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ABSTRACT10

New synthetic biology capabilities hold the promise of dramatically improving our ability to engineer biological systems. However,
a fundamental hurdle in realizing this potential is our inability to accurately predict biological behavior after modifying the
corresponding genotype. Kinetic models have traditionally been used to predict pathway dynamics in bioengineered systems,
but they take significant time to develop, and rely heavily on domain expertise. Here, we show that the combination of machine
learning and abundant multiomics data (proteomics and metabolomics) can be used to effectively predict pathway dynamics
in an automated fashion. The new method outperforms a classical kinetic model, and produces qualitative and quantitative
predictions that can be used to productively guide bioengineering efforts. This method systematically leverages arbitrary
amounts of new data to improve predictions, and does not assume any particular interactions, but rather implicitly chooses the
most predictive ones.
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Introduction12

Biology has been transformed in the second half of the 20th century from a descriptive science to a design science. This13

transformation has been produced by a combination of the discovery of DNA as the repository of genetic information1, and14

of recombinant DNA as an effective way to alter this instruction set2. The subsequent advent of genetic engineering and15

synthetic biology as effective tools to engineer biological cells has produced numerous beneficial applications ranging from the16

production of renewable biofuels and other bioproducts3–6 to applications in human health7–9, creating the expectation of an17

industrialized biology affecting almost every facet of human activity10.18

However, effective design of biological systems is precluded by our inability to predict their behavior. We can engineer19

changes faster than ever, enabled by DNA synthesis productivity that improves as fast as Moore’s law11, and new tools like20

CRISPR-enabled genetic editing, which have revolutionized our ability to modify the DNA in vivo12. In general, we can make21

the DNA changes we intend (in model systems), but the end result on cell behavior is usually unpredictable13. At the same time,22

there is an exponentially increasing amount of functional genomics data available to the experimenter in order to phenotype23

the resulting bioengineered organism: transcriptomics data volume has a doubling rate of 7 months14, and high-throughput24

workflows for proteomics15 and metabolomics16 are becoming increasingly available. Furthermore, the miniaturization of25

these techniques and the progressive automation of laboratory work through microfluidics chips promises a future where data26

analysis will be the bottleneck in biological research17. Unfortunately, the availability of all this data does not translate into27

better predictive capabilities for biological systems: converting these data into actionable insights to achieve a given goal (e.g.28

higher bioproduct yields) is far from trivial or routine.29

Mathematical modeling provides a systematic manner to leverage these data to predict the behavior of engineered systems.30

Hence, increasingly, computational biology is focusing on large-scale modeling of dynamical systems predicting phenotype31

from genotype18, 19. However, computational biology is still nascent and not able to provide the high accuracy predictions that32

we are accustomed to seeing in other engineering fields20. Arguably, the most widely used and successful modeling technique33

in metabolic engineering involves analysis of internal metabolic fluxes (i.e. reaction rates) through stoichiometric models34

of metabolism. Metabolic flux values are constrained by stochiometry, thermodynamic and evolutionary assumptions21, 22,35

or experimental data (e.g.13C labeling experimental data23–25), and used to suggest genetic interventions that bring cell36

metabolism closer to the desired phenotype. While this approach has provided significant successes26–29, it has also shown its37

limitations30 due to its simplicity. Stochiometric models are limited for bioengineering purposes because they ignore enzyme38



Figure 1. An alternative to traditional kinetic modeling by using machine learning. Our goal is to use time series
proteomics data to predict time series metabolomics data (Fig. 2). The traditional approach involves using ordinary differential
equations where the change in metabolites over time is given by Michaelis-Menten kinetics (Fig. 3 and 4). The alternative
approach proposed here uses time series of proteomics and metabolomics data to feed machine learning algorithms in order to
predict pathway dynamics (equation 1 and Fig. S1). While the machine learning approach necessitates more data, it can be
automatically applied to any pathway or host, leverage systematically new data sets to improve accuracy and capture dynamic
relationships which are unknown by the literature or have a different dynamic form than Michaelis-Menten kinetics.

kinetics and cannot accurately capture dynamic metabolic responses, nor offer a straightforward way to leverage ever more39

abundant proteomics and metabolomics data for increased accuracy.40

Kinetic models explicitly take into account enzyme kinetics and are able to predict metabolite concentrations as a function41

of time from protein concentrations31. This type of prediction is useful to metabolic engineers in order to design pathways that42

have the desired titers, rates and yields. Kinetic models rest on an explicit functional relationship connecting the rate of change43

of a metabolite and the proteins and metabolites involved in the reaction (see Fig. 1): Michaelis-Menten kinetics32, 33 is the44

most common choice, but the fact is that the true mechanistic kinetic rate law for each specific reaction is unknown for most45

enzymes34 (alternatives include generalized mass action35, lin-log kinetics36, 37 or power-law models38). However, there is a46

lack of reliable data for the enzyme activity and substrate affinity parameters used in these models: in-vitro characterization may47

not be extrapolatable to in vivo conditions, and the effect of activators and inhibitors are typically unknown. Approaches such as48

ensemble modeling39–43 tackle the parsity of known kinetic constants by producing an ensemble of models displaying different49

combinations of randomly chosen kinetic parameters and selecting only those models that match known experimental data, or50

by optimizing the selection of these parameters through genetic algorithms44, 45. In a similar fashion, ORACLE46, 47 produces51

populations of models which are consistent with reaction stochiometry, thermodynamics and available concentration and52

fluxomic data. By design, these approaches are able to match measured final production levels and flux data, and the predictions53

have been shown to improve as the model approaches genome-scale coverage45. However, a significant problem remains in that54

essential mechanisms are only sparsely known: allosteric regulation, for example, is known to be critical in order to determine55

fluxes48, 49, and yet a comprehensive map of this regulatory mechanism is unavailable. Post-translational modifications of56

proteins are also known to markedly affect catalytic activity50, but are still largely unmapped. Pathway channeling, too,57

significantly affects catalytic rates but the degree to which this phenomenon occurs in metabolism has only begun to be58

explored51–53. These and other gaps in our knowledge of mechanisms will require significant time and effort to be cleared.59

Given the urgent need of predictive capabilities by the emerging biotech industry, it may be useful to consider a different60
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approach while this knowledge is gathered.61

Here we propose an alternative to traditional kinetic modeling involving a machine learning approach (Figs. 1 and 2),62

in which the function that determines the rate of change for each metabolite from protein and metabolite concentrations is63

directly learned from training data (equation 1 and Fig. S1), without presuming any specific relationship. Machine learning64

has shown remarkable success in well bounded problems where a mechanistic model is impossible or difficult to develop: e.g.65

artificial vision for driverless cars54, automated playing of the Go game55, automated language translation56 or private trait66

prediction from digital records of human behavior57 with direct impact on national elections58. In biology, these methods have67

recently been successfully applied to challenging problems such as predicting DNA and RNA protein binding sequences59, skin68

cancer diagnosis60, single nucleotide polymorphism (SNP) and small indel variant calling61, and tumor detection in breast69

histopathology62 .70

This alternative, machine-learning based, approach provides a faster development of predictive pathway dynamics models71

since all required knowledge (regulation, host effects... etc) is inferred from experimental data, instead of arduously gathered72

and introduced by domain experts (see supplementary material for an example). In this way, the method provides a general73

approach, valid even if the host is poorly understood and there is little information on the heterologous pathway, and provides a74

systematic way to increase prediction accuracy as more data is added. This method obtains better predictions than the traditional75

Michaelis Menten approach for the limonene and isopentenol producing pathways studied here (Fig. 3) using only two times76

series (strains), and is shown to significantly improve its prediction performance as more time series are added. The new77

method is accurate enough to drive bioengineering efforts: we show it is able to predict the relative production ranking for78

several designs, given enough data. This approach is a specific solution to the more general type of problem of determining79

dynamics from observed data (system identification)63–65, a problem generally recognized as hard. We believe this approach is80

scalable to genome-scale models, or generally applicable to other types of data (e.g. transcriptomics) or dynamic systems (e.g.81

microbiome dynamics).82

Mathematical Problem Formulation83

Here, we describe the problem and its solution in succinct mathematical terms. Let us assume we are given q sets of time84

series metabolite m̃i[t] ∈ Rn (Fig. S2) and protein p̃i[t] ∈ R` observations at times T = [t1, t2, ..., ts] ∈ Rs
+. The superscript85

i ∈ {1, . . . ,q} indicates the time series index (strain), and m̃[t] = [m̃1[t], . . . , m̃n[t]]T and p̃[t] = [p̃1[t], . . . , p̃`[t]]T are vectors of86

measurements at time t containing concentrations for the n metabolites and ` proteins considered in the model. We require the87

number of observation time points to be dense enough to capture the dynamic behavior of the system.88

We also assume that the underlying continuous dynamics of the system which generates these time series observations can89

be described by coupled nonlinear ordinary differential equations of the general type used for kinetic modeling:90

ṁ(t) = f (m(t),p(t)), (1)

where m and p are vectors that denote the metabolite and protein concentrations, as explained above. The function91

f : Rn+`→ Rn encloses all the information on the system dynamics. Deriving these dynamics from the time series data will be92

formulated as a supervised learning problem where the function f is learned through machine learning methods which predict93

the relationship between metabolomics and proteomics concentrations (input features, see Fig. S1) and the metabolite time94

derivative ṁ(t) (output). In order to provide the training data set for this problem, the metabolite time derivative ˙̃m is obtained95

from the times series data m̃(t), as shown in Fig. S2.96

In order to parametrize the machine learning algorithm, the following optimization problem is solved (through scikit-learn,97

see materials and methods):98

Problem 1 (Supervised Learning of Metabolic Dynamics). Find a function f which satisfies:

argmin
f

q

∑
i=1

∑
t∈T
|| f (m̃i[t], p̃i[t])− ˙̃mi(t)||2 (2)

99

Solving Problem 1 is equivalent to finding the metabolic dynamics which best describe the time series data provided. Once the100

dynamics are learned we can then predict the behavior of the metabolic pathway by solving an initial value problem (equations 3101

and 4).102

Results and Discussion103

We used the supervised learning method described above (Figs 1 and 2, Eqns 1, 2, 3 and 4) to predict pathway dynamics (i.e.104

metabolite concentrations as a function of time) from protein concentration data for two pathways of relevance to metabolic105
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1. Generate Time Series

Proteomics

Metabolomics

2. Smooth & Differentiate

+

3. Fit Model

*
*

*
* *

4. Simulate

Use	Model	to	Gain	Mechanistic	
Understanding	and	Optimize	
Strain	Performance

Figure 2. Cycle for learning metabolic system dynamics from time series proteomics and metabolomics data. (1)
Experimentally, time series proteomics and metabolomics data are acquired for several strains of interest (represented by
different colors). These data are represented in a metabolomics phase space, with an axis corresponding to each measured
metabolite. (2) The time series data traces are smoothed and differentiated (Fig. S2). The derivatives provide the training data
to derive the relationship between metabolomics and proteomics data and the metabolite change (Fig. S1, equation 1). (3) The
state derivative pairs are fed into a supervised machine learning algorithm. The machine learning algorithm learns and
generalizes the system dynamics from the examples provided by each strain. (4) The model can then be used to simulate virtual
strains and explore the metabolic space looking for mechanistic insight or commercially valuable designs. This process can
then be repeated using the model to create new strains, which will further improve the accuracy of the dynamic model in the
next round.
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Figure 3. The new method was tested on the limonene & isopentenol metabolic pathways. The limonene (blue) and
isopentenol (red) producing pathways are variants of the mevalonate pathway. Time series proteomics and metabolomics data
are used to learn the dynamics of both the isopentenol and limonene producing strains. Additionally, a kinetic model is created
and compared to the machine learning approach for the more complex limonene production pathway (Fig. 4). This pathway
model is also used to generate simulated data to further evaluate the scaling properties of the proposed machine learning
approach. See the original data set66 for enzyme and metabolite acronyms.

engineering and synthetic biology: a limonene producing pathway and an isopentenol producing pathway (Fig. 3). For each106

pathway we used experimental times series data obtained from the low and high biofuel producing strains as training data sets,107

in order to predict the dynamics for the medium producing strains66. Because of the paucity of dense multiomics time series108

data sets, we used simulated data sets (Fig. 4) to study the algorithm’s performance as more training data sets (strains) were109

added.110

Qualitative Predictions of Limonene & Isopentenol Pathway Dynamics can be Obtained with Two Time111

Series Observations112

Surprisingly, just two time-series (strains) were enough to train the algorithm to produce acceptable predictions for most113

metabolites. While the predictions of derivatives from proteomics and metabolomics were quite accurate (aggregate Pearson114

R value of 0.973), any small error in these predictions compounds quickly when solving the initial value problem given by115

equations 3 and 4. The reason is that predictions for a given time point depend on the accuracy of all previous time points. In116

spite of these hurdles, the method produced respectable qualitative and quantitative predictions of metabolite concentrations117

for a strain it has never seen before (Figs. 5 and 6). For some metabolites (33%), the predictions were quantitatively close118

to the measured profile: Acetyl-CoA (83.4 % error, Fig. 5a) and Isopentenol (43.7 % error, Fig. 5f) for the isopentenol119

producing pathway; Acetyl-CoA (128.2 % error, Fig. 6a), HMG-CoA(83.9 % error, Fig. 6b) and Limonene (82.9 % error,120

Fig. 6f) for the limonene producing pathway. For most metabolites (42%), the predictions were off by a scale factor, but121

they were able to qualitatively reproduce the metabolite behavior. For example, for Mevalonate in the isopentenol producing122

pathway (Fig. 5c) and mevalonate in the limonene producing pathway (Fig. 6c) the predictions reproduce the initial increase123

of metabolite concentration followed by a saturation. For IPP/DMAPP (Fig. 5e) or Mevalonate Phosphate (Fig. 5d) in the124

isopentenol pathway, the prediction reproduces qualitatively the concentration increase, followed by a peak and a decrease.125

The prediction of even just this type of qualitative behavior is useful to metabolic engineers in order to obtain an intuitive126

understanding of the pathway dynamics and design better versions of it. By simulating several scenarios the metabolic engineer127

can extract qualitative knowledge (e.g. metabolite x seems toxic, or protein y seems regulated by metabolite x) that can lead to128

testable hypotheses. Finally, in a minority of cases (25%), the predictions are wrong both quantitatively and qualitatively: e.g.129

HMG-CoA for the isopentenol producing pathway (Fig. 5b), Mevalonate Phosphate (Fig. 6d) and IPP/DMAPP (Fig. 6e) for the130

limonene producing pathway. Interestingly, the predictions for both final products (limonene and isopentenol) fell in the group131

of quantitatively accurate predictions. This is important because, for the purpose of guiding metabolic engineering, it is the132

final product predictions that are relevant.133

The machine learning approach outperforms a handcrafted kinetic model of the limonene pathway (Fig. 6). A realistic134

kinetic model of this pathway was built and fit to the data, leaving all kinetic constants as free parameters (Figs. 3 and 4). The135

kinetic model notably fails to capture the qualitative dynamics for Acetyl-CoA, HMG-CoA, Mevalonate and IPP/DMAPP136

(Figs 6a,b,c and e). More quantitatively, the machine learning model produces an average 130% error (RMSE = 8.42) versus an137
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d[A− CoA]

dt
= −K1,1[AtoB][A− CoA]

K1,2 +K1,3[A− CoA]
− K2,1[HMGS][A− CoA][AA− CoA]ks3

K2,2[AA− CoA] +K2,3[A− CoA] +K2,4[A− CoA][AA− CoA]

d[AA− CoA]

dt
=

K1,1[AtoB][A− CoA]

K1,2K1,3[A− CoA]
− K2,1[HMGS][A− CoA][AA− CoA]ks3

K2,2[AA− CoA] +K2,3[A− CoA] +K2,4[A− CoA][AA− CoA]

d[HMG− CoA]

dt
=

K2,1[HMGS][A− CoA][AA− CoA]ks3
K2,2[AA− CoA] +K2,3[A− CoA] +K2,4[A− CoA][AA− CoA]

− K3,1[HMGR][HMG− CoA]

K3,2[A− CoA] +K3,3[AA− CoA] +K3,4[HMG− CoA] +K3,5

d[Mev]

dt
=

K3,1[HMGR][HMG− CoA]

K3,2[A− CoA] +K3,3[AA− CoA] +K3,4[HMG− CoA] +K3,5

− K4,1[MK][Mev]

K4,2[GPP ] +K4,3[MevP ] +K4,4[Mev] +K4,5

d[MevP ]

dt
=

K4,1[MK][Mev]

K4,2[GPP ] +K4,3[MevP ] +K4,4[Mev] +K4,5
− K5, 1[PMK][MevP ]

K5,1 + [MevP ]

d[MevPP ]

dt
=

K5, 1[PMK][MevP ]

K5,1 + [MevP ]
− K6,1[PMD][MevPP ]

K6,2[MevP ] +K6,3[Mev] +K6,4[MevPP ] +K6,5

d[IPP ]

dt
=

K6,1[PMD][MevPP ]

K6,2[MevP ] +K6,3[Mev] +K6,4[MevPP ] +K6,5
− K7,1[IDI][IPP ]

K7,2 + [IPP ]

− K8,1[GPPS][IPP ][DMAPP ]

K8,2 +K8,3[IPP ]K8,4[DMAPP ] + [IPP ][DMAPP ]

d[DMAPP ]

dt
=

K7,1[IDI][IPP ]

K7,2 + [IPP ]
− K8,1[GPPS][IPP ][DMAPP ]

K8,2 +K8,3[IPP ] +K8,4[DMAPP ] + [IPP ][DMAPP ]

d[GPP ]

dt
=

K8,1[GPPS][IPP ][DMAPP ]

K8,2 +K8,3[IPP ]K8,4[DMAPP ] + [IPP ][DMAPP ]
− K9,1[LS][GPP ]

K9,2 + [GPP ]

d[Limonene]

dt
=

K9,1[LS][GPP ]

K9,2 + [GPP ]

Figure 4. Limonene pathway kinetic Michaelis Menten model. This kinetic model was compiled from sources in the
BRENDA database along with guidance from Weaver et al67. This system is composed of 10 nonlinear ordinary differential
equations which describe the concentration for each metabolite in the pathway (see supplementary material for details). The
dynamics of this model are rich and complex enough to pose a significant challenge to be predicted through machine learning.
This model is used in this work to: 1) compare its predictions with machine learning predictions, and 2) generate simulated data
sets to check scaling dependencies with the amount of time series used for training of machine learning algorithms. The
method presented in this paper focuses on substituting these Michaelis Menten expressions by machine learning algorithms
(see Fig. S1). Kinetic constants were left as free parameters when fitting experimental data in Fig. 6.

average 144% (RMSE = 10.04) for the kinetic model. Hence, even a machine learning model informed by the time series data138

of just two strains is able to outperform the handcrafted kinetic model which required domain expertise and significant time139

investment to construct. The machine learning approach, however, is more easily generalizable and it can be instantly reapplied140

for a new pathway, host or product by feeding it the corresponding data. Once the predictions were made for the limonene141

pathway, results for the isopentenol pathway can be obtained easily just by changing the time series data input. In contrast, in142

order to make predictions for the isopentenol pathway a new kinetic model would have to be crafted. Kinetic models become143

more difficult to construct as the size of the reaction network increases and as the knowledge of the relevant network decreases.144

Additionally, all kinetic relationships must be known or inferred, whereas unknown relationships can be uncovered from data145

using a machine learning approach. The machine learning approach only requires a sufficient amount of data to disentangle146

these relationships. Determining how much data is a “sufficient amount” is the goal of the next section.147

Interestingly, the model was able to perform well even though the training sets corresponded to pathways which differed in148

more than just protein levels. This is important because the model is designed to take protein concentrations as input (Fig. 1) in149

order to predict pathway dynamics, assuming the rest of pathway characteristics to remain the same. This use case covers a150

wide range of metabolic engineering needs where e.g. promoters and ribosome binding sites (RBSs) are modified in order to151
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Figure 5. The machine learning method produces acceptable predictions of metabolite time series from proteomics
data for the isopentenol producing Escherichia coli strain. The measured metabolomics and proteomics data66 for the
highest and lowest producing strains (training set data, red line) are used to train a model and learn the underlying dynamics
(Fig. 2). The model is then tested by predicting the metabolite profiles (blue line) for a strain the model has never seen (medium
producing strain, test data in green). A perfect prediction (blue line) would perfectly track the test data set (green line).
Interestingly, reasonable qualitative agreement is achieved even with only two time series (strains) as training data. From a
purely quantitative perspective, the average error is high: the total RMSE for the strain predictions is 40.34, which can be
translated to 149.2% average error. However, for a couple of metabolites (green color band) the predictions quantitatively
reproduce the measured data: Acetyl-CoA and Isopentenol (the final product, and most relevant for guiding bioengineering).
For some metabolites (Mevalonate, Mevalonate Phosphate and IPP/DMAPP, yellow band), the model qualitatively reproduces
the metabolite patterns, missing the scale factor. Only for HMG-CoA does the model fail to predict the metabolite
concentration over time both quantitatively and qualitatively (red band).

affect the resulting protein concentrations. However, other typically used metabolic engineering strategies include changing a152

given enzyme in order to access faster or slower catalytic rates (i.e. kcat ). Even though this case was not explicitly contemplated,153

the model was able to provide good predictions (i.e. I3 was using a HMGR analogue form Staphylococcus aureus and I2154

uses a codon optimized HMGR, see strain description). We hypothesize that kcat changes can be renormalized into (and be155

equivalent to) protein abundance changes. In order to fully address this type of engineering practice, this method may be156

expanded to include enzyme characteristics as input (besides the proteomics data): kcat and KM constants or even full kinetic157

characterization curves.158

Increasing the Number of Strains Improves the Accuracy of Dynamic Predictions159

We used simulated data to show that predictions improved markedly as more data sets are used for training. Simulated data sets160

have the advantage of providing unlimited samples to thoroughly test scaling behavior, and allow us to explore a wider variety161

of types of dynamics than experimentally accessible. Moreover, the dense multiomics time series data sets needed as training162
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Figure 6. The machine learning method outperforms the handcrafted kinetic model for the limonene producing E.
coli strain. The only metabolite for which the kinetic model (black line) provides a better fit than the machine learning method
(blue line) is Mevalonate Phosphate, although both methods appear to track limonene (final product) production fairly well.
The machine learning approach provides acceptable quantitative fits for Acetyl-CoA, HMG-CoA and Limonene (green band), a
qualitative description of metabolite behaviour missing the scale factor for Mevalonate (yellow band), and fails quantitatively
and qualitatively for Mevalonate Phosphate and IPP/DMAPP (red band). As in Fig. 5, the experimentally measured profiles
correspond to high, low and medium producers of limonene. The training sets are the low and high producers (in red) and the
model is used to predict the concentrations for the medium producing strain (in green). Kinetic constants for the handcrafted
kinetic model in Fig.4 were left as free parameters when fitting the experimental data.

data are rare because they are very time consuming and expensive to produce. Since machine learning predictions generally163

improve as more data is used to train them, we expected our method to improve with the availability of more time series for164

training. We expected this improvement to be significant since initially only two time series (strains) were used for training,165

out of the three available for each product66 (the other one was needed for testing). Hence, we used simulated data obtained166

from using the kinetic model developed for the limonene pathway (Figs. 3 and 4), in order to study: 1) how much predictions167

improve as more time series data sets are added and 2) how many time series are needed to guide pathway design effectively168

(next section). A pool of 10,000 sets of time series data with different protein profiles was created that shared the same kinetic169

constants. We fed the machine learning algorithm groups of 2, 10 and 100 times series randomly sampled from this pool in170

order to study how quickly the algorithm was able to recover the original simulated dynamics. In order to gauge the variability171

of the predictions (i.e., how predictions change as different training sets are used) as a function of training group size (2,10 or172

100), we repeated the predictions 10 times for each training group size.173

The prediction error (RMSE, equation 6) decreased monotonically as a function of the number of time series (strains) used174

to train the algorithm in a nonlinear fashion (Fig. 7). Also, the standard deviation of the predictions significantly decreased with175

the number of training of data sets (Fig. 8). The standard deviation is an indication of the variability of pathway dynamics176
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predictions due to stochastic effects of the optimization algorithms (e.g. different seeds) and lack of extrapolability from a177

reduced set of initial protein concentrations. Hence, a predictive model trained with 10 or 100 data sets produces much more178

robust predictions than a model trained with 2 data sets. In fact, the high standard deviations observed for models trained on179

only 2 data sets explain the prediction variability observed in the previous section due to stochastic effects. Interestingly, there180

is a limited drop in error and standard deviation from 10 to 100 strains, with the decrease from 2 to 10 being the largest (Fig. 7).181

This indicates that it is more productive to do 10 rounds of engineering collecting 10 time series data set than a single round182

collecting 100 time series: in this way, 10 time series produce accurate enough predictions to pinpoint the desirable part of183

proteomics of phase space, new strains can be engineered around that space so that new multiomics time series can be obtained184

around the desirable phase space and optimize for prediction accuracy around that area of phase space. Doing this 10 times is185

more accurate than a single prediction based on 100 time series that may not be close to the ultimately desirable proteomics186

phase space. Furthermore, it indicates that the results from the previous section would have been much more reliable if only 8187

time series more had been available for training.188

2 10 100
Training Set Size

0.00

0.02

0.04

0.06

0.08

0.10

0.12

R
M

S
E

RMSE vs Training Set Size

Figure 7. Prediction errors decrease markedly with increasing training set size. As the number of available proteomics
and metabolomics times series data sets (strains) for training increases, the prediction error (RMSE, equation 6) decreases
conspicuously. Moreover, the standard deviation of the predictions error (vertical bar) decreases notably as well. The change
from 2 to 10 strains is more pronounced that the change from 10 to 100. This fact indicates that it is more productive to do 10
rounds of metabolic engineering collecting 10 time series data sets, than a single round collecting 100 time series.

Model Predictions are Accurate Enough to Guide pathway Design and Produce Biological Insights189

The machine learning predictions do not need to be 100% quantitatively correct to accurately predict the relative ranking of190

production for different strains. Being able to reliably predict which of several possible pathway designs will produce the191

highest amount of product is very valuable in guiding bioengineering efforts and accelerating them in order to improve Titer,192

Rate and Yield (TRY). These process characteristics are fundamental determinants of economic relevance68.193

The machine learning algorithm was able to reliably predict the relative production ranking for groups of three randomly194

chosen strains (highest, lowest and medium producer, mimicking the available experimental data) chosen from the pool of195

10,000 time series data sets mentioned above (Fig. 9, left panel). The success rate depended critically on the number of data196

sets available for training: starting at 22% for only 2 strains up to 92% for 100 training sets. For 10 strains the success rate is ∼197

80%, which is reliable enough to practically guide metabolic engineer efforts to improve TRY. For models trained using 100198

time series, the prediction errors were minimal (Fig. 9, right panel).199

Biological insights can be generated by using the ML model to produce data in substitution of bench experiments. For200

example, similarly to Principal Component Analysis of Proteomics (PCAP69), we can use the ML simulations to determine201

which proteins to over/underexpress, and for which base strain, in order to improve production (Fig. 10). Proteins LS, AtoB,202

PMD and Idi are the most important drivers of production in the case of limonene: changing protein expression along the203
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Figure 8. Predictions improve with more training data sets. The machine learning algorithm was used to predict kinetic
models for varying sizes of training sets (2, 10 and 100 virtual strains in blue, red and black). 10 unique training sets were used
for each size to show prediction variability (transparency) for each training set size. All models converge towards the actual
dynamics with the 100 strain models in closest agreement. Standard deviations (shown by the transparency) also decrease
markedly as the size of the training set increases.
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Figure 9. Success rate predicting production ranks increases with training set size. The left panel shows the success rate
in predicting the relative production order (i.e. which strain produces most, which one produces least and which one is a
medium producer) for groups of 3 time series (strains) randomly chosen from a pool of 10,000 strains, as a function of training
data set size (strains). For 100 data sets, the failure rate to predict the top producer is < 10%. For 10 data sets the success rate is
∼ 80%, which is reliable enough to guide engineering efforts. The horizontal line provides the rate of success (1/6) if order is
chosen randomly. The right panel shows that prediction of limonene production is extremely accurate for the case of a training
data set comprised of 100 time series (strains). These data shows that the machine learning model predictions are accurate
enough to guide pathway design if enough training data is available.

principal component associated with them increases limonene creation (Fig. 10, left panel). Furthermore, this approach provides204

expected behavior for all metabolites in the pathway, providing hypotheses that can be tested experimentally (Fig. 10, right205

panel).206

Data Constraints are Significant but Surmountable207

Since the ML approach is purely data-based, data quantity and quality concerns are of paramount importance. Data quantity208

concerns involve both the availability of enough time series as well as time points sampled in each time series.209

The training set used here66 is one of the largest data sets characterizing a metabolically engineered pathway at regular210

time intervals through proteomics and metabolomics. There are no larger data sets that include: time series, several types of211

omics data, more than 7 time points, and several strains. For example: the E. coli multiomics database70 has proteomics and212

metabolomics data for several strains, but no time series; Ma et al71 report proteomics and metabolomics data but only one time213

series with fewer time points (5 instead of 7); Yang et al72 only provide one time series and only one time point for proteomics;214

Doerfler et al73 and Dyar et al74 only provide time series metabolomics data; Patel et al75 does not combine metabolomics215

and proteomics and data download was disabled at the time of testing; the DOE kbase76 focuses on genomics and does not have216

any time series proteomics or metabolomics publicly available; and the Experiment Data Depot77 does not have any studies217

surpassing this one in terms of data points and strains.218

In order to get enough pairs of derivatives and proteomics and metabolomics data to train ML algorithms (Fig. S1), we have219

used data augmentation (filtering and interpolation, Figs 2 and S2), expanding the initial seven time points to two hundred220

by just assuming continuity in the multiomics data (a reasonable assumption in our experience). It would be desirable to221

have more time points available, so as to not to depend on these data augmentation techniques. However, data sets including222

more time points are nonexistent for physical, biological and economical reasons. Every time a sample is taken for -omics223

analysis, the volume in the culture flask diminishes and, if the total sampled volume is comparable to the total volume, it may224

significantly affect the strain physiology. Since taking excessive samples may affect measurements and these coupled omics225

analysis are expensive and require specialized personal, it is not surprising that the maximum amount of time points we have226

seen is ∼ 7. Another reason more time points have not been typically collected is that experts in multiomics data collection227

consider this sampling rate to fully capture the physiology of strains based on previous experience78, 79. The fact that we are228

able to produce reasonable predictions for a third time series that the algorithm has never seen before (test strain) validates this229

and the multiomics data continuity assumption.230
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Figure 10. The ML approach can be used to produce biological insights. The left panel shows the final position in the
proteomics phase space (similarly to the PCAP69 approach) for fifty strains generated by the ML algorithm by learning from
the Michaelis-Menten kinetic model (Fig.4) used as ground truth. Final limonene production is given by circle size and color.
The PLS algorithm finds directions in the proteomics phase space that best align with increasing limonene production
(component 1). Traveling in proteomics phase space along that direction (which involves overexpression of LS and
underexpression of AtoB, PMD, and Idi, see Table S2) creates strains with higher limonene production. The ML approach not
only produces biological insights to increase production but also predicts the expected concentration as a function of time for
limonene and all other metabolites, generating hypotheses that can be experimentally tested (right panel).

Future Work231

The application of machine learning to synthetic biology will hopefully open up new avenues of research as well as accelerate232

the adoption of modeling in bioengineering and beyond. This work is a first step demonstrating that a purely data-driven233

approach can fruitfully predict biological dynamics. There are plenty of possible ways to improve it.234

An obvious first step involves adding other supervised learning techniques to improve predictions. The current approach235

uses TPOT to combine, through genetic algorithms, 11 different machine learning regressors and 18 different preprocessing236

(feature selection) algorithms. New supervised learning techniques can be added to this approach by adding them to the237

scikit-learn library80. TPOT will automatically test them and use them if they provide more accurate predictions than the238

techniques used here. Among the most popular algorithms for ML are Deep Learning techniques based on neural networks.239

However, the small size of the available data sets for this study limited the use of machine learning techniques to classical240

methods. Modern Deep Learning (DL) techniques typically require orders of magnitude more data than was used in this study241

(∼ 1000 strains as a starting point). While this amount of data is currently cost prohibitive, it is a worthy goal to move towards242

DL: these methods have demonstrated super human performance across a variety disciplines. These include, for example,243

image labeling tasks, in which humans have evolved proficiency. In domains where humans are less capable, such as the244

dynamical system characterization considered here, superhuman performance should be substantially easier to achieve. The245

payoff would involve radically improving engineering outcomes by making the predictability of complex biological systems246

proportional to the quantity of input data.247

An often posed question is whether mechanistic insights can be inferred from ML approaches. While this is not trivial,248

there are a couple of possibilities for this inference: 1-) for any particular ML model that produces good fits, the most relevant249

features (i.e. protein X has the highest weight in determining Y molecule concentration) provides a prioritized list of putative250

mechanistically linked parts that can be further investigated. 2-) the ML model can be used as a surrogate for high-throughput251

experiments to derive mechanistic biological insights (Fig. 10). Another example of this last approach would involve studying252

toxicity by adding cell biomass (through optical density, OD) to the measurements and simulate for a variety of scenarios253

(protein inputs) the correlation between OD and all metabolites: a negative correlation would signal putative toxic metabolites.254

It is instructive, however, to pause and reflect on the drive to find mechanisms. Mechanisms offer a causally related set of255

processes and parts that produce the observed phenomena. Understanding these processes, parts and causal relations produces a256

knowledge that can indeed be transferred to predict the behavior of different systems (pathways, strains, products.. etc) where257

the same mechanism is involved. However, biology has been particularly inefficient in making predictions of complex systems258

from known and tested mechanisms. If our final goal is to predict new biological systems, it may be more successful to look259

into ML techniques such as transfer learning81. These techniques tackle directly the challenge of predicting systems based on260
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data originated in related systems without the need to delve into mechanisms. Having said this, there is not doubt that the most261

desirable outcome is a model that is both predictive and mechanistic, but if we are to do without one of these characteristics, the262

mechanistic knowledge may be the least immediately useful for current bioengineering.263

Infusing prior knowledge into the ML approach is a related possible future research avenue. Currently, our method does not264

constrain the vector fields that are learned using any biological intuition. There are often biological facts known about these265

dynamical systems that could be use to improve the performance of our method. Specifically, genome scale stoichiometric266

constraints could provide guarantees that the resulting system dynamics conserve mass and conform to our prior knowledge267

about the organism.268

Since the procedure outlined here requires little prior biological knowledge, it is enticing to imagine extending this method269

for use with different data inputs or other types of applications. An obvious extension is to use transcriptomics data as input.270

Given the current exponential increase in sequencing capabilities, transcriptomics data is more amenable to high throughput271

production than proteomics and metabolomics data. Our biological intuition says that transcriptomics data should be less272

informative than proteomics, but it is surely interesting to explore whether that can be countered with more time series (and how273

many). It would also be of interest to use the ML method to predict proteomics in addition to metabolomics time series. Another274

logical proposition is to expand this method to encompass genome-scale multiomics data. We surmise that the extra predictive275

capabilities of the machine learning with respect to the Michaelis-Menten approach proceed, in part, from indirectly accounting276

for host metabolism effects through proxies (e.g. metabolites or proteins that are affected indirectly by host metabolism). Hence,277

we expect more comprehensive metabolomics and proteomics (as well as transcriptomics) data sets to increase the method278

predictive accuracy. A more intriguing and bold endeavor would be to apply this method to predict microbial community279

dynamics using metaproteomics and metabolite concentration data as inputs. There is nothing in this approach that constrains it280

to intracellular pathway prediction and microbiome research and industry have a definite need for increased predictive power82.281

Finally, the incoming availability of dense multiomics data sets for human metabolism provides an alluring target83, 84.282

Conclusion283

We have demonstrated that it is possible to use a pure machine learning approach to qualitatively predict pathway dynamics.284

This approach, using only two time series (strains) as training data, was able to outperform in predictive power a classical285

Michaelis-Menten kinetic model. Unlike traditional kinetic modeling, we do not need to assume any particular interaction (e.g.286

allosteric regulation), but we give full freedom to the system to implicitly choose the ones that best predict the experimental287

data. Furthermore, we were able to produce predictions that, although not fully quantitatively accurate, are precise enough to288

drive design decisions given enough data: production rankings can be predicted. The ability to predict the pathway dynamics is289

of significant interest to metabolic engineers and synthetic biologists, since it allows for building an intuitive understanding of290

the pathway that can produce testable hypotheses (yield increase, compound toxicity). This method is also an example of the291

benefit of targeting the prediction of derivatives using machine learning in order to predict dynamic processes.292

We have also shown that the machine learning approach improves markedly by using more time-series (strains) as training293

sets, and used simulated data to estimate the number of time series required to guide engineering. Although the training set294

used here66 is one of the largest data sets characterizing a metabolically engineered pathway at regular time intervals through295

proteomics and metabolomics, it is barely sufficient to train machine learning algorithms. Another limitation of this work296

involves only being able to test the method with two pathways, which are the only ones for which dense time series multiomic297

data sets are available. These limitations justify future efforts directed at methodic collection of large time series data sets298

as enabled by multiomic pipelines85–88, since this method provides a systematic method to productively leverage those data.299

Moreover, coupled with recent developments providing real-time metabolomics capabilities89, this method opens the alluring300

possibility of real-time prediction and control of biological pathways.301

These results open the door to a data-centric approach to predicting metabolism that can greatly benefit the biotech and302

synbio industries, much necessitated of predictive power in order to enable reliable production13, 90. This approach is agnostic as303

to the pathway, host or product used, and can be systematically applied, as we have shown. Unlike previous approaches66, it can304

systematically leverage proteomics and metabolomics data in a fashion that increases accuracy as more data is available. Besides305

being of immediate practical utility for bioengineering, this approach can be used as a first step in improving mechanistic306

kinetic models by pinpointing the most relevant machine learning features for accurate predictions, that can then be followed307

up by further experiments in order to obtain a mechanistic understanding of the reasons for their predictive power.308

This work shows that, given sufficient data, the dynamics of complex coupled nonlinear systems relevant to metabolic309

engineering can be systematically learned.310
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Materials and Methods311

Learning System Dynamics from Time Series Data312

The core of this method consists in using machine learning methods to predict the functional relationship between the metabolite313

derivative and proteomics and metabolomics data, substituting the Michaelis Menten relationship (Eqn. 1, Figs. S1 and 4).314

The first step involves creating a training set comprising sets of metabolomics and proteomics data and their corresponding315

derivatives (Fig. S1). This entails computing the derivatives of the metabolite concentration time series data. Because the time316

series data is subject to measurement noise, the derivatives must be carefully estimated. The second step involves finding the317

best performing regression technique, among the many possibilities available80. Finally, once the best prediction algorithm is318

found and cross-validated, we can use it to predict metabolite concentrations given initial time points. The complete code to319

implement these steps is provided in github (see below).320

Construction of the Training Data Set321

In order to train a machine learning model, a suitable training set must be created. We expect the trained machine learning322

model to take in metabolite and protein concentrations at a particular point in time and return the derivative of the metabolite323

concentrations at the same time point (Fig. S1). The observations provide us with the inputs to the model, m̃i[t] and p̃i[t]. In324

order to have examples of correct outputs for supervised learning we have to estimate the derivatives of the metabolite time325

series data, ˙̃mi(t) (Fig. S2).326

Naively computing the derivative of a noisy signal will amplify the noise and make the result unusable. Derivatives of noisy327

signals, like those obtained from experiment, require extra effort to estimate. In order to estimate the time derivatives on time328

series of real data obtained from Brunk et al66 accurately, we apply a Savitzky–Golay91 filter to the noisy time series data329

to find a smooth estimate of the data (Fig. S2). This smooth function estimate can then be used to compute a more accurate330

estimate of the derivative. We compute the derivative estimate of the signal using a central difference scheme from the filtered331

experimental data. Specifically, the Savitzky-Golay filter is used with a filter window of 7 and a polynomial order of 2. The332

derivative estimate, ˙̃mi(t), is computed for all time points in T and time series i. This results in a training example associated333

with each time point in every time series.334

This work assumes that all relevant metabolites are measured and that the system has no unmeasured memory states. In335

other words, the present set of metabolite and protein measurements completely determines the metabolite derivatives at the336

next time instant. If this assumption does not hold practically, a limited time history of proteins and metabolites can be used to337

predict the derivative at the next time instant. We observe that, for the specific pathways used in this paper, this assumption338

produces good predictions.339

Model Selection340

The model selection process used a meta-learning package in python called TPOT92. Once the training data set is established,341

a machine learning model must be selected learn the relationship between input and outputs (Fig. S1). TPOT uses genetic342

algorithms to find a model with the best cross validated performance on the training set. Cross validation techniques are used to343

score an initial set of models. The best performing models are mated to form a new population of models to test. This process344

is repeated for a fixed number of generations and the best performing model is returned to the user.93. If desired, the search345

space for model selection can be specified before execution of the TPOT regressor search. This might be done to prune models346

that require long training times or to select only models that have desirable properties for the problem under consideration.347

Specifically, we used TPOT to select the best pipelines it can find from the scikit-learn library80 combining eleven different348

regressors and eighteen different preprocessing algorithnms. This model selection process is done independently for each349

metabolite (Table S1). After TPOT determines the optimal models associated with each metabolite, they are trained on the data350

set of interest and are ready for use to solve equations 3 and 4. Models with the lowest 10 fold cross validated prediction root351

mean squared error were selected. In this way the best validated models were selected for use.352

After automated model selection via TPOT, we manually evaluated each model based on its accuracy in predicting metabolite353

derivatives given protein and metabolite concentration at a given time point (Fig. S1). Each data set used for model fitting was354

split into training and test sets 10 times using the shuffle split methodology implemented in scikit-learn80. After the model was355

fit, predictions on both the training and test sets were computed for each metabolite model and their predictive ability quantified356

through a Pearson R coefficient (e.g. Fig. S3).357

Using the Model358

Once the models are trained, we can use them to predict metabolite concentrations by solving the following initial value359

problem using the same function f that was learned in equations 1 and 2 :360

ṁ = f (m, p̃), (3)
m(t0) = m̃(t0). (4)
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This problem is solved by integrating the system forward in time numerically. As a general purpose numerical integrator, we361

used a Runga Kutta 45 implementation.362

Data Set Curation and Synthesis363

Two different data sets were used in this work. The first is an experimental data set curated from a previous publication66,364

comprising 3 proteomic and metabolomics time series (strains) from an isopentenol producing E. coli and 3 time series (strains)365

from limonene producing E. coli. The second data set involves computationally simulated data from a kinetic model of the366

limonene pathway, which is used to test how the method performance scales with the number of time series used.367

Description of a Real Time Series Multiomics Data Set368

Proteomics and metabolomics data for two different heterologous pathways engineered into E. coli were available from Brunk369

et al66. There are three (high, medium, and low production) variants for strains which produce isopentenol and limonene370

respectively. All strains were derived from E. coli DH1. The low and high producing strain for each pathway were used to371

predict the medium production strain dynamics by solving equations 3 and 4.372

The isopentenol producing strains (I1, I2 & I3) were engineered to contain all of the proteins required to produce isopentenol373

from acetyl-CoA as (Fig 3). I1 is the unoptimized strain containing the naive variants of each protein in the pathway. I2 differs374

from the base strain I1 in that it contains a codon optomized HMGR enzyme along with the positions of PMK and MK swapped375

on its operon. I3 uses an HMGR homologue from Staphylococcus aureus. Limonene producing strains (L1, L2,& L3) produce376

limonene from acetyl-CoA (Fig 3). L1 is the unoptimized strain with the naively chosen variants for each protein in the pathway.377

It is a two plasmid system where the lower and upper parts of the pathway are split between both constructs. L2 is a DH1378

variant which contains the entire limonene pathway on a single plasmid. L3 is another two plasmid strain where the entire379

pathway is present on the first plasmid, and the terpene synthases are on a second plasmid for increased expression. Starting at380

induction, each strain had measurements taken at 7 time points during fermentation over 72 hours. At each time point pathway381

metabolite measurements and pathway protein measurements were collected. Further details on these strains and experimental382

design can be seen in the original publication66.383

Data Augmentation through Filtering and Interpolation384

In the training set each time series contains 7 data points. These are too sparse to formulate accurate models. To overcome this385

a data augmentation scheme is employed where 7 time points from the original data are expanded into 200 for each strain. This386

is done by smoothing the data with a Savitzky-Golay filter and interpolating over the filtered curve (Figs 2 and S2). When387

predicting the dynamics of a medium production strain from a high and low producing strain, we performed model selection by388

scoring each model using 10 fold cross validation and a pearson R2 metric on two data augmented training strains.389

Development of Realistic Kinetic Models390

In order to study the scaling of performance as more training sets were added, a realistic and dynamically complex model of391

the mevalonate pathway was developed from known interactions extracted from the literature (Figs. 3 and 4). The dynamic392

model is implemented with Michaelis-Menten like kinetics and is a 10 state coupled nonlinear system. Complete details of this393

kinetic model are available in the supplementary material. The objective was to create a realistic model, relevant to metabolic394

engineering, for which learning the system dynamics is a nontrivial task on par with the difficulty of learning real system395

dynamics from experimental data.396

Generation of a Simulated Data Set397

The kinetic model described above was used to create a set of virtual data time series (strains). The kinetic model coefficients398

were chosen to be close to values reported in the literature while maintaining a non-trivial dynamic behavior.399

A virtual strain is created by first generating a pathway proteomic time series. This is done by randomly choosing three400

coefficients for each protein (k f ,km,kl) which specify a leaky hill function. The hill function was chosen because it models the401

dynamics of protein expression from RNA accurately. This leaky hill function specifies the protein measurements for each time402

point and is defined in the equation below:403

p̃(t) =
k f t

km + t
+ kl . (5)

Once all protein time series are specified, they are used in conjunction with the kinetic coefficients to solve the initial404

value problem in equations 3 and 4 in order to determine the time series of metabolite concentrations. The resulting data set is405

a collection of time series measurements of different strain proteomics and metabolomics. All strains use the same kinetic406

parameters and differential equations to generate the metabolomics measurements. The code used to generate this data can be407

found in the github repository, as well.408
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Fitting the Michaelis Menten kinetic model409

To compare the hand crafted kinetic model with the data centric machine learning methodology the parameters of the kinetic410

model were fit to strain data. To find the best fit we used a differential evolution algorithm implemented in scipy. This global411

optimizer was chosen because its convergence is independent of the initial population choice and it tends to need less parameter412

tuning than other methods. All kinetic parameters were constrained to be between 10−12 and 109. This large range of acceptable413

parameter values allowed for maximum flexibility of the kinetic model to describe the data.414

Evaluation of Model Performance for Time Series415

Dynamical prediction was tested on a held back strain that the model did not use in training. When using the experimental data
sets66, the medium titer strains were held back for testing. When using simulated data, a random strain from the data set was
selected. For each time series, agreement between predictions and test data was assessed by calculating the root mean squared
error (RMSE) of the predicted trajectories:

RMSE =

√√√√√1
n

n

∑
j=1

t f∫
t0

(m̄ j(t)− m̃ j(t))2dt, (6)

where m̄ j(t) is the linear interpolation of the actual metabolite concentration of metabolite j at time t (Fig. S2), and m̃ j(t) is the416

prediction obtained from solving equations 3 and 4.417

Biological Insight Analysis418

In order to showcase how biological insights can be derived (Fig. 10), we trained the ML model using 50 proteomics and419

metabolomics time series, using the Michaelis Menten kinetic model as ground truth. Another 50 proteomics time series were420

held back as a test data set. Each metabolite time series was predicted using the machine learning model and the associated421

proteomic time series. The final time point proteomics and final production were collected for each predicted strain. The final422

time point proteomics data was plotted in two dimensions with a basis selected by performing a partial least squares [PLS]423

regression between the proteomics and final production data. These first basis vector from a PLS regression is the direction that424

explains the most covariance between the proteomics data and production data. The PLS regression was implemented by and425

used from scikit-learn.426

Supporting Information427

S1 Appendix. Details of kinetic model for the limonene pathway. This file contains the details of the derivation and428

sources for the model development for the limonene pathway model used in this paper, as well as supplementary figures S1, S2429

and S3.430

Code availability431

Code is available at the following code repository: https://github.com/JBEI/KineticLearning.432

Data availability433

All data was obtained from Brunk et al66, and is also available at the code repository: https://github.com/JBEI/KineticLearning.434
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