Are the artificially generated instances uniform
in terms of difficulty?

Aritz Perez*, Josu Ceberio’ and Jose A. Lozano*T
*Basque Center for Applied Mathematics (BCAM), 48009 Bilbao, Spain
TFaculty of Computer Science, 20018 Donostia, Spain
University of the Basque Country UPV/EHU
email: aperez@bcamath.org, josu.ceberio@ehu.eus, ja.lozano@ehu.eus

Abstract—In the field of evolutionary computation, it is usual
to generate artificial benchmarks of instances that are used as
a test-bed to determine the performance of the algorithms at
hand. In this context, a recent work on permutation problems
analyzed the implications of generating instances uniformly at
random (u.a.r.) when building those benchmarks. Particularly,
the authors analyzed instances as rankings of the solutions of
the search space sorted according to their objective function
value. Thus, two instances are considered equivalent when their
objective functions induce the same ranking over the search
space. Based on the analysis, they suggested that, when some
restrictions hold, the probability to create easy rankings is higher
than creating difficult ones.

In this paper, we continue on that research line by adopt-
ing the framework of local search algorithms with the best
improvement criterion. Particularly, we empirically analyze, in
terms of difficulty, the instances (rankings) created u.a.r. of
three popular problems: Linear Ordering Problem, Quadratic
Assignment Problem and Flowshop Scheduling Problem. As
the neighborhood system is critical for the performance of
local search algorithms three different neighborhood systems
have been considered: swap, interchange and insert. Conducted
experiments reveal that (1) by sampling the parameters uniformly
at random we obtain instances with a non-uniform distribution
in terms of difficulty, (2) the distribution of the difficulty strongly
depends on the pair problem-neighborhood considered, and (3)
given a problem, the distribution of the difficulty seems to depend
on the smoothness of the landscape induced by the neighborhood
and on its size.

I. INTRODUCTION

In the field of evolutionary computation, it is common to use
benchmarks of instances of a given problem in order to carry
out a performance evaluation of existing and newly developed
algorithms. When the final goal is to solve a specific real-world
problem, real instances are used to perform such comparisons,
and, thus, we are not interested in an extensive performance
evaluation. However, when the objective of the research is
to contribute with methodological developments, then large
benchmarks of instances are needed in order to evaluate the
efficiency of the proposed algorithm under different scenarios.

At this point, it is a usual practice, based on the knowl-
edge of the problem (limited in most cases), to create new
“challenging” instances artificially [1], [2], [3], [4], [5]. In this
sense, a recurrent option is to generate instances by sampling
their parameters uniformly at random (u.a.r) in some ranges.
The underlying assumption states that sampling u.a.r in the

XXX-X-XXXX-XXXX-X/18/$31.00 ©2018 IEEE

space of parameters is equivalent to sampling u.a.r the space
of instances/problems/functions.

Recently, Ceberio et al. [6] showed that such equivalence
does not hold for instances of the Linear Ordering Problem.
Authors revealed that if the algorithm takes into account the
objective value of solutions explicitly throughout the optimiza-
tion process, then the space of functions is infinite. However,
when the algorithms progress by making considerations of the
type better-equal-worse (ordering type), then the number of
functions that the algorithm distinguishes is finite, and, there-
fore, they can be grouped in terms of rankings. In the Linear
Ordering Problem, authors concluded that (1) by sampling
parameters of instances u.a.r, some rankings are observed more
frequently than others, and (2) for the linear ordering problem
and n = 3, the most frequent rankings present only one local
optimum.

In this paper, we continue that work by adopting the
framework of local search algorithms (LS). LS algorithms [7]
are one of the simplest yet effective families of optimization
algorithms. LS algorithms progress by moving from one
solution to a neighboring solution that improves their quality.
Different LS algorithms can be considered depending on the
way in which neighboring solutions are selected. Among the
selection criteria best improvement (BI) is one of the most used
heuristics and it lies in selecting the neighboring solution that
produces the highest improvement to the objective value of the
current solution. Clearly, BI heuristic depends strongly on the
neighborhood structure considered and, given a neighborhood,
its behavior can be locally defined in terms of the pairwise
(partial) rankings among the neighboring solutions.

In this work, we carried out an extensive experimental
study on three popular problems in which we generated
large amounts of instances sampling the respective parameters
v.a.r.: Linear Ordering Problem (8], [9], Quadratic Assignment
Problem [10] and Flowshop Scheduling Problem [11]. We
measured the difficulty of the generated instances for BI al-
gorithms under three different neighborhood structures: swap,
interchange and insert. We define the difficulty of an instance
under a certain neighborhood as the probability of BI of not
reaching the global optimum when starting from a solution
selected u.a.r. Using the notion of difficulty, it is possible to
group the instances into equivalence classes, and perform an
empirical analysis of their distribution.

Conducted experiments point out that (1) by sampling the
parameters uniformly at random, we obtain instances with a
non-uniform distribution, (2) the distribution of the difficulty
for a given neighborhood strongly depends on the problem
considered, and (3) given a problem the behavior of a neigh-
borhood in terms of the difficulty is closely related to the
smoothness of the instances induced by the neighborhood and,
also, to the size of the neighborhood.

The remainder of the paper is organized as follows: in
Section II the necessary background on combinatorial opti-
mization, rankings and local search is introduced. In addition,
a difficulty measure is defined from a BI perspective. In
Section III, the permutation problems and the neighborhood
structures considered in the work are detailed and the concept
of roughness of an instance induced by a given neighborhood
is presented. Afterwards, the experimental study is presented
in Section IV. Next, a discussion is carried out in Section V.
Finally, Section VI summarizes the main results of the paper
and the future work lines.

II. BACKGROUND

In this section, we introduce the concepts that are necessary
to understand the main contributions of the paper.

A. Combinatorial optimization problems

A combinatorial optimization problem (COP), denoted as
P = (9, f), consists of a finite (or infinite countable) domain
of solutions €2, also known as search space, and an objective
function f which is formalized as

f: Q=R
x— f(x)

We call to the value f(x) the fitness of x.The definition of a
problem includes certain inputs that are known as parameters.
The collection of parameters that describe a particular case
of the problem is called the instance. In this work, we will
analyze three popular COPs over permutations: Linear Order-
ing Problem, Quadratic Assignment Problem and Flowshop
Scheduling Problem (see Section III-A)

The aim in a COP is to, given an instance, find x € €2 such
that f is maximized (or minimized). From here on, for the
sake of simplicity, we will consider only injective objective
functions. In addition, as the computation of f(x) is closely
tied to the instance, in the remainder of the paper, we say that
f is an instance or an objective function indistinctly.

B. Instances as rankings of solutions
Definition 1: Let f be an instance of a COP. The ranking
induced by f is defined as:
T Q —nl!
x> r(x)
where for any z,y € Q, r(z) < r(y) if and only if f(x) >

f(y), n is the size of x, and n! is the set of all permutations
of size n.

The algorithms whose behavior is completely determined by
the ranking of the solutions induced by a particular instance
f are called ranking based optimization algorithms. In other
words, RO progresses exclusively by taking into account the
information contained in a ranking over the search space.
For instance, evolutionary algorithms that use tournament or
ranking selection operators [12], local search algorithms such
as tabu search [13], variable neighborhood search [14], iterated
local search [15] or greedy randomized adaptive search [16]
are of this type.

It is worth noting that the behavior of a particular RO over
instances that induce the same ranking is the same. In addition,
a RO can have the same behavior for instances belonging to
different ranking classes (see [6] for more details). From here
on, we will concentrate on rankings rather than on particular
instances.

C. Local search on rankings

LS algorithms optimize based on a neighborhood system, a
function that relates a set of solutions to each solution = € (2.
Formally a neighborhood is defined as

N : Q — 2%
x +— N(x)

where 2% represents the power set of the domain €. In this
work, we analyze COPs over permutations using three of the
most popular neighborhoods: swap, interchange and insert.

LS is a sequential optimization heuristic that progresses
by moving from a solution to a neighboring solution. Conse-
quently, the behavior of a particular LS is conditioned by the
neighborhood defined, and the criteria used to select a solution
from the neighborhood. Two of the most used strategies are
the best improvement (BI) and the first improvement selection
criteria. BI progresses by selecting, among the neighboring
solutions with a lower ranking, the solution with the lowest
ranking, while the first improvement progresses by selecting
a neighboring solution with a lower ranking. Both algorithms
are said to converge to a (local) optimum solution when all
the neighboring solutions are of a higher rank.

D. Difficulty

Next, we define the difficulty of an instance as a function
of BI under a certain neighborhood.

Definition 2: Let k be an instance of a COP, P = (Q, f),
and N a neighborhood. The easiness/difficulty of k, under N,
is defined as the probability of reaching/not reaching the global
optimum solution by using BI and by picking a solution of €2
at random.

Clearly, the difficulty is 1 minus the easiness, and the easiness
of an instance can be measured as the size of the basin of
attraction of the global optimum divided by the size of the
search space. Since the different grades of difficulty can be
seen as equivalence classes for instances, we will analyze the
instances grouped by their difficulty/easiness. It is worth to
remark that while the number of possible instances (rankings)
is O(nll), according to the definition of difficulty introduced

above (in terms of attraction basin size), i) the number of
difficulty classes is O(n!) , and ii) the average size of the
difficulty classes is O(n!).

III. PROBLEMS AND NEIGHBORHOODS

In the following, we introduce one by one the combinatorial
problems for which the experimental analysis is carried out,
and the different neighborhoods considered for the BI heuris-
tic.

A. Permutation problems

In this work, we have focused exclusively on three
permutation-based combinatorial optimization problems.
These problems have the particularity that their solutions
are codified naturally as permutations. A permutation is
understood as a bijection o of the items {1,...,n} onto
{1,...,n}, where o(i) denotes the item at position i.

Despite such similarity, as we will see in the following, the
information codified in each problem is totally different. It is
worth remarking that in the respective research works, it has
been proved that the three are NP-hard problems [17].

The first problem considered in the work is the Linear Or-
dering Problem (LOP) [8], [9]. Given a matrix B = [b;;]nxn Of
numerical entries, the LOP consists of finding a simultaneous
permutation o of the rows and columns of B, such that the
sum of the entries above the main diagonal is maximized (or
equivalently, the sum of the entries below the main diagonal
is minimized). The equation below formalizes the objective

function:)
FO) =" batiyot) (1

i=1 j=i+1

where o; denotes the index of the row (and column) ranked at
position ¢ in the solution o. The numerical entries by; are the
parameters of the problem. A particular assignment of values
to these parameters constitutes an instance.

The second problem included in the study is the permutation
Flowshop Scheduling Problem (FSP) [11] where n jobs (i =
1,...,n) have to be scheduled on m machines (j = 1,...,m)
in such a way that a given criterion is minimized. A job
consists of m operations and the ;' operation of each job
must be processed on machine j for a given specific processing
time without interruption. The processing times are fixed, non-
negative values and every job is available at time zero. At a
given time, a job can start on the j*" machine when its (j—1)*"
operation has finished on machine (j — 1), and machine j is
free. A solution for the problem is codified as a permutation
o of length n where o(¢) denotes the job at position i.

As the optimisation criterion, we considered the total flow
time (TFT), which optimises the sum of the completion
times of each job. Eq. 2 formalizes, given a solution o, the
correspoding TFT. Note that ¢4 ;.. stands for the completion
time of job (i) on machine m.

n

£0) = Coiym 2)

=1

Being p,(;),; the processing time required by job o(i) on
machine j, the completion time of job o(i) on machine j
can be recursively calculated as:

Po(i),j i1=j=1
Cotirg = Po(i),j T Co(i—1),j i>1,j=1

Po(i),j T Co(i),j—1 i=1,5>1

Do(i),j + Max{Cy(i—1),j Co(i)j—1} > 1,5>1

Finally, we included the Quadratic Assignment Problem
(QAP) [10]. In this problem, the goal is to allocate a set of
facilities to a set of locations, with a cost function associated
to the distance and flow between the facilities. The objective
is to assign each facility to a location such that the total cost is
minimized. Specifically, given two n X n numerical matrices
H = [h;j] and D = [d;;], where h;; is the flow between
facility ¢ and facility j, and d;; denotes the distance between
the location ¢ and 7, the goal is to find a permutation o (where
o (i) represents the facility allocated at position %), such that
the function

floy=>"

i=1j

n n
hoiyo(5) * dij 3)
=1
is minimized. A particular assignment of values to the D =
[d;;] and H = [h;;] parameters constitutes an instance.

B. Neighborhood systems

In local search optimization, a wide range of neighborhood
structures have been proposed in order to deal with combina-
torial problems. In what follows, we will describe the three
most relevant structures to deal with permutation problems:
adjacent interchange (from now on swap), interchange and
insert.

Let us consider a permutation o of size n. In what follows,
we define the neighborhood structures:

o Swap: considers as neighbors all the solutions that can
be obtained by performing any exchange of two items in
consecutive positions. The neighborhood includes all the
solutions at a Kendall’s 7 distance one, and its size is
n—1.

e Interchange: considers as neighbors all the solutions that
can be obtained by performing any exchange of the items
in any two positions ¢ and j. The neighborhood includes
all the solutions at Cayley’s distance one, and its size is
(5).

e Insert: it considers as neighbors all the solutions that can
be obtained by moving any item from a position ¢ to
any position j. The items between positions 7 and j are
shifted. The neighborhood includes all the solutions at
Ulam’s distance one, and its size is (n — 1),

C. Smoothness

As mentioned in Section II-A, each COP consists of a
domain and an objective function that is characterized by a set
of parameters (called instance). When computing the objective
value of a given solution o, either in LOP, FSP or QAP, only

a subset of the parameters is involved (see Equations 1, 2 and
3). At this point, if we consider a given neighborhood system,
we note that the number of parameters that differ between
neighboring solutions can be relevant in order to describe
the average smoothness of the fitness landscape generated.
To this number, we call it the (parameter) roughness of a
COP induced by a neighborhood. For the sake of intuition,
given a neighborhood, as the roughness of a COP decreases,
on average, the smoothness of the objective function with
respect to the neighborhood system tends to increases. Table
I summarizes the parameter roughness for each problem-
neighborhood pair considered in [18].

TABLE I
THE PARAMETER ROUGHNESS FOR EACH PROBLEM UNDER DIFFERENT
NEIGHBORHOODS
Swap Interchange Insert
LOP 1 2li—jl—1 [e — 7]
FSP m(n—14) m(n— min(i,j)) m(n — min(z, §))
QAP 4(n—1) 4(n—1) 2n()i — |+ 1) — (i — j| + 1)?

With illustration purposes, let us consider the LOP and the
interchange neighborhood. In order to compute the objective-
value of any given solution o of the LOP, we need to perform
a sum of (n(n — 1))/2 b;; parameters. At this point, we
perform an interchange operation on ¢ with indices ¢ and j.
In order to calculate the objective value of the newly created
solution, it is not necessary to sum again over (n(n —1))/2
parameters, but it is possible to apply a correction provoked by
the interchange. For this particular problem-neighborhood, the
correction consists of removing 2|i—j|—1 specific parameters,
and adding the same number of parameters not considered
previously.

At this point, it is worth to remark that the roughness of
different COPs is not comparable since they differ in the
number of parameters and in the manner that the parameters
are employed in the computation of the objective function
(see Section III-A). Nevertheless, as seen in Section IV, the
roughness of a COP under different neighborhoods can be
useful to explain the changes in the distribution of the difficulty
of its instances.

IV. EXPERIMENTAL STUDY

This section is devoted to analyzing empirically the relation
between instances of LOP, FSP and QAP with parameters
generated u.a.r. and their difficulty under swap, interchange
and insert neighborhoods.

The parameters have been generated as follows:

e LOP: the b;; parameters are sampled i.i.d. according to
an uniform distribution in the interval [0,1] for i,j €
{1,...,n}.

e QAP: the h;; and d;; parameters are sampled i.i.d.
according to an uniform distribution in the interval [0, 1]
fori,5 € {1,...,n}.

e FSP: m = n and the p;; parameters are sampled i.i.d.
according to an uniform distribution in the interval [0, 1].

In addition, we have included an artificial COP that does not
have an associated objective function, i.e., it does not depend
on any parameter set (we call rand. COP, RCOP). Its instances
are directly given in terms of rankings of solutions. For this
artificial COP, the rankings have been generated u.a.r. Due to
the absence of parameters, the roughness of RCOP can not be
measured under any neighborhood. However, we presume that
RCOP produces rough landscapes because the neighborhoods
have been randomly generated.

Not being restricted, we have considered a randomized
neighborhood called rand. insert with size (n — 1)2. This
neighborhood has a neighborhood graph equivalent to the
insert neighborhood where the nodes have been randomly
relabeled. Note that, due to random relabeling, it is not
possible to obtain roughness measures for LOP, FSP and QAP.

We sampled 5 - 105 instances for each COP and for n €
{3,4,5,6,7}! The results obtained are summarized in Figs. 1
and 2. Fig. 1 shows the distribution of instances in terms of
their easiness (probability of success or one minus difficulty)
for n € {6, 7}, while Fig. 2 shows the evolution of the mean
and mode of the easiness for n € {3,4,5,6,7}.

Observed results point out that, in general, instances gener-
ated u.a.r. do not follow an uniform distribution from the scope
of difficulty. Moreover, its distribution varies with respect
to the neighborhood system and, also, to the problem. For
instance, in LOP 74.0% and 58.8% of the instances generated
have a single optimum under insert neighborhood for n = 6
and n = 7, respectively (see Figure 1).

QAP generates the most difficult instances, on average,
under the three neighborhoods (see Figure 2(a)). The instances
generated for LOP and FSP problems are similar in terms
of difficulty for the three neighborhoods (see Figure 1). The
problems under the swap neighborhood are the most difficult.
This is mainly motivated by the fact that it is the smallest
neighborhood, with only O(n) neighbors, compared to the
O(n?) neighbors of interchange and insert. The difficulty of
the LOP and FSP instances under the insert neighborhood is
the lowest one, while for the QAP, the lowest difficulty is
obtained under the interchange neighborhood.

As regards the scalability, it is possible to say that, on
average, the difficulty of the instances for each problem
and neighborhood increases with the size of the instance,
n. However, in some cases the mode of the difficulty is 0
(easiness is 1), e.g., LOP and FSP with interchange and insert
neighborhoods for n € {3,4,5,6,7} (see Figure 2(b)).

For each problem and the three neighborhoods (with the
exception of swap in QAP), on average, instances generated
u.a.r are much easier than instances generated for RCOP due to
its rough landscape. Moreover, we observe the same difficulty
distribution for RCOP under insert neighborhood than for LOP,

Due to the size of the space of rankings, n!!, and the limited amount of
computational resources, the analysis of difficulty could only be carried out
for small size problems.

>The figures relative to n € {3,4,5} have been omitted for the sake
of space, however, those shown in the paper are representative for n €
{3,4,5,6,7}.

LOP, Rnd. Insert

10°, LOP, Swap 10° LOP, Interchan. 10°, LOP, Insert 10°
510'1; 107 10'1§ 107
£10? 107 te] 107 107
3
5107 107 /_\ | 107 107
‘ / [\
10 w04/ b | 109 10 \
5 5, 5 5, Y
107500204 0608 1.0 10 000204060810 0 000204060810 ° 000204060810
o , Swap 0 FSP, Interchan. o FSP, Insert 0 FSP, Rnd. Insert
10°, 10 109 10
510'1‘ 101 . 107! 101
$107 1072 102 1072
%10'3‘ 107 TN 1073 107
107 10 ! © | 107 10 \
5 5 { 5 5 5
10° 600204060810 1 000204060810 0 000204060810 2 000204060810
o , Swap 0 QAP, Interchan. o QAP, Insert 0 QAP, Rnd. Insert
10°, 10 10°, 10
1 1 By -1
107 10 10? 10
5107 107 107 107
=] | |
5107 10° 1073| 10°
=10+ 10" N 10% 10% Y
5 5 5| 5| ¥
10° 6002040608 1.0 0 000204060810 0 000204060810 2 000204060810
o RCOP, Swap 0 RCOP, Interchan. o RCOP, Insert 0 RCOP, Rnd. Insert
109 10 109 10
-1 -1 -1 -1
5107 10 107, 10
5107 107 \ 107 107
> |
5107 107 \ 1073| 107
A
10 10 \ 1074 10 \
5 5 : 5| 5 E
10° 600204060810 1 000204060810 0 000204060810 2 000204060810
Prob. of success Prob. of success Prob. of success Prob. of success
@ n==6
10° LOP, Swap 10° LOP, Interchan. 1001 LOP, Insert 10° LOP, Rnd. Insert
310'1 107 10'1i 107
g107 102 107 102
3 3
o107 107 1073 107
L 104 104 [\ 104 10
-5 5 ! g,) 5 s i
10" 500204060810 ° 000204060810 0 000204060810 ' 000204060810
o , Swap 0 FSP, Interchan o , Insert 0 FSP, Rnd. Insert
10 10 10° 10
-1 -1 -1 -1
107 10 107 10
£107 102 bl 107 102
3 |
5107 107 1073| 107
et 104 104 [\ 104 104
1
5 5 ! 5 5 !
107000204 0608 1.0 0 000204060810 ' 000204060810 ° 000204060810
o QAP, Swap 0 QAP, Interchan. o QAP, Insert 0 QAP, Rnd. Insert
10 10 10°, 10
310'1 10! 107} 10!
g107 102 107 107
3 |
5107 10° 107 10°
&0 10 104 10
-5 -5 . 5 5|
10" 500204060810 ° 000204060810 ' 000204060810 ° 000204060810
o RCOP, Swap 0 RCOP, Interchan. o RCOP, Insert 0 RCOP, Rnd. Insert
10 10 109 10
310'1‘ 101 107 10!
5107 107 107 107
=] |
5107 107 1073| 107
=10 04 | 10 |
5 5| | 5| 5 !
10" 500204060810 0 000204060810 ' 000204060810 ° 000204060810
Prob. of success Prob. of success Prob. of success Prob. of success
b)yn="7

Fig. 1. The distribution of the easiness (probability of success) for instances generated u.a.r. generated instances for LOP, FSP, QAP and RCOP under swap,
interchange, insert and rand. insert neighborhoods for n € {6, 7}. Each point corresponds to a difficulty and its area is proportional to the number of instances

generated with this difficulty.

LOP FSP

QAP

" 10° 10° 10°
Swap
— Interchan.
m Insert
0 al, 1,
-OE) 10 10 R S G NS B I Rnd. Insert
§ “““““ Rnd. choice
o 1072 10*
<
3 3 3 >
0532 5 % 053 5 & 793 4 5 & 1% 1 5 & 7
n n " n
(a) Mean easiness
o Lop 100 FSP 10% QAP 10° RCOP
" : - Swap
— Interchan.
8100 Lo/ 10} o
g ORISR SN R Y COMN SG TUNS E71 O B i Y| RSN S S | Rnd. Insert
wn
-2 S > S NN Rnd. choice
Q '
8107 .l 107 107
=
3 ? ;
0532 5 % 07 s 6 %3 7 s 6 7
n n ")

(b) Mode Easiness

Fig. 2. A summary of the evolution of the easiness (average and mode) with respect to the size of the problem n for LOP, FSP, QAP and random COPS
under swap, interchange, insert and random insert neighborhoods. We have included the percentage of times in which, taking a solution at random, we select

the global optima.

FSP, QAP and RCOP under the rand. insert neighborhood (see
Figure 1). Both observations suggest that the neighborhoods
are able to exploit the information hidden in the generated
instances of the COPs considered. Besides, results suggest that,
when the instances have no information or the neighborhoods
can not capture the hidden information, the distribution of the
difficulty depends only on the topology of the neighborhood.

V. DISCUSSION

The experiments suggest that the parameter roughness could
influence the distribution of the difficulty of instances gen-
erated u.a.r. In what follows, we analyze the distribution of
the difficulty for the three problems from the perspective of
parameter roughness induced by the different neighborhoods.

For instance, the LOP under interchange and insert neigh-
borhoods shows a similar distribution of the difficulty, being
the difficulty under insert slightly lower. A possible explana-
tion is that the roughness induced by the insert and interchange
neighborhoods, and their respective sizes, are of the same
order of magnitude. Thus, we recommend to use the insert
neighborhood to deal with instances of LOP.

In FSP with interchange and insert neighborhoods, we ob-
serve the same phenomena than in LOP. Again, the roughness
induced by interchange and insert are of the same order of
magnitude. On the contrary, FSP instances under the swap
neighborhood are more difficult. Even when the roughness
induced by swap, interchange and insert are of the same order,
the size of the swap neighborhood is only O(n), while the
size of the interchange and insert is O(n?). As a result, we
recommend using the insert neighborhood when optimizing
FSP instances.

In QAP, the instances are easier under interchange than
under the insert neighborhood. In this case, interchange has
a parameter roughness of O(n), while insert has a parameter
roughness of O(n?). Moreover, the instances are easier under
interchange than under the swap neighborhood. Again, they
have similar roughness, but the size of the swap neighbor-
hood is smaller. Therefore, the interchange neighborhood is
preferred to others when solving QAP instances.

As conclusion, it seems that, given a problem, the parameter
roughness of a neighborhood and its size play an important
role in the distribution of the difficulty of the generated
instances. The provided evidences support the idea that, in
order to select an appropriate neighborhood for dealing with
instances of a particular COP, we could use a criteria based
on the roughness induced by a neighborhood and its size.

In the remaining of this section, we analyze alternatives
to the uniform sampling of parameters. In the experiments,
we have seen that, when parameters are generated u.a.r., the
distribution of the difficulty of the instances is not uniform.
Moreover, even when artificial rankings are generated u.a.r.,
they do not produce a uniformly distributed difficulty. But,
what is the effect of sampling the parameters of the instances
ii.d. according to another distribution?

In this sense, we tried to modify the average difficulty of
the instances by sampling the parameters non-uniformly at
random. For this purpose, we generated 2 - 10° parameters of
instances for LOP, FSP and QAP i.i.d. according to a Beta
distribution with «, 8 € {0.1,1,10} for n € {3,4,5,6,7}. In
Fig. 3, we see the distribution of the difficulty for QAP under
the insert neighborhood. Surprisingly, the obtained instances

have similar difficulty distribution to those generated u.a.r.
(« = 1, B = 1). The same behavior is observed for
LOP, FSP and QAP under the swap, interchange and insert
neighborhoods. It seems that the choice of the distribution used
to generate the parameters i.i.d. does not have a meaningful
impact on the distribution of the difficulty of the instances.

VI. CONCLUSIONS

In this work, we have analyzed empirically the difficulty
of instances generated u.a.r for the Linear Ordering Prob-
lem, Flowshop Scheduling Problem and Quadratic Assignment
Problem from a best improvement heuristic perspective using
three different neighborhoods: swap, interchange and insert.

The conclusions can be summarized as: (1) the distribution
of the difficulty is not uniform neither when the instances are
generated u.a.r., nor when the artificial rankings are generated
v.a.r., (2) depending on the neighborhood and the problem
considered, the distribution of the difficulty can change dra-
matically, and (3) the distribution of the difficulty for instances
generated u.a.r. seemingly depends on the roughness induced
by the neighborhood and its size. In this sense, it seems to
be possible to select the most appropriate neighborhood for a
given COP based on these two criteria.

As future work, we will try to answer two interesting
questions: i) Is it possible to control the difficulty of the
randomly generated instances by means of a (non i.i.d) random
sampling of their parameters? And, if the answer is positive,
ii) how can we control the difficulty of the sampled instances?

ACKNOWLEDGMENTS

This work has been partially supported by the Re-
search Groups 2013-2018 (IT-609-13), BERC 2014-2017, and
ELKARTEK programs (Basque Government), the projects
TIN2016-78365-R and TIN2017-82626-R (Spanish Ministry
of Economy, Industry and Competitiveness) and Severo Ochoa
Program SEV-2013-0323 (Spanish Ministry of Economy, In-
dustry and Competitiveness).

REFERENCES

[1] 1. P. Gent and T. Walsh, “The TSP phase transition,” Artificial Intelli-
gence, vol. 88, no. 1-2, pp. 349 — 358, 1996.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

E. Taillard, “Benchmarks for basic scheduling problems,” European
Journal of Operational Research, vol. 64, no. 2, 1993.

Z. Drezner, P. Hahn, and E. Taillard, “Recent advances for the quadratic
assignment problem with special emphasis on instances that are difficult
for meta-heuristic methods,” Annals of Operations Research, vol. 139,
no. 1, pp. 65-94, 2005.

T. Schiavinotto and T. Stiitzle, “The linear ordering problem: Instances,
search space analysis and algorithms,” Journal of Mathematical Mod-
elling and Algorithms, vol. 3, no. 4, pp. 367-402, 2005.

A. Duarte, M. Laguna, and R. Marti, “Tabu search for the linear
ordering problem with cumulative costs,” Computational Optimization
and Applications, vol. 48, no. 3, pp. 697-715, 2011.

J. Ceberio, A. Mendiburu, and J. A. Lozano, “Are we generating
instances uniformly at random?” in Evolutionary Computation (CEC),
2017 IEEE Congress on. 1EEE, 2017, pp. 1645-1651.

E. H. Aarts and J. K. Lenstra, Eds., Local search in combinatorial
optimization. Princeton University Press, 2003.

R. Marti and G. Reinelt, The linear ordering problem: exact and
heuristic methods in combinatorial optimization. Springer, 2011, vol.
175.

J. Ceberio, A. Mendiburu, and J. A. Lozano, “The Linear Ordering

Problem Revisited,” European Journal of Operational Research, vol.
241, no. 3, pp. 686-696, 2014.

T. C. Koopmans and M. J. Beckmann, “Assignment Problems and the
Location of Economic Activities,” Cowles Foundation for Research in
Economics, Yale University, Cowles Foundation Discussion Papers 4,
1955.

K. Baker, Introduction to sequencing and scheduling. Wiley, 1974.

T. Back, “Selective pressure in evolutionary algorithms: A character-
ization of selection mechanisms,” in Proceedings of the First IEEE
Conference on Evolutionary computation (CEC 1994, N. J. Piscataway,
Ed. IEEE Neural Networks Council, 1994, pp. 57-62.

F. Glover, “Tabu search: A tutorial,” Interfaces, vol. 4, no. 20, pp. 74-94,
1990.

P. H. N. Mladenovié, “Variable neighborhood search,” Computers &
operations research, vol. 11, no. 24, pp. 1097-1100, 1990.

T. S. H. R. Lourengo, O. C. Martin, “Iterated local search,” in Handbook
of metaheuristics. Springer US, 2003, pp. 320-353.

G. R. T. A. Feo, “Greedy randomized adaptive search procedures,”
Journal of global optimization, vol. 2, no. 6, pp. 109-133, 1995.

M. R. Garey and D. S. Johnson, Computers and intractability. ~wh

freeman New York, 2002, vol. 29.

J. Ceberio, E. Irurozki, A. Mendiburu, and J. A. Lozano, “A review
of distances for the mallows and generalized mallows estimation of
distribution algorithms,” Computational Optimization and Applications,

vol. 62, no. 2, pp. 545-564, 2015.

100, a=0.1, 3=0.1 10° a=0.1,8=1 10° a=0.1, 6=10
10! 10! 10!
1072 1072 1072
N 103 1073 1073
10 10* 10
10”90 02 04 06 08 10 07 00 02 04 06 08 10 10
10°; a=1,3=0.1 10° a=1,0=1 e 1 10°
10! 10! 10!
10 10 10
° 1073 1073 1073
107 10 10
10° 10" 50 02 04 06 08 1o 10
10° 10° a=10.6=1 o g0
10 10! 10t
1072 1072 1072
° 1073 1073 1073
107 10" 10 \
10° 5002 0.4[30.6 08 1o 07 0002 0.460.6 08 1o 07 0002 0.4/80.6 08 1.0

Fig. 3. The distribution of the easiness (probability of success) for instances i.i.d. according to a Beta distribution with parameters o, 8 € {0.1,1,10} for
LOP under the insert neighborhood for n = 6. Instances generated u.a.r. corresponds to o = 8 = 1. Each point corresponds to a difficulty and its area
proportional to number of instances generated with this difficulty.

