue these pieces a long J- matrices. Then it is claimed that “since
A × S1 is a collar” then the gluing matrix (up to a sign) is JHkJ · · · JH1J . However, notice
that each piece A × S1 has two boundary tori, and they inherit "opposite" orientations. More
concretely, the natural radial projection from one boundary torus to the other is orientation
reversing. So even, if they are a collar (which they are), they interfere somehow in the gluing.
That is why we add the matrices

(−1 0
0 1

)
between each J and each Hk matrix.

4. Horizontal surfaces in Seifert manifolds

In this section, we study and classify horizontal surfaces of Seifert fiberings up to isotopy.
The results contained here are known. The exposition that we choose to do here is useful for
Section 5.

We consider only Seifert manifolds that are orientable with orientable base space and with
non-empty boundary in this section. Let s : Y → B be a Seifert fibering of a manifold Y with
non-empty boundary and Seifert invariants (g, r, (α1, β1), . . . , (αk, βk)).

Definition 4.1. Let H be a surface with non-empty boundary which is properly embedded in Y
i.e. H ∩ ∂Y = ∂H. We say that H is a horizontal surface of Y if it is transverse to all the
fibers of Y .

Horizontal surfaces in a orientable Seifert manifold with orientable base space are always
orientable since the map s restricted to the horizontal surface is a branched cover over the base
space. Therefore, by our assumptions, only orientable horizontal surfaces appear in this work.
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Definition 4.2. Let H(Y ) be the set of all horizontal surfaces of Y , we define

H(Y ) := H(Y )/ ∼
where two elements H1, H2 ∈ H(Y ) are related H1 ∼ H2 if their inclusion maps are isotopic.

Let n := lcm(α1, . . . , αk). We consider the action of the subgroup of the unitary complex
numbers given by the n-th roots of unity cn := {e2πim/n} with m = 0, . . . , n− 1 on the fibers of
Y . The element e2πim/n acts on a typical fiber by a rotation of 2πm/n radians and acts on a
special fiber with multiplicity αi by a rotation of 2πmαi/n radians.

We quotient Y by the action of this group and denote Ŷ = Y/cn the resulting quotient space.
By definition, the action of cn preserves the fibers and is effective. The manifold Ŷ is then a
Seifert manifold where we have killed the multiplicity of all the special fibers of Y . Hence it is
a locally trivial S1-fibration over B and since ∂B 6= ∅, it is actually a trivial fibration so Ŷ is
diffeomorphic to B × S1.

Let π : Y → Ŷ be the quotient map induced by the action of cn. Observe that Ŷ , seen as a
Seifert fibering with no special fibers, has the same base space as Y because the action given by
cn preserves fibers. In particular we find the following commutative diagram

(4.3)
Y Ŷ

B

π

s
ŝ

Where s (resp. ŝ) is the projection map from the Seifert fibering Y (resp. Ŷ ) onto its base
space B.

Definition 4.4. Let H be a horizontal surface in Y . We say that H is well embedded if it is
invariant by the action of cn.

A horizontal surface H defines a linear map H1(Y ;Z)→ Z by considering its Poincaré dual.
If H intersects a generic fiber m times, then it intersects a special fiber with multiplicity α,
m/α ∈ Z times (in particular m is a multiple of n). This is because a generic fiber covers
that special fiber α times. Hence, by isotoping any horizontal surface, we can always find
well-embedded representatives Ĥ ∈ [H].

Remark 4.5. Observe that if H and and H ′ are two well-embedded surfaces with [H] = [H ′],
then we can always find a fiber-preserving isotopy h that takes the inclusion i : H ↪→ Y to an
homeomorphism h(·, 1) : H → H ′ such that h(H, t) is a well-embedded surface for all t. This
helps us prove the following:

Lemma 4.6. There is a bijection π] : H(Y )→ H(Ŷ ) induced by π.

Proof. Let [H] ∈ H(Y ) and suppose that H ∈ [H] is a well-embedded representative. Then
clearly π(H) ∈ H(Ŷ ). If H ′ is another well-embedded representative of the same class, then by
Remark 4.5 we have that [π(H)] = [π(H ′)] in H(Ŷ ). Hence the map π]([H]) := [π(H)] is well
defined.

The map π] is clearly surjective because π−1(Ĥ) is a well-embedded surface for any horizontal
surface Ĥ ∈ H(Ŷ ) and hence π]([π−1(Ĥ)]) = [Ĥ].

Now we prove that the natural candidate for inverse π−1
] ([Ĥ]) := [π−1(Ĥ)] is well-defined.

Let [Ĥ] ∈ H(Ŷ ) with Ĥ ∈ [Ĥ] a representative of the class. Let H := π−1(Ĥ). If [Ĥ] = [Ĥ ′] for
some Ĥ ′ in H(Ŷ ) then [π−1(Ĥ ′)] = [π−1(Ĥ)] by just pulling back the isotopy between Ĥ and
Ĥ ′ to Y by the map π. Hence the map is well defined. By construction, it is clear that for any
H ∈ H(Y ) we have that π−1

] (π]([H]) = [H] so we are done. �



14 PABLO PORTILLA CUADRADO

The objective of this section is to study H(Y ) but because of Lemma 4.6 above, it suffices to
study H(Ŷ ).

Fix a trivialization Ŷ ' B × S1 once and for all. We observe that since ∂B 6= ∅, the surface
B is homotopically equivalent to a wedge of µ = 2g + r − 1 circles, denote this wedge by B̃.
Observe that H(Y ) is in bijection with multisections of B̃×S1 → B̃ up to isotopy. Multisections
are multivalued continuous maps from B̃ to B̃ × S1.

Lemma 4.7. The elements in H(B̃ × S1) are in bijection with elements of

H1(B̃ × S1;Z) = H1(B̃;Z)⊕ Z

that are not in H1(B̃;Z) ⊕ {0}. Oriented horizontal surfaces that intersect positively any fiber
of B̃ × S1 are in bijection with elements of H1(B̃;Z)⊕ Z>0.

Proof. We have that H1(B;Z)⊕ Z = Zµ ⊕ Z. Take an element

(p1, . . . , pµ, q) = k((p′1, . . . , p
′
µ, q
′)) ∈ Zµ × Z

with q 6= 0 and (p′1, . . . , p
′
µ, q
′) irreducible (seeing Zµ × Z as a Z-module). Let

p′j
q′ =

kjp
′′
j

kjq′′
with

p′′j /q
′′ an irreducible fraction. Consider in each S1

k × S1, kj disjoint copies of the closed curve of
slope p′′j /q

′′. We denote the union of these kj copies by H̃j . We observe that H̃j intersects C in
kjq
′′ = q′ points for each j. We can, therefore, isotope the connected components of each H̃j so

that
⋃
j H̃j intersects C in just q′ points. We do so and consider the set

⋃
j H̃j . The horizontal

surface H̃ of B̃ × S1 associated to k((p′1, . . . , p
′
µ, q
′) is k disjoint parallel copies of

⋃
j H̃j .

On the other direction, given an element [H] ∈ H(B̃ × S1). Let [H] denote also the class of
any horizontal surface in H1(B̃×S1;Z). Then q = [H] ·C and pi = [H] · [S1

i ×{0}]. That is, the
corresponding element in H1(B;Z) ⊕ Z is the Poincaré dual of the class of H in the homology
of B̃ × S1. �

Lemma 4.8. H̃ is connected if and only if the element (p1, . . . , pµ, q) is irreducible in H1(Ŷ ;Z) '
H1(B̃;Z)⊕ Z.

Proof. We know that by construction H̃∩C are q points. It is enough to show that these q points
lie in the same connected component since any other part of H̃ intersects some of these points.
We label the points cyclically according to the orientation of C. So we have c1, . . . , cq ∈ C. We
recall that S1

j × S1 ∩ H̃ is formed by kj parallel copies of the closed curve of slope p′j/q
′ with

kjp
′
j

kjq′
=

pj
q . Hence the point xi is connected by these curves with the points ci+tkj mod q. Since

(p1, . . . , pµ, q) is irreducible then gcd(p1, . . . , pµ, q) = 1 and hence gcd(k1, . . . , kµ) = 1. Therefore
the equation

i+ t1k1 + · · ·+ tµkµ = j mod q

admits an integer solution on the variables t1, . . . , tµ for any two i, j ∈ {1, . . . , q}. This proves
that the points ci and cj are in the same connected component in H̃.

Conversely if the element is not irreducible, then (p1, . . . , pµ, q) = k(p′1, . . . , p
′
µ, q
′) for (p′1, . . . , p

′
µ, q
′)

irreducible and k > 1. Then, by construction, H̃ is formed by k disjoint copies of the connected
horizontal surface associated to (p′1, . . . , p

′
µ, q
′) �

Handy model of a Seifert fibering. We describe a particularly handy model of the Seifert
fibering that we use in Section 5. The idea is taken from a construction in [Hat07]. For each
i = 1, . . . , k let xi ∈ B be the image by s : Y → B of the special fiber Fi. We pick one boundary
component of the base space and denote it by L. For each i = 1, . . . , k pick an arc li properly
embedded in B and with the end points in L (i.e. with li ∩ L = ∂li) in such a way that cutting
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along li cuts off a disk Di that contains xi and no other point from {x1, . . . , xk}. We pick a
collection of such arcs l1, . . . , lk pairwise disjoint. We define

B′ := B \
⊔

i

int(Di)

where int(·) denotes the interior. See Figure 4.1 below and observe that B and B′ are diffeo-
morphic.

x1

x2

x3

D1

D2

D3

Figure 4.1. We see the base space B of a Seifert manifold. It has genus 3 and 4 boundary
components. The 3 points are the image of the special fibers by the projection s and if we cut
along the three red arcs, we get the surface B′.

Let Y ′ := s−1(B′). Since Y ′ contains no special fibers and ∂B′ 6= ∅ then Y ′ is diffeomorphic
as a circle bundle to B′ × S1. Recall that s−1(Di) is a solid torus of type (pi, αi) with piβi ≡ 1
mod αi (see Lemma 3.2).

Summarizing, the handy model consists of:
i) A system of arcs l1, . . . , lk as explained.
ii) A trivialization of Y ′, that is an identification of Y ′ with B′ × S1.
iii) Identifications of s−1(Di) with the corresponding model Tpi,αi for each i = 1, . . . , k.

Remark 4.9. Let Ai be the vertical annulus s−1(li). A properly embedded horizontal disk
D ⊂ s−1(Di) intersects Ai in αi disjoint arcs by definition of the number αi. Since a horizontal
surface H intersects each typical fiber the same number of times we get that H must meet each
fiber t · lcm(α1, . . . , αk) = t · n times for some t ∈ Z>0. If a horizontal surface meets t · n times
a typical fiber, then it meets t · n/αi times the special fiber Fi.

Lemma 4.10. There is a bijection between H(Y ) and HS(Y ) := {γ ∈ H1(Y ;Z) : γ([C]) 6= 0}
where C is a generic fiber of Y .

Proof. Clearly, an element [H] ∈ H(Y ) can be seen as the dual of a 1-form γ with γH(C) 6= 0.
To see that there is a bijection, take a handy model for Y (we use notation described there).

Then we observe that given a γ ∈ HS(Y ), it restricts to a 1-form in H1(Y ′;Z). The manifold
Y ′ is diffeomorphic to a product, so by Lemma 4.7, there is a horizontal surface in H(Y ′)
representing the restriction of γ to Y ′. It also restricts as a 1-form in H1(s−1(B);Z) where we
recall that s−1(B) is a disjoint union of tori, each containing a special fiber of Y . If γ([C]) = n
then, γ([Fi]) = n/αi ∈ Z so we can see the dual of γ|s−1(B) as an union of n/αi disks in each of
the tori s−1(Di) for all i. Each of these disks intersects αi times the annulus s−1(li). So we can
glue the horizontal surface represented by γ|Y ′ with these disks to produce a horizontal surface
in all Y . By construction, this horizontal surface represents the given γ ∈ H1(Y ;Z). �

Lemma 4.11. Let Ĥ be a horizontal surface in Ŷ , that is, Ĥ ∈ H(Ŷ ) and let H := π−1(Ĥ).
Then H is connected if and only if Ĥ is connected.

Proof. If H is connected, then so is Ĥ because π is a continuous map.
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Suppose now that Ĥ is connected. If π−1(Ĥ) is not connected, then it is formed by parallel
copies of diffeomorphic horizontal surfaces. Each of them is sent by π onto Ĥ and each of them
represents the same element in HS(Y ). But, by Lemma 4.10 HS(Y ) is in bijection with H(Y )

which, by Lemma 4.6, is in bijection with H(Ŷ ). So we get to a contradiction. �

By construction, we have established the 1 : 1 correspondences

(4.12) HS(Y )←→ H(Y )←→ H(Ŷ )←→ H1(B;Z)⊕ Z \H1(B;Z)⊕ {0}
Where the first correspondence is Lemma 4.10, the second is Lemma 4.6 and the last one is

Lemma 4.7.
Actually if we fix an orientation on the manifold and the fibers and we restrict ourselves to

oriented horizontal surfaces that intersect positively the fibers of Y , these are parametrized by
elements in H1(B;Z)⊕ Z>0. From now on we restrict ourselves to oriented horizontal surfaces
H with H · C > 0, that is, those whose oriented intersection product with any typical fiber is
positive. Also the fibers are assumed to be oriented. This orientation induces a monodromy on
each horizontal surface.

Remark 4.13. Let Σ be a surface with boundary and φ : Σ → Σ a periodic automorphism
and let Σφ be the corresponding mapping torus which is a Seifert manifold. The manifold Σφ

fibers over S1 and we can see Σ as a horizontal surface of Σφ by considering any of the fibers of
f : Σφ → S1. Now let Σφ be the orbit space of Σ which is also the base space of Σφ. Letm be the
lcm of the multiplicities of the special fibers of the Seifert fibering and let Σφ/cm be the quotient
space resulting from the action of cm on Σφ. We observe, as before, that Σφ/cm is diffeomorphic
to Σφ × S1 but there is not a preferred diffeomorphism between them. A trivialization is given
by a choice of a section of Σφ/cm → Σφ.

Let [S1], . . . , [Sµ] be a basis of the homology group H1(Σφ;Z) where each Si is a simple closed
curve in Σφ. Let C be any fiber of of Σφ/cm. Let w, ŵ : Σφ → Σφ/cm be two sections, then we
have two different basis of the homology of H1(Σφ/cm;Z) induced by these two sections. For
instance

{[w(S1)], . . . , [w(Sµ)], [C]} and {[ŵ(S1)], . . . , [ŵ(Sµ)], [C]}.
Let Σ = f−1(0) be the horizontal surface that we are studying and let Σ̂ := π(Σ) where π is the
quotient map Σφ → Σφ/cm. Then Σ̂ is represented with respect to the (duals of the) two basis
by integers (p1, . . . , pµ, q) and (p̂1, . . . , p̂µ, q) respectively and pi ≡ p̂i mod q for all i = 1, . . . , µ
because a section differs from another section in a integer sum of fibers at the level of homology.

So the numbers p1, . . . , pµ are well defined modulo Zq regardless of the trivialization chosen
for Σφ/cm. Also by the discussion above, we see that if we fix a basis of H1(B;Z), then all the
elements of the form (p1 +n1q, . . . , pµ +nµq, q) represent diffeomorphic horizontal surfaces with
the same monodromy. That there exists an diffeomorphism of Y preserving the fibers that sends
H1 to H2 comes from the fact that on a torus S1 × S1, there exist a diffeomorphism preserving
the vertical fibers {t} × S1 that sends the curve of type (p, q) to the curve of type (p + kq, q)
for any k ∈ Z: the k-th power of a left handed Dehn twist along some fiber {pt} × S1 that is
different from C.

5. Translation Algorithms

Every mapping torus arising from a tête-à-tête graph is a Seifert manifold so it admits a (star-
shaped) plumbing graph. The monodromies induced on horizontal surfaces of Seifert manifolds
are periodic.

In this section we describe an algorithm that, given a general tête-à-tête graph, produces a
star-shaped plumbing graph together with the element in cohomology modulo Zq corresponding
to the horizontal surface given by the tête-à-tête graph. We also describe the algorithm that
goes in the opposite direction.
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5.1. From general tête-à-tête graph to star-shaped plumbing graph. We first state a
known proposition that used in the algorithm. It can be found in several references in the
literature. See for example [NR78] or [Ped09] .

Proposition 5.1. Let M(g, r; (α̂1, β̂1), . . . , (α̂k, β̂k)) be a Seifert fibering. Then it is diffeomor-
phic as a circle bundle to a Seifert fibering of the form

M(g, r; (1, b), (α1, β1), . . . , (αk, βk))

where 0 ≤ βi < αi for all i = 1, . . . , k. If the surface admits a horizontal surface and r = 0,
then b = −∑i

βi
αi
. If r 6= 0 but a framing is given in each of the r boundary components, then b

is well-defined and satisfies the same equation. If r 6= 0 then the statement is still true but the
number b is not well-defined: any b produces diffeomorphic Seifert manifolds with boundary.

The corresponding plumbing graph associated to the Seifert manifold is

. . .

. . .

. . .

...b

−b11 −b12

−bk−11

−bk1

−b1M1−1 −b1M1

−bk−1Mk−1

−bkMk

g

...r

Figure 5.1. Plumbing graph for a Seifert manifold

where the numbers bij are the continuous fraction expansion for αi/βi, that is
αi
βi

= bi1 −
1

bi2 − 1
bi3− 1

...

Let (Γ,P, σ) be a general tête-à-tête structure. This includes as particular cases pure tête-à-
tête graphs and relative tête-à-tête graphs. Let φΓ be a truly periodic representative of the tête-
à-tête automorphism and let ΣφΓ

be the mapping torus of the the diffeomorphism φΓ : Σ→ Σ.
The mapping torus given by a periodic diffeomorphism of a surface is a Seifert manifold. We
describe an algorithm that takes (Γ,P, σ) as input and returns as output:

(1) The invariants of a Seifert manifold:

M(g, r, (α1, β1), . . . , (αk, βk))

diffeomorphic to the mapping torus ΣφΓ
. It is represented by a star-shaped plumbing

graph Λ corresponding to the Seifert manifold and
(2) a tuple (p1, . . . , pµ, q) with pi ∈ Z/qZ and q ∈ Z>0 representing the horizontal surface

given by Σ with respect to some basis of the homology H1(B;Z) ' Zµ of the base space
B of M . In particular µ = 2g + r − 1.

Step 1. We consider ΓφΓ , that is the quotient space Γ/ ∼ where ∼ is the equivalence relation
induced by the action of the safe walks on the graph. This graph is nothing but the image of Γ
by the projection of the branched cover p : Σ→ ΣφΓ onto the orbit space.

The map p|Γ : Γ→ ΓφΓ induces a ribbon graph structure on ΓφΓ . We can easily get the genus
g and number of boundary components r of the thickening of ΓφΓ from the combinatorics of the
graph. This gives us the first two invariants of the Seifert manifold.
Step 2. Let sv(Γ) be the set of points with non trivial isotropy subgroup in < φΓ >. This is

the set of branch points of p : Σ→ ΣφΓ by definition.
Let v ∈ sv(Γ). Then there exists m < n with n = m ·s such that v is a fixed point of φmΓ (take

m the smallest natural number satisfying that property). We can therefore use Corollary 3.3.
We get that φmΓ acts as rotation with rotation number p/s in a small disk centered at v. So
around the fiber corresponding to the vertex v, the Seifert manifold is diffeomorphic fiberwise
to a p, s-torus. and the corresponding Seifert pair (αv, βv) is given by (αv, βv) = (s,−b) with
bp ≡ 1 mod q.
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We do this for every vertex in sv(Γ) and we get all the Seifert pairs.
Step 3. Since we have already found a complete set of Seifert invariants, we have that

M(g, r; (α1, β1), . . . , (αk, βk))

is diffeomorphic to the mapping torus of the pair (Σ, φΓ).
Step 4. For this step, recall Section 4 and notation introduced there. Fix a basis [S1

1 ], . . . , [S1
µ]

of H1(B;Z) where S1
i is a simple closed curve contained in ΓφΓ .

Let m := lcm(α1, . . . , αk). Observe that necessarily m|n so n = m · q (with n the order of
φΓ).

This number q that we have found is the last term of the cohomology element we are looking
for. Of course, it is also the oriented intersection number of Γ̂ = π(Γ) with C. (recall π was the
projection M →M/cm =: M̂).

Now if we intersect the graph Γ/cm ∩ S1
i × C with the torus over one of the representatives

of the basis, we get a collection of ki closed curves, each one isotopic to the curve of slope p′i/q
′
i

where q′i ·ki = q and pi = p′i ·ki = pi. This number, pi, is the i− th coordinate of the cohomology
element with respect to the fixed basis.

We can compute p1, . . . , pk directly. Let S1
i be one of the generators of H1(ΓφΓ ;Z). Let

Ŝ1
i := Γ/cm ∩ S1

i × S1 where S1
i × S1 ⊂ ΓφΓ × S1; and let S̃1

i := p|−1
Γ (Ŝ1

i ). Observe that Ŝ1
i

consists of ki disjoint circles and that ki divides q. Let q′i = q/ki.
Pick a point z ∈ S1

i which is not in the image by π of a special fiber. Then π̂−1(z) ∩ Γ/cm
consists of q points lying in the ki connected components of Ŝ1

i . Pick one of these connected
components and enumerate the corresponding q′i points in it using the orientation induced on
that connected component by the given orientation of S1

i . Then we have the points z1, . . . , zq′i .
We observe that by construction, these points lie on the same fiber in M̂ and this fiber is oriented.
Follow the fiber from z1 in the direction indicated by the orientation, the next point is zti , with
ti ∈ {1, . . . , q′i}. We therefore find that this connected component of Ŝ1

i lies in S1
i × S1 as the

curve with slope (ti − 1)/q′i and so pi = (ti − 1) · ki.
5.2. From star-shaped plumbing graph to tête-à-tête graphs. The input that we have
is:

i) A Seifert fibering of a manifold M .
ii) A horizontal surface given by an element in H1(B × S1;Z) that does not vanish on a

typical Seifert fiber.
The output is:
(1) A general, relative or pure tête-à-tête graph such the induced mapping torus is diffeo-

morphic to the given plumbing manifold in the input. And such that the thickening of
the graph, represents the horizontal surface given.

Step 1.We start with a Seifert fibering M(g, r; (α1, β1), . . . , (αk, βk).
We fix a model of the Seifert fibering as in Handy model of a Seifert fibering. We recall that

the model consists of the following data:
i) The Seifert fibering s : M → B where B is a surface of genus g and r boundary

components.
ii) A collection of arcs {li} with i = 1, . . . , k properly embedded in B where the boundary

of these arcs lie in one chosen boundary component of B. These satisfy that when we
cut along one of them, say li we cut off a disk denoted by Di from B that contains the
image of exactly one special fiber, we denote the image of this fiber by xi.

iii) We have an identification of each solid torus s−1(Di) with the corresponding fibered solid
torus Tpi,qi with qi = αi and −piβi ≡ 1 mod αi and 0 < pi < qi.

Step 2. Observe that B is homotopic to a wedge of µ = 2g − r + 1 circles that does not
contain any xi for i = 1, . . . , i. We can see this wedge as a spine embedded in B. Denote by c
the common point of all the circles. Now we embed disjoint segments ei with i = 1, . . . , k where
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each one satisfies that one of its ends lies in the spine and the other end lies in xi. Also, they
do not intersect the wedge of circles at any other point and they also ei does not intersect any
Dj for j 6= i. We denote the union of the wedge and these segments by Λ̃ and observe that Λ̃ is
a spine of B.
Step 3. We suppose that the element in H1(M̂ ;Z) given is irreducible, otherwise if it is

of the form k(p′1, . . . , p
′
µ, q
′) with (p′1, . . . , p

′
µ, q
′) irreducible, we take the irreducible part, carry

out the following construction of the corresponding horizontal surface and then take k parallel
copies of this surface.

Recall Equation (4.3) for the definition of the maps s, ŝ and π.
Once and for all, fix a trivialization M̂ ' B×S1. We assume that the element (p1, . . . , pµ, q) ∈

H1(M̂ ;Z) is expressed with respect to the dual basis [S1], . . . , [Sµ], [C] where the first µ are circles
of the wedge embedded in B and [C] is the homology class of C := ŝ−1(c).

For each i = 1, . . . , µ, consider the torus ŝ−1(Si) which is naturally trivialized by the trivi-
alization of M̂ . We pick in it ki copies of the curve of slope p′i/q

′ where pi/q = kip
′
i/kiq

′. For
each i, the curves constructed this way in ŝ−1(Si) intersect q times the curve C. Hence we can
isotope them so that all of them intersect C in the same q points. We denote the union of these
curves by Λ̂′. We assume that Λ̂′ projects to Λ̃ \⋃ ei by B × S1 → B.

By construction, Λ̂′ is a ribbon graph for the surface horizontal surface Ĥ ⊂ M̂ . Observe that
s(Λ̂′) 6= Λ̃. However s(Λ̂′) is also a spine of B (it coincides with the wedge of circles in B).

Define Λ′ := π−1(Λ̂′). By the definition of π, this graph can also be constructed by taking
in each of the tori π−1(ŝ−1(Si)) = s−1(Si) , ki copies of the curve of slope p′i/n. Which by
construction all intersect in n points in s−1(c).
Step 4. Now we describe π−1(ŝ|−1

Ĥ
(ei)) for each i = 1, . . . , k. First we observe that it is equal

to s|−1
H (ei) which is a collection of q · n/αi disjoint start shaped graphs. Each star-shaped piece

has αi. To find out the gluings of these arms with Λ′ one looks as the structure of s−1(Di) as
a (c, αi)- solid torus. To visualize it, place the q · n/αi star-shaped pieces in a solid cylinder
D2× [0, 1] and identify top with bottom by a c/αi) rotation. The fibers of the fibered torus give
the monodromy on the end of the arms and the attaching to Λ′.

We define Λ as the union of Λ′ with these star-shaped pieces
Step 5. The embedding of H in the Seifert manifold defines a diffeomorphism φ : H → H

in the following way. Let x ∈ H and follow the only fiber of the Seifert manifold that passes
through x in the direction indicated by its orientation, we define φ(x) as the next point of
intersection of that fiber with H.

To describe φ up to isotopy it is enough to give the rotation numbers of φ around each
boundary component of H plus some spine invariant by φ. By construction Λ is an invariant
graph. The fibers of the Seifert fibering give us an automorphism on the graph Λ. To get the
rotation numbers, we cut the thickening H along Λ and we get a collection of cylinders Λj× [0, 1]
with j = 1, . . . , r′.

Now we invoke [FdBPPPC17, Theorem 5.12] if the monodromy leaves at least 1 boundary
component invariant and we invoke Theorem 2.6 if the monodromy does not leave any boundary
component invariant. This gives us a constructive method to find a graph (which in general will
be different from

⋃µ
i=1 Si

⋃k
j=1 ej) containing all branch points in B such that it is a retract of

B and such that it admits a metric that makes its preimage a tête-à-tête graph.

6. Examples

We apply the algorithms developed in the previous sections to two examples.

Example 6.1. Suppose we are given the bipartite complete graph Γ of type (4, 11) with the
cyclic ordering induced by placing 4 and 11 vertices in two horizontal parallel lines in the plane
and taking the joint of the two sets in that plane. Give each edge length π/2. This metric
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makes it into a tête-à-tête graph as we already know. Let φΓ be a periodic representative of the
mapping class induced by the tête-à-tête structure.

π/2

φ4
Γ

φ11
Γ

Figure 6.1. On the left we see the tête-à-tête graph K4,11. On the right we see a small
neighborhood of a vertex of valency 11 where φ4

Γ acts as the rotation r4/11 radians. Equivalently,
for a vertex of valency 4, we see that φ11

Γ acts as the rotation r3/4.

Let’s find the associated invariants. One can easily check that the orbit graph is just a segment
joining the only two branch points so the orbit surface is a disk and hence g = 0 and r = 1.

The map p : Σ → ΣφΓ has two branch points that correspond to two Seifert pairs. Let r1

be the branching point in which preimage lie the 4 points of valency 11. We choose any of
those 4 points and denote it p1, now φ4 acts as a rotation with rotation number 4/11 in a small
disk around p1 . Hence, the associated normalized Seifert pair is (11, 8). Note that 8 · 4 ≡ −1
mod 11 and that 0 < 8 < 11. Equivalently for the other point we find that φ11

Γ is a rotation
with rotation number 3/4 when restricted to a disk around any of the 11 vertices of valency 4.
Hence, the corresponding normalized Seifert pair is (4, 1).

Computing the continued fraction we have that 11
8 = [2, 2, 3, 2] and 4

1 = [4]. For computing
the number b we think of the surface resulting from extending the periodic automorphism to a
disk capping off the only boundary component of Σ. By a similar argument, since the rotation
number induced on the boundary is −1/44, this would lead to a new Seifert pair (44, 1).

So the plumbing diagram corresponding to the mapping torus of Σ by φΓ is the following

−2 −2 −2−3

−4

−1−44

Note that contracting the bamboo that ends in the arrowhead does not change the diffeomor-
phism type of the manifold. The weight −1 on the central node only makes sense if we consider
the manifold resulting from removing the arrow (which corresponds with the mapping torus of
the periodic extension of φΓ a disk capping off the only boundary component).

Finally, we are going to compute the element that the surface Σ represents in the homology
group H1(ΣφΓ) ⊕ Z . First observe that since ΣφΓ is a disk, the group is isomorphic to 0 ⊕ Z.
This tells us that the only possible choices of multisections in the bundle ΣφΓ × S1 are classified
(up to isotopy) by the elements (0, k) with k 6= 0. The element (0, k) corresponds to k parallel
copies of the disk ΣφΓ . In our case, there is only one such disk so the element is (0, 1).

Example 6.2. Suppose we are given the following plumbing graph:
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−2 −2

−2

−1

Figure 6.2

We are indicated two of the invariants of the Seifert manifold: the genus of the base space
g = 0 and its number of boundary components r = 2. The base space B is therefore an annulus.

We compute the Seifert invariants by interpreting the weights on the two bamboos of the
plumbing graph as numbers describing continued fractions. We get [2, 2] = 3/2 and [2] = 2 so
the Seifert pairs are (3, 2) and (2, 1). So the corresponding Seifert fibering s : M → B has two
special fibers F1 (for the pair (2, 1) and F2 (for the pair (3, 2)). Using Lemma 3.2 we have that
the Seifert fiber corresponding to the pair (3, 2) has a tubular neighborhood diffeomorphic to the
fibered solid torus T1,3; this is because −2 · 1 ≡ 1 mod 3. Analogously, the fiber corresponding
to the Seifert pair (2, 1) has a tubular neighborhood diffeomorphic to the fibered solid torus T1,2.

Now we fix a model for our Seifert manifold. Take an annulus as in Figure 6.3. Now we use the
kind of model explained in Figure 4.1 (the handy model). We choose a boundary component and
we pick properly embedded arcs (with their boundaries lying on the chosen boundary component)
in such a way that cutting along one of them cuts off a disk containing only one of the two images
by s of the special fibers; over those disks in M lie the two corresponding fibered solid tori. Let
d be the point lying under π(F1) and let a be the point lying under the fiber π(F2). We pick
an embedded graph which is a spine of B as in Figure 6.3 below, that is, the graph is the union
of: a circle whose class generates the homology of the base space. We denote it by S; a segment
joining a point c ∈ S with the vertex d. We denote this segment by D and a segment joining a
point b ∈ S with the vertex a. We denote this segment by A. See Figure 6.3.

We denote this graph by Λ̃.

abcd

D A

Figure 6.3. This is the base space B of the Seifert fibering. In red we see Γ̃ which is formed
by a circle and two segments attached to it that end at the image by s of the special fibers.
The dashed lines represents the properly embedded arcs

Now we consider M̂ which is diffeomorphic to B × S1 which is homotopically equivalent to
Γ̃ × S1. We denote the projection on B by ŝ : M̂ → B. The map π : M → M̂ satisfies that
ŝ ◦ π = s.

The piece of information missing from the input is the horizontal surface. Suppose we are
given the element (1, 2) ∈ H1(B;Z) ⊕ Z with respect to the basis formed by the class of S.
Then, the intersection of the horizontal surface Ĥ ⊂ M̂ with the torus Ŝ := ŝ−1(S) is a curve
of slope 1/2. We also have that ŝ−1(A) consists of two segments, as well as ŝ−1(D). See figure
Figure 6.4.

The horizontal surface that we are looking for is H := π−1(Ĥ) that is the thickening of
π−1(Γ̂). To know the topology of H and the action on it of the monodromy, we construct the
ribbon graph π−1(Γ̂). We observe that lcm(2, 3) = 6 so π−1(Ŝ) is the curve of slope 1/12 on
the torus s−1(S). We also have that s−1(a) = (π ◦ ŝ)−1(a) consists of 4 and s−1(A) consists of
12 segments separated in groups giving valency 3 to each of the points in points. Equivalently



22 PABLO PORTILLA CUADRADO

Figure 6.4. This is M̂ together with the base space under it. Lying over the graph Γ̃ we can
see the graph Ĝ whose thickening is the horizontal surface Ĥ (the blue helicoidal ramp on the
figure). Also we see that lying over the circle of Γ̃ lies the closed curve in Γ̂ that is a curve of
slope 1/2 in the torus ŝ−1(S1).

s−1(d) consists of 6 vertices and s−1(D) of 12 segments naturally separated by pairs. The fact
that s−1(S) is a curve of slope 1/12, give us the combinatorics of the graph. Using notation of
6.5, and the rotation numbers associated to each of the two Seifert pairs, we have that the graph
is that of Figure 6.5.

a1

a2

a3

a5

a6

a7

a8

a4

a12

a11

a10

a9

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

b11

b12

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d11

d12

x

φ(x)

y

φ(y)

Figure 6.5. The graph π−1(Λ̂) in black. The letters with subindices are interpreted like this:
the vertex ai is glued to the vertex bi and the vertex di is glued to the vertex di. In red we
see a path from x to φ(x) used to compute the rotation number of φ with respect to the outer
boundary component; we observe that the outer boundary component retracts to 72 edges (each
edge is counted twice if the boundary component retracts to both sides of the edge), and the
red path covers 66 of these edges.
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You can easily compute from the ribbon graph that the surface has 2 boundary components
and genus 7. Since it has only two boundary components, each of them is invariant by the action
of the monodromy induced by the orientation on the fibers. We compute their rotation numbers
as explained on Step 5 of the algorithms. We observe that the ”outer” boundary component
retracts to 72 edges where an edge is counted twice if the boundary component retracts to both
sides of it. We pick a point x and observe that the monodromy indicated by the orientation
of the fibers takes it to the point immediately above it φ(x). Now we consider a path ”turning
right” starting at x and observe that it goes along 66 edges before reaching φ(x). Hence, the
rotation number of φ with respect to this boundary component is 11/12. Similarly, we observe
that the other boundary component retracts to 24 edges and by a similar procedure we can
check that φ also has a rotation number 11/12 with respect to this other boundary component.
See figure Figure 6.5.

Following the construction in [FdBPPPC17, Theorem 5.12], we should put a metric on Ĝ
so that the part where the outer boundary component retracts has a length of π/11 and the
same for the other boundary component. But this is impossible given the combinatorics of the
graph. That means that this graph does not accept a tête-à-tête metric. However theorem
[FdBPPPC17, Theorem 5.12] gives us a procedure to find a graph admitting a tête-à-tête metric
producing the given monodromy. In this case, it is enough to consider the following graph.

Figure 6.6. Graph Γ̃ that admits a tête-à-tête metric.

If we call this graph Γ̃ we see that that Γ := p−1(Γ̃) is the following graph:
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a1
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a10

a11

a12

â1

â2

â3

a4

â5

â6

â7

â8

â9

â10

â11

â12

b1

b̂1

b̂2

b̂3

b̂4

b̂5

b̂6

b̂7

b̂8

b̂9

b̂12

b̂10

b̂11

b2

b3

b4

b5

b6

b7

b8

b9

b10

b11

b12

c1

ĉ1

ĉ2

ĉ3

ĉ4

ĉ5

ĉ6

ĉ7

ĉ8

ĉ9

ĉ12

ĉ10

ĉ11

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d11

d12

d̂1

d̂2

d̂3

d̂4

d̂5

d̂6

d̂7

d̂8

d̂9

d̂10

d̂11

d̂12

Figure 6.7. The tête-à-tête graph Γ. The notation means that ai is glued to bi, âi to b̂i, ci to
di and ĉi to d̂i for all i = 1, . . . , 12.

By setting each of the two edges of the circle Γ̃ has length π/22, then Γ is a pure tête-à-tête
graph modeling the action of the monodromy on the horizontal surface H.
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