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Abstract. Dynamic Time Warping is a well-known measure of dissim-
ilarity between time series. Due to its flexibility to deal with non-linear
distortions along the time axis, this measure has been widely utilized
in machine learning models for this particular kind of data. Nowadays,
the proliferation of streaming data sources has ignited the interest and
attention of the scientific community around on-line learning models. In
this work, we naturally adapt Dynamic Time Warping to the on-line
learning setting. Specifically, we propose a novel on-line measure of dis-
similarity for streaming time series which combines a warp constraint and
a weighted memory mechanism to simplify the time series alignment and
adapt to non-stationary data intervals along time. Computer simulations
are analyzed and discussed so as to shed light on the performance and
complexity of the proposed measure.
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1 Introduction

In many fields such as manufacturing industry, energy, finance or health, time
series are one of the most common forms under which data are captured and
processed towards extracting valuable information. For this purpose, time se-
ries classification has played a central role in time series analysis: the goal is
to build a predictive model based on labeled time series so as to use it to pre-
dict the label of previously unseen, unlabeled time series. In the presence of
labeled data, k-Nearest Neighbor (k-NN) classification models have been exten-
sively utilized with time series data due to their conceptual simplicity, efficiency
and ease of implementation. In essence, k-NN algorithms consist of assigning a
label to an unseen example according to the class distribution over its k most



similar (nearest) data instances within the training set. It is obvious that the
accuracy of nearest-neighbor techniques is closely related to the measure of sim-
ilarity between examples. In this regard, research in pattern recognition for time
series has originated a diverse collection of measures including the Euclidean
Distance (ED), Elastic Similarity Measures (ESM) and Longest Common Sub-
sequence (LCSS), each featuring properties and limitations that should match
the requirements of the application at hand.

To the best of our knowledge, no attention has been paid in the literature
to distance-based on-line classification models for time series data streams that
build upon a proper design of elastic measures of similarity. In response to this
lack of research, this work elaborates on an on-line DTW (ODTW) dissimilar-
ity measure. The fundamental ingredient of the ODTW is given by a spotted
DTW property that is exploited to avoid unnecessary dissimilarity recalcula-
tions. Moreover, computational resources (time and memory) are also controlled
by virtue of a Sakoe-Chiba bounding approach. Finally, by under-weighting the
influence of past events using a weighted memory mechanism, we make it pos-
sible to adapt the ODTW to non-stationarities in the data stream, in clear
connection with the well-known stability-plasticity dilemma in on-line learning
models. In order to assess the practical performance of the proposed ODTW
dissimilarity measure under changing classification concepts, extensive experi-
ments using 1-NN classifiers will be discussed over different public datasets. The
ODTW accuracy rate as new data samples arrive will be compared to that of
the DTW measure, showing that ODTW can be at least as accurate as DTW.
The efficiency of the ODTW in terms of complexity will be also analyzed.

The remainder of the paper is organized as follows: Section 2 provides back-
ground information on time series similarity measures. Section 3 formulates the
definition of the conventional DTW measure and introduces the Sakoe-Chiba
band technique. Section 4 gives a detailed description of the proposed ODTW
dissimilarity measure. Section 5 delves into the obtained experimental results
and, finally, Section 6 summarizes the contributions and outlines future research
lines, leveraging our findings in this work.

2 Background

Despite its neat advantages – low complexity and simplicity – ED is overly
inflexible to deal with time series distortions. In classification problems where
the learning process usually focuses on the shape of sequence, this limitation
might pose a severe problem. To overcome this issue, Dynamic Time Warping
(DTW), an elastic measure of similarity, has proved to be extremely effective to
align sequences that are similar in shape but undergo non-linear variations in
the time dimension. Along with DTW, the ESM family is completed by the so-
called Edit distance [18], the Edit Distance for Real sequences (EDR, [3]) and the
Edit distance with Real Penalty (EPR, [2]), among other DTW-based distances
[12]. In general, the most important characteristic of all ESMs is their ability to
shrink or stretch the time axis in order to find the alignment between the time



series under comparison yielding the smallest distance. The ground difference
among them, conversely, lies in the selected point-wise distance. Similarly, LCSS
is a variation of ESM techniques that allows instances to be unmatched, i.e., a
global sequence alignment is not required. Several studies have shown that the
use of ESM with 1-NN classifiers outperforms results wich are very accurate and
hardly beaten in several classification problems [5, 15]. Standing on this empirical
evidence, DTW-based models have consolidated as the reference for shape-based
classification tasks over time series data [9, 17, 16, 23].

An important point to keep in mind when dealing with the DTW similarity
measure is its quadratic computational complexity, which makes its computa-
tion prohibitive when tackling long time series. In order to avoid this drawback,
techniques such as Itakura’s Parallelogram [8] and Sakoe-Chiba band [20] are
widely utilized to reduce the DTW complexity. These simple methods speed up
the DTW computation just by limiting the flexibility of the measure when ac-
commodating time-axis distortions. Similarly to these constraint-based methods,
Salvador and Chan [22] estimate the DTW measure by means of a multi-level
approach that recursively refines its resolution. Likewise, Keogh and Pazzani [11]
propose a modified DTW approach which uses Piecewise Aggregate Approxima-
tion (PAA) in order to reduce the length of the time series under comparison and
speed up the final computation. Indexing time series to accelerate the perfor-
mance of different learning methods where DTW is involved is another solution
to alleviate its computation [10, 21, 14].

The complexity issue of the DTW measure noted above is particularly chal-
lenging when time series are generated continuously along time, producing end-
less data streams potentially produced by non-stationary distributions. In many
scenarios, data produced by systems and/or processes evolve over time, not
necessarily in a stationary manner, making conventional classification methods
unsuitable to handle data produced by time-varying generation processes. These
stringent conditions under which stream data must be processed have motivated
a recent upsurge of on-line classification models [13, 7, 24, 6]. In order to identify
changes in time series data generator models, Cavalcante et al. [1] have recently
proposed a concept drift detector method coined as FEDD. Based on the feature
vector similarity given by Pearson correlation distance (or cosine distance), this
method monitors the evolution of sequence features in order to test whether a
concept change has occurred. In [19] an incremental clustering system for time
series data streams is presented: On-line Divisive-Agglomerative Clustering is a
tree-like grouping technique that evolves with data based on a criterion to merge
and split clusters using a correlation-based dissimilarity measure.

3 Dynamic Time Warping

The DTW measure between two time series, Xm = (x1, . . . , xi, . . . , xm) and
Y n = (y1, . . . , yj ,. . . , yn), is given by the minimum cumulative distance resulting
from the best point-wise alignment between both time series.



We represent an alignment of two time series Xm and Y n by a path p =
{(i1, j1), ..., (iQ, jQ)} that goes from (1, 1) to (m,n) in a [1,m]×[1, n] lattice. Each
pair (i, j) ∈ p represents the alignment of the points xi and yj . We say that the
path p is allowed if it satisfies that (iq, jq)− (iq−1, jq−1) ∈ {(1, 0), (1, 1), (0, 1)}
for q = 2, ..., Q. That is, allowed paths are formed by ↑,→ and ↗ steps. Figure
1.a shows three possible paths (alignments) between time series Xm and Y n.
From here on, we will consider only allowed paths and, therefore, we will omit
the term allowed, for the sake of brevity.

The weight of a path p is given by

w(p) =
∑

(i,j)∈p

di,j (1)

where di,j = |xi − yj | is the point-wise distance. Next, we present the definition
of the DTW measure:

Definition 1. The DTW measure between time series Xm and Y n is given by

D(Xm, Y n) = min
p∈P

w(p)

where P is the set of all allowed paths in the [1,m]× [1, n] lattice.

When it is clear from the context, we will denote D(Xm, Y n) simply by
Dm,n. The DTW value corresponds to the weight of the optimal path, i.e., the
minimum weighted path.
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(b) Cumulative distance matrix.

Fig. 1. Example of the computation of D(Xm, Y n) for two time series. It can be ob-
served that the optimal path w∗ ( ) is that yielding the minimum cumulative distance
among those paths connecting points (1, 1) to (10, 10).

Since the number of allowed paths grows exponentially with the length of the
time series Xm and Y n, an exhaustive enumeration of all of them with the aim



of finding the optimal path is computationally unfeasible, even for small values
of n and m. Fortunately, by using dynamic programming, we can compute the
DTW measure between two time series using the following recursion:

Dm,n = dm,n + min {Dm−1,n, Dm−1,n−1, Dm,n−1} , (2)

where D0,0 = 0 and Di,0 = D0,j =∞ for i = 1, . . . ,m and j = 1, . . . , n, respec-
tively (initial conditions). Using this recurrence, the complexity for computing
the DTW measure between time series Xm and Y n is O(m · n). This is still
unaffordable in many practical situations and, therefore, several techniques have
been proposed to approximate the DTW measure by decreasing its computa-
tional complexity. Many of these techniques are based on reducing the number
of paths by imposing additional constraints. Among these, we would like to
highlight the Sakoe-Chiba bound and Itakura’s parallelogram approaches due
to their effective constraints. These constraints allow i) discarding the subset of
paths of higher lengths and (on average) with higher weights, and ii) computing
the (approximated) DTW measure in linear time with respect to the length of
the time series considered.

In particular, the paths considered by the Sakoe-Chiba bound approach are
composed by pairs (iq, jq) that satisfy the constraints |iq− jq| ≤ l for 1 ≤ q ≤ Q,
where l refers to the so-called band width. We call these additional constraints
to the paths as the Sakoe-Chiba constraints. As a consequence, the DTW can
be computed in O(l · max{m,n}). The areas shadowed in Figure 1.a illustrate
the forbidden (iq, jq) pairs for l = 3. In this case, the red path is not allowed
while the blue and black paths remain allowed.

4 On-line Dynamic Time Warping

In this section, we propose the on-line DTW (ODTW). The ODTW measure
combines i) an incremental computation of the DTW measure, ii) the Sakoe-
Chiba bound for limiting the computational and space complexities and iii) a
weighted memory mechanism. By the combination of these ideas, ODTW can
be computed efficiently (i and ii) and it can control the contribution of the past
values to the measure. Next, we introduce the three ideas in order and, finally,
we combine them into the novel ODTW.

4.1 Controlling the Computational Complexity

When computing Dm,n using Equation (4), we also compute Di,j for i = 1, ...,m
and j = 1, ..., n. These values correspond to the DTW measures for time series
Xi and Y j for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

We call Mm,n = {Di,j : i = 1, ...,m and j = 1, ..., n} the measure matrix.
Figure 1.b shows the measure matrix obtained when computing D10,10. The set
of values of the measure matrix shaded in gray corresponds to the set of DTW
measures in the optimal path p∗ associated to D10,10, i.e., {Di,j : (i, j) ∈ p∗}.



We call Fm,n = {Di,n, Dm,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n} the frontier of the measure
matrix Mm,n. In Figure 1.b the frontier F 7,8 corresponds to the set of matrix
values shaded in green (plus the value at position (7, 8), shaded in gray).

Let us assume that we know the frontier F r,s for a given 1 ≤ r < m and
1 ≤ s < n and that we want to calculate Dm,n. Interestingly, in order to compute
Dm,n, we can apply Equation (4) recursively until a value from the frontier F r,s

needs to be computed. At this point, the recursion can be stopped, which can
avoid unnecessary calculations (see Figure 2.a). This simple idea is the basis for
an incremental computation of the DTW in an on-line scenario.

Now, imagine a (general) on-line scenario where the time series arrive in
chunks, sequentially. For instance, at time t0, we can have the time series Xr and
Y s and, then, at time t1, we can receive Xr+1,m = (xr+1, ..., xm) and Y s+1,n =
(ys+1, ..., ym). We want to compute Dm,n incrementally. At time t0, we can
compute Dr,s, store the frontier F r,s, and the time series Xr and Y s. Then,
at time t1, we can compute Dm,n using the stored frontier according to the
previously described mechanism (see Figure 2.a). This incremental process can
be repeated when a new chunk arrives.

Given the frontier F r,s, the computational complexity for obtaining Dm,n

and Fm,n using the proposed incremental procedure is O(m ·n−r ·s). We would
like to highlight that, when a single point arrives for both time series (m = r+ 1
and n = s+1), the computational complexity is linear with respect to the length
of the time series, O(max{m,n}). In addition, the described procedure requires
Xm and Y n to be stored, which leads to a space complexity of O(max{m,n}).

Unfortunately, the computational and space complexities of the proposed
incremental computation of the DTW measure are impractical for most of the
challenging on-line scenarios. To overcome this issue, Sakoe-Chiba constraints
(see end of Section 3) can be imposed to the incremental computation, drastically
reducing both the memory store and the computational complexity.

By using a band width l, after computing Dr,s, we store only O(l) values of
the frontier F r,s, because some values could correspond to a pair of points that
do not fulfill the Sakoe-Chiba constraints. In addition, we only need to store the
last l points of the time series Xr and Y s, which leads to a space complexity of
O(l). In addition, the computational complexity for calculating incrementally an
approximation to Dm,n according to Sakoe-Chiba constraints is linear in l, i.e.,
O((m−r)·(n−s)+l ·(m+n−r−s)). Therefore, by choosing an appropriate band
width l, the proposed constrained and incremental DTW can effectively control
the trade-off between i) the required computational and memory resources, and
ii) the flexibility of DTW with respect to the distortions of the time series along
the time axis.

4.2 Forgetting the Past

One of the most extended assumptions in off-line learning is that data samples
are drawn from a stationary distribution. However, in on-line learning scenarios
this assumption may not hold as stationarity of the data streaming can evolve
over time. In consequence, we conceive a streaming time series as being divided
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Fig. 2. (a) Example of the incremental computation of the DTW measure, and (b)
exponential weights applied over a [1,m]× [1, n] lattice.

into a sequence of stationary intervals (concepts) of varying length and with a
similar periodic shape. We say that a concept drift has occurred when the time
series changes from one stationary interval to another.

In order to adapt the DTW measure to the concept drift phenomenon, we
propose a simple yet efficient weighted memory mechanism that modulates the
contribution of the point-wise distance di,j in the weight of a path (see Equation
(1)). This mechanism leverages the assumption that recent points are more likely
to have been produced in the last stationary interval. To this end, we propose
the use of a memory parameter ρ ∈ (0, 1] and we define the weight with memory
of a path p as follows:

wρ(p) =
∑

(i,j)∈p

ρmax{m−i,n−j}di,j (3)

Note that max{m− i, n−j} corresponds to the Chebyshev distance between the
points (i, j) and (m,n). In this manner, points belonging to the last stationary
interval of a time series will contribute more significantly to the weight of a given
path and to a measure that minimizes this weight with memory.

Figure 2.b illustrates an example of the weighting function given in Equation
3 for m = n − 2. All the pairs (i, j) in the lattice [1,m] × [1, n] at the same
Chebyshev distance from (m,n) are connected with a black line.

We would like to highlight that, contribution of a pair of points (xi, yj) to
the memory weight of any path is equal. In other words, the contribution of
a pair of points to the memory weight does not depend on the path, which
avoids favoring the longest paths. Intuitively, an appropriate memory parameter
ρ should be selected according to the length of the stationary intervals or pattern
period (see Section 5)



4.3 The ODTW Measure

Next, we propose the definition of the on-line DTW measure (ODTW).

Definition 2 (On-line Dynamic Time Warping). The ODTW measure
between time series Xm and Y n given the memory parameter ρ and the band
width l is given by

Dl,ρ(X
m, Y n) = min

p∈Pl

wρ(p)

where Pl is the set of all the paths in the [1,m] × [1, n] lattice satisfying the
Sakoe-Chiba constraints (see the end of Section 3).

From here on, when it is clear from the context, we will denote Dl,ρ(X
m, Y n)

simply by Dm,n.
Note that the proposed ODTW can be understood as a generalization of

the DTW measure. For instance, if ρ = 1 and l = ∞ – without Sakoe-Chiba
constraints – then ODTW corresponds to DTW. Additionally, when n = m,
ρ = 1 and l = 0 ODTW corresponds to the Euclidean distance.

Again, by using dynamic programming, it is possible to compute the ODTW
measure given ρ and l between Xm and Y n using the following recursion

Dm,n = dm,n + min
{
ρI(m>n) ·Dm−1,n, ρ ·Dm−1,n−1, ρ

I(m<n)Dm,n−1

}
, (4)

where Di,j = ∞ for any pair (i, j) not satisfying the Sakoe-Chiba additional
constraints, and I(·) is an auxiliary function taking value 1 if its argument is
true, and 0 otherwise.

Y 1,s

X1,r

Y (s+1),n

X(r+1),m

l

l

Fig. 3. Computation of the proposed ODTW measure in its general form.



At this point, we would like to mention that Definition 2 and its recursive
computation shown in Equation (4) have been given in their simplest form, for
the sake of brevity and readability. The simplest form is appropriate for on-line
scenarios where the time series arrive in chunks consisting of a single point. How-
ever, both the definition and the recursive computation of ODTW can be easily
generalized in order to deal with chunks of arbitrary sizes. Figure 3 illustrates
the on-line DTW recursive computation in the general form, that is, when the
time series arrive in chunks of arbitrary sizes. The green areas represent the
stored l-frontiers.

Note: The source code in Python of the proposed ODTW measure (in its
most general form) has been made available on-line at http://bitbucket.org/
izaskun_oregui/ODTW.

5 Experimental Study

We explore the practical performance of the proposed ODTW measure by run-
ning several computer experiments aimed at two different yet related goals:

1. To show that ODTW is an efficient method and, hence, a suitable mea-
sure of dissimilarity, in terms of the computational complexity, for on-line
classification scenarios.

2. To provide practical evidence of the capacity of the ODTW measure and
its memory mechanism to react and accommodate concept changes in the
processed streaming time series.

5.1 Efficiency

As for the first goal, we compare the running time of ODTW and conventional
DTW methods. In this experiment two streaming time series have been produced
by drawing one sample at a time from a uniform distribution with support [0,1]
from an initial length of n = m = 3 samples to a maximum of n = m = 70
samples. For the sake of fairness, the same value of the Sakoe-Chiba band width
l = 50 has been used to compute both DTW and ODTW dissimilarities. Under
these modeling assumptions, the complexity of the DTW measure is expected
to be quadratic, O(n2), as long as the length of the time series is less than the
band width, i.e, n ≤ l. However, for n > l the DTW complexity is O(ln). As
addressed in Section 4, the computational complexity of the proposed ODTW
is O(n) when n ≤ l and O(l) when n > l.

Figure 4 shows the running time (in seconds when implemented natively in
Python 2.7 on a single i7 core at 3.10GHz) required to compute the ODTW
(black) and DTW (gray) measures. A red dashed vertical line is included in the
plot to indicate the value of the Sakoe-Chiba band width l. The empirical results
shown in this plot support the hypothesis 1 discussed above, and show that
ODTW is a suitable measure, in computational complexity terms, to quantify
the dissimilarity between two streaming time series.
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5.2 Predictive Performance

The second goal targeted in our simulation benchmark aims at assessing the
predictive accuracy attained by a 1-NN classifier using the proposed ODTW
metric when facing non-stationary streaming time series. To this end, we have
monitored the evolution of the classifier accuracy for a given value of l and
different values of parameter ρ. At this point, we recall that ρ allows balancing
between the capability of the model to recover from drift concepts (low values of
ρ) and its capacity to align warped time series and achieve better performance
scores (high values of ρ). The experiment evaluates the so-called prequential
accuracy pACC(n) over different non-stationary datasets:

pACC(n) =

{
ACCsample(n) if n = nref ,

pACC(n− 1) +
ACCsample(n)−pACC(n−1)

n−nref+1 otherwise,
(5)

where ACCsample(n) is 0 if the prediction of the sample at time n is wrong and
1 if correct; and nref denotes a time step that allows resetting the prequential
accuracy at times where we force a drift to occur through the stream. This allows
analyzing how the accuracy evolves after a drift, independently of the previous
behavior of the classifier.

In order to analyze the prequential accuracy in a systematic way, synthetic
datasets for on-line classification of stream time series have been designed and
utilized for this second set of experiments. Such artificial datasets are built upon
several publicly available time series datasets commonly used in DTW-based
time series analysis, which can all be retrieved from the UCR Time Series Clas-
sification Archive [4]. In particular, we will use the datasets listed in Table 1.



Given different values of the weight parameter ρ, the designed datasets should
allow analyzing the ability of the ODTW measure to adjust to time series sta-
tionarity. Therefore, streaming time series should have at least two different
stationary parts and be periodic in each stationary interval. We generalize this
intuitive premise to build the reference and query streams for each dataset in
Table 1. In particular, query streams are composed by an endless repetition of
stationary intervals (concepts), each formed by P time series of the same class
drawn uniformly at random from the corresponding subset. In order to simulate
a non-stationarity in the stream, the generation process avoids repeating the
same class between every two consecutive stationary periods. Reference streams
are composed for every label in the dataset by concatenating uniformly sampled
time streams for every label in the dataset. Consequently, each query sequence
in the dataset presents a recurrent concept change occurring every P time series.
For instance, query class labels in a binary classification problem with station-
ary periods of P = 3 time series of length 2 samples each would be given by
{0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, . . .}.

Table 1. Main characteristics of the utilized UCR datasets

Name Train/TestSize
Time series
length (n)

No. Classes 1-NN score
Sakoe-Chiba

band l

Gun Point 50/150 150 2 0.913 0

Italy Power Demand 67/1029 24 2 0.955 0

Two Lead ECG 23/1139 82 2 0.868 4

Face Four 24/88 350 4 0.886 7

CBF 30/900 128 3 0.964 14

Toe Segmentation 2 36/130 343 2 0.908 17

We construct a total of 50 different test instances for each dataset in Table
1 to obtain an estimate of the average prequential accuracy achieved by an
ODTW-based 1-NN classifier when predicting the label associated to the stream
upon the arrival of every sample. Results are collected in Figure 5 for every
dataset with its optimal value of l (Table 1) and different choices of the memory
parameter ρ. Vertical dashed lines indicate the time at which the end of a time
series meets the beginning of the next time series (periodicity of the stationary
interval), being highlighted in bold black if the transition involves a label change.
In these experiments, a class label change is produced every P = 3 time series.
The horizontal dashed line indicates the best DTW-based 1-NN accuracy rate
reported in [4] and listed in Table 1. The values taken by ρ have been chosen
according to the length of the original time series. Particularly, the chosen values
correspond to ρm ∈ {0.0001, 0.01, 0.1, 0.5, 1}. These parameters represent very-
short-, short-, middle-, long- and full-range memory. The value of the band width
l – designed to sacrifice the ODTW flexibility for a computationally efficient
computation – has been set equal to the optimal Sakoe-Chiba band width found
for every dataset shown in Table 1.
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P = 50 concatenated time series each achieved by a 1-NN model using the proposed
ODTW measure with the optimal l for each case and different values of ρ. The grey
shadowed area corresponds to the 4-th stationary interval where the horizontal axis is
represented in logarithmic scale. From top to bottom, plotted results correspond to Gun

point, Italy Power Demand, Two Lead ECG, Face Four, CBF and Toe Segmentation 2

datasets.
.

Several conclusions can be drawn from the experiments in Figure 5:



– As the value of ρ decreases (yielding a lower influence of past observations in
the ODTW computation), the 1-NN model reacts more quickly to stationary
changes, hence the prequential accuracy increases faster. However, in certain
cases this involves a penalty in accuracy once the concept has become stable:
the reason lies in the fact that the weighted memory of the ODTW measure
fails to exploit past distance information of relevance for a discriminative
alignment between the time series.

– As the values of ρ increase (a higher influence of past observations in the
ODTW computation), even though the 1-NN model requires more time to
recover from the stationary changes, its prequential accuracy tends to be
better once the concept has been learned. In addition, as ρ increase the
variance of the obtained prequential accuracy decreases. When ρ = 1, 1-NN
performs worst due to the lack of a forgetting mechanism, which makes the
value of the ODTW measure strongly biased by past alignments not linked
to the concept to be predicted.

In light of the experimental results discussed above, we conclude that ODTW
has both the reduced complexity and the flexibility to adapt to non-stationary
environments needed for efficiently dealing with streaming time series.

6 Conclusions and Future Work

In this work, we have presented the On-line Dynamic Time Warping (ODTW),
a natural adaptation of the popular DTW to the streaming time series setting.
ODTW can be computed efficiently in an incremental way by avoiding unnec-
essary recalculations (see Section 4.1). It includes two parameters, l and ρ, that
can be used in order to adapt the proposed measure to the particularities of
the streaming time series under analysis. On the one hand, the band width pa-
rameter l is inspired by the Sakoe-Chiba band approach and can be used to
control the trade-off between the complexity of the incremental computation of
ODTW (linear in l) and the ability to shrink or stretch the time axis in order
to align two time series (see Section 4.1). On the other hand, ρ is the forgetting
parameter and it can be used to control the memory of ODTW by giving less
importance to past values. By controlling the memory of the proposed measure,
we can adjust the ability of ODTW to react to drift changes in streaming time
series (see Section 4.2).

Due to the efficiency and flexibility of ODTW for dealing with streaming time
series, we plan to extend its principles to other popular Elastic Similarity Mea-
sures such as the Edit distance, EDR and ERP. In addition, we will extend the
experimentation by incorporating other on-line problems with streaming time
series. Similar to DTW in off-line learning tasks, ODTW can also be used in
on-line supervised and unsupervised problems such as on-line clustering, classi-
fication, outlier detection, etc. which is very useful in many different real world
applications; for example, gesture classification, load profiling in energy grids
and fraud detection.
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