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Abstract

Efficient sampling is the key to success of molecular simulation of complex physical sys-
tems. Still, a unique recipe for achieving this goal is unavailable. Hybrid Monte Carlo (HMC)
is a promising sampling tool offering a smart, free of discretization errors, propagation in
phase space, rigorous temperature control, and flexibility. However, its inability to provide
dynamical information and its weakness in simulations of reasonably large systems do not
allow HMC to become a sampler of choice in molecular simulation of complex systems. In
this thesis, we show that performance of HMC can be dramatically improved by introducing
in the method the splitting numerical integrators and importance sampling.

We propose a novel splitting integration scheme called Adaptive Integration Approach or
AIA, which leads to very promising improvements in accuracy and sampling in HMC simu-
lations. Given a simulation problem and a time step, AIA automatically chooses the optimal
scheme out of the family of two-stage splitting integrators. A system-specific integrator iden-
tified by our approach is optimal in the sense that it provides the best conservation of energy
for harmonic forces.

The role of importance sampling on the performance of HMC is studied through the
modified Hamiltonian Monte Carlo (MHMC) methods, sampling with respect to a modified
or shadow Hamiltonian. The particular attention is paid to Generalized Shadow Hybrid Monte
Carlo (GSHMC), introduced by Akhmatskaya and Reich in 2008. To improve the performance
of MHMC in general and GSHMC in particular, we develop and test the new multi-stage
splitting integrators, specially formulated for sampling with respect to modified Hamiltonians.
The novel adaptive two-stage integration approach or MAIA, specifically derived for MHMC
is presented. We also discuss in detail the adaptation of GSHMC to the NPT ensemble and
provide the thorough analysis of its performance. Moreover, for the first time, we formulate
GSHMC in the grand canonical ensemble. A general framework, useful for an extension of
other Hybrid Monte Carlo methods to the grand canonical ensemble, is also provided.

The software development is another fundamental part of the present work. The algo-
rithms presented in this thesis are implemented in MultiHMC-GROMACS, an in-house version
of the popular software package GROMACS. We explain the details of such implementation
and give useful recommendations and hints for implementation of the new algorithms in other
software packages.

In summary, in this thesis, we propose the new numerical algorithms that are capable of
improving the accuracy and sampling efficiency of molecular simulations with Hybrid Monte
Carlo methods. We show that equipping the Hybrid Monte Carlo algorithm with extra fea-
tures makes it even a “smarter” sampler and, no doubts, a strong competitor to the well-
established molecular simulation techniques such as molecular dynamics (MD) and Monte
Carlo. The up to 60 times increase in sampling efficiency of GSHMC over MD, due to the
new algorithms in simulations of selected systems, supports such a belief.
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Summary

The Hybrid Monte Carlo (HMC) method is a promising sampling tool offering a smart, free
of discretization errors, propagation in phase space, rigorous temperature control, and flexi-
bility. The HMC method appeared in the late eighties in the context of lattice field theories
(Duane et al., 1987). A few years later, the HMC algorithm was extended to molecular simula-
tions (Heermann, Nielaba, and Rovere, 1990) and then to condensed-matter systems (Mehlig,
Heermann, and Forrest, 1992). The HMC method aims at combining the advantages of the
molecular dynamics (MD) and Monte Carlo (MC) methods. MD allows for approximating
the physical dynamics of the system while MC helps to explore the phase space more globally.
In fact, HMC is a Metropolis-Hastings algorithm in which proposals are constructed using the
NVE Hamiltonian flow of the system. The goal of HMC is to perform an efficient sampling
in the canonical ensemble which ultimately allows for an accurate estimation of ensemble
averages.

We consider Hamiltonians as

H(q,p) =
1

2
pTM−1p + U(q) ≡ A+B, (1)

whereM is the diagonal mass matrix, and q ∈ R3D, p ∈ R3D are the positions and momenta,
respectively (D is a system’s dimension). We denote by A = 1

2p
TM−1p the kinetic energy,

and by B = U(q) the potential energy.
We are interested in sampling the variable q ∈ R3D that is distributed according to the

probability π(q). The target probability density function (p.d.f.) is written as

π(q) ∝ exp (−βU(q)).

The HMC method combines an MD global move with Monte Carlo sampling in the following
way. For each Monte Carlo iteration: (i) the momenta are resampled from the Maxwell-
Boltzmann distribution ρP (p); (ii) a proposed new state (q′,p′) is generated by integrating
the equations of motion with an integrator Ψ∆t,L; (iii) the preservation of the desired canon-
ical distribution π(q,p) is ensured by a Metropolis test. Its acceptance probability can be
calculated as:

PA ((q,p)→ Ψ∆t,L(q,p)) = min {1, exp (−β∆H)},
where

∆H = H (Ψ∆t,L(q,p))−H(q,p)

is the energy error associated to the integration scheme. A joint p.d.f. π(q,p) is defined as

π(q,p) = π(q)ρP (p) ∝ exp (−βH(q,p)). (2)

Therefore, HMC can be viewed as a method that samples points in phase space by means
of a Markov Chain in which stochastic and dynamical transitions alternate.
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The complete resampling in (i) can be replaced with the partial momentum update as
proposed in (Horowitz, 1991). The current momenta are mixed with an independent and
identically distributed (i.i.d.) Gaussian noise u ∼ N (0, β−1M) to obtain

p∗ = cosϕ p + sinϕ u

u∗ = − sinϕ p + cosϕ u,
(3)

where ϕ ∈ (0, π/2] controls the amount of noise introduced. The angle ϕ also introduces extra
control over the sampling efficiency of the method and may lead to the superior performance
over HMC. The idea was formalized in the Generalized Hybrid Monte Carlo (GHMC) method
(Kennedy and Pendleton, 2001).

Meaning to be an improvement of both Monte Carlo and molecular dynamics, Hybrid
Monte Carlo turned out to inherit two unfortunate drawbacks. Like Monte Carlo, it does
not generate dynamic information, and its performance degrades with an increase of either
the system size or the time step. Therefore, the goal of the thesis is to introduce the new
algorithms for HMC which can potentially minimize these limitations. In order to enhance
the performance of the HMC method, two main tools are considered: the splitting numerical
integrators and the importance sampling technique.

The efficiency and even the feasibility of molecular dynamics simulations depend crucially
on the choice of a numerical integrator. As to the role of integrators in enhancing the per-
formance of Hybrid Monte Carlo, it has been a subject of active research in recent years
(McLachlan, 1995; Blanes, Casas, and Sanz-Serna, 2014; Chao et al., 2015; Campos and
Sanz-Serna, 2017; Bou-Rabee and Sanz-Serna, 2017a). The velocity Verlet algorithm is cur-
rently the method of choice; its algorithmic simplicity and optimal stability properties make
it very difficult to beat. Splitting integrators offer the possibility of improving on Verlet, at
least in some circumstances. Those integrators evaluate the forces more than once per step
and, due to their simple kick-drift structure, may be implemented easily by modifying existing
implementations of the Verlet scheme.

The Hamilton equations of motion, with the notations in (1), can be written as

dq

dt
= ∇pA(q,p) = M−1p,

dp

dt
= −∇qB(q,p) = −∇qU(q).

These equations can be integrated in closed form and their solution flows at a time t are
respectively given by

(q(t),p(t)) = φAt (q(0),p(0)), q(t) = q(0) + t M−1p(0), p(t) = p(0), (4)

and
(q(t),p(t)) = φBt (q(0),p(0)), q(t) = q(0), p(t) = p(0)− t ∇qU(q(0)). (5)

Here φAt and φBt denote the exact solution flows of the partial systems, i.e., the maps that asso-
ciate the exact solution value (q(t),p(t)) with each initial condition (q(0),p(0)). Sometimes
(4) might also be called a drift in the position and (5) a momentum kick.

Given a time step ∆t, a velocity Verlet step corresponds to a transformation in phase
space (q(t+ ∆t),p(t+ ∆t)) = ψ∆t(q(t),p(t)) that can be written as

ψ∆t = φB∆t/2 ◦ φA∆t ◦ φB∆t/2.
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In this thesis, for HMC methods, we study in detail mainly two-stage splitting integrators,
which are the splitting schemes that perform two force evaluations per time step:

ψ∆t = φBb∆t ◦ φA∆t/2 ◦ φB(1−2b)∆t ◦ φA∆t/2 ◦ φBb∆t, (6)

where b ∈ (0, 1/4] is a parameter of ψ∆t. The two-stage integrators in (6) form a one-
parameter family (Blanes, Casas, and Sanz-Serna, 2014). The value of a parameter for a
two-stage integrator that results in a method leading to the smallest energy error was first
identified by McLachlan, 1995 (ME integrator). On the other hand, Blanes, Casas, and Sanz-
Serna, 2014 suggested choosing a parameter value so that a balance between good conservation
of energy for reasonable values of ∆t and accuracy for small ∆t is achieved (BCSS integrator).
The parameter values of (McLachlan, 1995; Blanes, Casas, and Sanz-Serna, 2014) do not vary
with the problem being considered or with the value of ∆t attempted by the user.

On the contrary, the method we propose here for two-stage integrators, and which we
call Adaptive Integration Approach (AIA), automatically adjusts the parameter value for
each problem and each choice of the time step ∆t. Using the information on the highest
frequencies of the harmonic interactions present in the system, AIA offers a system-specific
integrator which guarantees the best energy conservation for harmonic forces achievable by
an integrator from the family of two-stage splitting schemes, including Verlet, for any chosen
∆t. While improvements in energy conservation do not necessarily imply dramatic changes in
sampling, they improve acceptance rates in Hybrid Monte Carlo methods. The experiments
performed in the present study also show that in both Hybrid Monte Carlo and molecular
dynamics AIA leads to improvements of sampling as measured by the metrics considered. The
improved sampling may arise as a consequence of either high acceptance rates (HMC) and
enhanced accuracy (MD, HMC) with a given time step, or due to the possibility of using longer
time steps (MD, HMC). On stability grounds, for any given problem, there is a maximum
possible value of ∆t; beyond this maximum all integrators in the family are unstable. When
the time step chosen by the user is near the maximum value, AIA picks up an integrator that
is (equivalent to) the standard Verlet scheme. As ∆t decreases, AIA changes the integrator to
ensure optimal conservation of energy; for ∆t close to 0, AIA chooses McLachlan’s scheme. In
other words, the AIA approach successfully realizes the fail-safe strategy when the integrators
are concerned. The AIA scheme can be implemented, without introducing computational
overheads in simulations, in any software package which includes MD and/or HMC. In this
study, we implement the AIA method in MultiHMC-GROMACS, a modified version of the
popular GROMACS code (Berendsen, van der Spoel, and van Drunen, 1995; Hess et al., 2008),
and test the new algorithm in HMC and MD simulations of unconstrained and constrained
dynamics. The tests demonstrate the superiority of the novel scheme over Verlet, BCSS and
some other advanced integration schemes, previously proposed in the literature. For a wide
range of time steps and MD trajectory lengths, AIA outperforms other tested integrators in
accuracy and sampling efficiency. The analysis of integrated autocorrelation functions (IACF)
and folding evolution in the constrained benchmark demonstrates, for selected sizes of time
steps, that AIA possesses up to 5 times better sampling performance than the other tested
schemes.

We study the role of importance sampling on the performance of HMC through the modi-
fied Hamiltonian Monte Carlo (MHMC) methods. Such algorithms introduce the importance
sampling in original HMC by sampling with respect to a modified or shadow Hamiltonian.
Instead of sampling from the target canonical distribution (2), MHMC methods sample from
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an auxiliary importance canonical density

π̃(q,p) ∝ exp
(
−βH̃ [k](q,p)

)
. (7)

Here H̃ [k] denotes a truncated modified Hamiltonian. In this thesis, special attention is paid to
the Generalized Shadow Hybrid Monte Carlo (GSHMC) method formulated by Akhmatskaya
and Reich, 2008, and belonging to the MHMC class of samplers. The purpose of GSHMC was
to enable sampling of large complex systems while retaining dynamical information. This is
achieved by employing the modified energy for sampling and by partially updating momentum
(cf. (3)). A modified Metropolis test is also introduced after the partial momentum update
to preserve the desired modified density π̃.

As HMC and GHMC, the GSHMC method was first formulated in the canonical (NVT)
ensemble. In this study, we discuss in detail the adaptation of GSHMC to the isobaric-
isothermal (NPT) ensemble and propose the thorough analysis of its performance. The
GSHMC method is adapted to the NPT ensemble using an Andersen barostat (Andersen,
1980) and we call the resulting algorithm NPT-GSHMC. It is implemented in the MultiHMC-
GROMACS software package. The implementation is tested against the NPT-MD and NVT-
GSHMC methods. NPT-GSHMC shows the same level of accuracy as demonstrated by NPT-
MD and NVT-GSHMC in the calculation of the thermodynamic properties of the chosen
benchmarks. The NPT-GSHMC method also proves to achieve a comparable sampling effi-
ciency to NVT-GSHMC, as was expected from the theoretical formulation. The introduction
of a barostat does not limit the benefits over MD that were previously obtained by the use
of NVT-GSHMC. The method does not introduce any noticeable computational load. Thus,
all advantages offered by the Generalized Shadow Hybrid Monte Carlo method, such as rigor-
ous temperature control, sampling efficiency, are available in NPT-GSHMC and implemented
in MultiHMC-GROMACS for simulation of real-life experiments at constant pressure and
constant temperature without a loss of computational efficiency.

Furthermore, for the first time, we formulate GSHMC in the grand canonical (µVT)
ensemble, and we call it GC-GSHMC. A general framework, useful for an extension of other
Hybrid Monte Carlo methods to the grand canonical ensemble, is provided. Thus, the HMC
and GHMC algorithms are also extended for the first time to the grand canonical ensemble.
The validity of the three new methods has been proved in simulations of Lennard-Jones fluids
at different conditions. All those methods reproduce well the predicted data (Nicolas et al.,
1979; Johnson, Zollweg, and Gubbins, 1993). Also, the new algorithms sample up to 16 times
better than the state-of-the-art MC algorithm by Yao, Greenkorn, and Chao, 1982. Among
three new methods, GC-GSHMC shows the best accuracy and sampling efficiency. However,
the proposed algorithms are only valid for homogeneous systems. Our future goal is to extend
them to simple inhomogeneous systems and implement and test with rigid water models for
the potential use in simulation of proteins in water.

To further improve the performance of importance sampling methods, we introduce new
multi-stage integrators specifically derived for MHMC. The proposed two- and three-stage
integration methods provide better conservation of modified Hamiltonians than does the Verlet
integrator, commonly used in MHMC. Each of the derived methods is characterized by its
coefficients, which are obtained from the minimization of the (expected with respect to a
modified density (7)) error in modified Hamiltonians introduced by numerical integration. The
new methods are tested and compared with Verlet and also with the sophisticated splitting
integrators previously suggested for sampling with HMC.
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For two-stage modified integrators, we also propose an adaptive integration approach
which ultimately leads to enhancing the accuracy and sampling efficiency of MHMC methods.
Given a simulation system and a user-chosen time step, the Modified Adaptive Integration
Approach (MAIA) identifies by using information on the highest frequencies of the harmonic
interactions present in the system the two-stage numerical integrator which, when used in the
Hamiltonian dynamics step of an MHMC method, provides the best conservation of the mod-
ified Hamiltonian and thus the highest acceptance of the proposed trajectories. An enhanced
variant of MAIA tailored to Generalized Shadow Hybrid Monte Carlo (GSHMC) methods
is the extended MAIA (e-MAIA). It additionally supplies a value of the parameter ϕ that,
for the problem under consideration, keeps the momentum acceptance at a user-desired level.
The MAIA algorithm is implemented, with no computational overhead during simulations, in
MultiHMC-GROMACS. The effect of the use of MAIA on the sampling efficiency of GSHMC
is demonstrated in simulations with constrained atomistic and unconstrained coarse-grained
benchmarks and compared with the performance of other suitable integration schemes, in-
cluding velocity Verlet integrator. The tests reveal that the replacement in GSHMC of any
fixed two-stage integrator with e-MAIA leads systematically to improvements in sampling
efficiency of up to an order of magnitude. The performance comparison of GSHMC, HMC,
and MD combined with their best choices of numerical integrators (e-MAIA, AIA, AIA, re-
spectively) confirms the efficiency and robustness of the GSHMC-MAIA combination, whose
advantages are especially noticeable when using the longest possible simulation time steps.
For such cases, GSHMC, while maintaining good accuracy in simulation, provides a sampling
efficiency (as measured with IACF) up to 30 times higher than the efficiency that may be
achieved with MD.

The software development is another fundamental part of this work. The algorithms
presented in this thesis are implemented in MultiHMC-GROMACS, the in-house version of
the popular software package GROMACS. We explain the details of such implementation
and give useful recommendations and hints for implementation of the new algorithms in
other software packages. In addition, we supply the implementation details of some well-
established methodologies which do not appear in the released version of GROMACS. The
current structure of MultiHMC-GROMACS provides the flexibility for introducing different
Hybrid Monte Carlo algorithms. Switching from one methodology to another is regulated
by the values of input parameters. The MultiHMC-GROMACS code also offers a general
framework for introducing new integrators and algorithms that can be expressed in a Trotter
formulation (De Raedt and De Raedt, 1983). Two-, three- and four-stage integrators in
original and modified formulations, and the adaptive integration schemes for HMC, MD and
GSHMC (AIA, MAIA, e-MAIA) are implemented in MultiHMC-GROMACS. The two-stage
integrators are also combined with the v-rescale (Bussi, Donadio, and Parrinello, 2007), Nosé-
Hoover (Nosé, 1984b; Hoover, 1985), and MTTK (Martyna et al., 1996) thermostats and
barostats. Since the multi-step algorithms can be easily expressed in the Trotter form, the
current structure allows for a smooth implementation of this kind of methodologies.

In summary, in this thesis, we propose new numerical algorithms that are capable of im-
proving the accuracy and sampling efficiency of molecular simulation using Hybrid Monte
Carlo methods. We show that equipping the Hybrid Monte Carlo algorithm with extra fea-
tures makes it a “smarter” sampler and a strong competitor to the well established molecular
dynamics and Monte Carlo.
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Resumen

El método Hybrid Monte Carlo (HMC) es una herramienta de sampleo que ofrece una propa-
gación iteligente libre de errores de discretización en el espacio de fases, un control riguroso
de la temperatura y flexibilidad. HMC apareció a finales de los ochenta en el contexto de las
teorías de campos reticulados (Duane et al., 1987). Unos años después, HMC fue extendido a
simulaciones moleculares (Heermann, Nielaba, y Rovere, 1990) y después a sistemas de mate-
ria condensada (Mehlig, Heermann, y Forrest, 1992). El método HMC pretende combinar las
ventajas de la dinámica molecular (DM) y de los métodos de Monte Carlo (MC). DM permite
aproximar la dinámica del sistema mientras que MC ayuda a explorar el espacio de fases de
forma más global. De hecho, HMC es un algoritmo de tipo Metropolis-Hastings en el cual
las propuestas se construyen utilizando el flujo hamiltoniano en el colectivo NVE del sistema.
El objetivo de HMC es producir un sampleo eficiente en el colectivo canónico que, en última
instancia, permita una aproximación precisa de medias de observables en el colectivo.

Consideramos hamiltonianos como

H(q,p) =
1

2
pTM−1p + U(q) ≡ A+B, (1)

donde M es la matriz diagonal de masas y q ∈ R3D, p ∈ R3D son las posiciones y momentos,
respectivamente (D es la dimensión del sistema). Denotamos con A = 1

2p
TM−1p a la energía

cinética y con B = U(q) a la energía potencial.
Nos interesa samplear la variable q ∈ R3D que está distribuida de acuerdo con la proba-

bilidad π(q). La función de densidad de probabilidad (f.d.p.) objetivo se expresa como

π(q) ∝ exp (−βU(q)).

El método HMC combina un movimiento global de DM con el sampleo de Monte Carlo
del siguiente modo. Para cada iteración de Monte Carlo: (i) los momentos se resamplean
siguiendo una distribución de Maxwell-Boltzmann ρP (p); (ii) se genera un estado propuesto
(q′,p′) integrando las ecuaciones de movimiento con un integrador Ψ∆t,L; (iii) se asegura la
preservación de la distribución canónica deseada π(q,p) mediante un test de Metropolis. Su
probabilidad de aceptación se puede calcular como:

PA ((q,p)→ Ψ∆t,L(q,p)) = min {1, exp (−β∆H)},

donde
∆H = H (Ψ∆t,L(q,p))−H(q,p)

es el error de la energía asociado al integrador. Una f.d.p. conjunta π(q,p) se define como

π(q,p) = π(q)ρP (p) ∝ exp (−βH(q,p)). (2)

Por lo tanto, HMC puede ser entendido como un método que samplea puntos en el espacio
de fases mediante una cadena de Markov en la cual transiciones estocásticas y dinámicas se
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alternan.
El resampleo completo en (i) puede ser reemplazado por una actualización parcial del

momento como fue propuesto en (Horowitz, 1991). Los momentos actuales se mezclan con un
ruido gaussiano independiente e idénticamente distribuido u ∼ N (0, β−1M) para obtener

p∗ = cosϕ p + sinϕ u

u∗ = − sinϕ p + cosϕ u,
(3)

donde ϕ ∈ (0, π/2] controla la cantidad de ruido introducida. El ángulo ϕ también introduce
un control extra en la eficiencia del sampleo del método y puede llevar a un rendimiento
superior al de HMC. Esta idea fue formalizada en el método Generalized Hybrid Monte Carlo
(GHMC) (Kennedy y Pendleton, 2001).

Pretendiendo ser una mejora de los métodos de Monte Carlo y de la dinámica molecular,
Hybrid Monte Carlo resultó heredar dos desventajas desafortunadas. Como Monte Carlo,
no genera información de la dinámica y su rendimiento se degrada al aumentar o el tamaño
del sistema o el del paso. Por lo tanto, el objetivo de la tesis es la introducción de nuevos
algoritmos para HMC que potencialmente pueden minimizar estas limitaciones. Para mejo-
rar el rendimiento del método HMC, principalmente dos herramientas son consideradas: los
integradores numéricos de división y la técnica del sampleo de importancia.

La eficiencia e incluso la viabilidad de las simulaciones de dinámica molecular depende
crucialmente de la elección del integrador numérico. El papel de los integradores en mejorar
la eficiencia de Hybrid Monte Carlo ha sido objeto de estudio activo en los últimos años
(McLachlan, 1995; Blanes, Casas, y Sanz-Serna, 2014; Chao et al., 2015; Camos y Sanz-
Serna, 2017; Bou-Rabee y Sanz-Serna, 2017). Actualmente, el algoritmo velocity Verlet es
el método elegido por defecto; su simplicidad algorítmica y sus propiedades de estabilidad
óptimas lo convierten en un método muy difícil de superar. Los integradores numéricos de
división ofrecen la posibilidad de superar a Verlet, al menos en algunas circunstancias. Dichos
integradores evalúan las fuerzas más de una vez por paso y, debido a su simple estructura
kick-drift, pueden ser implementados fácilmente modificando implementaciones ya existentes
del algoritmo de Verlet.

Las ecuaciones de movimiento de Hamilton, con la notación de (1), se pueden escribir
como

dq

dt
= ∇pA(q,p) = M−1p,

dp

dt
= −∇qB(q,p) = −∇qU(q).

Estas ecuaciones pueden ser integradas de forma analítica y sus flujos de solución en un tiempo
t son respectivamente

(q(t),p(t)) = φAt (q(0),p(0)), q(t) = q(0) + t M−1p(0), p(t) = p(0), (4)

y
(q(t),p(t)) = φBt (q(0),p(0)), q(t) = q(0), p(t) = p(0)− t ∇qU(q(0)). (5)

Aquí φAt y φBt denotan el flujo de solución exacto de los sistemas parciales, i.e., las funciones
que asocian el valor de la solución exacta (q(t),p(t)) con cada condición inicial (q(0),p(0)).
A veces se puede llamar a (4) un drift en la posición y a (5) un kick en el momento.

Dado un paso ∆t, un paso de velocity Verlet corresponde con una transformación en el
espacio de fases (q(t+ ∆t),p(t+ ∆t)) = ψ∆t(q(t),p(t)) que puede escribirse como

ψ∆t = φB∆t/2 ◦ φA∆t ◦ φB∆t/2.
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En esta tesis, para métodos HMC, estudiamos en detalle principalmente integradores de
dos etapas, los cuales son integradores de división que evalúan las fuerzas dos veces en cada
paso:

ψ∆t = φBb∆t ◦ φA∆t/2 ◦ φB(1−2b)∆t ◦ φA∆t/2 ◦ φBb∆t, (6)

donde b ∈ (0, 1/4] es un parámetro de ψ∆t. Los integradores de dos etapas de (6) forman una
familia que depende de un parámetro (Blanes, Casas, y Sanz-Serna, 2014). El valor de dicho
parámetro que produce un método con el menor error de energía posible fue identificado por
primera vez por McLachlan, 1995 (integrador ME). Por otra parte, Blanes, Casas, y Sanz-
Serna, 2014 sugirieron escoger el parámetro b de tal manera que se satisfaciese un balance
entre una buena conservación de la energía para valores razonables de ∆t y precisión para ∆t
pequeños (integrador BCSS). Los parámetros de (McLachlan, 1995; Blanes, Casas, y Sanz-
Serna, 2014) no varían con el problema que se considera o con el valor de ∆t seleccionado por
un usuario.

El método que proponemos aquí para integradores de dos etapas, y al que llamamos Adap-
tive Integration Approach (AIA), ajusta automáticamente el parámetro para cada problema
y cada elección del paso ∆t. Utilizando información de las frecuencias más altas dentro de las
interacciones armónicas presentes en el sistema, AIA ofrece un integrador específico para cada
sistema que garantiza la mejor conservación de energía posible para fuerzas armónicas que
puede obtenerse con un integrador de dos etapas, incluído Verlet, para cualquier ∆t elegido.
Pese a que las mejores en la conservación de la energía no implican necesariamente cambios
dramáticos en el sampleo, sí que mejoran las tasas de aceptación en los métodos Hybrid Monte
Carlo. Los experimentos presentados en este estudio también muestran que tanto en Hybrid
Monte Carlo como en dinámica molecular AIA mejora el sampleo para las métricas considera-
das. Dicha mejora puede surgir como consecuencia o de las altas tasas de aceptación (HMC) y
la mejora en la precisión (DM, HMC) para un paso dado, o debido a la posibilidad de utilizar
pasos más largos (DM, HMC). En términos de la estabilidad, para cualquier problema estu-
diado, hay un valor máximo posible de ∆t; más allá de dicho máximo todos los integradores
son inestables. Cuando el paso escogido por el usuario es cercano a este máximo, AIA escoge
un integrador que es equivalente al estándar Verlet. Cuando ∆t disminuye, AIA cambia el
integrador para asegurar una conservación de la energía óptima; para ∆t cercano a 0, AIA es-
coge el método de McLachlan. Se puede implementar AIA sin introducir coste computacional
adiccional en las simulaciones en cualquier paquete de software que incluya DM y/o HMC.
En este estudio, AIA está implementado en MultiHMC-GROMACS, una versión modificada
del popular paquete GROMACS (Berendsen, van der Spoel, y van Drunen, 1995; Hess et al.,
2008), y comparamos el nuevo algoritmo con HMC y DM en simulaciones de sistemas con y
sin constraints. Los experimentos demuestran la superioridad del nuevo método sobre Verlet,
BCSS y algunos otros integradores presentes en la literatura. Para un amplio rango de pasos
y trayectorias de DM, AIA supera al resto de integradores probados en precisión y eficiencia
del sampleo. El análisis de funciones de autocorrelación integrada (IACF) y la evolución del
pliegue de una proteína demuestran que, para los pasos seleccionados, AIA samplea hasta 5
veces mejor que el resto de métodos probados.

Estudiamos el papel que juega el sampleo de importancia en la eficiencia de HMC a través
de los métodos modified Hamiltonian Monte Carlo (MHMC). Estos algoritmos introducen
el sampleo de importancia en el HMC original sampleando con respecto a un hamiltoniano
modificado o shadow. En lugar de samplear con respecto a la distribución canónica objetivo
(2), los métodos MHMC samplean con respecto a una densidad canónica de importancia
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auxiliar
π̃(q,p) ∝ exp

(
−βH̃ [k](q,p)

)
. (7)

Aquí H̃ [k] denota un hamiltoniano modificado truncado. En esta tesis, prestamos espe-
cial atención al método Generalized Shadow Hybrid Monte Carlo (GSHMC) formulado por
Akhmatskaya y Reich, 2008, y que pertenece a la clase de los sampleadores MHMC. El
propósito de GSHMC fue permitir samplear sistemas grandes y complejos mientras se man-
tenía la información de la dinámica. Esto se consigue empleando la energía modificada para
samplear y actualizando el momento parcialmente (cf. (3)). Un test de Metropolis modifi-
cado también se introduce después de la actualización parcial del momento para preservar la
densidad modificada π̃.

Como HMC y GHMC, GSHMC inicialmente fue formulado en el colectivo canónico
(NVT). En este estudio, discutimos en detalle la adaptación de GSHMC al colectivo isobárico-
isotérmico (NPT) y proponemos el análisis detallado de su eficiencia. El método GSHMC
se adapta al colectivo NPT utilizando el barostato de Andersen (Andersen, 1980) y lla-
mamos al algoritmo resultante NPT-GSHMC. Está implementado en el paquete MultiHMC-
GROMACS. La implementación se compara con los resultados de los métodos NPT-DM
y NVT-GSHMC. NPT-GSHMC demuestra el mismo nivel de precisión que NPT-DM y
NVT-GSHMC en el cálculo de las propiedades termodinámicas de los sistemas escogidos.
El método NPT-GSHMC también muestra una eficiencia de sampleo comparable a la de
NVT-GSHMC, como se puede esperar de su formulación teórica. La introducción de un
barostato no limita los beneficios sobre DM que previamente fueron observados al utilizar
NVT-GSHMC. El método no introduce coste computacional adiccional. Por tanto, todas
las ventajas ofrecidas por el método Generalized Shadow Hybrid Monte Carlo, tales como el
riguroso control de la temperatura o la eficiencia del sampleo, están disponibles también en
NPT-GSHMC e implementadas en MultiHMC-GROMACS para poder simular experimentos
de la vida real a temperatura y presión constantes.

Más aún, por primera vez formulamos GSHMC en el colectivo macrocanónico (µVT), y
lo llamamos GC-GSHMC. Un marco general útil para extender otros métodos tipo Hybrid
Monte Carlo al colectivo macrocanónico es propuesto. Así, HMC y GHMC también son
extendidos por primera vez al colectivo macrocanónico. La validez de los tres nuevos métodos
ha sido probada en simulaciones de fluidos tipo Lennard-Jones en distintas condiciones. Dichos
métodos reproducen bien los datos predecidos previamente (Nicolas et al., 1979; Johnson,
Zollweg, y Gubbins, 1993). Además, los nuevos algoritmos samplean hasta 16 veces mejor
que un algoritmo MC de la literatura (Yao, Greenkorn, y Chao, 1982). Entre los tres nuevos
métodos, GC-GSHMC muestra las mejores precisión y eficiencia de sampleo. Sin embargo,
los algoritmos propuestos son solo válidos para sistemas homogéneos. Nuestro futuro objetivo
es extenderlos a sencillos sistemas no homogéneos y testearlos con modelos rígidos de agua
para su uso potencial en simulaciones de proteínas en agua.

Para mejorar aún más la eficiencia de los métodos de sampleo de importancia, introducimos
integradores de varias etapas especialmente derivados para MHMC. Los integradores propues-
tos de dos y tres etapas proporcionan mejor conservación de los hamiltonianos modificados
que Verlet, comúnmente usado en MHMC. Cada uno de los métodos derivados viene carac-
terizado por sus coeficientes, los cuales son obtenidos de la minimización del error (esperado
con respecto a una densidad modificada (7)) en los hamiltonianos modificados introducido
por los integradores numéricos. Los nuevos métodos son comparados con Verlet y con otros
integradores sofisticados de varias etapas sugeridos para samplear con HMC.
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Para los integradores modificados de dos etapas también proponemos un método adap-
tativo que mejora la precisión y la eficiencia del sampleo de los métodos MHMC. Dado un
sistema y un paso elegido por un usuario, el Modified Adaptive Integration Approach (MAIA)
identifica, utilizando información de las frecuencias más altas de las interacciones armónicas
presentes en el sistema, el integrador de dos etapas que produce la mejor conservación del
hamiltoniano modificado y, por tanto, las mayores tasas de aceptación de las trayectorias pro-
puestas. Una versión mejorada de MAIA para el método Generalized Shadow Hybrid Monte
Carlo (GSHMC) es el extended MAIA (e-MAIA). Adicionalmente proporciona un valor del
parámetro ϕ que, para el problema considerado, mantiene la aceptación del momento a un
nivel escogido por el usuario. MAIA está implementado, sin añadir costes computacionales
en las simulaciones, en MultiHMC-GROMACS. El efecto del uso de MAIA en la eficiencia
de sampleo de GSHMC está demostrado en simulaciones con sistemas con y sin constraints y
comparado con la eficiencia de otros integradores disponibles, incluido velocity Verlet. Los ex-
perimentos revelan que reemplazar en GSHMC cualquier integrador de dos etapas por e-MAIA
mejora sistemáticamente la eficiencia del sampleo. La comparación de GSHMC, HMC y DM
combinada con sus mejores integradores (e-MAIA, AIA, AIA, respectivamente) confirma la
eficiencia y robustez de GSHMC-MAIA, cuyas ventajas son más apreciables cuando se usan
pasos grandes. Para este caso, GSHMC, mientras mantiene una buena precisión, proporciona
una eficiencia de sampleo (medida con IACF) hasta 30 veces mejor que la proporcionada por
DM.

El desarrollo de software es otra parte fundamental de este trabajo. Los algoritmos pre-
sentados en esta tesis están implementados en MultiHMC-GROMACS, el paquete de nuestro
grupo basado en el popular GROMACS. Explicamos los detalles de dichas implementaciones
y damos recomendaciones útiles para implementar los nuevos algoritmos en cualquier otro pa-
quete. Además, proporcionamos los detalles de la implementación de algunos métodos clásicos
que no aparecen en la versión original de GROMACS. La actual estructura de MultiHMC-
GROMACS proporciona flexibilidad para introducir diferentes algoritmos tipo Hybrid Monte
Carlo. Cambiar de un método a otro viene regulado por los parámetros dados como valores
de entrada. Además MultiHMC-GROMACS ofrece un marco general para introducir nuevos
integradores y algoritmos que puedan ser expresados en la formulación de Trotter (De Raedt
y De Raedt, 1983). Los integradores de dos, tres y cuatro etapas en sus formulaciones original
y modificada, así como los métodos adaptativos para HMC, DM y GSHMC (AIA, MAIA,
e-MAIA) están implementados en MultiHMC-GROMACS. Los integradores de dos etapas
además, pueden ser combinados con los termostatos y barostatos v-rescale (Bussi, Donadio, y
Parrinello, 2007), Nosé-Hoover (Nosé, 1984b; Hoover, 1985), y MTTK (Martyna et al., 1996).
Puesto que los métodos multi-paso pueden ser expresados fácilmente en una formulación de
Trotter, la actual estructura del código permite su implementación directa.

En resumen, en esta tesis proponemos nuevos algoritmos numéricos que son capaces de
mejorar la precisión y la eficiencia del sampleo de simulaciones moleculares utilizando métodos
tipo Hybrid Monte Carlo methods. Demostramos que equipar al algoritmo Hybrid Monte
Carlo con características adiccionales lo convierten en un sampleador “inteligente” y un serio
competidor de los métodos clásicos, dinámica molecular y Monte Carlo, para simulaciones
moleculares.
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Chapter 1

Introduction to the Molecular
Simulation of Complex Systems

1.1 Motivation

Molecular modeling relies on the methods, theoretical and computational, capable of mod-
eling or mimicking the behavior of molecules. Such methods are used in different fields, for
example, drug design, computational biology, nanoscience or materials science to study molec-
ular systems ranging from small chemical systems to large biological molecules and material
assemblies. Computers are required to perform molecular simulations, which can provide
an atomistic level of description of molecular systems. Quantitative/qualitative information
about the macroscopic behavior of macromolecules can be obtained from simulation of a
system at an atomistic level. Due to the increase of the power of supercomputers, molecular
simulation is becoming the technique of choice to describe systems of ever-increasing complex-
ity, to discover new phenomena, or understand their structure, dynamics or thermodynamics.
Molecular simulation constitutes a crossroads of mathematics, biology, chemistry, physics,
and computer science.

The growth of molecular simulations popularity over the last decades would not have
been possible without the rapid progress in computers technology. The improvement of CPUs
made feasible simulations of large complex systems. Then, parallelization paradigms, such
as OpenMP or MPI (Jost et al., 2003), as well as computers specialized in molecular simu-
lation, e.g., MDGRAPE (Susukita et al., 2003) or Anton (Shaw et al., 2008), came to assist
in the distribution of the most computationally or memory demanding parts of the simula-
tions among processors, and thus opened new horizons for advanced simulations. In the last
years, the introduction of GPUs helped to increase the speed of the calculations in molecular
simulation further.

The revolution in hardware development requires new sophisticated algorithms utilizing
the computer power. On the other hand, the complexity of molecular simulation dealing with
real physical systems cannot be solved only using powerful computers. The efficient numerical
algorithms are in high-demand. The development of simulation algorithms aiming to improve
the sampling efficiency, while not suffering any loss of accuracy, is fundamental in the progress
of molecular simulation abilities. The purpose of this thesis is to explore and develop new
efficient numerical algorithms for molecular simulations.

In classical molecular simulation, a molecule is described as a series of charged points
or atoms linked by springs or bonds. Thus, for each atom in every molecule, one needs to
know the positions q, the momentum p, the charge θ and the bond information (which atoms,
bond angles, etc.). Besides, the potential energy U helps to predict behavior and structure of
systems since it describes the interaction energies of all atoms and molecules in the system.
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However, it has to be remarked that U is always defined as an approximation. The closer to
real physics it is, the more time is required to compute it. More precise interactions increase
the accuracy of predictions of molecular simulations, but they also make the calculations
computationally more demanding.

The main steps involved in a molecular simulation are (i) building a realistic atomistic
model of the system to be studied; (ii) specifying simulation conditions (temperature, pres-
sure, volume, etc.); (iii) simulation of the behavior of the system over time; (iv) analysis of
the microscopic data obtained from a simulation and relating them to macroscopic properties.
The conversion of microscopic information to macroscopic observables requires statistical me-
chanics. Average values are defined as ensemble averages, where an ensemble is a collection
of all possible systems which have different microscopic states but posses an identical macro-
scopic state. The ergodic hypothesis states that, for any observable, the ensemble average and
the time average coincide (Hill, 1960).

A key to success in molecular simulations is the proper sampling over accessible simulation
times, since insufficient sampling is the greatest source of inaccuracy. Two big challenges can
be outlined in quantitative simulations: complex structures of simulated systems and motions
over different time scales. As an extreme example, we can mention the case of having fast
bond vibrations and slow folding processes in a single simulation.

Two basic simulation approaches for sampling in molecular simulations are Monte Carlo
and Molecular Dynamics.

• The Monte Carlo (MC) method is a stochastic approach. It generates a random walk
of the system using a proposal density and provides a method for rejecting/accepting
proposed moves (the Metropolis test). Discontinuous trajectories are produced and time
has no clear meaning. Simulations do not offer kinetic information.

• The Molecular Dynamics (MD) method is a deterministic approach. The smooth tra-
jectories are obtained by integrating Hamilton’s equations of motion numerically. Time
has a clear (physical) interpretation, and the simulations provide thermodynamic and
kinetic properties.

1.2 Statistical ensembles

The concept of an ensemble was initially introduced by Gibbs at the beginning of the 20th
Century. An ensemble is a collection of systems described by the same set of microscopic
interactions and sharing a common set of macroscopic properties (e.g., the same total energy,
volume, etc.). Each system evolves under the microscopic laws of motion from a different initial
condition so that at any point in time, every system has a unique microscopic state. Once
an ensemble is defined, macroscopic observables are calculated by performing averages over
the systems in the ensemble. Ensembles can be defined for a wide variety of thermodynamic
situations by choice of variables to be fixed during simulation. Their formulation usually comes
from physical situations. The ensembles most commonly used in biomolecular simulations are
the microcanonical (NVE), the canonical (NVT) and the isobaric-isothermal (NPT). In this
section, we summarize these ensembles as well as the grand canonical ensemble (µVT), which,
while being less popular due to its non-trivial implementation in MC and MD, will also be
discussed and used later in this dissertation.
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1.2.1 Microcanonical ensemble (NVE)

The microcanonical ensemble is composed of a collection of systems isolated from their sur-
roundings. Each system in the ensemble is characterized by fixed values of the particle number
N , volume V and total energy E. Thus, this ensemble is also called the NVE ensemble, as
each of these three quantities is constant in the ensemble. Molecular dynamics naturally
performs in the NVE ensemble.

The main disadvantage of the microcanonical ensemble is that a constant total energy is
not a typical condition for laboratory experiments. Therefore, it is important to develop also
ensembles that have different sets of thermodynamic control variables in order to reflect more
common experimental setups.

1.2.2 Canonical ensemble (NVT)

The canonical ensemble is the statistical ensemble that represents the possible states of a
system in thermal equilibrium with a heat bath at a fixed temperature T . The system can
exchange energy with the heat bath so that the states of the system will differ in total
energy. In the canonical or NVT ensemble, the number of particles N , the volume V and the
temperature T are conserved.

In NVT, the total energy is exchanged with a thermostat, which controls the temperature.
Monte Carlo serves as a thermostat itself, preserving temperature through the Metropolis
test. In molecular dynamics, no temperature is present in the Hamilton’s equations. A
variety of thermostats are available to add and remove energy from the boundaries of an
MD simulation. In the classical work by Andersen, 1980 an algorithm was suggested for
simulations at a constant temperature for the first time. In this approach, the particles change
their velocities by stochastic collisions which are chosen to reproduce the canonical ensemble.
More thermostats appeared later such as Nosé-Hoover (Nosé, 1984a; Nosé, 1984b; Hoover,
1985), Berendsen (Berendsen et al., 1984), the velocity rescaling thermostat, or v-rescale,
(Bussi, Donadio, and Parrinello, 2007).

1.2.3 Isobaric-isothermal ensemble (NPT)

In the isobaric-isothermal or NPT ensemble, the number of particles N , the pressure P and
the temperature T are fixed. The NPT ensemble corresponds most closely to laboratory
conditions. The volume of the system is allowed to fluctuate to maintain the pressure constant.
Thus, an isobaric system can be viewed as coupled to an isotropic piston that compresses or
expands the system uniformly in response to instantaneous pressure fluctuations such that
the average internal pressure is maintained equal to an externally applied pressure.

In the NPT ensemble, in addition to a thermostat, a barostat is needed. The barostats
are the algorithms that mimic the effect of the piston. Two main kinds of barostats are worth
of mentioning here: those, which introduce an extended variable for the equations of motion
(extended ensemble coupling) and those that use an external bath to perform the coupling
(weak coupling). In the classical work by Andersen (Andersen, 1980), the first barostat for
MD simulations was also proposed. The idea is that a simulated system is coupled to a
fictitious “pressure bath” which mimics the action of an imaginary external piston linked to a
constant reference pressure. The Parrinello-Rahman barostat (Parrinello and Rahman, 1981),
the Nosé-Hoover barostat (Nosé, 1984a; Nosé, 1984b; Hoover, 1985) and the MTTK barostat
(Martyna, Tobias, and Klein, 1994; Martyna et al., 1996; Tuckerman et al., 2006) are based on
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the Andersen barostat. The most popular barostat that uses the external bathing approach
is the Berendsen barostat (Berendsen et al., 1984).

1.2.4 Grand canonical ensemble (µVT)

The grand canonical ensemble is the statistical ensemble that represents the possible states of
a system of particles maintained in thermodynamic equilibrium (thermal and chemical) with
a reservoir. In the grand canonical or µVT ensemble, the chemical potential µ, the volume V
and the temperature T are conserved. The system can exchange energy and particles with a
reservoir, so that various possible states of the system can differ in both their total energy and
a total number of particles. The system’s volume, shape, and other external coordinates are
kept the same in all possible states of the system. The grand canonical ensemble is appropriate
for describing an open system such as, liquid-vapor equilibrium, capillary condensation, or
molecular electronics and batteries, in which a device is assumed to be coupled with an
electron source.

1.3 Simulation techniques

As it was mentioned in Section 1.1, there are two main sampling approaches which can be
applied in molecular simulation, stochastic Monte Carlo (MC) and deterministic Molecular
Dynamics (MD). The two methods are summarized below. The combination of both MC and
MD leads to the Hybrid Monte Carlo (HMC) algorithm, which is also briefly explained here.

1.3.1 Monte Carlo (MC)

The first use of random methods to solve a physical problem dates back to the 30s when Enrico
Fermi employed such an approach to study the properties of neutrons. Later, the method was
formulated and named as Monte Carlo1 (MC) by Nicholas Metropolis and Stanislaw Ulam
(Metropolis and Ulam, 1949). Though it was intensively used in the late 40s in connection
with the Manhattan Project, the first publication of an application of the method appeared in
1953 (Metropolis et al., 1953). Several types of Monte Carlo algorithms have been proposed
in the literature (Kroese et al., 2014). In molecular simulation, the most common algorithm is
Metropolis-Hastings, named after Wilfred K. Hastings (Hastings, 1970). It is a Markov Chain
Monte Carlo (MCMC) method for obtaining a sequence of random samples from a probability
distribution for which direct sampling is difficult. The method is designed to generate samples
that make a large contribution to the distribution of interest. At each iteration, a new state is
sampled from a proposal distribution, which depends on the current state, and either accepted
or rejected according to the probability of the new sample relative to the current one.

In practice, MC neglects velocities and looks for minima on the potential energy surface by
randomly probing configuration space. The sampling procedure is the following: (i) generate
a random move; (ii) evaluate the potential energy U ; (iii) accept/reject with Boltzmann
probability

min (1, exp (−β∆U)), (1.1)

where ∆U is the change in energy U and β is the inverse of the thermodynamic temperature
kBT (kB is the Boltzmann constant and T is the temperature). It has to be remarked that

1The name Monte Carlo came after conversations between Metropolis and Ulam in which the latter used
to mention that his uncle “just had to go to Monte Carlo” to gamble (Metropolis, 1987).
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the potential energy U only depends on the positions, which is consistent with the fact that
dynamics are neglected in MC simulations. After a simulation, one can take averages in the
NVT ensemble, since the temperature is prescribed and fixed via β = 1/kBT . However, one
advantage of the MC method is that it can be readily adapted to sampling in any ensemble,
such as NPT (Wood, 1968) or µVT (Norman and Filinov, 1969).

In an MC simulation, the system behaves as a Markov process, meaning that the current
state depends only on the previous one. The system is assumed to be ergodic. Therefore, any
state can be reached from any other state, and time and ensemble averages are equivalent.
However, the main drawback of the method in the context of molecular simulations is that,
while being an exact method, MC does not offer a time evolution of the system. Moreover,
since the moves are generated randomly, a usual procedure for avoiding big changes in the
potential energy U (that would lead to a rejection) is to move only a few atoms at a time.

1.3.2 Molecular Dynamics (MD)

Molecular dynamics (MD) simulation is a computer approach to statistical mechanics used
to estimate equilibrium and dynamic properties of complex systems by numerically solving
Newton’s equations. The molecular dynamics method was also originally developed within the
field of theoretical physics in the late 50s. There are three seminal works which are considered
as the foundations of MD: (Fermi, Pasta, and Ulam, 1955)2; (Alder and Wainwright, 1959);
and (Rahman, 1964). Inspired by the success of the Monte Carlo simulations (Metropolis
et al., 1953), Fermi, Pasta, Ulam and Tsingou first suggested MD in the mid-50s. It was
then formulated independently by Alder and Wainwright in the late 50s and Rahman in the
60s. In 1957, Alder and Wainwright used an IBM 704 computer to simulate elastic collisions
between hard spheres. In 1964, Rahman published landmark simulations of liquid argon that
used a Lennard-Jones potential. Calculations of system properties, such as the coefficient
of self-diffusion, compared well with experimental data. A few years later, Verlet performed
simulations for the same system as Rahman using for the first time the famous integrator
named after him (Verlet, 1967).

The formal structure of MD is the Hamiltonian mechanics, where the forces are conserva-
tive:

F (q) = −∇qU(q).

A large class of many-particle systems can be described by a classical separable Hamiltonian
of the form

H(q,p) =
1

2
pTM−1p + U(q), (1.2)

in which we denote the kinetic energy as

K(p) =
1

2
pTM−1p.

Here M is the diagonal mass matrix, and q ∈ R3D, p ∈ R3D are the positions and momenta,
respectively. D is a system’s dimension.

2Although Mary Tsingou did not appear as an author of the original paper, she was mentioned in an
acknowledgement for her work in programming the MANIAC simulations. Mary Tsingou’s contributions to
the Fermi-Pasta-Ulam-Tsingou problem were largely ignored by the community until Dauxois, 2008 published
additional information regarding the development and called for the problem to be renamed to grant proper
attribution.
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The Hamilton’s equations of motion that drive the dynamics of the system read as

dq

dt
=
∂H

∂p
= M−1p,

dp

dt
= −∂H

∂q
= F (q), (1.3)

which are in agreement with Newton’s laws of motion. Hamilton’s equations conserve the total
Hamiltonian H. The equations of motion (1.3) are solved using numerical integrators since
analytical (closed-form) solutions are only known for very simple systems. The numerical
integration generates a sequence of positions and momenta pairs (qi,pi) for integers i that
represent discrete times t = i∆t at intervals or time steps ∆t. Numerical integrators are only
required to be time-reversible and symplectic.

The most computationally demanding part of an MD simulation is the calculation of the
forces. A usual procedure is to increase the time step ∆t to perform fewer integration steps and
then calculate the forces less frequently. There are several techniques for increasing the time
steps. For instance, it is possible to solve the equations of motion under the constraints so that
the rigid bonds and/or bond angles do not change during a simulation (Ryckaert, Ciccotti,
and Berendsen, 1977). The motion associated with the remaining degrees of freedom is slower,
and thus it helps to use bigger time steps. Different multiple-time step (MTS) techniques and
coarse-graining approaches having the same purpose of decreasing a frequency of the force
evaluations are available in the literature (Tuckerman, Berne, and Martyna, 1992; Marrink
et al., 2007).

As stated before, the NVE or microcanonical ensemble (see Section 1.2.1) consists of all
microscopic states on the constant energy hypersurface H(q,p) = E. Since the equations
of motion (1.3) preserve the Hamiltonian, a trajectory computed with such equations gener-
ates microscopic configurations in the microcanonical ensemble. Thus, by construction, the
temperature T is not maintained. The main drawbacks of MD are that (i) it is not free of
discretization errors; (ii) it does not allow for large moves between consecutive configurations
(the numerical time step has to be small to ensure energy conservation); and (iii) it does not
provide rigorous temperature control in a simulation.

1.3.3 Hybrid Monte Carlo (HMC)

In contrast to molecular dynamics, Monte Carlo methods generate canonical distribution and
do not introduce discretization errors. However, such methods can only attempt to move a few
particles at a time in order to maintain a reasonable average acceptance rate. Thus, another
difference between MC and molecular dynamics is in the ability of the latter to generate
moves of the entire system. Nevertheless, such moves are deterministic and fundamentally
limited by the time step, which has to be sufficiently small to ensure energy conservation.
Clearly, that Monte Carlo and molecular dynamics are surprisingly complementary: where
one method fails another succeeds. The Hybrid Monte Carlo (HMC) algorithm came as an
attempt to combine advantages of the two methods.

The Hybrid Monte Carlo method was originally formulated by Duane et al., 1987 to study
lattice models of quantum field theory. In the recent years, HMC also became popular in
computational statistics, known under the name of Hamiltonian Monte Carlo (Neal, 2011).

The HMC algorithm consists of short MD trajectories (in the NVE ensemble) which are
accepted/rejected according to the Metropolis test with a probability

min (1, exp (−β∆H)), (1.4)
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where ∆H is not zero due to the error introduced by the numerical integrator. The acceptance
rule (1.4) differs from (1.1) in the presence of the kinetic energy. The Metropolis test in HMC
is followed by a full reset of momenta in order to start a new MD trajectory. Thus, dynamical
properties of a simulated system cannot be properly reproduced using HMC. Originally, HMC
samples in the NVT ensemble, but it can be extended to other statistical ensembles (Faller
and de Pablo, 2002).

The HMC algorithm can be summarized as a combination of Hamiltonian dynamics (MD)
and a Metropolis-Hastings acceptance rule (MC). It offers the possibility of generating pro-
posals that, while being far away from the current state of the Markov chain, may be accepted
with high probability. Thus, it avoids random walk behavior, and it reduces the correlation
between samples. HMC can be understood either as an efficient MC with a “smart” collective
move or as a thermodynamically consistent MD with corrupted dynamics.

1.4 Objectives of the thesis

Meaning to be an improvement of both Monte Carlo and molecular dynamics, Hybrid Monte
Carlo turned out to inherit two unfortunate drawbacks. It does not generate dynamic infor-
mation, and its performance degrades with an increase of either the system size or the time
step. The goal of this thesis is to introduce the new algorithms for HMC which can potentially
minimize these limitations.

In the following chapters of this dissertation, in order to enhance the performance of the
HMC method, two main tools will be considered: the splitting numerical integrators and the
importance sampling technique.

Splitting integrators are more sophisticated integration schemes than the commonly used
in molecular simulation Verlet/leapfrog integrator. The development of such integrators may
lead to very promising improvements in accuracy and sampling in MD and HMC as has been
demonstrated in (McLachlan, 1995; Blanes, Casas, and Sanz-Serna, 2014). In this thesis, we
develop various novel splitting integrators and analyze their accuracy and effect on sampling
performance of HMC in comparison with the methods available in the literature.

In this work, the role of importance sampling on the performance of HMC is studied
through the modified Hamiltonian Monte Carlo (MHMC) methods. Such algorithms intro-
duce the importance sampling in original HMC by sampling with respect to a modified or
shadow Hamiltonian. Special attention is paid to the Generalized Shadow Hybrid Monte Carlo
(GSHMC) method formulated by Akhmatskaya and Reich, 2008. As Hybrid Monte Carlo,
the GSHMC method was first formulated in the NVT ensemble, though, the hints about its
extension to the NPT ensemble were also provided in the original paper (Akhmatskaya and
Reich, 2008). In this study, we discuss in detail the adaptation of GSHMC to the NPT en-
semble and propose the thorough analysis of its performance. Moreover, for the first time, we
formulate GSHMC in the grand canonical or µVT ensemble. A general framework, useful for
an extension of other Hybrid Monte Carlo methods to the grand canonical ensemble, is also
provided.

The software development is another fundamental part of the present work. The algo-
rithms presented in this thesis are implemented in MultiHMC-GROMACS, an in-house version
of the popular software package GROMACS. We explain the details of such implementation
and give useful recommendations and hints for implementation of the new algorithms in other
software packages.
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In summary, in this thesis, we propose new numerical algorithms that are capable of im-
proving the accuracy and sampling efficiency of molecular simulation using Hybrid Monte
Carlo methods. We show that equipping the Hybrid Monte Carlo algorithm with extra fea-
tures makes it a “smarter” sampler and a strong competitor to the well established molecular
dynamics and Monte Carlo.

The structure of the present document is as follows. Chapter 2 presents Hybrid Monte
Carlo in detail and provides the useful references to the literature. In Chapter 3, following
a summary of state-of-the-art numerical integrators, the adaptive two-stage integration algo-
rithm is derived and illustrated with numerical experiments. In Chapter 4, the importance
sampling Hybrid Monte Carlo algorithms are introduced. A particular emphasis is put on the
Generalized Shadow Hybrid Monte Carlo method. In Chapter 5, we extend GSHMC to sim-
ulations in two statistical ensembles, NPT and µVT, introducing the new sampling methods,
NVT-GSHMC and GC-GSHMC. HMC and GHMC in the µVT ensemble are also presented.
The new algorithms are tested and compared in accuracy and performance. In Chapter 6
the integrators specially formulated for sampling with respect to modified Hamiltonians are
derived and tested. The novel adaptive two-stage integration approach specifically derived
for modified Hamiltonian Monte Carlo is presented. In Chapter 7, the implementation of new
algorithms in the MultiHMC-GROMACS package, as well as the structure and novel features
of the software package, are discussed. The conclusions and some ideas for future work are
summarized in Chapter 8.
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Chapter 2

Hybrid Monte Carlo Methods

2.1 Formulation of Hybrid Monte Carlo

The Hybrid Monte Carlo (HMC) method appeared in the late eighties in the context of lattice
field theories. The original paper in which the method was first formulated is (Duane et al.,
1987). A few years later, the HMC algorithm was extended to molecular simulations (Heer-
mann, Nielaba, and Rovere, 1990) and then to condensed-matter systems (Mehlig, Heermann,
and Forrest, 1992). The HMC method aims at combining the advantages of the molecular
dynamics (MD) and Monte Carlo (MC) methods. MD allows for approximating the physical
dynamics of the system while MC helps to explore the phase space more globally. In fact,
HMC is a Metropolis-Hastings algorithm in which proposals are constructed using the NVE
Hamiltonian flow of the system.

The goal of HMC is to perform an efficient sampling in the canonical ensemble which
ultimately allows for an accurate estimation of ensemble averages.

Considering Hamiltonians H(q,p) = 1
2p

TM−1p +U(q) as in (1.2) and given a system of
size D, the canonical ensemble average of an observable Ω(q,p) is

〈Ω(q,p)〉NV T =
1

Q

1

D!h3D

∫
Ω(q,p)e−βH(q,p)dq dp,

where h is Planck constant, β is the inverse of the thermodynamic temperature kBT , and Q
is the canonical partition function denoted by (cf. (Hill, 1960))

Q =
1

D!h3D

∫
e−βH(q,p)dq dp.

One can compute the Gaussian integral over the momenta and obtain

Q =
1

D!Λ3D
Z, (2.1)

where Λ is the thermal de Broglie wavelength, which is roughly the distance that molecules
can approach before quantum effects become significant, and the configurational integral Z is
defined as

Z =

∫
e−βU(q)dq.

We are interested in sampling the variable q ∈ R3D that is distributed according to the
probability π(q). The target probability density function (p.d.f.) is written as

π(q) =
1

Z e
−βU(q), (2.2)
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where U(q) denotes the potential energy.
Assuming that one wants to study an observable Ω(q), which is a function of the positions

only, its ensemble average is given by

〈Ω(q)〉 =
1

Z

∫
Ω(q)e−βU(q)dq.

Given a sequence of N configurations qn distributed according to (2.2), the law of large
numbers implies that the ensemble average of the observable Ω(q) can be computed as

〈Ω(q)〉 = lim
N→∞

1

N

N∑

n=1

Ω(qn).

In a Monte Carlo calculation the configurations are generated as a Markov chain defined
by a conditional transition probability density ρT (qn → qn+1). Provided the Markov chain
is irreducible and aperiodic (i.e., ergodic if it is a finite state chain), the detailed balance
condition

π(qn)ρT (qn → qn+1) = π(qn+1)ρT (qn+1 → qn)

ensures that the Markov chain converges to the unique stationary probability distribution
(2.2). The detailed balance is a sufficient but not necessary condition, whereas the stationarity
is.

In practice, one step qn → qn+1 in the Markov chain of configurations is realized by
proposing qn+1 according to a proposal probability density ρP (qn → qn+1) and accepting it
with the probability

PA(qn → qn+1) = min

{
1,
π(qn+1)ρP (qn+1 → qn)

π(qn)ρP (qn → qn+1)

}
, (2.3)

which is the Metropolis-Hastings function (Metropolis et al., 1953; Hastings, 1970). Thus, the
conditional probability densities ρT (qn → qn+1) are given by

ρT (qn → qn+1) = ρP (qn → qn+1)PA(qn → qn+1).

In conventional MC simulations only local moves are performed, i.e., single particle up-
dates. This may lead to slow exploration of phase space. However, updating more than one
particle at a time typically results in a very low acceptance rate, which implies large relaxation
times and high autocorrelations. Replacing a local move with a global one, as is performed
in MD, may in principle improve sampling provided the high acceptance rate. A global move
can be described as follows. Given a time step ∆t and a number of steps L, integrate the
equations of motion of the system (1.3) through phase space for a time t = ∆t · L using a
chosen discretization scheme or integrator

Ψ∆t,L : R6D → R6D.

(q,p) 7→ (q′,p′)
(2.4)

The system is moved deterministically through phase space, and then the conditional proba-
bility of proposing a new set of coordinates q′ starting at q is given by

ρP (q→ q′) = ρP (p), (2.5)
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i.e., the proposal probability depends only on the momenta. The initial momenta for each
new global move are drawn from the Maxwell-Boltzmann distribution:

ρP (p) ∝ exp

(
−β

D∑

i=1

p2
i

2mi

)
, (2.6)

where mi are the masses and D is the size of the system.
The HMC method combines an MD global move with Monte Carlo sampling in the fol-

lowing way. For each Monte Carlo iteration: (i) the momenta are resampled from (2.6); (ii)
a proposed new state (q′,p′) is generated by integrating the equations of motion with an
integrator Ψ∆t,L (2.4); (iii) the preservation of the desired distribution π(q,p) is ensured by
a Metropolis test. Its acceptance probability can be calculated by combining (2.2), (2.3) and
(2.6):

PA ((q,p)→ Ψ∆t,L(q,p)) = min {1, exp (−β∆H)}, (2.7)

where
∆H = H (Ψ∆t,L(q,p))−H(q,p) (2.8)

is the energy error associated to the integration scheme. For the sake of simplicity we will
denote the acceptance probability in (2.7) as α. Clearly, a joint p.d.f. π(q,p) is defined as

π(q,p) = π(q)ρP (p) =
1

Q
exp (−βH(q,p)). (2.9)

Therefore, HMC can be viewed as a method that samples points in phase space by means
of a Markov Chain in which stochastic and dynamical transitions alternate.

The HMC algorithm can be summarized as follows:

Algorithm 1 Hybrid Monte Carlo
Input: ∆t: time step

L: number of integration steps
Ψ : discretization scheme
N : number of MC iterations
T : temperature

1: initialize q0

2: for n = 1, . . . , N do
3: q = qn−1

4: draw momenta p from Maxwell-Boltzmann distribution (2.6)
5: generate a proposal by integrating Hamiltonian dynamics

(q′,p′) = Ψ∆t,L(q,p)

6: calculate the acceptance probability

α = min
{

1, exp
(
−β
(
H(q′,p′)−H(q,p)

))}

7: Metropolis test
draw u ∼ U(0, 1)
if u < α
accept: qn = q′
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else
reject: qn = q

end if
8: discard momenta p′, p
9: end for

It can be shown that for the HMC algorithm the detailed balance condition is satisfied for
a time-reversible discretization scheme Ψ

Ψ−∆t ◦ Ψ∆t = I (2.10)

and volume preserving

det
∂Ψ∆t(q,p)

∂(q,p)
= 1. (2.11)

We need to recall the following algebraic identity:

exp (−βH(q,p)) min {1, exp (−β∆H)} = exp (−βH (Ψ∆t(q,p))) min {exp (β∆H), 1}.

Then, we can proof detailed balance as follows:

π(q) ρT (q→ q′) = π(q) ρP (p) PA((q,p)→ Ψ∆t(q,p))

= π(q′) ρP (p′) PA(Ψ∆t(q,p)→ (q,p))

= π(q′) ρP (p′) PA((q′,p′)→ Ψ−∆t(q
′,p′))

= π(q′) ρT (q′ → q).

Therefore, provided a chosen integrator is time-reversible and volume preserving, the HMC
algorithm generates a Markov chain with the stationary probability distribution π(q,p) in
(2.9) (it is easy to notice that (2.2) is just a marginalization of (2.9)). From now on, we will
consider symplectic and time-reversible integrators. Symplecticity is a more general condition
than volume preservation and it will play a fundamental role in the following chapters. A
definition will be provided in Chapter 3. An informative review on symplecticity and its
importance in dynamical systems can be found in (Sanz-Serna and Calvo, 1994) and several
different symplectic discretization schemes are surveyed in (Sanz-Serna, 1992).

Neither π(q) nor any ensemble averages depend on the time step chosen. However, the
average acceptance probability depends on the expected discretization error E(∆H) (cf. (2.7))
and hence it does depend on the time step. The useful relation between the average acceptance
probability 〈PA〉 and the expected energy error E(∆H) for sufficiently large systems has been
proposed (cf. (Gupta et al., 1990)):

〈PA〉 = ercf
(

1

2

√
E(∆H)

)
, (2.12)

where ercf is the complementary error function. The work by Gupta et al., 1990 was an
extension of the analysis of Creutz, 1988 for the large volume limit. Useful discussions on
how the acceptance probability changes with the size of the system D can be found in the
cited (Creutz, 1988) and also in (Gupta, Kilcup, and Sharpe, 1988). As a curiosity, the two
papers appeared the same year in the same issue of the journal and the similar results are
proved in different manners. There are two important relations: (i) ∆t ∝ D−1/4 to maintain a
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reasonable acceptance rate; and (ii) the cost of HMC per independent sample from the target
distribution is O(D5/4), which stands in contrast with the O(D2) cost of Metropolis.

It is remarked by Mehlig, Heermann, and Forrest, 1992 that it may be possible to formulate
more general algorithms, which do not obey detailed balance condition but satisfy the relation

∫
π(q) ρT (q→ q′) dq = π(q′),

which is a necessary and sufficient condition for the Markov chain to have the stationary prob-
ability distribution. In (Fang, Sanz-Serna, and Skeel, 2014) there is a significant weakening
of sufficient conditions for stationarity: preservation of volume in phase space is not required
and reversibility of a discretization scheme is needed only in the form of a bijection rather
than an involution. The volume-preserving property of the integration schemes can be relaxed
by including a Jacobian factor in the calculation of the Metropolis acceptance probability as
explained in (Leimkuhler and Reich, 2009).

Useful explanations and theoretical results on the convergence can be found in the review
by Cancès, Legoll, and Stoltz, 2007.

There are statistical results and some hints about the optimal tuning of the algorithm
in (Beskos et al., 2013). The authors identified the value of 0.651 as an optimal acceptance
rate for distributions with independent and identically distributed variates and the Verlet
integrator. This result was extended to general distributions and symplectic integrators in
(Betancourt, Byrne, and Girolami, 2014) with the optimal interval for average acceptance
rate being between 0.6 and 0.9.

Several variations of HMC have been proposed. We will discuss them later in Chapter 4.
For now, we will focus on the generalization of HMC in the method called Generalized Hybrid
Monte Carlo method (Kennedy and Pendleton, 2001). This algorithm will play a central role
in the following chapters.

2.2 Generalized Hybrid Monte Carlo (GHMC)

One of the drawbacks of Hybrid Monte Carlos is its inability to, in contrast to molecular
dynamics, predict dynamics of a simulated system. This can be partially overcome by gen-
erating, after each NVE trajectory of length L, some new momenta which are correlated
with the previous ones. The partial momentum update (in contrast to the complete momen-
tum update) was introduced by Horowitz, 1991 within Generalized guided Monte Carlo, a
method that relies on a single step of Hamiltonian dynamics. This method is also known as
a second-order Langevin Monte Carlo (L2MC). The purpose of this technique was to retain
more dynamical information of the simulated system.

In (Kennedy and Pendleton, 2001) this idea was formalized in the Generalized Hybrid
Monte Carlo (GHMC) method. GHMC is defined as the concatenation of two steps: Molecular
Dynamics Monte Carlo (MDMC) and Partial Momentum Update (PMU).

The GHMC method only differs from HMC in the momentum update step. The MDMC
is defined in the same way as in the HMC method. However, whereas in HMC the momenta
are completely reset for initiating a new trajectory, in GHMC, the momenta are partially
updated. The current momenta are mixed with an independent and identically distributed
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(i.i.d.) Gaussian noise u ∼ N (0, β−1M) to obtain

p∗ = cosϕ p + sinϕ u

u∗ = − sinϕ p + cosϕ u,
(2.13)

where ϕ ∈ (0, π/2] controls the amount of noise introduced. The angle ϕ also introduces
extra control over the sampling efficiency of the method and may lead to the superior perfor-
mance of GHMC over HMC. It updates the momentum between trajectories partially so that
consecutive trajectories tend to move in more similar directions.

It has to be remarked that there is no need for a Metropolis test after the orthogonal
transformation in (2.13) since it preserves for p∗ and u∗ the distributions of p and u. However,
since momenta are not discarded, the method incorporates a momentum flip

F(q,p) = (q,−p) (2.14)

upon rejection, that ensures that the detailed balance condition is satisfied. The u∗ generated
in (2.13) are always discarded.

The GHMC algorithm can be summarized as follows:

Algorithm 2 Generalized Hybrid Monte Carlo
Input: M : mass matrix

∆t: time step
L: number of integration steps
Ψ : discretization scheme
N : number of MC iterations
T : temperature
ϕ ∈ (0, π/2]: noise angle

1: initialize (q0,p0)
2: for n = 1, . . . , N do
3: (q,p) = (qn−1,pn−1)
4: partial momentum update

p∗ = cosϕ p + sinϕ u

u∗ = − sinϕ p + cosϕ u

where u ∼ N (0, β−1M)
5: generate a proposal by integrating Hamiltonian dynamics

(q′,p′) = Ψ∆t,L(q,p∗)

6: calculate the acceptance probability

α = min
{

1, exp
(
−β
(
H(q′,p′)−H(q,p∗)

))}

7: Metropolis test
draw u ∼ U(0, 1)
if u < α
accept: (qn,pn) = (q′,p′)

else
reject and flip momenta: (qn,pn) = F(q,p∗)
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end if
8: end for

Note that the formulation above differs from the original one (Kennedy and Pendleton,
2001) in the number of momentum flips performed. In the original formulation, the momentum
flip (2.14) is applied before partial momentum refreshment and once again upon acceptance,
instead of rejection; thus more momentum flips are needed in this case. It is easy to see that
the two formulations are equivalent.

Some well-known methods can be considered as special cases of GHMC (therefore, “gen-
eralized”):

• Hybrid Monte Carlo (HMC): If ϕ = π/2 the momenta are completely resampled.
Then, the momentum flips may be ignored in this case since p∗ = u and the previous
momenta are entirely discarded.

• Langevin Dynamics (LD): If all MD proposals are accepted and ϕ =
√

2γ∆t � 1,
where γ > 0 plays the role of the friction coefficient.

• Molecular Dynamics (MD): If ϕ = 0 and all trajectories are accepted, meaning that
one long trajectory is produced in the NVE ensemble.

The three examples above are summarized in Table 2.1.

Method ϕ L Metropolis test
HMC π/2 arbitrary X
LD ϕ =

√
2γ∆t� 1, γ > 0 1 7

MD 0 arbitrary 7

Table 2.1: Special cases of GHMC

2.3 HMC applications

As it has been pointed out in Section 2.1, the HMC method was initially formulated for
computational physics and molecular simulation (Gupta, Kilcup, and Sharpe, 1988; Gupta et
al., 1990). It was initially applied to lattice field theory simulations and it became popular in
QCD studies (Sexton and Weingarten, 1992; Joó et al., 2000; Hasenbusch, 2001; Takaishi and
Forcrand, 2006). HMC has also been used in computational chemistry simulations (Tuckerman
et al., 1993; Hansmann, Okamoto, and Eisenmenger, 1996).

In the last years, HMC has achieved more popularity in other fields and it has been
extensively studied and tested in the computational statistics community (Chen, Qin, and
Liu, 2000; Neal, 2011; Girolami and Calderhead, 2011; Radivojević, 2016; Betancourt, 2017;
Radivojević and Akhmatskaya, 2017). HMC remained unknown for statistical applications
until 1994 when Neal used the method in neural network models in his Ph.D. thesis. In
the computational statistics community, the method is usually called Hamiltonian Monte
Carlo. Nowadays, HMC is used in a wide range of applications, from molecular simulations
to statistical problems appearing in different fields, such as data assimilation or geophysics
(Alexander, Eyink, and Restrepo, 2005; Mohamed, Christie, and Demyanov, 2010).

Still, the usage of HMC has been limited by the poor performance when the size of a
simulated problem increases. A straightforward solution could be to decrease the time step
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used in the numerical integration. However, this leads to an increase of the computational
time of a simulation. In this dissertation, we propose different approaches to enhance the
sampling of complex systems using HMC methods. Mainly, we suggest two solutions: splitting
integrators and the importance sampling. In the following chapters, the state of the art of both
approaches will be summarized, and the novel methodologies will be proposed and explained
in detail.

2.4 Summary

In this chapter, the Hybrid Monte Carlo (HMC) algorithm has been presented. We also discuss
some improvements and extensions of HMC. In particular, we summarize the Generalized
Hybrid Monte Carlo (GHMC), which will be fundamental in the following chapters of this
dissertation. The main technical details of the formulations of HMC and GHMC have been
explained, and the proof of the validity of both methods has been provided. The useful
references are also supplied.
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Chapter 3

Enhancing Performance and Accuracy
of HMC for Simulation of Complex
Systems: Numerical Integrators

3.1 Overview

The efficiency and even the feasibility of molecular dynamics simulations depend crucially on
the choice of a numerical integrator. As to the role of integrators in enhancing the performance
of Hybrid Monte Carlo, it has been a subject of active research in recent years (McLachlan,
1995; Blanes, Casas, and Sanz-Serna, 2014; Chao et al., 2015; Campos and Sanz-Serna, 2017;
Bou-Rabee and Sanz-Serna, 2017a). The velocity Verlet algorithm is currently the method
of choice; its algorithmic simplicity and optimal stability properties make it very difficult
to beat. Splitting integrators may, however, offer the possibility of improving on Verlet, at
least in some circumstances. Those integrators evaluate the forces more than once per step
and, due to their simple kick-drift structure, may be implemented easily by modifying existing
implementations of the Verlet scheme. In this chapter, we survey some splitting schemes that,
in our notation, are classified by the number of force evaluations per time step. We study in
detail mainly two-stage integrators, which are those splitting schemes that perform two force
evaluations per time step. The three-stage integrators are also presented.

Two-stage integrators form a one-parameter family (Blanes, Casas, and Sanz-Serna, 2014).
The value of a parameter for a two-stage integrator that results in a method leading to the
smallest energy error was first identified by McLachlan, 1995. While McLachlan’s scheme is
a good choice for many given problems if the time step ∆t is very small, it turns out that
its stability interval is not long. This entails that in molecular simulations, where small time
steps are prohibitively expensive, McLachlan’s method is likely not a good choice. Then, one
has to sacrifice the size of the error constant to ensure that the integrator is able to operate
satisfactorily with larger time steps.

Blanes, Casas, and Sanz-Serna, 2014 have suggested choosing a parameter value, for multi-
stage integrators, so that a balance between good conservation of energy for reasonable values
of ∆t and accuracy for small ∆t is achieved.

The parameter values of (McLachlan, 1995; Blanes, Casas, and Sanz-Serna, 2014) do not
vary with the problem being considered or with the value of ∆t attempted by the user. On the
contrary, the method we propose here for two-stage integrators, and which we call Adaptive
Integration Approach or AIA, automatically adjusts the parameter value for each problem
and each choice of ∆t. On stability grounds, for any given problem, there is a maximum
possible value of ∆t; beyond this maximum all integrators in the family are unstable. When
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the time step chosen by the user is near the maximum value, AIA picks up an integrator that
is (equivalent to) the standard Verlet scheme. As ∆t decreases, AIA changes the integrator
to ensure optimal conservation of energy; for ∆t close to 0, AIA chooses McLachlan’s scheme.

In the case of three-stage integrators, the two-parameters family presented in (Blanes,
Casas, and Sanz-Serna, 2014) has been recently reduced to a one-parameter family in (Campos
and Sanz-Serna, 2017) offering the extra stability conditions for the choice of such parameter.

This chapter begins with an introduction to symplectic integrators in Section 3.2. The
special attention is devoted to the Verlet method, the splitting integrators (namely two- and
three-stage schemes) and the Liouville propagator. In Section 3.3 the novel AIA algorithm is
formulated in detail. Its implementation in the in-house code is discussed in Section 3.4. To
prove the validity of the AIA method and illustrate its main functionalities tests are proposed
in Section 3.5. The numerical results are shown in Section 3.6. The chapter ends with some
conclusions and possible future work in Section 3.7.

3.2 Symplectic integrators

As it is explained in detail in (Sanz-Serna and Calvo, 1994), any symplectic integration
scheme applied to a nonlinear autonomous system with Hamiltonian H(q,p) is equivalent
to the exact sampling of some perturbed nonautonomous system with an effective Hamilto-
nian Heff(q,p,∆t), where

Heff(q,p,∆t) = H(q,p) +O((∆t)ν),

where ν denotes the order of the integration scheme.
A mapping Ψ that transforms coordinates and momenta at time t, (q(t),p(t)), to coordi-

nates and momenta at time t + ∆t, (q(t + ∆t),p(t + ∆t)) is a symplectic integrator if and
only if its Jacobian matrix, ΨJ , satisfies

ΨTJ JΨJ = J,

where ΨJ is the matrix

ΨJ =

(
∂q(t+ ∆t)/∂q(t) ∂q(t+ ∆t)/∂p(t)
∂p(t+ ∆t)/∂q(t) ∂p(t+ ∆t)/∂p(t)

)

and

J =

(
0 I
−I 0

)
.

It can be shown that a composition of symplectic transformations is also symplectic and
that the inverse of a symplectic mapping is symplectic. These are fundamental properties that
will be used in the following sections. The symplectic property translates to good long-time
behavior in practice: small fluctuations about the initial (conserved in theory) value of H and
no systematic drift in energy.
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3.2.1 The Verlet integrator

The integrator used in the original formulation of HMC (Duane et al., 1987) was the leapfrog
scheme (Feynman, Leighton, and Sands, 1964). It can be written as

v(t+ ∆t/2) = v(t−∆t/2) + ∆t
F (q(t))

M
q(t+ ∆t) = q(t) + ∆t v(t+ ∆t/2),

(3.1)

where v are the velocities, F denotes the forces and M are the masses.
The leapfrog integrator is a second-order method commonly used in the simulation of

dynamical systems in classical mechanics. The leapfrog is time-reversible. It is also symplectic
(Okunbor and Skeel, 1994). Such properties make the integrator suitable for its use with the
Hybrid Monte Carlo method (details can be found in Section 2.1). The leapfrog can also
be extended to higher order versions and still be applicable for HMC (Creutz and Gocksch,
1989). However, as it follows from its formulation (3.1), leapfrog’s main drawback is that
the velocities (or momenta) and the positions are not synchronized in time. In the following
sections, we will focus on the method equivalent to leapfrog, namely, velocity Verlet, which
provides the synchronization of positions and velocities at the end of every time step.

Let us consider now a Taylor expansion of the position vector in time:

q(t+ ∆t) = q(t) + ∆t
dq(t)

dt
+

∆t2

2

d2q(t)

dt2
+

∆t3

6

d3q(t)

dt3
+O(∆t4)

= q(t) + ∆t v(t) +
∆t2

2

F (q(t))

M
+

∆t3

6

d3q(t)

dt3
+O(∆t4).

(3.2)

The Newton’s equation of motion has been used to replace the acceleration with the force.
Similarly,

q(t−∆t) = q(t)−∆t v(t) +
∆t2

2

F (q(t))

M
− ∆t3

6

d3q(t)

dt3
+O(∆t4). (3.3)

Then, one can sum (3.2) and (3.3) and rearrange them as

q(t+ ∆t) = 2q(t)− q(t−∆t) + ∆t2
F (q(t))

M
+O(∆t4). (3.4)

Equation (3.4) is the formulation of the Verlet integrator that was first introduced by Verlet,
1967 and it is also known to be symplectic (Ruth, 1983).

The Verlet integrator in (3.4) does not use the velocities to determine the solution of the
positions at the next time step. However, we can approximate the velocities using

v(t) =
q(t+ ∆t)− q(t−∆t)

2∆t
+O(∆t3),

which can be easily derived by substracting (3.3) from (3.2).
One disadvantage of the Verlet algorithm is that it requires storing in memory two sets of

positions, q(t) and q(t−∆t). An alternative is the so-called velocity Verlet integrator, which
is a reformulation of the Verlet algorithm that uses the velocities directly. The velocity Verlet
integrator was first presented by Swope et al., 1982 and it can be obtained by manipulating
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equation (3.4). The original formulation of the velocity Verlet scheme is the following:

q(t+ ∆t) = q(t) + ∆t v(t) +
∆t2

2

F (q(t))

M

v(t+ ∆t) = v(t) +
∆t

2

F (q(t+ ∆t)) + F (q(t))

M
.

(3.5)

Velocity Verlet is an explicit second-order integrator. Recall that in molecular simulation
one often considers systems with a large number of particles, making implicit algorithms
intractable. It can be shown that the error on the velocity Verlet is of the same order as that
of the regular Verlet. Moreover, both methods are mathematically equivalent, but velocity
Verlet is numerically more accurate (cf. (Swope et al., 1982; Tuckerman, Berne, and Martyna,
1992)).

The velocity Verlet algorithm is usually implemented in the following way:

1. v(t+ ∆t/2) = v(t) + ∆t
2
F (q(t))
M ;

2. q(t+ ∆t) = q(t) + ∆t v(t+ ∆t/2);

3. v(t+ ∆t) = v(t+ ∆t/2) + ∆t
2
F (q(t+∆t))

M .

Thus, the algorithm is very easy to implement. Moreover, in this formulation, it is not more
expensive than in (3.5), since the forces, which are the most computationally demanding part
of the integrator, are only computed once per time step, right after the update of positions
q(t+ ∆t). Obviously, the algorithm above could be easily rewritten in terms of momenta.

The choice of an optimal time step ∆t for the integration is not trivial. As it has been
pointed out above (Section 2.1), the numerical time step plays a crucial role in the acceptance
probability of the HMC schemes (cf. (2.12)) and, thus, it affects their sampling performance.
A high rate of rejection would increase the cost of the simulation since many samples are
discarded in this case. In the next section, we discuss the limitations on a choice of ∆t based
on the analysis of the harmonic oscillator.

3.2.1.1 Stability analysis of velocity Verlet: Harmonic oscillator

To illustrate the velocity Verlet scheme we consider as a case study the classic example of the
harmonic oscillator with potential energy U(q) = (k/2)q2, where k > 0 is the force constant.
Thus, the forces are computed as F (q) = −ω2q. The equations of motion are then

dq

dt
=

p

M
,

dp

dt
= −kq. (3.6)

The angular frequency is expressed in terms of the force constant as ω =
√
k/M . We can

assume for the sake of simplicity that the mass is trivial and then p/M = v and ω =
√
k.

A transformation S can be used to relate one phase point to the next (for more details
see (Skeel, Zhang, and Schlick, 1997)). Then, for a time step ∆t,

(
ωq(t+ ∆t)
v(t+ ∆t)

)
= S

(
ωq(t)
v(t)

)
, (3.7)

where S is defined as

S =

(
1− (ω∆t)2

2 ω∆t

−ω∆t+ (ω∆t)3

4 1− (ω∆t)2

2

)
. (3.8)
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The details on the construction of S can be found in Appendix A.1. A numerical integrator
is stable if the matrix S is power bounded. This is satisfied if the eigenvalues of S lie in the
unit disc. The eigenvalues of S are

λ1 = 1− (ω∆t)2

2
+

√
(ω∆t)4

4
− (ω∆t)2, λ2 = 1− (ω∆t)2

2
−
√

(ω∆t)4

4
− (ω∆t)2. (3.9)

Thus, the matrix S is power bounded if and only if

(ω∆t)2 < 4,

or, equivalently,
∆t < 2/ω. (3.10)

The restriction on the time step above is the linear stability condition for Verlet. Then, we
can define the stability interval of an integrator as the largest interval (0, ∆tmax) such that
the method is stable for each time step ∆t that satisfies 0 < ∆t < ∆tmax.

Under the linear stability assumption, the matrix S in (3.8) has eigenvalues exp(±iθ),
where1

θ = 2 arcsin(ω∆t/2) (3.11)

= ω∆t+
1

24
(ω∆t)3 +O(ω∆t)5. (3.12)

Thus, the angle θ depends on the time step and the frequency ω. To see that this transfor-
mation defines a rotation in phase space, we decompose the phase-space transforming matrix
S as

S = DQD−1,

where

Q =

(
cos θ sin θ
− sin θ cos θ

)

defines a rotation of −θ radians in phase space, and D is the diagonal matrix

D =

(
1 0

0 1 + tan2 θ
2

)
.

Thus, the behavior of the integrator in time can be interpreted through analysis of the powers
of S given by

Sn = DQnD−1.

The time step-dependent behavior of the transformation S can be interpreted as follows.
Equations (3.11) and (3.12) show that the integrator uses θ as an approximation to the exact
rotation ω∆t. The smaller the time step, the closer the approximation is. Thus, one can
define the effective rotation θeff as

θeff = ωeff ∆t.

1The angle of the rotation matrix is computed from the trace as Tr(S) = 2 cos θ. Thus, θ =

arccos
(Tr(S)

2

)
= arccos

(
1 − (ω∆t)2

2

)
= 2 arcsin (ω∆t/2).



22 Chapter 3. Enhancing Performance and Accuracy of HMC: Numerical Integrators

For the Verlet method, the effective rotation is given by equation (3.11)

θVerleteff = 2 arcsin(ωeff ∆t/2). (3.13)

For periodic motion with natural frequency ω, nonphysical resonance (an artifact of the sym-
plectic integrator) can occur when ω is related by relatively prime integers n and m to the
forcing frequency (2π/∆t) (cf. (Arnold, 1989)):

n

m
ω =

2π

∆t
.

Here n is the resonance order.
Now, if we recall that the Verlet method has the time step-dependent frequency ωeff given

by θVerleteff /∆t with θVerleteff as in (3.13), we see that the frequency ωeff depends on the time
step in a nonlinear way. Thus, the integrator-dependent resonance condition becomes

n

m
ωeff =

2π

∆t
. (3.14)

A resonance of order n : m means that n phase space points are sampled in m revolutions:

n θeff = n∆t ωeff = 2πm.

This special, finite-coverage of phase space can lead to incorrect, limited sampling of config-
uration space. As it has been shown by Mandziuk and Schlick, 1995, equation (3.13) can be
used to formulate a condition for a resonant time step for the harmonic oscillator system.
That is, using

ωVerleteff =
2 sin−1(ω∆t/2)

∆t
,

with the resonance condition in (3.14), we have

ω∆t

2
= sin

(mπ
n

)
.

Equivalently,

∆tVerletn :m =
2

ω
sin
(mπ
n

)
.

To get the lowest-order resonances (which are the most severe) we take m = 1. It is easy
to see that for n = 2, we recover the linear stability condition in (3.10).

It is clear that, since the limiting time steps ∆tn : 1 for resonance orders n > 2 are smaller
than the linear stability limit ∆t2 : 1, resonance limits the time step to values lower than
classical stability. Since the third-order resonance leads to instability and the fourth-order
resonance often leads to instability in molecular simulation2, in practice it is usually required
that ∆t < ∆t4 : 1. This implies for Verlet a stricter restriction than (3.10)

∆t <
√

2/ω,

which corresponds to the fourth-order resonance and is the non linear stability condition for
Verlet. More resonance time step limits are summarized in Table 3.1.

2It was predicted by Arnold, 1989 that instabilities are not observed for resonances of orders higher than
four and this assessment has been confirmed with experiments such as in (Mandziuk and Schlick, 1995).
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Order n ∆tn : 1(ω)

2 2/ω

3
√

3/ω

4
√

2/ω
5 1.176/ω
6 1/ω

Table 3.1: Resonant time step limits for different orders n.

3.2.2 Splitting methods

The basic idea of splitting methods for the integration of ordinary differential equations can
be formulated as follows. Given an initial value problem

x′ = f(x), x0 = x(0) ∈ RD, (3.15)

with f : RD → RD and solution φt(x0), let us suppose that f can be expressed as f =
∑m

i=1 f
i

for certain functions f i : RD → RD in such a way that the equations

x′ = f i(x), x0 = x(0) ∈ RD, i = 1, . . . ,m

can be integrated exactly with solutions x(h) = φih(x0) at t = h. Then, one can combine
these solutions as

ψh = φmh ◦ · · · ◦ φ2
h ◦ φ1

h.

Expanding ψ in Taylor series, one gets ψh(x0) = φh(x0) +O(h2). Thus, ψh provides a first-
order approximation to the exact solution. Therefore, splitting methods involve three steps:
(i) choosing the set of functions f i such that f =

∑m
i=1 f

i; (ii) solving either exactly or
approximately each equation x′ = f i(x); and (iii) combining these solutions to construct an
approximation for (3.15). Obviously, the equations x′ = f i(x) should be easier to integrate
than (3.15). Informative reviews of splitting integrators can be found in (McLachlan and
Quispel, 2002; Blanes, Casas, and Murua, 2008).

Here we introduce the notation h to refer to dimensionless time steps that are only used
in theoretical scenarios in contrast to ∆t that are simulation time steps expressed in units of
time. These two notations will be consistent through the whole dissertation.

The ideas of the splitting methods can be easily extended to molecular simulations where
separable Hamiltonians are considered. We introduce here the useful notation of writing the
Hamiltonian as a sum H ≡ A+B of two partial Hamiltonian functions:

A(q,p) =
1

2
pTM−1p, B(q,p) = U(q), (3.16)

where A and B correspond to the kinetic and potential energies, respectively. Thus, the
Hamilton equations of motion in (1.3) can be written as

dq

dt
= ∇pA(q,p) = M−1p,

dp

dt
= −∇qB(q,p) = −∇qU(q). (3.17)
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These equations can be integrated in closed form and their solution flows at a time t are
respectively given by

(q(t),p(t)) = φAt (q(0),p(0)), q(t) = q(0) + t M−1p(0), p(t) = p(0), (3.18)

and

(q(t),p(t)) = φBt (q(0),p(0)), q(t) = q(0), p(t) = p(0)− t ∇qU(q(0)). (3.19)

Here φAt and φBt denote the exact solution flows of the partial systems, i.e., the maps that asso-
ciate the exact solution value (q(t),p(t)) with each initial condition (q(0),p(0)). Sometimes
(3.18) might also be called a drift in the position and (3.19) a momentum kick.

Thus, a velocity Verlet time step, as the one in (3.5), corresponds to a transformation in
phase space (q(t+ ∆t),p(t+ ∆t)) = ψ∆t(q(t),p(t)) that can be written as

ψ∆t = φB∆t/2 ◦ φA∆t ◦ φB∆t/2. (3.20)

This formulation is summarized in Figure 3.1.

q(t)

q(t+ ∆t)

p(t)

p(t+ ∆t/2)

p(t+ ∆t/2)

p(t+ ∆t)

t
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e
ev
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ut
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t+ ∆t/2

t+ ∆t

φA∆t

φB∆t/2

φB∆t/2

Figure 3.1: A step of the velocity Verlet integrator viewed as a splitting
scheme with time step ∆t.

Here ψ∆t is volume preserving as a composition of volume preserving Hamiltonian flows.
Furthermore ψ∆t is reversible because φB∆t/2 and φA∆t are both reversible and the right-hand
side of (3.20) is a palindrome:

ψ−1
∆t = (φB∆t/2)−1 ◦ (φA∆t)

−1 ◦ (φB∆t/2)−1

= (F ◦ φB∆t/2 ◦ F) ◦ (F ◦ φA∆t ◦ F) ◦ (F ◦ φB∆t/2 ◦ F)

= F ◦ ψ∆t ◦ F ,

where F denotes the momentum flip. Velocity Verlet is also symplectic. Its symplecticness is
a direct consequence of two facts (cf. (Arnold, 1989; Sanz-Serna and Calvo, 1994; Leimkuhler
and Reich, 2004; Hairer, Lubich, and Wanner, 2006)):
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1. Hamiltonian flows like φAt and φBt are symplectic.

2. The composition of symplectic transformations is symplectic.

One can also define the transformation Ψ = Ψ∆t,L over L time steps as the composition

Ψ = Ψ∆t,L = ψ∆t ◦ · · · ◦ ψ∆t︸ ︷︷ ︸
L times

.

The symplecticity and time-reversibility are preserved in this case for the same reasons.
Blanes, Casas, and Sanz-Serna, 2014 suggest to replace the Verlet formulas by more so-

phisticated palindromic compositions such as

ψ∆t = φBb1∆t ◦ φAa1∆t ◦ φBb2∆t ◦ φAa2∆t ◦ φBb2∆t ◦ φAa1∆t ◦ φBb1∆t (3.21)

or
ψ∆t = φAa1∆t ◦ φBb1∆t ◦ φAa2∆t ◦ φBb2∆t ◦ φaa2∆t ◦ φBb1∆t ◦ φAa1∆t, (3.22)

where a1, a2, b1, b2 are real numbers. The integration scheme in (3.21) is the velocity version
of the scheme in (3.22), due to the fact that in each step the velocities are updated the first.
Using a more simplified notation, where only the parameters of the flows φ are used, one may
consider r-stage (r = 1, 2, . . .) compositions

(b1, a1, b2, . . . , a1, b1)︸ ︷︷ ︸
2r+1 letters

(3.23)

and
(a1, b1, a2, . . . , b1, a1)︸ ︷︷ ︸

2r+1 letters

. (3.24)

It is clear that schemes such as (3.23) and (3.24) require r evaluations of forces −∇qU at each
time step. In (3.23) the positions are updated r times, and thus the forces are evaluated r
times. On the other hand, in (3.24) there is an r + 1th update of the positions but the force
evaluation is calculated in the next step, and thus the forces are evaluated r times again. The
force evaluations are the most computationally demanding part of molecular simulations and
thus they drive the computational cost of any simulation. The term r-stage to refer to splitting
schemes has been introduced in (Blanes, Casas, and Sanz-Serna, 2014) and will be used in
this dissertation. In the following chapters, we will limit our studies to one-stage (leapfrog
and velocity Verlet), two-stage and three-stage schemes in their velocity formulations.

3.2.2.1 Two-stage schemes

If we restrict ourselves to the velocity scenario, the two-stage splitting schemes have the form

ψ∆t = φBb1∆t ◦ φAa1∆t ◦ φBb2∆t ◦ φAa1∆t ◦ φBb1∆t.

To be well defined3, the integrators above have to satisfy a1 = 1/2 and b2 = 1 − 2b1. This
leaves the one-parameter family

ψ∆t = φBb∆t ◦ φA∆t/2 ◦ φB(1−2b)∆t ◦ φA∆t/2 ◦ φBb∆t, (3.25)

3a1 + a1 = 1 and b1 + b2 + b1 = 1.
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where, for simplicity we use the notation b = b1.
As any other r-stage splitting scheme, the two-stage splitting integrators (3.25) are sym-

plectic, being the composition of symplectic flows, and time-reversible due to their palindromic
construction.

It is useful in what follows to rewrite (3.25) as

ψ∆t =
(
φBb∆t ◦ φA∆t/2 ◦ φB(1/2−b)∆t

)
◦
(
φB(1/2−b)∆t ◦ φA∆t/2 ◦ φBb∆t

)
. (3.26)

The map φB(1/2−b)∆t ◦ φA∆t/2 ◦ φBb∆t advances the solution over a first half step of length ∆t/2

and is followed by the map φBb∆t ◦ φA∆t/2 ◦ φB(1/2−b)∆t that effects a second half step, also of
length ∆t/2. In the particular case b = 1/4 both of these maps correspond to a step of length
∆t/2 of the velocity Verlet (VV) algorithm:

ψ∆t =
(
φB∆t/4 ◦ φA∆t/2 ◦ φB∆t/4

)
◦
(
φB∆t/4 ◦ φA∆t/2 ◦ φB∆t/4

)
= ψVV

∆t/2 ◦ ψVV
∆t/2.

For other values of b the half step maps in (3.26) do not coincide with the map of the velocity
Verlet integrator, because the durations b∆t and (1/2−b)∆t differ. However, regardless of the
choice of b, the half step maps have the same structure of velocity Verlet, which makes them
easy to implement simply by modifying the velocity Verlet implementation (more details will
be provided later).

The two-stage integrators are represented graphically in Figure 3.2.
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Figure 3.2: A step of a generic two-stage splitting scheme with parameter b
and time step ∆t.
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3.2.2.2 Three-stage schemes

As in the previous case, if we restrict ourselves to the velocity scenario, the three-stage splitting
schemes have the form

ψ∆t = φBb1∆t ◦ φAa1∆t ◦ φBb2∆t ◦ φAa2∆t ◦ φBb2∆t ◦ φAa1∆t ◦ φBb1∆t.

To be well defined4, the integrators above have to satisfy 2a1 + a2 = 1 and b1 + b2 = 1/2.
Thus, the integrator can be rewritten as

ψ∆t = φBb∆t ◦ φAa∆t ◦ φB( 1
2
−b)∆t

◦ φA(1−2a)∆t ◦ φB( 1
2
−b)∆t

◦ φAa∆t ◦ φBb∆t, (3.27)

in which, for simplicity, we use the notation b = b1 and a = a1.
It has been recently proved in (Campos and Sanz-Serna, 2017) that the integrators that

lie on the hyperbola

6ab− 2a− b+
1

2
= 0

have considerably longer stability limit than others. Thus, this condition can be written as

a =
1− 2b

4(1− 3b)

and it leaves again a one-parameter family
(
b,

1− 2b

4(1− 3b)
,

1

2
− b, 1− 4b

2(1− 3b)
,

1

2
− b, 1− 2b

4(1− 3b)
, b

)
.

One drawback related to the software implementation of integrators from this family is
that they cannot be divided in three equal velocity Verlet substeps as in (3.26).

3.2.2.3 Stability analysis of splitting integrators: Harmonic oscillator

As in the case of the Verlet integrator (Section 3.2.1.1), we refer to the harmonic oscillator in
order to discuss the stability properties of splitting schemes. In this case, we assume that the
frequency and the mass are both one. Thus, we have the Hamiltonian

H =
1

2
p2 +

1

2
q2 (3.28)

and the simpler equations of motion

d

dt
q = p,

d

dt
p = −q. (3.29)

In this section, we use the notation of h to refer to dimensionless time steps (cf. Sec-
tion 3.2.2). It is clear that, since the frequency is assumed to be one, the product ω∆t in
(3.8) ends up in a time step without dimensions. The relation between time steps and fre-
quencies, in a non-trivial scenario, will be the matter of discussion in the following sections.

4a1 + a2 + a1 = 1 and b1 + b2 + b2 + b1 = 1.
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A step (q(t+ h), p(t+ h)) = ψh(q(h), p(h)) of an integrator may be expressed as
(
q(t+ h)
p(t+ h)

)
= Sh

(
q(t)
p(t)

)
, (3.30)

with

Sh =

(
Ah Bh
Ch Dh

)
, (3.31)

for suitable integrator-dependent coefficients Ah, Bh, Ch, Dh. For instance, for two-stage
integrators (3.25), the resulting coefficients of Sh are

Ah = Dh =1− h2

2
+ b(1− 2b)

h4

4

Bh =h+ (2b− 1)
h3

4

Ch =− h+ b(1− b)h3 − b2(1− 2b)
h5

4
.

(3.32)

Equivalently, for the three-stage integrators (3.27)

Ah = Dh =1− h2

2
+ a(1− 4b2 − a(2− 4b))

h4

4
+ a2(2a− 1)(1− 2b)2b

h6

4

Bh =h+ a(1− a)(2b− 1)h3 + a2(1− 2a)(1− 2b)2h
5

4

Ch =− h+ (1− 2a(1− 2b)2)
h3

4
+ a(2a(1− b)− 1)b(1− 2b)

h5

2

+ a2(1− 2a)(1− 2b)2b2
h7

4

(3.33)

The details can be found in Appendix A.1. The subindex h is used in the matrix S (cf. (3.7))
and all its elements to denote a dependence on the time step. Therefore, the evolution over
time is given by (

q(nh)
p(nh)

)
= Snh

(
q(0)
p(0)

)
. (3.34)

Since we are interested in simulations with HMC methods, time-reversibility and volume
preservation5 are desired properties (cf. Section 2.1):

• Time-reversibility: condition (2.10) leads to Ah = Dh.

• Volume preservation: condition (2.11) leads to AhDh −BhCh = A2
h −BhCh = 1.

The matrix Sh has two eigenvalues:

λ1 = Ah +
√
A2
h − 1, λ2 = Ah −

√
A2
h − 1.

Clearly, they agree with the expressions for the eigenvalues previously found in (3.9). To
ensure the stability of the method, both eigenvalues have to be in the unit disk :

• |λ1λ2| = A2
h −

(√
A2
h − 1

)2

= 1.

5Which is equivalent to symplecticness in this case, since we are working in dimension 1.
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• |λ1 + λ2| ≤ 2⇒ |2Ah| ≤ 2⇒ |Ah| ≤ 1.

Thus, to assure a consistent and stable method, with h positive and sufficiently small (cf.
(Blanes, Casas, and Sanz-Serna, 2014)),

Ah = 1− h2/2 +O(h3), h→ 0, (3.35)

which is also in agreement with (3.8).
As in Section 3.2.1.1, for a time step h such that stability is satisfied, we can introduce an

angle θh such that Ah = cos θh. Since for |Ah| < 1 it is clear that sin θh 6= 0, we can define

χh = Bh/ sin θh. (3.36)

Then, the matrices Sh and Sih in equations (3.31) and (3.34) can be rewritten as

Sh =

(
cos θh χh sin θh

−χ−1
h sin θh cos θh

)

and

Snh =

(
cos (nθh) χh sin (nθh)

−χ−1
h sin (nθh) cos (nθh)

)
.

A method with θh = h would have no phase error: the angular frequency of the rotation of the
numerical solution would coincide with the true angular rotation of the harmonic oscillator.
On the other hand, a method with χh = 1 would have no energy error: the numerical
solution would remain on the correct level curve of the Hamiltonian (3.28), i.e., on the circle
p2 + q2 = p2

0 + q2
0.

In (Blanes, Casas, and Sanz-Serna, 2014) the authors find, for an integration of L steps,
the value of the expectation of the energy error ∆H (cf. (2.8))

E(∆H) = sin2 (Lθh)ρ(h),

where

ρ(h) =
1

2

(
χ2
h +

1

χ2
h

− 2

)
=

1

2

(
χh −

1

χh

)2

≥ 0,

with χh as in (3.36). Thus, since the term sin2 (Lθh) is bounded by one, we get

0 ≤ E(∆H) ≤ ρ(h). (3.37)

As further proposed in (Blanes, Casas, and Sanz-Serna, 2014), ρ can be expressed in terms of
the elements of the matrix (3.31) in the stable case (|Ah| < 1):

ρ(h) =
(Bh + Ch)2

2(1−A2
h)

. (3.38)

It has to be remarked that the stability condition |Ah| < 1 is equivalent to the positivity of
the denominator in (3.38).

We will refer to this function in the following chapters due to its important role in bounding
the expected energy error (cf. (3.37)).

The application of any r-stage method of the form (3.23) to the standard harmonic oscil-
lator (3.28) results in a recursion of the form (3.30). Moreover, Ah in (3.31) is a polynomial of
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degree ≤ r in ζ = h2 and, for consistent methods has the form of (3.35). It can be seen that
−1 ≤ Aζ ≤ 1 cannot be satisfied for every 0 < ζ < ζmax if ζmax > 4r2 (Jeltsch and Nevanlinna,
1981; Sanz-Serna and Spijker, 1986). Thus, since the velocity Verlet algorithm has stability
interval (0, 2) (cf. (3.10)), a concatenation ψh = φVV

h/r ◦ · · · ◦φVV
h/r of r time steps of length h/r

is a method of the form (3.23) that attains the optimal value hmax = 2r. This is a key fact of
the velocity Verlet integrator and we will refer to it in the following sections.

From now on, when comparing the size of stability intervals, the computational effort
will be taken into account: with a given amount of computational work, an integrator with
fewer function evaluations per time step may take shorter time steps to span a given time
interval. Therefore, we will normalize the length hmax of the stability intervals by dividing by
the number r of force evaluations per time step.

3.2.3 Trotter expansion of the Liouville propagator

In this section, we introduce a useful and common notation in the molecular dynamics field.
The Trotter expansion of the classical Liouville propagator can be used to derive simple
integrators (De Raedt and De Raedt, 1983). The Liouville formalism is a tool for building
symplectic and reversible integrators. An introduction to the Liouville operator can be found
in (Tuckerman, 2010). The Liouville operator iL̂ is defined as

iL̂ =

D∑

i=1

[
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

]
= {·, H}, (3.39)

where {·, ·} denotes the Poisson bracket (cf. (Arnold, 1989)). It is a linear Hermitian operator
on the space of square integrable functions of the phase space. Thus, the classical propagator
u(t) = eiL̂t is a unitary operator. The unitarity of u(t) implies time-reversibility. Let Γ(t)
denote the positions and momenta of the system at time t. Then,

Γ(t) = u(t)Γ(0)⇒ u(−t)Γ(t) = u(−t)u(t)Γ(0) = Γ(0),

where the unitarity is used in the fact that u(−t) = u−1(t).
Since u(t) is unitary, it is possible to show that its determinant is 1. In order to show

this, consider working in a basis in which u(t) is diagonal with elements u1(t), u2(t), . . .. The
determinant of u(t) is

det(u(t)) =
∏

i

ui(t).

Therefore, the determinant of u†(t) can be written as

det(u†(t)) =
∏

i

u∗i (t).

Since u†(t) = u−1(t) ∏

i

u∗i (t) =
1∏

i ui(t)
⇒
∏

i

|ui(t)|2 = 1.

Then, since |ui(t)|2 = 1, it follows that the determinant is 1. Therefore, the unitarity of the
propagator u(t) is consistent with Liouville’s theorem, which states that the volume in phase
space is preserved under Hamilton equations.
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The Liouville operator in 3.39 can be decomposed in two parts such that

iL̂ = iL̂1 + iL̂2.

For this decomposition, the Trotter theorem yields (cf. (Trotter, 1959))

ei(L̂1+L̂2)t = [ei(L̂1+L̂2)t/P ]P = [eiL̂1
∆t
2 eiL̂2∆teiL̂1

∆t
2 ]P +O(t3/P 2),

where ∆t = t/P . Then, the discrete time propagator can be defined as

G(∆t) = u1

(
∆t

2

)
u2(∆t)u1

(
∆t

2

)
= eiL̂1

∆t
2 eiL̂2∆teiL̂1

∆t
2 . (3.40)

Since the three factors in (3.40) are unitary it is easy to show that G(t) is also unitary and
therefore G−1(t) = G(−t). This means that any integrator based on this Trotter factorization
will be reversible. We note that the Trotter expansion carried out to higher orders will yield
higher order integrators.

We consider the following decomposition for the Liouville operator:

iL̂2 = M−1p
∂

∂q
, iL̂1 = F (q)

∂

∂p
.

It is in agreement with the classical equations of motion (1.3) and the definition of the Liouville
operator in (3.39). The decomposition above leads to the propagator

G(∆t) = exp

(
F (q)

∂

∂p

∆t

2

)
exp

(
M−1p

∂

∂q
∆t

)
exp

(
F (q)

∂

∂p

∆t

2

)
. (3.41)

We recall the property that any operator of the form ec∂/∂x satisfies

ec∂/∂xf(x) = f(x+ c),

where c is independent of x. This identity is a direct consequence of the definition of ec∂/∂x:

ec∂/∂xf(x) =
∞∑

k=0

(
c
∂

∂x

)k f(x)

k!
=
∞∑

k=0

ck

k!
f (k)(x),

which can be identified as the Taylor series expansion of f(x + c). Then, it is clear that if
we apply (3.41) to (q(t),p(t)) we obtain the velocity Verlet integrator in (3.5). Thus, we
have seen that the Trotter formulation is a way of presenting the velocity Verlet integrator
that proves that it is time-reversible. The diagram in Figure 3.1 for velocity Verlet can be
adapted to the Trotter formulation as in Figure 3.3. A similar derivation as in (3.41) can be
done for the position version of Verlet (Tuckerman, Berne, and Martyna, 1992). However,
the original Verlet integrator (3.4) cannot be written using this formalism. In any case, it
can be shown that it produces the same trajectories as velocity Verlet does6. We will use the
Trotter formalism in some parts of this dissertation due to its flexibility to represent more
sophisticated splitting schemes and to combine integrators with thermostats.

6A proof is suggested in (Tuckerman, Berne, and Martyna, 1992) by induction assuming that the initial
condition for the standard Verlet is q(0) − q(−∆t) = v(0) − ∆t2

2
F (q(0))

M
.
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Figure 3.3: A step of the velocity Verlet integrator expressed in the Trotter
formulation.

Tuckerman, Berne, and Martyna, 1992 and Bussi and Parrinello, 2007 adapted the Trotter
formula to a Liouville operator iL̂ decomposed in parts such that

iL̂ =
∑

j

iL̂j .

For this decomposition, the Trotter theorem yields

eiL̂∆t ≈
M∏

j=1

eiL̂M+1−j
∆t
2

M∏

k=1

eiL̂k
∆t
2 , (3.42)

where M is the number of stages in the integrator. Since in general the iL̂j ’s do not commute
among themselves, the order in which the stages are applied is relevant. The key point here
is that the stages eiL̂l

∆t
2 are chosen so that they can be integrated analytically, and then the

Trotter splitting (3.42) is the only source of errors. Since eiL̂l
∆t
2 are unitary operators, the

integrators based on this Trotter factorization will be reversible. It is clear that this notation
can be used to represent splitting integrators such as those of (3.21) or (3.25).

3.3 Adaptive Integration Approach (AIA)

By that point, we assumed that parameters of the splitting schemes presented in Section 3.2.2
are predefined and no discussion on specific ways of choosing such parameters or their effect on
the overall performance of multi-stage integrators was provided. In this section, we present a
new Adaptive Integration Approach (AIA), which, given a molecular simulation problem and
a time step ∆t, automatically chooses the optimal parameter and therefore the optimal scheme
out of an available family of numerical integrators. Thus, for the first time, a system-specific
integrator is proposed in molecular simulation.

Although we focus on two-stage splitting integrators from Blanes, Casas, and Sanz-Serna,
2014, the idea may be used with more general families. The system-specific integrating scheme
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identified by our approach is optimal in the sense that it provides the best conservation of
energy for harmonic forces. For Hybrid Monte Carlo methods (Duane et al., 1987; Horowitz,
1991; Kennedy and Pendleton, 2001), the chosen scheme may be expected to achieve the
highest possible acceptance rate in the Metropolis accept-reject test.

The ideas behind the AIA method are presented in this section. We also explain how
to extend the algorithm to cases with holonomic constraints. In Section 3.4, we discuss the
implementation of AIA in the MultiHMC-GROMACS software package. Section 3.5 presents
the benchmarks and testing procedure designed for performance evaluation of the novel adap-
tive scheme in molecular dynamics and HMC simulations of constrained and unconstrained
physical systems. Section 3.6 is devoted to numerical results. The performance of the AIA
method is compared with the standard velocity Verlet algorithm, and the two-stage integra-
tors with the fixed parameter values suggested in (Blanes, Casas, and Sanz-Serna, 2014) and
in (Predescu et al., 2012). In all experiments and for each of the criteria employed, the perfor-
mance of AIA is at least as good as, and often significantly better than, the performance of the
Verlet scheme and the fixed parameter two-stage integrators. Our conclusions are presented
in Section 3.7.

3.3.1 The one-parameter family of two-stage integrators

We consider Hamiltonians H that can be written as a sum H = A+B, where A and B are the
functions defined in (3.16). The equations of motion associated with H, in this notation, can
be written as (3.17). Such equations of motion may be integrated in closed form. In fact, for
A the solution is a drift in position (3.18) and for B the solution is a momentum kick (3.19).
The exact solution flows of the partial systems are denoted as φAt and φBt , respectively.

The integration schemes under study in this Chapter belong to the family of two-stage
splitting methods of the form (cf. (Blanes, Casas, and Sanz-Serna, 2014), Section 3.2.2.1)

ψ∆t = φBb∆t ◦ φA∆t/2 ◦ φB(1−2b)∆t ◦ φA∆t/2 ◦ φBb∆t. (3.43)

Here b is a parameter, 0 < b < 1/2, that identifies the particular integrator being considered
and ψ∆t denotes the mapping that advances the numerical solution over one step of length
∆t.7 Note that ψ∆t is symplectic as the composition of symplectic mappings and it is time-
reversible as a consequence of the palindromic structure of (3.43) (details and references can be
found in Section 3.2.2). The transformation Ψ = Ψ∆t,L that advances the numerical solution
over L steps is given by the composition

Ψ = Ψ∆t,L = ψ∆t ◦ ψ∆t ◦ · · · ◦ ψ∆t︸ ︷︷ ︸
L times

.

We recall that, even though φB appears three times in (3.43), the methods essentially
require two evaluations of the force −∇qU per step: the evaluation implicit in the leftmost
φBb∆t in (3.43) at the current step is reused in the rightmost φBb∆t at the next step. A fair
comparison, in terms of computational cost, between an integration consisting of L steps of
length ∆t with a method of the form (3.43) and an integration with the standard Verlet

7It would be possible to consider position integrators obtained by swapping the symbols A and B in (3.43)
as explained in Section 3.2.2; however the present study just uses the velocity form (3.43).
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integrator, uses Verlet with 2L steps of length ∆t/2 (which, in view of Verlet being second-
order accurate, provides errors that are roughly 1/4 of those given by Verlet with L steps of
length ∆t).

3.3.2 Nonadaptive choices of the parameter b

Let us now discuss the possible strategies for choosing the value of b. Regardless of the
value of b, the method is second-order accurate, i.e., the size of the error over one step may
be bounded by C∆t3 + O(∆t5), where C > 0 varies with b. McLachlan, 1995 pointed out
that the minimum error constant C is achieved when b ≈ 0.1932. This is then the optimal
value in the limit ∆t → 0. In molecular dynamics, simulations with small values of ∆t
(relatively to the time scales present in the problems) are often unfeasible due to their cost.
One may aim to operate with large values of ∆t, provided that they are not so large that the
integrations become unstable. Unfortunately, the minimum error constant method possesses
a short stability interval (0, 2.55)8 and therefore may not be the best choice when ∆t is large.
The stability of (3.43) is maximized when b = 1/4 with a stability interval (0, 4) (see (Blanes,
Casas, and Sanz-Serna, 2014) and Section 3.2.2.3 for details). As explained in Section 3.2.2.1,
for this value of the parameter, integrations with (3.43) are Verlet integrations with time
step ∆t/2, hence, for b = 1/4, the stability interval of (3.43) is twice as long as the stability
interval (0, 2) of Verlet. In fact, it is well known that among all explicit integrators that use k
force evaluations per step, the longest possible stability interval is obtained by concatenating
k Verlet substeps each of length ∆t/k (see Section 3.2.2.3 for details).

In (Blanes, Casas, and Sanz-Serna, 2014) the authors recommend the intermediate value
b ≈ 0.2113. Let us review the ideas leading to this choice, as they will be used in the derivation
of the new adaptive approach. Considered in (Blanes, Casas, and Sanz-Serna, 2014) is the
use of algorithms of the form (3.43) for Hybrid Monte Carlo and related simulations. The
aim is to minimize the energy error (cf. (2.8))

∆H = H(Ψ∆t,L(q,p))−H(q,p).

The analysis in (Blanes, Casas, and Sanz-Serna, 2014) focuses on the model problem where
the potential energy is quadratic (harmonic forces), which corresponds to Gaussian probability
distributions. With the help of a change of variables, the study of the model problem may
be reduced to that of the standard harmonic oscillator in nondimensional variables (standard
univariate Gaussian) with the equations of motion (3.29). Assume then that the problem
(3.29) is integrated using (3.43) and, as in Section 3.2.2.3, denote by h the nondimensional
time step. The expectation or average E(∆H) of the energy error over all possible initial
conditions is shown in (Blanes, Casas, and Sanz-Serna, 2014) to possess the bound (see
Section 3.2.2.3 for an explanation)

0 ≤ E(∆H) ≤ ρ(h, b),

where

ρ(h, b) =
h4(2b2(1/2− b)h2 + 4b2 − 6b+ 1)2

8(2− bh2)(2− (1/2− b)h2)(1− b(1/2− b)h2)
.

Thus, choices of b and h that lead to a small value of ρ will result in small energy errors for
(3.29).

8Through this dissertation, a stability interval is always defined using dimensionless time.
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It is understood that ρ = ∞ for combinations of b and h leading to a denominator ≤ 0;
these combinations correspond to unstable integrations. It agrees with what we observed
before in the definition (3.38) (Section 3.2.2.3), which leads to the equivalence between sta-
bility and the positivity of the denominator. From (Blanes, Casas, and Sanz-Serna, 2014), we
get the additional restriction b ∈ (0, 1/2) which helps avoiding too big errors and too small
stability intervals. Thus, it is easy to see that the stability interval for two-stage integrators
is

0 < h < min
{√

2/b,
√

2/(1/2− b)
}
,

which depends on the choice of b. The study of the function ρ is more discriminating than
the study of the stability interval of the integrators: it is possible for two integrators to share
a common stability interval and yet have very different values of ρ for a given value of h that
is stable for both of them.

Let us now move from the scalar oscillator (3.29) to multidimensional linear oscillatory
problems integrated with time step ∆t and denote by ωj , j = 1, 2, . . . , the corresponding
angular frequencies (the periods are then Tj = 2π/ωj). By superposing the different modes of
the solution, one sees that if the (nondimensional) quantities hj = ωj∆t = 2π∆t/Tj are such
that, as j varies, all the values ρ(hj , b) are small, then the energy errors will also be small.
In (Blanes, Casas, and Sanz-Serna, 2014), the authors aimed to identify one value of b that
would result in small values of ρ(h, b) over a meaningful range of values of h. More precisely,
the recommended b = 0.2113 was found by minimizing the function of b given by

max
0<h<2

ρ(h, b). (3.44)

The range 0 < h < 2 was chosen because, for the test problems considered, the standard Verlet
method was found to perform well for 0 < ωj∆t = 2π∆t/Tj < 1 (which is half the maximum
allowed by the Verlet linear stability interval (0, 2)). As we emphasized already, (3.43) uses
two force evaluations per step and Verlet only one. Thus, for (3.43) to be an improvement on
standard Verlet, it must be demanded that it works well for twice as long values of ∆t, i.e., for
0 < ωj∆t = 2π∆t/Tj < 2. The values of the function ρ for the integrator with b = 0.2113 are
compared to those for velocity Verlet in Figure 3.4 (left). One can observe that for the (0, 2)
range of time steps the values of ρ provided by the two-stage integrator (3.44) are smaller
than those of Verlet. From now on, we will call BCSS this integrator derived from (3.44) in
(Blanes, Casas, and Sanz-Serna, 2014).
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Figure 3.4: Comparison of the expected energy error bound of the two-stage
integrator with b = 0.2113 and the classic velocity Verlet for the interval of
time steps h between zero and two (left) and for h between zero and one with
a modified version of BCSS (right).

Numerical tests in (Blanes, Casas, and Sanz-Serna, 2014) show the merit of the choice
b = 0.2113. However the fact remains that, if, for a given problem and ∆t, the maximum of
ωj∆t = 2π∆t/Tj as j varies is significantly smaller than 2, i.e., the chosen ∆t is relatively
small, then a smaller value of b would provide a better integrator. On the other hand, if
that maximum is significantly larger than 2, then it would be advisable to increase b. For
instance, in Figure 3.4 (right) the integrator BCSS* has been obtained by arbitrary choosing
the parameter b∗ = 0.21. By reducing an interval for h to 0 < h < 1 one can observe how for
time steps this choice leads to a more accurate integrator than BCSS. Clearly, the function
ρ is very sensitive to even small changes in b. Using this observation, we propose a different
approach. Rather than choosing a single value of b that is later applied in all simulations, we
suggest an algorithm that, once the system to be integrated has been specified and the user
has chosen a value of ∆t, identifies the “best” b.

3.3.3 Adapting the integrator to the problem

Although the real physical systems that one wishes to simulate in practice are very complex,
it is helpful to consider the case where the forces are two-body interactions. Note that the
most stringent stability restrictions on ∆t are likely to stem from stiff two-body forces, in
particular from pairs of bonded atoms. For relatively small energy values, those stiff forces
may be assumed to be harmonic.

For two particles attracting each other harmonically, the period of the oscillations is

T = 2π

√
µ

k
, µ =

m1m2

m1 +m2
, (3.45)

where m1, m2 are the masses of the particles, µ the reduced mass and k the force constant.
The stability of the integration is of course determined by the highest frequency ω̃ or,

equivalently, the smallest period T̃ present in the system. For the standard Verlet integrator,
the linear stability restriction is, as noted above,

∆t <
2

ω̃
=
T̃

π
. (3.46)
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Due to nonlinear effects, including nonlinear resonances, and to other difficulties (see (Sanz-
Serna, 1991; Mandziuk and Schlick, 1995; Schlick et al., 1998; Skeel, 1999; Schlick, 2002)
and the example in Section 3.2.1.1 for more details), this requirement may be too weak to
ensure stability in practice. Some authors suggest that the stability restriction for the Verlet
integrator

∆t <

√
2

ω̃
=

T̃√
2π

(3.47)

is more realistic in applications than (3.46) (Mazur, 1997). Note that moving from (3.46) to
(3.47) may be seen as the result of multiplying the smallest period by a safety factor 1/

√
2

(equivalently multiplying the frequency by
√

2). One can readily recognize the non-linear
stability condition in the case of the fourth-order resonance (see Table 3.1).

In our adaptive method, if ∆t is the time step attempted by the user, we exploit the
stability restriction in (3.47) to form, similarly to the preceding section, the nondimensional
quantity

h̄ =
√

2ω̃∆t =
√

2
2π

T̃
∆t (3.48)

and determine b so as to minimize (cf. (3.44))

max
0<h<h̄

ρ(h, b). (3.49)

Here the function ρ that bounds the energy error is minimized in the shortest interval (0, h̄)
that contains all the values

√
2ωj∆t, where ωj are the frequencies in the problem being

integrated. Let us illustrate how this works. If the user attempts a value of ∆t slightly
smaller than

√
2T̃ /π, then h̄ will be just below 4 and the minimization of (3.49) will lead to b

close to 0.2500. For this value of b, I steps of length ∆t are, as discussed above, equivalent to
2I steps of length ∆t = T̃ /

√
2π of the velocity Verlet algorithm; in other words, the adaptive

algorithm will run the optimally stable Verlet with the maximum ∆t allowed by (3.47). As
the value of ∆t attempted by the user decreases from

√
2T̃ /π towards 0, the value of b will

decrease from 0.2500 to McLachlan’s 0.1932, thus improving the error constant. The length
of the stability interval will shrink as b is decreased, but this will cause no problem because
by construction all values ωj∆t will fall in the stability interval (in fact, for safety, even the
larger

√
2ωj∆t will lie on the stability interval). Finally, if ∆t ≥

√
2T̃ /π, the quantity (3.49)

will be ∞ for all values of b; this indicates that ∆t is too large for the problem at hand.

3.3.4 Algorithm

Given a physical system and a value of ∆t, AIA determines the value of the parameter b to
be used in (3.43) as follows:

1. Use equation (3.45) to find the periods or frequencies of all two-body interactions in the
system. Determine the minimum period T̃ and compute the nondimensional quantity
h̄ in (3.48).

2. Check whether h̄ < 4. If not, there is no value of b for which the scheme (3.43) is stable
for the attempted time step ∆t and the integration is aborted. In other case go to the
next step.

3. Find the optimal value of the parameter b by minimizing (3.49) with the help of an
optimization routine.
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3.3.5 Extension to constrained dynamics

Holonomic constraints g(q) = 0 allow the use of bigger time steps in the simulation of physical
systems that contain high-frequency modes. By freezing those modes, it is possible to bypass
the demanding restriction they would otherwise impose on the time step. SHAKE (Ryckaert,
Ciccotti, and Berendsen, 1977) and its velocity extension RATTLE (Andersen, 1983) are
widely used algorithms in this connection. We focus our attention on RATTLE which is
symplectic and time-reversible and thus is appropriate for being used with Hybrid Monte
Carlo methods (Leimkuhler and Skeel, 1994). Now we show how, by following the idea
behind the original RATTLE, two-stage integrators of the family (3.43) may be applied to
problems with constraints. In this way, the Adaptive Integration Approach may be extended
to the constrained case.

The constrained equations of motion corresponding to (3.17) are

d

dt
q = M−1p,

d

dt
p = −∇qU(q) + g′(q)Tλ,

g(q) = 0,

where λ is the vector of Lagrange multipliers and g′(q)Tλ represents the forces exerted by
the constrains. The holonomic constraint implies, by differentiation with respect to time, a
constraint on the velocities (d/dt)q = M−1p:

g′(q) M−1 p = 0.

As in (3.26), we divide one step into two half steps. For any time t, the equations for the first
half step are

p(t+ bh) = p(t)− bh ∇qU(q(t)) + bh g′(q(t))Tλt,

q(t+ h/2) = q(t) +
h

2
M−1p(t+ bh),

(3.50)

where the Lagrange multiplier λt is chosen to ensure

g(q(t+ h/2)) = 0,

and

p(t+h/2) = p(t+bh)−
(

1

2
− b
)
h∇qU(q(t+h/2))+

(
1

2
− b
)
h g′(q(t+h/2))Tλ

(v)
t+h/2, (3.51)

where the velocity Lagrange multiplier λ(v)
t+h/2 is chosen so that

g′(q(t+ h/2)) M−1 p(t+ h/2) = 0.

The equations for the second half step (q(t + h/2),p(t + h/2)) → (q(t + h),p(t + h)) are
similar. It is easy to see that, if we define s := t + h/2, then the second half step is written
as (q(s),p(s))→ (q(s+ h/2),p(s+ h/2)).

The proof of the symplecticness of RATTLE given by Leimkuhler and Skeel, 1994 may
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be easily adapted to prove that each half step, (q(t),p(t)) → (q(t + h/2),p(t + h/2)) and
(q(t+ h/2),p(t+ h/2))→ (q(t+ h),p(t+ h)), is symplectic. The proof consists in showing
that the solutions generated by RATTLE at mesh points preserve the wedge product. The
derivation for the first half step is shown here. From (3.51),

dq(t+ h/2) ∧ dp(t+ h/2) = dq(t+ h/2) ∧ dp(t+ bh)

−
(

1

2
− b
)
h dq(t+ h/2) ∧ d∇qU(q(t+ h/2))

+

(
1

2
− b
)
h dq(t+ h/2) ∧ dg′(q(t+ h/2))Tλ

(v)
t+h/2.

(3.52)

If we denote the Hessian of the potential energy as U ′′, then d∇qU(q) = U ′′(q) dq. Thus,
the equality in (3.52) can be rewritten as

dq(t+ h/2) ∧ dp(t+ h/2) = dq(t+ h/2) ∧ dp(t+ bh)

−
(

1

2
− b
)
h dq(t+ h/2) ∧ U ′′(q(t+ h/2)) dq(t+ h/2)

+

(
1

2
− b
)
h dq(t+ h/2) ∧ dg′(q(t+ h/2))Tλ

(v)
t+h/2.

(3.53)

Now we use two technical results from (Leimkuhler and Skeel, 1994):

• Let du be an arbitrary differential in Rn and let A be any n×n real symmetric matrix,
then du ∧ (Adu) = 0.

• Let τ be an arbitrary time, then dq(τ) ∧ d(g′(q(τ))Tλτ ) = 0.

Applying these results to (3.53) we get

dq(t+ h/2) ∧ dp(t+ h/2) = dq(t+ h/2) ∧ dp(t+ bh).

Then, from (3.50), we get

dq(t+ h/2) ∧ dp(t+ bh) =

(
dq(t) +

h

2
M−1dp(t+ bh)

)
∧ dp(t+ bh)

= dq(t) ∧ dp(t+ bh)

= dq(t) ∧ (p(t)− bh d∇qU(q(t)) + bh dg′(q(t))Tλt).

Applying again the same results as above, we obtain that the wedge product is preserved

dq(t+ h/2) ∧ dp(t+ h/2) = dq(t) ∧ dp(t).

It is straightforward to proof the equivalent property for the second stage of the integrator.
Therefore, the whole step (q(t),p(t))→ (q(t+ h),p(t+ h)) is also symplectic.

It is clear that 2I steps of length h/2 of the Verlet integrator supplemented with the
constraining technique envisaged here are as expensive as I steps of length h of the extension
of two-stage schemes to constrained dynamics we have just described.

Hybrid Monte Carlo methods can be easily used in constrained dynamics. Only one
consideration has to be made: right after the Metropolis test (step 4 in Algorithm 1 and
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step 4 in Algorithm 2), when the momenta p∗ are resampled, the constraint g′(q)M−1p∗ = 0
has to be fulfilled. Further details can be found in (Hartmann, 2008).

3.4 Implementation

AIA has been implemented in the MultiHMC-GROMACS software code, an in-house mod-
ified version of GROMACS (Berendsen, van der Spoel, and van Drunen, 1995; Hess et al.,
2008), which is a popular software package for molecular dynamics simulations. MultiHMC-
GROMACS has been developed to achieve better accuracy and sampling performance in
GROMACS through the use of Hybrid Monte Carlo methods and multi-stage numerical in-
tegrators. The detailed description of the package can be found in Chapter 7. Here we just
summarize the features related to AIA implementation.

AIA has been implemented in the GROMACS preprocessing module, grompp, which has
to be run once before simulating and thus does not introduce extra computational costs in
the simulation itself (see Figure 7.1).

In the original GROMACS code, the module grompp reads the GROMACS input files
and processes them for further use in the molecular dynamics module, mdrun. It also checks
input data and, if necessary, generates warnings that allow the users to reconsider their
chosen setup. For example, the input time step ∆t is inspected for its ability to provide
a stable numerical integration in molecular dynamics. This check is implemented in the
check_bonds_timestep() routine and consists of two main steps. First, for each pair of
bonded particles, the corresponding period T is calculated with the help of (3.45). Then,
for the given ∆t and T , the Verlet stability condition 5∆t < T (see (Mazur, 1997) and
Appendix A.2 for details) is checked. If the condition does not hold, an error message is
issued and the simulation is not allowed. It is easy to see that this restriction is in agreement
with condition (3.47) since 1/(

√
2π) ≈ 1/5. Otherwise, if 10∆t ≥ T the code issues a message

warning that instabilities may arise and recommending to decrease ∆t or to use a constrained
algorithm (Mazur, 1997). Once a warning or error message appears, the search for further
problematic oscillations stops.

For our purposes, we modified this part of the code in such a way that the search continues
until the period of the fastest oscillation T̃ is found. Its value is used to define h̄ in (3.48).
Then the optimal parameter value b is calculated using (3.49). A particle swarm optimization
algorithm driven by a golden section search (Oh and Hori, 2006) is used to perform the required
minimization. The parameter b is stored in the input record structure of GROMACS so that
it can be accessed from every routine in the package after running the grompp preprocessing
module.

In standard GROMACS, molecular dynamics simulations are performed with the mdrun
module using the input file .tpr generated by grompp. The velocity Verlet integrator is im-
plemented in the update_coords(·) function, which is called from do_md() sequentially to
update velocities, positions and velocities again. The procedure is repeated as many times as
desired. More details can be found in Section 7.4.

The integrators resulting from the Adaptive Integration Approach described above belong
to the family (3.43) and thus are naturally included in the list of integrators implemented in
MultiHMC-GROMACS (see Section 7.4 for details). The parameter integrator used in the
.mdp file is aia.
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It is useful to present a multi-stage scheme in kick/drift factorization form to efficiently
implement multi-stage integrators in the GROMACS package (Pronk et al., 2013). For ex-
ample, two-stage integrators are best rewritten in the form (3.26), which is more suitable
for its implementation inside the mdrun module in GROMACS (details can be found in Sec-
tion 7.4.2). The scheme can be implemented with six evaluations of the update_coords()
function, alternating velocity and position updates in which modified parameters such as b,
1/2 and 1/2 − b are used. With our implementation, multi-stage integrators have computa-
tional costs equal to those of the standard Verlet method, provided that the latter is run with
the choice of time step that equalizes the number of force evaluations.

For simulations of constrained dynamics, we use the SHAKE algorithm as implemented
in the released version of GROMACS. This implementation relies on the original approach of
Ryckaert, Ciccotti, and Berendsen, 1977, combined with the Lagrange multipliers procedure
of Lippert et al., 2007 for improving the accuracy in the calculation of velocities of constrained
particles (Hess et al., 2008). The implementation of the RATTLE step in GROMACS is done
following the algorithm in (Andersen, 1983). The modifications explained in Section 3.3.5
for the two-stage integrators for constrained dynamics are combined with the implementa-
tion of the released version of GROMACS. Any further developments regarding performance,
parallelization or formulation have not been considered so far.

The flowchart in Figure 3.5 summarizes the AIA implementation.

Input
* Modified .mdp file
* Standard GROMACS input

Adaptivity

Adaptivity
1. Do 1. as in No adaptivity case
2. Set up the limits for the parameter b:

b ∈ [b1, b2] ≡ B
3. Calculate the fastest period T̃ (3.45) and

the dimensionless time step h̄ (3.48).
Take h ∈ (0, h̄) ≡ H

4. For each b ∈ B calculate max
h∈H

ρ(h, b) (3.49)

5. Find optimal b as arg min
b∈B

max
h∈H

ρ(h, b)

6. Pass value of ‘integrator’ and optimal b
to .tpr

No adaptivity
1. For all pairs of particles:

1.a. Calculate period T in (3.45)
1.b. If 5∆t ≥ T , STOP
1.c. If 10∆t ≥ T , WARNING

2. Pass value of ‘integrator’ to .tpr

.tpr file

* Define the integrator in the Trotter factorization form
* Run MD

yes no

Runner (mdrun)

Preprocessor
(grompp)

Figure 3.5: Flowchart of the Adaptive Integration Approach (AIA) as imple-
mented in MultiHMC-GROMACS.
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3.5 Numerical experiments

3.5.1 Testing procedure

In order to evaluate the efficiency of the proposed AIA scheme, we compared it in accuracy
and performance with the velocity Verlet integrator and with the two-stage integrator (BCSS)
of Blanes, Casas, and Sanz-Serna, 2014. In addition, some selected tests also involved the
two-stage HOH scheme by Predescu et al., 2012.

All tests probing various integrating schemes have been repeated with three different
simulation techniques, MD combined with the v-rescale thermostat, HMC and GHMC. We
omit here the data obtained with GHMC for two reasons. First, as expected, HMC and GHMC
showed very similar behavioral trends. On the other hand, the GHMC method possesses an
extra parameter that needs to be tuned properly to guarantee optimal performance. Such
tuning is likely to be time-consuming and was not attempted. We, therefore, decided to avoid
reporting data that may not correspond to the best possible performance of GHMC.

The following points have been taken into account to ensure a comparison as clear as
possible.

As we have repeatedly explained (see Section 3.3 for details), whenever a two-stage split-
ting scheme (AIA or not) and velocity Verlet are used on the same problem, the comparisons
reported here are fair (in computational cost terms). Verlet is run with half the time step and
a double number of steps.

In Hybrid Monte Carlo (HMC and GHMC) simulations, the number of Metropolis tests
was also kept constant regardless of the acceptance rate achieved. For two-stage integrators,
the number of MD time steps between two successive Monte Carlo tests was chosen half of
the corresponding number for Verlet.

A broad range of time steps has been tested for two benchmark systems with the aim of
observing the dependence of the optimal parameter b in AIA on the value of ∆t. Different
lengths of MD trajectories in HMC simulations were also explored. Each test has been re-
peated 10 times for unconstrained dynamics and 15 times for constrained dynamics and every
single point in the reported data here was obtained by averaging over the multiple runs to
reduce statistical errors.

3.5.2 Benchmarks and Simulation setup

Two test systems were chosen for the numerical experiments: one describes the non-
constrained coarse-grained VSTx1 toxin in a POPC bilayer (Jung et al., 2005) and the other
the constrained atomistic 35-residue villin headpiece protein subdomain (Bazari et al., 1988;
McKnight, Matsudaira, and Kim, 1997). We will refer to these systems as toxin and villin,
respectively.

In the coarse-grained toxin system, four heavy particles on average were represented as
one sphere (Wallace and Sansom, 2007; Shih et al., 2006), which produced a total number of
7810 particles. For both Coulomb and van der Waals interactions the shift algorithm was used
(van der Spoel and van Maaren, 2006). Both potential energies were shifted to 0 kJmol−1

at a radius of 1.2 nm. Periodic boundary conditions were considered in all directions. No
constraint algorithm was applied to this system. The total length of all simulation runs was
20 ns, which was sufficient, with stable time steps, for a complete equilibration of the system.

The villin protein was composed of 389 atoms and the system was solvated with 3000
water molecules. Coulomb interactions were solved with the PME algorithm of order 6 (Dar-
den, York, and Pedersen, 1993; Essmann et al., 1995) and van der Waals interactions were
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considered as in the toxin system, with the only difference of a radius of 0.8 nm. Periodic
boundary conditions were again defined in all directions. The bonds involving hydrogens were
constrained. Instead of constraining all atoms, as it is commonly suggested in the literature
(see (van der Spoel and Lindahl, 2003) for instance), we have only constrained the hydrogens,
because it is the only case that allows the integration algorithm to perform in parallel with
domain decomposition (Hess et al., 2008). Constraining only the hydrogen atoms does not
affect the accuracy of the simulation but allows bigger time steps for the integration. Since
villin system is an atomistic model, simulations are expected to be slower than for the coarse-
grained toxin. However, an exhaustive study of the complete folding process of the villin
protein is out of the scope of this work. Thus, with the available computational resources,
simulations were run only to observe the effect of the AIA on accuracy and performance of
a constrained atomistic system. It has to be also remarked that there are examples in the
literature of similar tests for which a weak coupling thermostat and a barostat were used to
have more realistic results (van der Spoel and Lindahl, 2003). Barostats are not considered
in this study since the aim is to compare the performance of the AIA scheme with that of
velocity Verlet when both integrators sample in the NVT ensemble. The total length of all
experiments performed for this system was 5 ns.

The temperature in MD simulations was controlled by the standard v-rescale algorithm
for both benchmarks. The reference temperatures were 310 K for toxin and 300 K for villin.
The same temperatures were used in HMC and GHMC. No thermostat is required in HMC
or GHMC simulations.

3.6 Results

We stress that throughout this section the different setups used for the simulation will be
expressed in terms of parameters appropriate for the velocity Verlet (one-stage) integrator.
This implies that for two-stage schemes the time steps are doubled and the trajectory lengths
are halved which guarantees the fair comparison between these integrators. For improving
the readability, all the plots have been created following the same criteria.

3.6.1 Unconstrained system

We first present the results of the unconstrained test system.
The tests were run using the following set of time steps for the Verlet integrator {10 fs,

15 fs, 20 fs, 22.5 fs, 25 fs} (recall that for two-stage integrators these values are doubled). Two
different number of steps in the MD trajectories, L, have been tested in the HMC experiments
for each ∆t. In the case of velocity Verlet, the values of L were 2000 and 4000 for all ∆t
except when ∆t = 25 fs, where L was chosen to be 1000 and 2000. The corresponding values
of L for the two-stage schemes are, as pointed out repeatedly above, halved. The acceptance
rates that appear in Figure 3.6 were obtained by averaging over all experiments with the same
∆t, regardless of the choice of L.
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Figure 3.6: Toxin. Dependence of the parameter b on the choice of ∆t
(left) and its effect on resulting acceptance rates in HMC simulations (right).
“Number of stages” as appears in x-axis label refers to 1 for velocity Verlet and
2 for all two-stage integrators.

As stated earlier, AIA finds, for a given physical system and a chosen time step, the unique
value of the parameter b in (3.43) that provides the best energy conservation achievable with
the members of the family (3.43). Figure 3.6 presents the parameter b determined by AIA,
as a function of ∆t, for simulations of toxin and compares them with the ones previously
identified for different two-stage integrating schemes. As it was intended, for small ∆t, AIA
chooses McLachlan’s minimum error constant method, and, as ∆t increases, b approaches
0.2500, a value which, as discussed in Section 3.3, essentially yields the Verlet integrator. The
two-stage integrator BCSS is the optimal choice for time steps roughly twice smaller than the
stability limit of the velocity Verlet integrator.

We then investigated the effect of the AIA on the performance of HMC simulations by
monitoring acceptance rates as functions of ∆t with different two-stage integrators. Con-
servation of energy has a direct impact on acceptance or rejection in the Metropolis test of
the Hybrid Monte Carlo methods: the better the energy is preserved, the more proposed
trajectories are accepted (Beskos et al., 2013). Thus, by design, AIA has to provide, at
least for Gaussian distributions, the highest acceptance rates for any choice of ∆t. This is
demonstrated in Figure 3.6. The two-stage schemes of (Blanes, Casas, and Sanz-Serna, 2014)
and (Predescu et al., 2012) ensure higher acceptance rates than velocity Verlet for time steps
significantly smaller than the Verlet stability limit. However, the performance of those two-
stage schemes drops dramatically for larger time steps. AIA yields acceptance rates that are
as good as those of BCSS when ∆t is small and as good as those of Verlet near the Verlet
stability limit. In particular, AIA does not yield worse results than Verlet for any values of
∆t. The trend observed for the HMC method as shown in Figure 3.6 was also apparent in
GHMC tests.

To compare the impact of different integrating schemes on the accuracy of HMC and MD
simulations, we calculated averages for two thermodynamic observables: the temperature T
and the distance d traveled by the toxin from the center of the membrane to the preferred
location at the surface of the membrane. The expected average values of the distance are
around ∼2.48 nm (Jung et al., 2005; Wee et al., 2008), whereas the target temperature was
chosen to be 310 K. The performed simulations had a fixed total length of 20 ns, which was
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long enough for equilibrating the system if stable time steps were used, but not sufficient
for obtaining accurate averages. So, the tests are meaningful for observing trends rather
than getting good production results. For HMC we found more informative to plot the
RMSD between the target temperature and the observed temperatures rather than the average
temperatures themselves. For MD simulations the overall fluctuations are smaller and the
trends for averages, even in short simulations, are clearer than in HMC simulations. Thus,
we plot the temperatures.

Figure 3.7 and Figure 3.8 summarize the averages for the two observables, distance and
temperature. From now on, we plot the properties obtained with HMC simulations versus
the product ∆t×L of the time step and the number of steps in an MD trajectory. This is due
to the important role this product plays in the overall acceptance rate and the correlation in
HMC simulations as it has been studied for instance in (Bou-Rabee and Sanz-Serna, 2017b).
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Figure 3.7: Toxin. Distance between the c.o.m. of the toxin and the c.o.m.
of the bilayer (expected to be ∼2.48 nm) predicted by HMC simulations with
different lengths of trajectories L, time steps ∆t and integrating schemes (left),
and by MD simulations using various time steps ∆t and integrators (right).
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Figure 3.8: Toxin. Temperature RMSD with respect to the target tempera-
ture observed in HMC simulations with different lengths of trajectories L, time
steps ∆t and integrating schemes (left), and the average temperature in MD
simulations using various time steps ∆t and integrators (right). The target
temperature was set to 310 K. The v-rescale thermostat was applied in MD.

As follows from Figure 3.7 and Figure 3.8, for both properties, d and T , the accuracy of
AIA is comparable to but typically better than, the accuracy provided by BCSS and velocity
Verlet for time steps distant from the Verlet stability limit. However near the stability limit
the accuracy of all integrators decreases – more dramatically for BCSS and less noticeably
for AIA. Interestingly, longer MD trajectories (L = 2000) in HMC allow AIA to be accurate
at such large values of ∆t (see Figure 3.7 at ∆t × L = 50 ps). In contrast, the accuracy in
simulations with BCSS and Verlet is rather sensitive to the choice of ∆t. The former failed
to produce meaningful averages for ∆t = 25 fs. Less dramatic differences but similar trends
were observed for molecular dynamics simulations (right panels of Figure 3.7 and Figure 3.8).

Finally, we inspected the role of numerical integrators in the sampling efficiency of HMC
and MD simulations.

In Figure 3.9 the distance d between the c.o.m. of the toxin and the c.o.m. of the bilayer
is shown as a function of time for a single choice of the time step ∆t = 15 fs and the trajectory
length L = 4000 in HMC, and for ∆t = 10 fs in MD. The superiority of the AIA method
is clearly demonstrated in both HMC and MD since AIA makes the toxin reach the target
destination earlier than the rest of the integration schemes do.



3.6. Results 47

0 5000 10000 15000 20000
0

0.5

1

1.5

2

2.5

3

Time (ps)

D
is

ta
nc

e
(n

m
)

VV
BCSS
AIA
Target distance

0 5000 10000 15000 20000
0

0.5

1

1.5

2

2.5

3

Time (ps)

D
is

ta
nc

e
(n

m
)

Figure 3.9: Toxin. Distance between the c.o.m. of the toxin and the c.o.m.
of the bilayer as a function of time obtained in HMC simulations with time
step ∆t = 15 fs, trajectory length L = 4000 and different integrators (left) and
in MD simulations with time step ∆t = 10 fs and the same integrators (right).
The expected value is ∼2.48 nm.

Figure 3.10 presents the distributions of the distances d collected from simulations with
different integrators (AIA, VV and BCSS) and compares them with the “true” distribution
obtained from the HMC simulation with velocity Verlet at ∆t = 15 fs and L = 4000 of 200 ns
length (ten times longer than the other ones). It can be seen that AIA samples more closely to
this distribution. As for all tests in this section, the plotted data are resulted from averaging
over several repetitive runs (see Section 3.5 for more details).
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Figure 3.10: Toxin. Distribution of the distances between the c.o.m. of the
toxin and the c.o.m. of the bilayer observed in HMC simulations of 20 ns
length with time step ∆t = 15 fs, trajectory length L = 4000 using different
integrators. The solid black line presents the “true” distribution produced with
a ten times longer simulation (200 ns) that used the same input. The y-
axis presents frequencies which are calculated as the normalized numbers of
hits registered for a distance bin within a simulation. Here normalization is
performed with respect to a product of a total number of samples and the size
of a distance bin (0.1 in this particular case).

Finally, the integrated autocorrelation function IACF of the drift of the toxin to the
preferred interfacial location was measured during the equilibration stage of the simulations
for the range of time steps and trajectory lengths. The autocorrelation function (ACF) is
a commonly used tool for evaluating sampling efficiency in molecular dynamics simulations
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(Allen and Tildesley, 1989; Kennedy and Pendleton, 2001), statistics and other fields. For a
certain property f depending on time, it is defined as

ACF(f(t)) = 〈(f(ξ)− f̂)(f(ξ + t)− f̂)〉ξ,

where f̂ is the mean value of the observable f . For simplicity in the calculations, the values
of f are normalized as f̃(t) = f(t)− f̂ for all time t. Then, in practice, correlation functions
are calculated based on data points with discrete time intervals ∆t, so that the ACF from an
MD simulation is:

ACF(f(j∆t)) =
1

N − j

N−1−j∑

i=0

f̃(i∆t)f̃((i+ j)∆t),

where N is the number of available samples for the calculation. The integral of the correlation
function over time is called the integrated autocorrelation function (IACF)

IACF(f(t)) =

∫ ∞

0
ACF(f(t))dt.

The IACF is very similar to the integrated autocorrelation time, which is calculated similarly
but normalizing the ACF’s by ACF(0), which is the variance (Straatsma, Berendsen, and
Stam, 1986). Intuitively, the integrated autocorrelation time can be understood as measuring
the time needed, on average, for generating a non-correlated sample. It can be seen as the
inverse of the effective sample size (ESS) (Geyer, 1992), a measure often used in statistical ap-
plications of Monte Carlo methods. In practice, all the correlation functions are calculated for
discrete values. Low values of measured IACFs mean low correlations between the generated
samples and thus better sampling.

Figure 3.11 presents the IACF measured in HMC and MD with different integrating
schemes for the same range of time steps and trajectory lengths described above. Note,
in the vertical axis, that computational time is used to normalize the results. The IACF
values for 25 fs/50 fs are not plotted since the lack of stability at those step lengths in all
integrating schemes produces poor, non-informative results.

In Figure 3.11 we use different symbols for different values of ∆t to provide a better feeling
for the relation between ∆t and the efficiency achieved. Two different symbols corresponding
to the same ∆t×L mean that two different combinations of ∆t and L are possible to get the
same number on the x-axis.
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Figure 3.11: Toxin. IACF of the drift of the toxin to the preferred interfacial
location evaluated as a function of L and ∆t in HMC tests (left) and as a
function of ∆t in MD runs (right). Four integrating schemes were tested in
HMC and MD simulations: velocity Verlet, the two-stage integrator BCSS, the
HOH-integrator of Predescu et al. and the AIA integrators.

As seen from Figure 3.11, for all combinations of ∆t and L, both HMC and MD simula-
tions using the AIA integrators decorrelated faster than the corresponding simulations that
used the velocity Verlet integrator, BCSS or the method of Predescu et al. In fact, for some
specific choices of ∆t the AIA integrators led to an efficiency several times higher than that of
the velocity Verlet or any of the tested two-stage integrators. This applies to both simulation
methods, HMC and MD. The fact that the better energy conservation of AIA led to better
sampling efficiency in Hybrid Monte Carlo simulations was not surprising. For molecular
dynamics, better conservation energy guarantees better accuracy but not necessarily better
sampling. However, Figure 3.11 clearly demonstrates the positive impact of energy conserva-
tion on the sampling performance of MD. Still, comparison of the two plots in Figure 3.11
reveals the clear superiority in sampling efficiency of HMC over MD for the tested system.

A few more useful observations may be extracted from Figure 3.11. Analyzing the IACF
calculated for HMC simulations with different combinations of ∆t and L, one can conclude
that, for fixed ∆t, a larger L gives better performance for all integrators. Moreover, to achieve
better performance, the choice of the product of ∆t and L is more important than ∆t itself.
For instance, ∆t = 30 fs and L = 2000 is a better choice than ∆t = 40 fs and L = 1000.

At this stage, we can conclude that the Adaptive Integration Approach outperforms the
other tested schemes in accuracy, stability and sampling efficiency for all tested time steps. As
one can expect, long time steps, close to the maximum allowed by stability, lead to accuracy
and performance degradation in all schemes. For the adaptive scheme, this effect is much
smoother.

These conclusions are also supported by the results obtained in HMC and MD simulations
of 216 molecules of water at 300 K. The model used is the flexible version of SPC (Berendsen
et al., 1981). Taking into account the important role water plays in biomolecular simulations,
we include here two plots in Figure 3.12 showing the advantage of AIA over other integrating
schemes in sampling with HMC (left) and MD (right) simulations. We notice that a time step
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of 2 fs, chosen for MD simulation, was close to the stability limit of all considered integrators
but since BCSS has the shortest limit its performance was affected the most.
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Figure 3.12: Water. Effect of the parameter b on the resulting acceptance
rates in HMC simulations (left) and autocorrelation functions of the hydrogen
bonding in MD simulations (right) for ∆t = 2 fs. The two-stage integrator loses
performance at the chosen time step whereas the AIA not only outperforms
this integrator but also shows faster convergence than the standard velocity
Verlet provides. The IACF’s are: VV = 12.31, BCSS = 22.92, AIA = 5.66.

3.6.2 Constrained system

For testing efficiency of the AIA integrators in simulations of constrained systems, we followed
the same strategy as in Section 3.6.1. The chosen time steps for the tests in this case, however,
were in the range typical for time steps used in atomistic simulations and thus differed from
those considered in coarse-grained experiments in Section 3.6.1. More specifically, we tested
the following time steps, ∆t/nr (nr = 1 for Verlet and 2 otherwise): 1 fs, 1.5 fs, 2 fs, 2.5 fs.
The numbers of steps in MD trajectories in HMC were the same as in Section 3.6.1, i.e.,
2000 and 4000 in the tests with Verlet, and 1000 and 2000 for the two-stage methods. The
measured acceptance rates were averaged over different lengths L for each ∆t.

To our satisfaction, the positive impact of the AIA strategy on the quality of simulations
demonstrated in unconstrained systems has also been observed in the case of constrained
dynamics.

Figure 3.13 shows trends that match those summarized in Figure 3.6. The only signifi-
cant difference is for BCSS; where the loss in performance at larger ∆t is smaller for villin
(Figure 3.13) than for toxin (Figure 3.6).
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Figure 3.13: Villin. Dependence of the parameter b on the choice ∆t (left)
and its effect on the resulting acceptance rates in HMC simulations (right).

As in the case of the unconstrained system, the “convergence” of AIA to the velocity Verlet
integrator was also observed (at around 2.25 fs/4.5 fs), but the resulting acceptance rates were
so low in all tests that such experiments have been excluded from consideration.

Villin system is a popular benchmark for studying folding processes, due to its compara-
tively fast folding times. In the results presented here, we did not aim to investigate in full
the folding of villin. Rather, the fast folding helped us to design computationally feasible
tests for measuring accuracy and efficiency of the different numerical integrators.

Calculated averages of simulated temperatures in HMC and MD tests were used for eval-
uating the accuracy provided by the velocity Verlet integrator and the two-stage integrating
schemes of interest. As in Section 3.6.1, the length of tests with HMC and MD simulations was
fixed and sufficient to analyze the effect of ∆t on the level of accuracy achieved in simulations,
but not to guarantee low statistical errors.

As in Section 3.6.1, Figure 3.14 shows the dependence of the temperature RMSD with
respect to the target temperature on the chosen ∆t, trajectory lengths and integrators for
HMC, and the average temperatures with the v-rescale thermostat for different time steps
and integrators in MD. Evidently, AIA provided the smallest fluctuations of averages as a
function of ∆t within the inspected range of time steps, even though the differences in the
data obtained with the different integrators were less marked than in the case of toxin in
Section 3.6.1. Degradation of accuracy was observed for larger ∆t in all simulations but was
less visible for AIA than for Verlet or BCSS. The data collected at ∆t/nr = 2.5 fs showed
poor accuracy for all tests.
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Figure 3.14: Villin. Temperature RMSD with respect to the target tempera-
ture in HMC simulations with different lengths of trajectories L, time steps ∆t
and integrating schemes (left), and the average temperature in MD simulations
using various time steps ∆t and integrators (right). The target temperature
was set to 300 K. The v-rescale thermostat was applied in MD.

We completed our testing of AIA for constrained dynamics with an analysis of its impact
on the sampling performance of HMC and MD. We chose to measure the quality of sampling
through the positional RMSD from the native structure as a function of the simulation steps in
both HMC and MD cases. The state of a protein folding can be understood by computing the
root-mean-square deviation (RMSD) of the α-carbon. It can be used to make a comparison
between the structure of a partially folded protein and the structure of the native state. The
RMSD of certain atoms in a molecule with respect to a reference structure is calculated as

RMSD =

√√√√ 1

N

N∑

i=1

δ2
i ,

where δi is the distance between the atoms i in the two structures compared. As it is done
in (van der Spoel and Lindahl, 2003), we have calculated what the authors call RMST, the
maximum RMSD of the α-carbon between any two structures in a simulation. The idea is to
roughly measure the extent of the conformational space sampled in a simulation. As in the
unconstrained case, we have also plotted these values for the different combinations of time
step and length of trajectories ∆t × L. In Figure 3.15 the simulation results obtained with
different integrators are compared. It can be observed, in both HMC and MD cases, that AIA
leads to a broader sampling of the conformational space no matter the choice of time step or
trajectory length. The largest difference with respect to velocity Verlet can be observed when
the biggest time step ∆t = 2 fs is used.
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Figure 3.15: Villin. Maximum α-carbon RMSD between any two structures
in HMC simulations with different lengths of trajectories L, time steps ∆t and
integrating schemes (left) and in MD simulations using various time steps ∆t
and integrators (right).

We have also computed the radius of gyration, which provides an estimation of the com-
pactness of the desired structure. As in (van der Spoel and Lindahl, 2003), we have considered
the experimental value 0.94 nm (McKnight, Matsudaira, and Kim, 1997) as a target value.
The simulations performed are not long enough to observe any proper convergence to the
value. However, the tendency of the protein evolution can be seen through the comparison
of the simulated radius of gyration with the target one. In Figure 3.16 the average radii of
gyration obtained from HMC (left) and MD (right) simulations using different integrators
and different values of simulation time steps and trajectory lengths are presented. While the
results associated with the velocity Verlet and BCSS integrators are still far from the tar-
get value, the averages produced with AIA are, regardless a choice of simulation parameters,
always closer to 0.94 nm both in HMC and in MD.
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Figure 3.16: Villin. Average radii of gyration in HMC simulations with
different time steps ∆t, lengths of trajectories L and integrating schemes (left)
and in MD simulations using various time steps ∆t and integrators (right).
The experimental target radius of gyration is 0.94 nm.

Similar trends were seen in GHMC simulations. The results are not shown (see Sec-
tion 3.5).

It is impossible, with basis on these short tests, to make precise conclusions about features
of the folding process, e.g., about the folding rate. More detailed studies of the protein
folding are advisable. However, what can be concluded without hesitation is that sampling
in molecular simulations of atomistic constrained systems with HMC and MD benefits from
integrators that guarantee the best possible conservation of energy, as is the case with AIA.

3.7 Conclusions

In this chapter, we have presented an alternative to the standard velocity Verlet integrator,
known to be the state-of-the-art method for numerical integration of the Hamiltonian equa-
tions in molecular dynamics. The novel methodology, which we call the Adaptive Integration
Approach, or AIA, offers, for any chosen time step, a system-specific integrator which guar-
antees the best energy conservation for harmonic forces achievable by an integrator from the
family of two-stage splitting schemes, including Verlet. While improvements in energy con-
servation do not necessarily imply dramatic changes in sampling, they improve acceptance
rates in Hybrid Monte Carlo methods. The experiments performed in the present study also
show that in molecular dynamics AIA leads to improvements of sampling as measured by the
metrics considered. The improved sampling may arise as a consequence of either enhanced
accuracy with a given time step or due to the possibility of longer time steps.

The AIA scheme can be implemented, without introducing computational overheads in
simulations, in any software package which includes MD and/or HMC. In this study, we
implemented the AIA method in MultiHMC-GROMACS, a modified version of the popular
GROMACS code, and tested the new algorithm in HMC and MD simulations of unconstrained
and constrained dynamics. The tests demonstrated the superiority of the novel scheme over
Verlet, BCSS and the HOH-integrator of Predescu et al., 2012. For a wide range of time steps
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and MD trajectory lengths, AIA outperformed other tested integrating schemes in accuracy
and sampling efficiency. The analysis of integrated autocorrelation functions and folding
evolution demonstrated, for selected sizes of time steps, that AIA possesses up to 5 times
better sampling performance than the other tested schemes.

The idea proposed here may be extended in a natural way to multiple-time step (MTS)
algorithms such as those based on Reversible multiple time scale molecular dynamics (Tuck-
erman, Berne, and Martyna, 1992), the Generalized Hybrid Monte Carlo method (Escribano
et al., 2015), the Stochastic, resonance-free multiple time step algorithm (Leimkuhler, Margul,
and Tuckerman, 2013), etc.

In summary, the proposed Adaptive Integration Approach introduces a rational control on
integrating the equations of motions in molecular dynamics simulations, leading to enhanced
accuracy and performance. To our knowledge, this feature was desired but missing by the
molecular simulation community.
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Chapter 4

Enhancing Performance and Accuracy
of HMC for Simulation of Complex
Systems: Importance Sampling

4.1 Overview

A way of improving sampling performance of HMC methods is to introduce importance sam-
pling as suggested in different works such as (Izaguirre and Hampton, 2004; Sweet et al.,
2009; Akhmatskaya and Reich, 2008; Escribano et al., 2015; Akhmatskaya and Reich, 2011a;
Radivojević, 2016). Taking advantage of the fact that symplectic integrators preserve mod-
ified Hamiltonians more accurately than true Hamiltonians, the authors proposed to sample
with respect to modified/shadow Hamiltonians and to recover the desired distribution by
reweighting. The resulting algorithms are capable of maintaining high acceptance rates and
usually exhibit better efficiency than their predecessor HMC as explained in (Radivojević,
2016; Akhmatskaya and Reich, 2011b; Wee et al., 2008; Escribano et al., 2017). Moreover, in
many applications, using the velocity Verlet integrator is sufficient to provide the number of
accepted proposals adequate for generating good statistics even with the parameter settings
in which HMC may fail.

In this chapter, the general family of HMC methods combined with importance sampling
is presented. We call them Modified Hamiltonian Monte Carlo methods and they are de-
scribed in Section 4.2. In Section 4.3 the Generalized Shadow Hybrid Monte Carlo method,
a particular case of the Modified Hamiltonian Monte Carlo methods, and its particular fea-
tures are summarized. The algorithms presented here will be studied closely in the following
chapters.

4.2 Modified Hamiltonian Monte Carlo methods (MHMC)

The family of modified Hamiltonian Monte Carlo (MHMC) methods consists of HMC algo-
rithms which, instead of sampling from the target canonical distribution

π(q,p) ∝ exp (−βH(q,p)) (4.1)

known up to a multiplicative constant, sample from an auxiliary importance canonical density

π̃(q,p) ∝ exp
(
−βH̃ [k](q,p)

)
. (4.2)
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Here H̃ [k] denotes a truncated modified Hamiltonian to be described later. Such methods take
advantage of two facts in order to enhance sampling efficiency of HMC. First, the closeness of
H̃ [k] to H makes it possible to implement an importance sampling approach and use samples
of π̃ as a means towards computing expectations with respect to π. Second, the fact that the
integrator preserves H̃ [k] better than it does preserve H leads to a more favorable value of
the acceptance probability in the algorithms.

Symplectic integrators for the Hamiltonian dynamics with Hamiltonian function H(q,p),
while not preserving the value of H exactly along the computed trajectory, do preserve exactly
the value of a so-called modified Hamiltonian (cf. (Sanz-Serna and Calvo, 1994; Leimkuhler
and Reich, 2004; Hairer, Lubich, and Wanner, 2006))

H̃ = H + ∆tH2 + ∆t2H3 + · · · ,

where ∆t is the integration time step. For an integrator of order p, H̃ = H +O(∆tp), so that
H2, . . . , Hp vanish. In (4.2), H̃ [k], k > p, is the truncation of H̃ given by

H̃ [k] = H + ∆tpHp+1 + · · ·+ ∆tk−1Hk.

One can define the modified energy error as

∆H̃ [k] = H̃ [k] (Ψ∆t,L(q,p))− H̃ [k](q,p). (4.3)

The expectation of the increment of H in an integration leg satisfies

Eπ[∆H] = O
(
D∆t2p

)
, (4.4)

while
Eπ̃[∆H̃ [k]] = O

(
D∆t2k

)
, (4.5)

with k > p (Beskos et al., 2013) and therefore MHMC algorithms may benefit from high
acceptance rates due to the better conservation of H̃ [k]. Equation (4.5) shows that the en-
ergy error depends on the order of the modified Hamiltonian rather than on the order of an
integrator as in (4.4). Thus, an increase in the dimension D of the simulated system can be
counterbalanced by an increase in the order k of the modified Hamiltonian. This allows for
maintaining high acceptance rates without increasing the order of the integrator.

The objective of a modified Hamiltonian Monte Carlo method is to sample from a distri-
bution with probability density function

π(q) ∝ exp(−βU(q)). (4.6)

This is achieved indirectly through sampling from the modified distribution (4.2). In our
studies we are considering Hamiltonians of the form of (1.2), therefore, under the target
(4.1), the variable position q has the marginal density (4.6).

Since in MHMC methods the samples are generated with respect to the modified or impor-
tance density, the computation of averages with respect to the target density after completion
of the sampling procedure requires reweighting. If Ωn, n = 1, 2, . . . , N , are the values of an
observable along a sequence of states (qn,pn) drawn from π̃ (4.2), the averages with respect
to π (4.1) are calculated as

〈Ω〉 =

∑N
n=1wnΩn∑N
n=1wn

, (4.7)
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where the importance weights are given by

wn = exp
(
−β
(
H(qn,pn)− H̃ [k](qn,pn)

))
.

If the target density π and the importance density π̃ were not close, one would typically
encounter high variability among weights, which would lead to large errors in the expectation,
as many samples would not contribute significantly to the computation of 〈Ω〉.

Let us now describe a generic algorithm for an MHMC method. Given a sample (q,p)
from the joint distribution π̃, the next sample (qnew,pnew) is defined as follows

• Obtain the new momentum p∗ by applying a momentum update procedure that pre-
serves the importance density π̃.

• Generate a proposal (q′,p′) by simulating Hamiltonian dynamics with the initial con-
dition (q,p∗) using a symplectic and reversible numerical integrator.

• Choose the next sample (qnew,pnew) to be (q′,p′) with the probability

α = min

{
1,
π̃(q′,p′)

π̃(q,p∗)

}
. (4.8)

Otherwise set (qnew,pnew) to F(q,p∗), where F(q,p∗) flips the momentum p∗, i.e.,
F(q,p∗) = (q,−p∗).

Since

π̃(q′,p′)

π̃(q,p∗)
= exp

(
−β
(
H̃ [k](q′,p′)− H̃ [k](q,p∗)

))
= exp

(
− β∆H̃ [k](q,p∗)

)
,

one may expect, in view of (4.4)-(4.5), fewer rejections/momentum flips, and thus better
sampling/more accurate dynamics when sampling with H̃ [k] instead of H (Akhmatskaya and
Reich, 2008; Akhmatskaya, Bou-Rabee, and Reich, 2009).

The first methods of the MHMC class were derived for atomistic simulations and differed
from each other in the ways of refreshing the momentum, computing modified Hamiltonians
and integrating the Hamiltonian dynamics. For example, in the (Separable) Shadow Hy-
brid Monte Carlo methods presented in (Izaguirre and Hampton, 2004; Sweet et al., 2009),
a full momentum update is used, whereas in the Targeted Shadow Hybrid Monte Carlo
(Akhmatskaya and Reich, 2006) and the Generalized Shadow Hybrid Monte Carlo (GSHMC)
(Akhmatskaya and Reich, 2008), suitable modifications of the partial momentum update of
Horowitz, 1991 are advocated in order to mimic the dynamics better and enhance sampling.
More recent MHMC methods aim at specific applications, such as multi-scale (MTS-GSHMC)
and mesoscale (meso-GSHMC) simulations in (Escribano et al., 2015) and (Akhmatskaya and
Reich, 2011a), respectively; and computational statistics (Mix&Match Hamiltonian Monte
Carlo) in (Radivojević, 2016; Radivojević and Akhmatskaya, 2017). As demonstrated in
the original papers, for some particular problems, the use of MHMC methods resulted in a
sampling efficiency several times higher than that observed with the conventional sampling
techniques, such as MD, Monte Carlo (MC) and HMC.

In the following section, we focus our attention on a particular case of the MHMCmethods,
the Generalized Shadow Hybrid Monte Carlo. The main features of the algorithm are pro-
vided, namely the modified Hamiltonians used in the importance sampling and its momentum
update procedure. The algorithm is presented in detail.
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4.3 Generalized Shadow Hybrid Monte Carlo (GSHMC)

In this section, we provide the details of the Generalized Shadow Hybrid Monte Carlo
(GSHMC) algorithm that will be extensively used in the following chapters. The GSHMC
algorithm was first introduced by Akhmatskaya and Reich, 2008 for sampling in molecular
simulation. Its purpose was to enable sampling of large complex systems while retaining
dynamical information. This is achieved by employing the modified energy for sampling and
by partially updating momentum. As it has been explained above, the former leads to lower
discretization errors, which implies higher acceptance rates for large system sizes as well as a
reduced negative impact of the undesired momentum flips.

GSHMC proved to be successful in simulations of complex molecular systems in Biology
and Chemistry (Wee et al., 2008; Akhmatskaya and Reich, 2011b; Escribano, Akhmatskaya,
and Mujika, 2013; Akhmatskaya et al., 2013) and has been adapted for multi-scale simu-
lations in MTS-GSHMC (Escribano et al., 2015), mesoscale simulations in Meso-GSHMC
(Akhmatskaya and Reich, 2011a) and solid-state simulations in RSM-GSHMC (Escribano et
al., 2017).

The GSHMC method involves two major steps: the Partial Momentum Monte Carlo
(PMMC) step, and the Molecular Dynamics Monte Carlo (MDMC) step1. The partial mo-
mentum update allows for keeping the dynamical information during the simulation similar
to a stochastic Langevin dynamics simulation, in which the friction coefficient restricts the
noise added to the momentum. A modified Metropolis test is introduced in PMMC step to
preserve the desired modified density π̃. As to the MDMC step, the only difference with the
one of the GHMC method is that in the Metropolis test the modified Hamiltonian is used
instead of the true Hamiltonian.

Now we explain in detail the main features of the GSHMCmethod that make it a particular
case of the MHMC family introduced in Section 4.2.

Modified or shadow Hamiltonians The original GSHMC method in (Akhmatskaya and
Reich, 2008) employs a Lagrangian formulation of modified Hamiltonians of an arbitrary
kth order for the leapfrog integrator. In the case of k = 4, the shadow Hamiltonians
have the form

H̃ [4] =
1

2
Q̇[MQ̇] + U(Q) +

∆t2

24

(
2Q̇[MQ(3)]− Q̈[MQ̈]

)
, (4.9)

where Q(t) ∈ RD is the unique interpolation polynomial of degree four, constructed for
tn, n ∈ {0, L} from a given numerical trajectory {qi}L+2

i=−2 passing through points

Q(ti) = qi, i = n− 2, . . . , n, . . . , n+ 2.

The derivatives of the positions in (4.9) are approximated by the central differences
method (Fornberg, 1988). More details will be presented later on in Section 7.3.1.

More recently, in (Radivojević, 2016) a method for constructing the shadow Hamilto-
nians for splitting integrators (of two, three and four stages) has been presented. The

1The names of the steps are taken from the original paper (Akhmatskaya and Reich, 2008).
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fourth-order modified Hamiltonian has the shape:

H̃ [4](q,p) =
1

2
pTM−1p + U(q) + ∆t2

(
λpTM−1∇qU̇(q) + µ∇qU(q)TM−1∇qU(q)

)
,

(4.10)
where λ and µ are quantities that depend on the parameters of the integrator used. For
the two-stage integrators of the family (3.43) such quantities read as

λ =
6b− 1

24
, µ =

6b2 − 6b+ 1

12
.

For the appropriate choice of b, i.e., b = 1/4, the shadow Hamiltonian (4.10) can be also
used with Verlet. The coefficients λ and µ for the three-stage integrators of the family
(3.27) are

λ =
1− 6a(1− a)(1− 2b)

12
, µ =

6a(1− 2b)2 − 1

24
.

As in the two-stage case, for the appropriate choice of a and b, i.e., a = 1/3 and b = 1/6,
the shadow Hamiltonian (4.10) can be used with Verlet.

Momentum update (PMMC step) Following the ideas of (Horowitz, 1991; Kennedy and
Pendleton, 2001) (see Section 2.2 for details), the momenta in GSHMC are only partially
updated before starting a new Hamiltonian trajectory for generating a next proposal:

p∗ = cosϕ p + sinϕ u

u∗ = − sinϕ p + cosϕ u,
(4.11)

with the angle ϕ ∈ (0, π/2] controlling the amount of introduced noise and the noise
vector u is drawn from the normal distribution N (0, β−1M). A low value of ϕ will result
in p∗ being close to p and the behavior of the algorithm will be close to conventional
MD. For ϕ near π/2, p∗ will be very different from p, just recovering HMC behavior.

The proposed trial momentum p∗ is accepted (p̄ = p∗) with probability

αp = min

{
1,
π̂(q,p∗,u∗)

π̂(q,p,u)

}
, (4.12)

where π̂ is the extended p.d.f.

π̂(q,p,u) ∝ exp
(
− βĤ(q,p,u)

)

corresponding to the extended Hamiltonian

Ĥ(q,p,u) = H̃ [k](q,p) +
1

2
uTM−1u. (4.13)

In case of rejection we set p̄ = p.

This step can be considered as a standard HMC method in which the vector q is fixed,
the vector p plays a role of the “position” and the noise vector u becomes “conjugate
momenta”.

The algorithm of GSHMC can be summarized as follows:
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Algorithm 3 Generalized Shadow Hybrid Monte Carlo
Input: M : mass matrix

∆t: time step
L: number of integration steps
Ψ : discretization scheme
N : number of MC iterations
T : temperature
ϕ ∈ (0, π/2]: noise angle
k: order of the shadow Hamiltonian

1: initialize (q0,p0)
2: for n = 1, . . . , N do
3: calculate the shadow Hamiltonian at (q,p) = (qn−1,pn−1)

PMMC step
4: generate a proposal by the partial momentum update

p∗ = cosϕ p + sinϕ u

u∗ = − sinϕ p + cosϕ u

where u ∼ N (0, β−1M)
5: calculate the shadow Hamiltonian at (q,p∗)
6: calculate the acceptance probability

αp = min



1,

exp
(
−β
(
H̃ [k](q,p∗) + 1

2(u∗)TM−1u∗
))

exp
(
−β
(
H̃ [k](q,p) + 1

2u
TM−1u

))





7: Modified Metropolis test

(q, p̄) =

{
(q,p∗) with probability αp
(q,p) otherwise

MDMC step
8: generate a proposal by integrating Hamiltonian dynamics

(q′,p′) = Ψ∆t,L(q, p̄)

9: calculate the shadow Hamiltonian at (q′,p′)
10: calculate the acceptance probability

α = min
{

1, exp
(
−β
(
H̃ [k](q′,p′)− H̃ [k](q, p̄)

))}

11: Metropolis test

(qn,pn) =

{
(q′,p′) with probability α
F(q, p̄) otherwise

12: compute the weight

wn = exp
(
−β
(
H(qn,pn)− H̃ [k](qn,pn)

))
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13: end for
14: calculate the average of an observable Ω(q,p)

〈Ω〉 =

∑N
n=1wnΩn∑N
n=1wn

The GSHMC method introduces computational overheads compared to HMC/GHMC due
to the two evaluations of the shadow Hamiltonian as well as two Metropolis tests per MC
step. We will come back to this issue later when we deal with the applications of this method.

A choice of parameters, such as ∆t, L, ϕ, can also affect the accuracy and performance of
GSHMC. For instance, if a time step ∆t, used for the integration of the equation of motion,
is chosen to be too short, the computational cost of the simulation increases, while choices of
too long ∆t lead to less accurate integration and, potentially, to higher rejection rates.

Similarly to HMC and GHMC, too small values of L reduce the sampling efficiency. They
also imply more frequent calculations of shadow Hamiltonians, which might introduce signif-
icant computational overheads.

Small values of the angle ϕ are advisable for maintaining the dynamics of the simulated
system. However, too small values may reduce sampling efficiency. On the other hand, too
large values increase momenta rejection rates and do not reproduce the dynamics of the
system. Some choices of ϕ which lead to negative effects are summarized in Table 4.1.

conditions observations consequences
AR ∼ 100%, ϕ ∼ 0 MD behavior poor sampling, thermalization
AR ∼ 0%, ϕ any MD behavior poor sampling, thermalization
AR ∼ 100%, ϕ 6= 0 dynamics are not preserved poor sampling

Table 4.1: Possible negative effects of too small choices of the angle ϕ. AR
stands for the acceptance rate for momenta.

Large orders of the shadow Hamiltonians might be computationally demanding since
higher order derivatives have to be computed (4.9) (Akhmatskaya and Reich, 2008). However,
for some problems, using too small orders may not provide a good approximation of the true
Hamiltonian and, consequently, simulation properties.

4.3.1 Implementation of GSHMC in MultiHMC-GROMACS

The GSHMC method was patented by Fujitsu in the UK and the US (Akhmatskaya, Reich,
and Nobes, 2009; Akhmatskaya, Nobes, and Reich, 2011). Due to IPR issues, there were
difficulties with the implementation of the method in open source software. This changed
in November 2015, when Fujitsu issued the license giving permission to use the patented
method in open source software and permission to Elena Akhmatskaya to implement and use
know-how. The first implementation of GSHMC in the BCAM in-house software package
MultiHMC-GROMACS was presented in (Escribano, Akhmatskaya, and Mujika, 2013). This
is the basis for the current implementation. More details will be provided in Section 7.3.

Two types of modified Hamiltonians are currently available in MultiHMC-GROMACS: the
shadow Hamiltonian in a Lagrangian formulation (4.9) as presented for the Verlet/leapfrog
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integrator in (Akhmatskaya and Reich, 2008) and the modified Hamiltonian (4.10), derived
in (Radivojević, 2016), for two- and three-stage integrators of the families (3.43) and (3.27).

Here we propose an efficient implementation of the modified Hamiltonians in both for-
mulations. We limit our discussion to shadow Hamiltonians for two-stage integrators. The
same ideas were applied to shadow Hamiltonians associated with splitting integrators of more
stages.

In the shadow Hamiltonian (4.10) the Hessian ∇qU̇(q) appears. It is not feasible to
compute it in the molecular simulations. Thus, one can rewrite (4.10) in terms of derivatives
of the position instead of time derivatives as

H̃ [4](q,p) =
1

2
pTM−1p + U(q) + ∆t2

(
λpTM−1Uqq(q)M−1p + µUq(q)TM−1Uq(q)

)
.

Then, using the relations in Appendix B, we obtain

H̃ [4](q,p) =
1

2
pTM−1p + U(q) + ∆t2

(
−λq̇TM ...

q + µq̈TM q̈
)
,

which can also be expressed in terms of derivatives of momenta as

H̃ [4](q,p) =
1

2
pTM−1p + U(q) + ∆t2

(
−λpTM−1p̈ + µṗTM−1ṗ

)
.

Similarly to (Akhmatskaya and Reich, 2008), one can consider

H̃ [4] =
1

2
P[MP] + U(Q) + ∆t2

(
−λP[MP̈] + µṖ[MṖ]

)
, (4.14)

where P(t) ∈ RD is the unique interpolation polynomial of degree four, constructed for tn,
n ∈ {0, L} from the momenta associated to a given numerical trajectory {qi}L+2

i=−2 passing
through points

Q(ti) = qi, i = n− 2, . . . , n, . . . , n+ 2.

The shadow Hamiltonian in (4.14) is more useful in practice than the original (4.9) since
the order of the biggest derivatives is reduced by one: in (4.9) the third derivative of the
position appears while in (4.14) it is reduced to a second derivative of the momenta. This
second derivative can be computed numerically with central differences performing one step
forward and one backward. It is less expensive than in the original implementation where
two steps forward and two backward were required (see Section 7.3.1 for details). Thus, the
computational cost of the computation of shadow Hamiltonians is reduced.

The original implementation of GSHMC in MultiHMC-GROMACS uses the leapfrog inte-
grator in combination with the shadow Hamiltonian (4.9). We introduced in the MultiHMC-
GROMACS package a family of advanced multi-stage integrators compatible with GSHMC,
which we will discuss in detail in Chapters 6 and 7.

4.4 Summary

In this chapter, the family of modified Hamiltonian Monte Carlo (MHMC) methods has been
presented. Importance sampling is used in MHMC as a way of enhancing the sampling perfor-
mance of the traditional Hybrid Monte Carlo algorithms. The special attention has been paid
to a particular MHMC method, the Generalized Shadow Hybrid Monte Carlo (GSHMC), first
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introduced in (Akhmatskaya and Reich, 2008). We summarize GSHMC algorithm, analyze
its performance potential and propose a new formulation and implementation of modified
Hamiltonians for future use with multi-stage integrators.
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Chapter 5

Extension of GSHMC to Various
Statistical Ensembles

Isobaric-isothermal Ensemble

5.1 Introduction

The isobaric-isoenthalpic and isobaric-isothermal ensembles (also called NPH and NPT ensem-
bles, respectively) are the statistical ensembles where the number of particles N , the pressure
P as well as either the enthalpy H or the temperature T are each fixed to particular values.
These ensembles play a fundamental role in chemistry and biology where many processes are
carried out at constant pressure. Mathematical techniques called barostats are developed
to keep constant pressure during a molecular simulation. In the case of NPT ensembles,
barostats are combined with thermostats responsible for temperature maintenance. Numeri-
cal values of physical properties such as enthalpies, entropies and free energies of formation,
redox potentials, equilibrium constants (e.g., acid ionization constants, solubility products,
inhibition constants) and other similar data, are often reported under conditions of constant
temperature and pressure.

In this study, we focus on the Andersen barostat (Andersen, 1980). In this approach, the
system is coupled to a fictitious “pressure bath” using an extended Lagrangian, in which the
volume acts as an additional variable. The coupling mimics the action of an imaginary external
piston on a simulated system and the new variable plays the role of the coordinate of a piston
linked to an external constant reference pressure. The resulting equations of motion produce
trajectories which sample the NPH ensemble. The purpose of this chapter is to explain how
the Andersen barostat can be combined with the GSHMC method in order to allow the
GSHMC simulations in the NPT ensemble. We then propose the efficient implementation of
the resulting NPT-GSHMC method in the GROMACS package and compare its accuracy and
sampling efficiency with those offered by MD and NVT-GSHMC1.

5.2 NPT-GSHMC

5.2.1 Formulation

The NPT-GSHMC method has been already mathematically formulated by Akhmatskaya and
Reich, 2008. The method combines the Generalized Shadow Hybrid Monte Carlo (GSHMC)

1For simplicity, in this chapter we will use the NVT-GSHMC notation to refer to the GSHMC method
sampling in the NVT ensemble.
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methodology (Akhmatskaya and Reich, 2008) with the Andersen barostat (Andersen, 1980).
In this section, we summarize the major steps that should be taken to extend the GSHMC
algorithm to simulation at constant pressure.

The GSHMC method, as a modification of GHMC, consists of two alternating steps:
(i) a generation of short molecular dynamics trajectories in the NVE ensemble, i.e., at a
constant number of particles N, a constant volume V and a constant energy E; and (ii) a
partial momentum update preceding each molecular dynamics trajectory. The decision on
accepting/rejecting a proposal in steps (i) and (ii) is made using the appropriate Metropo-
lis function with the true Hamiltonian replaced by the shadow Hamiltonian, H̃(q,p). The
shadow Hamiltonian used here is obtained from a truncated Taylor expansion of the usual
Lagrangian following the standard Legendre transform (Akhmatskaya and Reich, 2008). In
this chapter, we will use the fourth-order shadow Hamiltonian. The objective of the GSHMC
method is to reduce the number of rejected trajectories through the use of shadow Hamilto-
nians while retaining dynamical information by only partially refreshing momenta. We recall
that the GSHMC algorithm was summarized in Algorithm 3.

The following modifications are required to extend this methodology to simulations in the
NPT ensemble. First, the MD simulations have to be performed in the NPE ensemble rather
than in the NVE ensemble. If the barostat chosen in the NPE dynamics leads to the modifica-
tion of Hamiltonian, then the shadow Hamiltonians will be different from those suggested for
simulations in NVT ensembles and have to be derived specifically for this case. The integrator
used for solving the associated modified equations of motions has to be symplectic as in the
original GSHMC method. Below we briefly show how all those problems were addressed in
the new NPT-GSHMC method.

The Andersen barostat has been chosen for maintaining the pressure constant in MD
simulations. The Andersen barostat is based on the introduction of a new extended variable,
which physical meaning is the (dynamic) value of the volume of the simulation box. The
extended variable is an additional degree of freedom and it must be included in the Lagrangian
to derive the new equations of motion. It is also used as a rescaling factor for the positions.
Following Andersen’s terminology, we refer to the extended variable as the piston.

More specifically, if we write the classical equations of motion (1.3) in dot notation,

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(5.1)

the coordinate vector q ∈ R3D is replaced by a scaled vector d ∈ R3D defined as

d = q/V 1/3,

where V is the volume of the simulation box.
As the volume V is allowed to change in order to keep constant pressure, we introduce r

as the dynamic value of the volume.
The extended Lagrangian density then reads as

L(d, r, ḋ, ṙ) =

{
1

2
r2/3ḋ · [M ḋ]− U(r1/3d) +

µ

2
ṙ2 − αr

}
, (5.2)

where α is the external pressure acting on the system and µ > 0 is the mass of the piston.
The last two terms of (5.2) are in fact the kinetic and potential energies associated with the
piston.
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The Hamiltonian H, derived from (5.2) through Legendre transformation, is given by

H = ḋ · ∇ḋL+ ṙ ∇ṙL − L =
1

2
pq · [M−1pq] + U(q) +

1

2µ
p2
r + αr, (5.3)

where
pd = r2/3M ḋ, pr = µṙ (5.4)

are the conjugate momenta in the NPE formulation, whereas pq = M q̇ = pd/r
1/3 is the NVE

momentum vector (5.1). The associated NPE equations of motion now can be obtained using
(5.1), (5.3) and (5.4).

A time-reversible and symplectic method for integrating the NPE equations of motion is
suggested by Akhmatskaya and Reich, 2008 and summarized below:

For a time step ∆t, we can define the finite difference approximation for the time deriva-
tives ḋ as

δ∆td
i =

di+1 − di

∆t
.

Then, the extended Lagrangian in (5.2) can be approximated discretely with

L∆t({di}, {ri}) =
∑

i

L∆t(di, ri, δ∆tdi)∆t,

where

L∆t(di, ri, δ∆tdi)∆t =
1

2

{
(ri)2/3δ∆tdi · [Mδ∆tdi]−

[
U((ri)1/3d) + U((ri+1)1/3d)

]

+
µ

2

(
ri+1 − ri

∆t

)2

− (αri + αri+1)

}
∆t.

(5.5)

Then, the discrete approximation in (5.5) is used as a generating function (Hairer, Lubich,
and Wanner, 2006). Given (di, ri,pid, p

i
r), we get di+1 and ri+1 from

pid =
1

2

[
(ri+1)2/3 + (ri)2/3

]
M

(
di+1 − di

∆t

)
+

∆t

2
∇dU((ri)1/3di) (5.6)

pir = µ

(
ri+1 − ri

∆t

)
− ∆t

6
(ri)−1/3

(
di+1 − di

∆t

)
·
[
M

(
di+1 − di

∆t

)]

+
∆t

2

[
∇rU((ri)1/3di) + α

]
.

Then, to complete one step, the values of pi+1
d and pi+1

r are explicitly obtained from

pi+1
d =

1

2

[
(ri+1)2/3 + (ri)2/3

]
M

(
di+1 − di

∆t

)
− ∆t

2
∇dU((ri+1)1/3di+1)

pi+1
r = µ

(
ri+1 − ri

∆t

)
+

∆t

6
(ri)−1/3

(
di+1 − di

∆t

)
·
[
M

(
di+1 − di

∆t

)]

− ∆t

2

[
∇rU((ri+1)1/3di+1) + α

]
.

(5.7)
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Finally, the expression for the fourth-order shadow Hamiltonian associated with the real
Hamiltonian H is (cf. (Akhmatskaya and Reich, 2008))

H̃ [4] = H +
∆t2

24

{
2µṘR(3) − µR̈2 + 2R2/3Ḋ · [MD(3)]−R2/3D̈ · [MD̈]

}

+
∆t2

12

{(
4R̈

3R1/3
− 4Ṙ2

9R4/3

)
Ḋ · [MḊ]− 2

3R1/3
ṘḊ · [MD̈]

}
,

(5.8)

where R(t) and D(t), analogously to Q(t) in (4.9), are the interpolation polynomials along
numerical trajectories {ri} and {di}, respectively.

It should be noticed here that the introduction of the Andersen barostat in GSHMC leads
also to the modification of the partial momentum update step, namely, updating the piston
momentum should be also included:

p∗r = cosϕ pr + sinϕ ur

u∗r = − sinϕ pr + cosϕ ur
(5.9)

where ur ∼ N (0, β−1µ).
The complete algorithm for the NPT-GSHMC method now can be summarized as follows:

Algorithm 4 NPT Generalized Shadow Hybrid Monte Carlo
Input: M : mass matrix

∆t: time step
L: number of integration steps
Ψ : discretization scheme
N : number of MC iterations
T : temperature
ϕ ∈ (0, π/2]: noise angle
k: order of the shadow Hamiltonian
α: external pressure
µ: mass of the piston

1: initialize (d0, r0,p0
d, p

0
r)

2: for n = 1, . . . , N do
3: calculate the shadow Hamiltonian at (d, r,pd, pr) = (dn−1, rn−1,pn−1

d , pn−1
r )

PMMC step
4: generate a proposal by the partial momentum update

p∗ = cosϕ p + sinϕ u

u∗ = − sinϕ p + cosϕ u

p∗r = cosϕ pr + sinϕ ur

u∗r = − sinϕ pr + cosϕ ur

where u ∼ N (0, β−1M) and ur ∼ N (0, β−1µ)
5: calculate the shadow Hamiltonian at (d, r,p∗, p∗r)
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6: calculate the acceptance probability

αp = min



1,

exp
(
−β
[
H̃ [k](d, r,p∗d, p

∗
r) + 1

2(u∗)TM−1u∗ + 1
2µ(u∗r)

2
])

exp
(
−β
[
H̃ [k](d, r,pd, pr) + 1

2u
TM−1u + 1

2µu
2
r

])





7: Modified Metropolis test

(d, r, p̄d, p̄r) =

{
(q, r,p∗d, p

∗
r) with probability αp

(q, r,pd, pr) otherwise

MDMC step
8: generate a proposal by integrating Hamiltonian dynamics

(d′, r′,p′d, p
′
r) = Ψ∆t,L(d, r, p̄d, p̄r)

9: calculate the shadow Hamiltonian at (d′, r′,p′d, p
′
r)

10: calculate the acceptance probability2

αq = min
{

1, exp
(
−β
(
H̃ [k](d′, r′,p′d, p

′
r)− H̃ [k](d, r, p̄d, p̄r)

))}

11: Metropolis test

(dn, rn,pnd, p
n
r ) =

{
(d′, r′,p′d, p

′
r) with probability αq

F(d, r, p̄d, p̄r) otherwise

12: compute the weight

wn = exp
(
−β
(
H(dn, rn,pnd, p

n
r )− H̃ [k](dn, rn,pnd, p

n
r )
))

13: end for
14: calculate the average of an observable Ω(d, r,pd, pr)

〈Ω〉 =

∑N
n=1wnΩn∑N
n=1wn

It has to be remarked that the flip function F in step 11 is an extension of that in (2.14)
to include the piston momenta:

F(d, r,pd, pr) = (d,−pd, r,−pr).

A change of variable option aiming to increase a momenta acceptance rate is implemented
in this algorithm as explained by Akhmatskaya and Reich, 2008.

At the end of simulation, reweighting of expectation values is performed as in (4.7) to
recover the Boltzmann distribution.

In the next section, the implementation of this algorithm is explained in detail.
2Note that in this chapter we denote the acceptance probability of the MDMC step as αq to avoid confusions

with the external pressure α.
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5.2.2 Implementation

We implemented the NPT-GSHMC method in the modified MultiHMC-GROMACS software
package. Previously, the NVT-GSHMC had been implemented in MultiHMC-GROMACS
(Escribano, Akhmatskaya, and Mujika, 2013), which helped us to perform a straightforward
comparison of the accuracy and performance of both Hybrid Monte Carlo methodologies.

The Generalized Shadow Hybrid Monte Carlo (GSHMC) algorithm, provides a rigorous
method for performing constant temperature simulations and can be served as a thermostat
itself. To achieve a constant temperature and constant pressure simulation, one also needs
to have the Andersen barostat at hand as well as the specific features of the NPT-GHSMC
method implemented. No additional thermostat is required.

The Andersen barostat is not available in the released version of GROMACS though the
MTTK, an Andersen-based barostat (Martyna et al., 1996), has been implemented there.
This barostat must be combined with a Nosé-Hoover thermostat for running simulations in
the NPT ensemble and it does not allow using a different thermostat, such as GSHMC.
Thus, in principle, it could not serve our purposes, and it was necessary to implement the
original formulation of Andersen barostat in MultiHMC-GROMACS. In practice, it means the
implementation of a new symplectic and time-reversible integrator (5.6)-(5.7). For simplicity
and consistency, the new integrator was introduced as a modification of the existing velocity
Verlet algorithm.

Other modifications included:

• Evaluation of an NPT shadow Hamiltonian (5.8).

• Adding a new momentum update procedure (5.9), specific to the NPT-GSHMC algo-
rithm.

• Adding new options to the .mdp configuration file.

Symplectic integrator: The symplectic time-reversible integrator has been extended
to the case of the Andersen equations of motion. The updating scheme is the following (for
further details the reader can consult (Kolb and Dünweg, 1999)).

We begin with performing a half step for the velocities:

• q̇i+1/2 = q̇i +
∆t

2

1

M
F i, with the force F i evaluated at the position qi,

• ḋ
i+1/2

=
q̇i+1/2

(ri)1/3
,

• ṙi+1/2 = ṙi +
∆t

2

1

µ
(P − α), with the pressure P evaluated, using the Virial theorem,

taking the old positions qi, the old volume ri but the already updated velocities q̇i+1/2.

Then perform a full step for the positions:

• ri+1/2 = ri +
∆t

2
ṙi+1/2,

• qi+1 = qi + ∆t
(ri)2/3

(ri+1/2)2/3
q̇i+1/2,

• di+1 = di + ∆t ḋ
i+1/2

,
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• ri+1 = ri+1/2 +
∆t

2
ṙi+1/2.

Now two rescaling steps follow:

• q̇i+1/2 = q̇i+1/2 (ri)1/3

(ri+1)1/3
,

• qi+1 = qi+1 (ri+1)1/3

(ri)1/3
.

And finally we complete the full step for the velocities:

• ṙi+1 = ṙi+1/2 +
∆t

2

1

µ
(P − α), with the pressure P evaluated taking the new positions

qi+1, the new volume ri+1 but the half-step velocities q̇i+1/2,

• q̇i+1 = q̇i+1/2 +
∆t

2

1

M
F i+1, with the force F i+1 evaluated at the position qi+1,

• ḋ
i+1

=
q̇i+1

(ri+1)1/3
.

Since in the updating scheme above the dynamic value of volume q is changing, one has to
make sure that the simulation box is also changing to fit this volume. In the code, it is done
by re-scaling the box dimensions with the new value of the dynamic volume in the function
update_box(). This implementation only applies to the case of a simulation box changing
isotropically.

It is important to mention that the values of pressure and forces have to be updated every
time step to make the integration scheme (5.6)-(5.7) working. This is done in the original
version of the GROMACS code. However, the frequency of the pressure updates has to be
specified by a user in the GROMACS parameter file. For using the NPT-GSHMC within
the GROMACS code, such a parameter should always be set to 1. Such a choice does not
introduce a critical computational overhead as can be seen from the numerical tests in the
following section.

It is also noteworthy that GROMACS works with velocities instead of momenta. That
is why the theoretical formulation (5.4) is slightly modified in the above scheme taking into
account the relation between velocities and momenta.

The current version of the GROMACS software offers the velocity Verlet integra-
tor. The new integrator (5.6)-(5.7) is placed in the same part of the code. The both
GROMACS routines for updating positions and velocities need to be modified in the function
update_coords(), but the modifications are straightforward, mainly related to a change of
parameters of the subroutines.

There is also another important issue to consider: in GROMACS, when dealing with
pressures, a rescaling factor is used (PRESFAC in the code). It has to be included in the time
integration of equations of motion for the volume q, and in the calculation of the additional
energy terms.

Shadow Hamiltonian: In order to introduce the NPT Shadow Hamiltonians (5.8)
in the MultiHMC-GROMACS code, the shadow Hamiltonian implemented by Escribano,
Akhmatskaya, and Mujika, 2013 can be taken as a starting point (details will be provided
in Section 7.3). The shadow Hamiltonian appears in the subroutine shadow() as in the
NVT implementation (cf. Section 7.3). As stated in Section 5.2.1, in the NPT ensemble
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one has to consider a different shadow Hamiltonian (5.8) where the extended variable (the
piston volume) introduces new terms. However, this modification does not entail a significant
complexity since the NPT shadow Hamiltonians are calculated in a similar way as the NVT
shadow Hamiltonians. Both types of shadow Hamiltonians are currently available in the code
and can be chosen at runtime according to the parameters of the simulation. Thus, a user
does not have to specify them.

Momentum refreshment: In comparison with the original GSHMC, the momentum
refreshment procedure for the NPT-GSHMC also requires the update of the momentum pr
for the piston. This is a relatively simple extension of the original implementation. The
algorithmic details can be found in Section 5.2.1.

Parameter file: GROMACS needs to receive two new parameters through the .mdp
parameter file, the piston mass µ and the reference pressure α. As it was stated before, when
tuning the parameter file, pressure updates have to be specified to be done for every time step.
Additionally, the Andersen barostat has to be recognized as an isotropic pressure coupling
method. These modifications were done in the standard way described in the GROMACS
Developer’s Guide. The specific parameters in the .mdp file look like this:

; Andersen barostat =
Pcoupl = Andersen; Andersen / no
Pcoupltype = isotropic; isotropic
mu_mass = 100; any positive rational
alpha_press = 1; any positive rational

Details on GSHMC input parameters can be found in Section 7.3.

5.3 Results

We tested the NPT-GSHMC method by comparing it with the NVT-GSHMC implementation
(Escribano, Akhmatskaya, and Mujika, 2013) and NPT-MD using the v-rescale thermostat
(Bussi, Donadio, and Parrinello, 2007), the Parrinello-Rahman barostat (Parrinello and Rah-
man, 1981) and the position leapfrog integrator (as required by the chosen barostat). The
same code, MultiHMC-GROMACS, with the appropriate choice of parameters for each case
was used for running all three simulations.

As testing systems, we chose the coarse-grained toxin and the atomistic villin. Both
systems have been described in Section 3.5.2. In the coarse-grained system, integration time
step was set to 20 fs for optimal accuracy and 30 fs for optimal sampling. Both Coulomb and
van der Waals interactions were defined as in Section 3.5.2. For the NPT-GSHMC particular
case, we used the angle ϕ equal to 0.32 and the trajectory length L equal to 100. The reference
temperature was 310 K. The piston mass µ was set to 100 and the reference temperature α was
1 bar. The integration time step for villin was set to the standard 1 fs in all cases. Coulomb
and van der Waals interactions and periodic boundary conditions were considered as in the
previous system. However, for villin, the hydrogen bonds were converted to constraints and
the constraint algorithm used was LINCS (Hess et al., 1997). The specific NPT-GSHMC
parameters were the same as taken for the coarse-grained system but with the angle ϕ equal
to 0.4 and the reference temperature equal to 300 K.
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5.3.1 Accuracy

In order to test the accuracy of the new method, we calculate averages for several thermody-
namic observables in similar simulations with the three methods. As it was discussed before
(see Section 4.2), the simulations involving the GSHMC method need to reweight statistical
averages to compensate for the disturbance introduced by the use of shadow Hamiltonians.

In the case of the toxin system, 30 ns simulations were performed with an integrator time
step of 20 fs, with the target temperature of 310 K and the target pressure of α=1 bar. It
should be noted that the efficiency and precision of all three methods can vary according to
several tuning parameters. In Table 5.1 typical results for all methods are shown with a set
of parameters chosen for optimizing the accuracy of results.

averages acc. rates
simulation d (nm) T (K) P (bar) Upb (kJ mol−1) Ar(%) Ap(%)

NPT-GSHMC 2.3±0.4 308.5±0.3 1.2±0.5 -16.3±2.0 97 83
NVT-GSHMC 2.4±0.3 308.4±0.1 – -14.9±0.6 100 85
NPT-MD 2.4±0.4 309.9±0.1 0.6±0.4 -15.8±0.2 – –

Table 5.1: Toxin. Statistical averages.

We choose to monitor four properties of the toxin system: (i) the distance d traveled by
the toxin from the centre of the membrane to the preferred location at the surface of the
membrane; (ii) the temperature T ; (iii) the pressure P ; and (iv) the Coulomb energy between
the protein and the bilayer Upb. For the GSHMC methods, the reweighted averages are given.
All calculated properties are in a good agreement. Error estimates correspond to the standard
deviation as provided by GROMACS.

The Coulomb potential energy between the protein and the bilayer has been measured
before for similar coarse-grained simulations, with resulting values close to -16 kJ/mol (Wee
et al., 2008), which is consistent with our results (see Table 5.1). The Andersen barostat
shows slightly more accurate pressure than the Parrinello-Rahman in our tests. These par-
ticular systems exhibit pressure oscillations of considerable amplitude, so we consider that
the reported values for both barostats are sufficiently accurate. The NVT-GSHMC has no
pressure coupling, so the measured average is disregarded.

Table 5.2 shows the test results for the villin system. Simulations were run for 1 ns with
a time step of 1 fs, the target temperature of 300 K and the reference pressure of 1 bar.
The observed average temperatures, T , and dihedral potential energies, Udih, agree well for
all simulation methods. Similar average values of pressure are achieved with both NPT
simulations, NPT-MD and NPT-GSHMC.

averages acc. rates
simulation T (K) P (bar) Udih (kJ mol−1) Ar(%) Ap(%)

NPT-GSHMC 299.5±0.7 1.4±0.9 276±1 95 94
NVT-GSHMC 299.9±0.9 – 276±3 100 97
NPT-MD 299.9±0.7 1.7±0.4 282±1 – –

Table 5.2: Villin. Statistical averages.
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5.3.2 Sampling

The GSHMC method and the Andersen barostat have several tuning parameters that can
affect their performance. The two most important parameters in the case of GSHMC are the
length of the MD trajectories L and the angle in the partial momentum update procedure ϕ.
When the length of trajectories is too long, the gain over MD in terms of sampling efficiency is
less noticeable. But if the length is too short, then the computational time spent on frequent
calculations of shadow Hamiltonians becomes too long. The value of ϕ must be between 0
and π/2. If it is too small, then the temperature coupling might be too weak, but larger
values interfere with the dynamics and can yield very low acceptance rates. The optimal
values for L and ϕ are usually found through trial and error. Other parameters such as a
time step used in the integrator, the order of shadow Hamiltonians or the type of momentum
flip upon rejection are discussed elsewhere (see for instance (Escribano, Akhmatskaya, and
Mujika, 2013; Wagoner and Pande, 2012)).

The Andersen barostat introduces two additional parameters: the mass of the piston µ
and the reference or target pressure α. The reference pressure is used in the integrator for
updating the piston velocity (see Section 5.2.2), as well as in the additional potential energy
term in the Hamiltonian (5.3). When simulating biological experiments, this pressure is
commonly set to 1 bar. µ represents the inertial mass of the extended coordinate and has
a strong influence on the performance of the barostat. Figure 5.1 shows the effect of µ on
the amplitude and frequency of the total energy of the villin system. Small piston masses
can lead to wild oscillations in volume that could not only cause stability problems but also
keep simulation from reaching its target pressure. But if the piston mass is too big, then the
volume of the box barely changes and an NVT simulation is recovered with a pressure that
very slowly tends to α. For a complete discussion on an optimal choice of µ see (Andersen,
1980; Kolb and Dünweg, 1999).
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Figure 5.1: Villin. Total energy oscillations using NPT-GSHMC with varying
piston masses µ.

One of the most important advantages of using GSHMC instead of standard MD is the
noticeable improvement in sampling efficiency (Akhmatskaya and Reich, 2008; Escribano,
Akhmatskaya, and Mujika, 2013; Wee et al., 2008). The distance traveled by the toxin
towards the POPC bilayer in the coarse-grained system was measured to test the efficiency
gain of the new NPT-GSHMC method. In Figure 5.2 the time evolution of this distance and
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the corresponding autocorrelation functions are shown for the three methods. In general,
GSHMC methods are expected to decorrelate faster and hence sample better. In this case,
both NVT and NPT-GSHMC arrive together at the ∼2.48 nm distance (the position of the
bilayer) in approximately half the time required by NPT-MD. This performance is consistent
with the previous work (Wee et al., 2008).
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Figure 5.2: Toxin. Comparison for the time evolution of the distance traveled
by the toxin towards the membrane bilayer with the three different methods
(left) and the autocorrelation function for said distance (right).

A better way to measure the sampling efficiency is to calculate the integrated autocorre-
lation function IACF for distance d during the equilibration phase of the simulation (see for
example (Kennedy and Pendleton, 2001)). Lower values of IACF indicate lower correlations
and hence better sampling. The values obtained for this case with different simulation meth-
ods are shown in Table 5.3, which correspond to the IACF for the first 5000 ps of simulation.
In this particular case, the integrator time step was set to 30 fs for optimal sampling efficiency.
It is clear that both GSHMC methods outperform MD.

NPT-GSHMC NVT-GSHMC NPT-MD

IACF 1.9 4.7 21.4

Table 5.3: Toxin. Integrated autocorrelation for toxin-bilayer distance.

Another way to test the sampling efficiency of the new method is to plot Ramachan-
dran histograms (Ramachandran, Ramakrishnan, and Sasisekharan, 1963) for the amino acid
residues in the villin system. These histograms show how the φ−ψ phase space of a particular
residue is explored during the simulation. As a representative example, Figure 5.3 compares
the resulting plots for the Met13 residue extracted from a 1 ns simulations using the all three
simulation techniques. One can immediately see that both GSHMC methods are exploring a
larger portion of the configurational space compared with MD. Most other residues show a
similar improvement in sampling efficiency and several examples have been included in the
Supplementary Material of (Fernández-Pendás et al., 2014).
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Figure 5.3: Villin. Ramachandran plots for the Met13 dihedral. Left: NPT-
MD; Middle: NPT-GSHMC; Right: NVT-GSHMC

As a final comparison, it is necessary to weight the computational expense introduced by
the Andersen barostat. A way to do so is by comparing the computational times employed to
complete a 30 ns simulation of the toxin system and a 1 ns simulation of the villin system using
an 8 processor node. The results, in this case, confirm what was measured previously for NVT-
GSHMC implementation (Escribano, Akhmatskaya, and Mujika, 2013). The NVT-GSHMC
method introduces on average an additional 2-4% computational overhead compared to the
NPT-MD simulation. The NPT-GSHMC takes approximately the same computational time
as NVT-GSHMC, which comes to show that the Andersen barostat implementation introduces
almost no overhead and is fully compatible with the MPI parallelization in GROMACS. See
Table 5.4 for a comparison of computational times.

toxin villin
simulation time (s) ns/day time (s) ns/day

NPT-GSHMC 5766 749 11222 7.69
NVT-GSHMC 5747 751 11550 7.48
NPT-MD 5645 765 11087 7.79

Table 5.4: Comparison of computational times for all methods.

5.4 Conclusions

The GSHMC method has been adapted to the NPT ensemble using an Andersen barostat
and implemented in the in-house software MultiHMC-GROMACS. The implementation has
been tested against the NPT-MD and NVT-GSHMC simulation methods available in the
MultiHMC-GROMACS suite (Escribano, Akhmatskaya, and Mujika, 2013). NPT-GSHMC
shows the same level of accuracy as demonstrated by NPT-MD and NVT-GSHMC in the
calculation of the thermodynamic properties of the tested systems, such as the toxin in a
POPC bilayer and the protein villin at constant pressure and temperature.

The NPT-GSHMC method has also been proven to achieve a comparable sampling effi-
ciency to NVT-GSHMC, as was expected from the theoretical formulation. The introduction
of a barostat does not limit the benefits over MD that were previously obtained by the use of
NVT-GSHMC.
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The method does not introduce any noticeable computational load and is fully compatible
with the highly optimized parallelization for multiple processors and threads already available
in GROMACS.

In summary, all advantages offered by the Generalized Shadow Hybrid Monte Carlo meth-
ods, such as rigorous temperature control, sampling efficiency, are now available in MultiHMC-
GROMACS for simulation of real-life experiments at constant pressure and constant temper-
ature without a loss of computational efficiency.

Grand Canonical Ensemble

5.5 Introduction

In the Grand Canonical (GC) ensemble the chemical potential µ, the volume V and the
temperature T are fixed while the number of particles is allowed to change. The GC ensemble
describes the possible states of a system of volume V surrounded by a large “open” heat bath,
meaning that both heat and matter can be transported across the walls of the system. Thus,
the thermodynamic variables that characterize the system are V , T and µ. That is why the
GC ensemble is also called µVT. The number of particles D is not fixed, and it is allowed to
fluctuate around a mean value D̄. The GC ensemble is as useful as the isothermal-isobaric
and canonical ensembles are; numerous physical situations correspond to a system in which
the particles number varies. These include liquid-vapor equilibrium, capillary condensation,
and, notably, molecular electronics and batteries, in which a device is assumed to be coupled
with an electron source. In computational molecular design, one seeks to sample a complete
“chemical space” of compounds in order to optimize a particular property (e.g., binding energy
to a target), which requires varying both the number and chemical identity of the constituent
atoms.

Many Monte Carlo (MC) methods for simulation in the GC ensemble have been proposed
in the literature (Norman and Filinov, 1969; Adams, 1974; Rowley, Nicholson, and Parsonage,
1975; Yao, Greenkorn, and Chao, 1982) since MC is the easiest approach for dealing with the
change of the number of particles. The useful summary of MC in the GC ensemble can be
found in (Allen and Tildesley, 1989). Later, molecular dynamics (MD) has been adapted to
sampling in the GC ensemble (Cağin and Pettitt, 1991; Lo and Palmer, 1995).

In this chapter we propose three novel algorithms that sample the GC ensemble by com-
bining generated MD trajectories with Metropolis Monte Carlo steps. Thus, they belong to
the class of Hybrid Monte Carlo methods.

First, we formulate a GC version of the original Hybrid Monte Carlo (HMC) (Duane et al.,
1987). Then we extend it to GC Generalized Hybrid Monte Carlo (GHMC) (Horowitz, 1991;
Kennedy and Pendleton, 2001) and GC Generalized Shadow Hybrid Monte Carlo (GSHMC)
(Akhmatskaya and Reich, 2008). All these methodologies were originally formulated in the
NVT ensemble and later extended to NPT (cf. Section 5.2.1). However, this is the first time
when the three methodologies are extended to the µVT ensemble.

Simulation in the grand canonical ensemble are performed in a box which is allowed to
exchange particles with a reservoir. The box contains real particles whereas the reservoir is
full of fictitious or ghost particles. In the proposed approach, we allow migrating the reservoir
(or ghost) particles to the box to become real. The placement is done by a simple rescaling
of the positions they had in the reservoir. This corresponds to an insertion of a new particle.
Similarly, the box particles moving to the reservoir become fictitious and their positions are
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rescaled accordingly. This corresponds to a deletion of an already existing particle. Thus, an
insertion or deletion of any particle is equivalent to an exchange between the ghost and the
real particles, meaning that a particle changes from one state to the other. The algorithms
proposed here are limited to simulations of either homogeneous systems formed by one kind of
particles, or such systems in which only one species is allowed to exchange with the reservoir.
The ghost particles have the same mass and holonomic constraints as the real exchangeable
particles, but they interact neither with each other nor with the real particles.

The way that the new HMC algorithms sample the GC ensemble has been inspired by
the ideas of a seminal work by Norman and Filinov, 1969. This manuscript was originally
published in the Soviet Union and hardly known in the western world at that time. It
took some time before the new works exploring these ideas appeared (Adams, 1975; Rowley,
Nicholson, and Parsonage, 1975; Yao, Greenkorn, and Chao, 1982). All these algorithms are
pure MC methods, where no dynamics are performed. However, as will be shown later, some
useful concepts introduced in those papers, such as a move definition or acceptance rules
can be successfully applied to the new hybrid methods. Moreover, the drawbacks associated
with the above Monte Carlo approaches can be reduced in the corresponding Hybrid Monte
Carlo methods. Thus, the “memory” effect spotted in the approach of Rowley, Nicholson, and
Parsonage, 1975 by Barker and Henderson, 1976 can be lessened dramatically by replacing
local MC moves with global (larger) MD induced moves as suggested in Hybrid Monte Carlo
methods. Indeed, the “memory” effect is caused by a high probability for a deleted particle
become real again, due to its close location to the previous “real” position. Performing a
global move should reduce such a probability significantly.

In the algorithms presented here, two kinds of transitions of states are considered: (ii)
transitions in which the positions and momenta are changed, but the number of real particles
is kept constant; and (ii) transitions in which the number of particles as well as the positions
and momenta are changed. The first kind of moves is performed as in the canonical HMC
methods (Duane et al., 1987; Horowitz, 1991; Kennedy and Pendleton, 2001; Akhmatskaya
and Reich, 2008) where one runs molecular dynamics trajectories with a periodic resampling
of the momenta. However, in (2) the number of particles changes during the MD trajectory.
Thus, special attention has to be paid to the calculation of the Hamiltonian that, in this
case, will be time-dependent (Stern, 2007). A particle to be inserted/deleted is chosen ran-
domly among all the possibilities. The two kinds of transitions are accepted or rejected with
Metropolis tests that ensure the sampling in the grand canonical ensemble. Details about the
acceptance tests and the moves can be found in the following sections.

The chapter is structured as follows. In Section 5.6 we provide a short introduction
into the relevant thermodynamic concepts where some useful and well-known quantities of
interest are derived. References to the literature are also supplied. In Section 5.7.1 and
5.7.2 we explain in detail the main components of the Grand Canonical Hybrid Monte Carlo
(GC-HMC) algorithm, namely the moves (Section 5.7.1) and the corresponding Metropolis
tests (Section 5.7.2). The GC Hybrid Monte Carlo algorithm is presented in Sections 5.7.3.
Its extension to a GC Generalized Hybrid Monte Carlo (GC-GHMC) algorithm, in which a
partial momentum update procedure is used, is presented in Section 5.7.4. In Section 5.7.5,
the importance sampling is introduced in the GHMC to construct a GC Generalized Shadow
Hybrid Monte Carlo (GC-GSHMC) algorithm. Numerical results are shown in Section 5.8.
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5.6 Thermodynamic considerations

We consider a D particles system with the vector of positions q ∈ R3D and the vector of
momenta p ∈ R3D. The Hamiltonian of the system has the usual separable form H(q,p) =
K(p) + U(q), where K represents the kinetic energy and U the potential energy.

The canonical partition function in a volume V at temperature T is (cf. (Hill, 1960))

Q =
1

D!h3D

∫

V

∫ ∞

−∞
e−βH(q,p)dq dp,

where h is the Planck constant and β = (kBT )−1 with kB being the Boltzmann constant.
As in Section 2.1, if the integration over momenta is performed, then the canonical partition
function becomes (2.1). In the absence of intermolecular forces, i.e., in the ideal gas scenario
where U(q) = 0, the partition function in (2.1) would read as

Q =
V D

D!Λ3D
.

For the same system, the grand canonical partition function is given by (cf. (Hill, 1960))

Ξ(µ, V, T ) =
∞∑

D=0

eβµDQ =
∞∑

D=0

1

D!h3D

∫

V

∫ ∞

−∞
eβµD−βH(q,p)dq dp

=
∞∑

D=0

1

D!Λ3D

∫

V
eβµD−βU(q)dq.

(5.10)

Thus, the probability of observing the system in a state ΓD that has D particles with
positions q and momenta p is given by

π(ΓD) =
1

Ξ

1

D!h3D
exp (βµD − βH(q,p)) (5.11)

and the average of an observable F in the grand canonical ensemble is computed as (cf. (Hill,
1956))

〈F (D,q,p)〉µV T =
1

Ξ

∞∑

D=0

eβµD

D!h3D

∫

V

∫ ∞

−∞
F (D,q)e−βH(q,p)dq dp.

If one wants to study an observable F (D,q) which is a function of the dimension D and the
positions only, its ensemble average becomes

〈F (D,q)〉µV T =
1

Ξ

∞∑

D=0

eβµD

D!Λ3D

∫

V
F (D,q)e−βU(q)dq. (5.12)

If volume V is subdivided into a large number ofK identical elementary cells, the configuration
integral in (5.12) can be replaced by a sum, as dq approaches the size of such cells (Rowley,
Nicholson, and Parsonage, 1975; Yao, Greenkorn, and Chao, 1982).

Let us assume that the volume V ′ is much larger than a simulation box of volume V , i.e.,
V ′ � V (Figure 5.4). Let Dtot be the total number of particles considered for the simulation.
Only D of them are real and placed in the box of volume V . A number Dtot can and should
be chosen big enough to ensure that there will never be lack of particles during a simulation
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and that the sum in the partition function in (5.10) can be properly defined. We propose
the change of variables ri = qi/V0 for any particle i in a volume V0 = {V, V ′}. Then, it is
convenient to switch to these reduced coordinates r = (r1, r2, . . . , rD, . . . , rDtot), such that
the positions of the particles in the boxes of volume V and volume V ′ range from 0 to 1:

ri = qi/V ∀i ∈ [1, D], rj = qj/V
′ ∀j ∈ [D + 1, Dtot]. (5.13)

V ′

V

Figure 5.4: Real particles in volume V are surrounded by reservoir particles.

The r coordinates are convenient for simulation, whereas q are used for keeping track of
the positions of the particles migrating between V ′ and V . Thus, using the new notations,
the average (5.12) can be further simplified

〈F (D, r)〉µV T =
K∑

D=0

F (D, r)ν(D, r), (5.14)

where
ν(D, r) =

u(D, r)
∑K

D=0 u(D, r)
(5.15)

and

u(D, r) =
exp (βµD)V D

D!Λ3D
exp (−βU(r)).

The volume in this last expression appears due to the change of variables in (5.13). Note that
the averages of the observable F in (5.14) are written in terms of r.

It is easy to see that ν in (5.15) is the probability that defines the different states in a
Markov chain of a Monte Carlo method in the grand canonical ensemble (Norman and Filinov,
1969; Adams, 1974; Adams, 1975; Rowley, Nicholson, and Parsonage, 1975; Yao, Greenkorn,
and Chao, 1982). Thus, as in the conventional Metropolis-Hastings algorithm (Hastings,
1970), the acceptance or rejection criterion of the proposals can be written in terms of the
probabilities ν. Therefore, the acceptance probability PA of changing from a state Γ to a
state Γ′ is defined as

PA(Γ→ Γ′) = min

{
1,
νΓ′

νΓ

}
.

This probability can be calculated for two possible scenarios: either the number of particles
changes or it remains constant. The latter is the usual NVT MC, but the former is more
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complex and it has to be also split into two events: an insertion or a deletion of a particle.
Both cases have to be studied separately. More specifically,

• in case of a deletion of a real particle, the proposed state Γ′ corresponds to a decrease in
the number of particles with respect to the current state Γ. Then, the new configuration
would be accepted if

νΓ′(D − 1)

νΓ(D)
=

DΛ3

exp (βµ)V
exp (−β(UΓ′ − UΓ)) ≥ η1, (5.16)

where η1 is a random number between (0, 1);

• in case of an insertion of a particle, the proposed state Γ′ would be accepted if

νΓ′(D + 1)

νΓ(D)
=

exp (βµ)V

(D + 1)Λ3
exp (−β(UΓ′ − UΓ)) > η2, (5.17)

where η2 is a random number between (0, 1).

Obviously, in both cases the potential energy always changes, even if the particles that are
not affected by the insertion/deletion step are not moved (Yao, Greenkorn, and Chao, 1982).
That is why the difference UΓ′ − UΓ appears in both acceptance rules (5.16) and (5.17).

In the situation when the particles are only allowed to move while their number is main-
tained constant, the proposed state Γ′ is accepted if

νΓ′(D)

νΓ(D)
= exp (−β(UΓ′ − UΓ)) ≥ η,

where η is a random number between (0, 1). This part is equivalent to the Metropolis test
used in the regular Monte Carlo (MC) in the NVT ensemble (Allen and Tildesley, 1989),
where particles are only allowed to move while their number D does not change.

If a proposal is not accepted, the system is maintained in the state Γ, as in a standard
NVT MC.

5.6.1 Free energy estimation from the chemical potential

The essential thermal properties such as the Helmholtz free energy or the entropy can be
estimated using the chemical potential. The free energy is related to the logarithm of the
partition function. Thus, it is the generator through which other thermodynamic quantities
are obtained via differentiation. Usually, we are interested in the free energy difference between
two thermodynamic states, rather than in the absolute free energy. For instance, free energy
differences tell whether a chemical reaction occurs spontaneously or requires an input of work,
or whether a given solute is hydrophobic or hydrophilic. Free energy differences are directly
related to equilibrium constants for chemical processes. Thus, from free energy differences,
acid or base ionization constants can be computed. One might think that GC Monte Carlo
methods are sampling absolute free energies, but it is not exactly the case. However, this
type of algorithms allows for a direct estimation of the relative Helmholtz free energy A (see
for more details (Adams, 1974; Adams, 1975; Barker and Henderson, 1976)).

As in GC simulations the chemical potential is maintained constant, one can equate the
chemical potential of a molecule in an ideal gas at density ρ and the chemical potential of



84 Chapter 5. Extension of GSHMC to Various Statistical Ensembles

the same species in an interacting system at density ρ′. This yields the relation between the
chemical potential and Helmholtz free energy A (cf. (Hill, 1956)):

A

D
= µ− pV

D
.

Here p is the pressure, which can be calculated using the virial theorem (cf. (Adams, 1975))

p = ρkBT +
vir
V
. (5.18)

Therefore, it is clear that the relative Helmholtz free energy A is related to the chemical
potential, the volume, the pressure and the number of particles, which are quantities calculated
during a GC simulation.

5.7 Grand Canonical Hybrid Monte Carlo methods

5.7.1 The proposed moves

In the Hybrid Monte Carlo methods, the MD trajectories generate the proposed states that
are accepted or rejected with a Metropolis test. Such trajectories are obtained by numerically
solving the equations of motion using symplectic integrators, such as the standard velocity
Verlet integrator. In the Grand Canonical HMC algorithms that we propose here, short MD
trajectories of length L are run as in the original HMC (Duane et al., 1987). However, since
the number of particles might change between two consecutive Monte Carlo steps, it is not
trivial to model such trajectories. The possible solutions are shown in this section.

Following (Stern, 2007), we consider two main scenarios: an insertion/deletion occurs, or
it does not. Thus, it leads to three possible moves:

1. An MD trajectory of D real particles while one of them is removed.
2. An MD trajectory of D real particles while a new particle is inserted making a

reservoir particle become real.
3. An MD trajectory of D real particles.

(5.19)
The three moves are decided with probabilities αr, αi and αm respectively. According to

(Nicholson and Parsonage, 1982), the probabilities of insertion and removal αi and αr have
to be equal to satisfy microscopic reversibility. In (Norman and Filinov, 1969) the authors
advise to assign the same probability αr = αi = αm = 1/3 for the three possible moves.
However, since no rationale was found behind such a choice but simply the empirical findings,
a user may prefer to impose the only constraint αr = αi, and consider the value of αm to be
a tunable parameter of the algorithm. Obviously, a choice of this parameter may affect the
sampling efficiency of the resulting algorithm.

If D were a continuous variable, the grand canonical ensemble could be understood as the
isobaric ensemble (Barker and Henderson, 1976). However, in the current formulation of our
algorithms D changes by at least ±1. In fact, it seems to be an optimal number of changes in
D, as, except for low densities and/or high temperatures, the probability of even such small
changes is very low (Barker and Henderson, 1976). In (Norman and Filinov, 1969) the authors
tried the moves in which more than one molecule was added or removed and found the most
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probable value of ∆D to be ±1. Thus, the attempts of moving multiple molecules turned to
be the wasted labor (Barker and Henderson, 1976).

Whereas the move 3 in (5.19) is a typical proposal generated in the NVT HMC, i.e., an
NVEMD trajectory, the moves 1 and 2 require more explanations. In the proposed algorithms,
the positions for the insertion/deletion are chosen randomly. In case of insertion, a particle
is selected randomly from the reservoir and then its insertion position in the simulation box
is calculated as ri = qi/V

′, where qi is its position in the reservoir. In case of deletion,
a particle is selected randomly from the simulation box and its position in the reservoir
is calculated as ri = qi/V , where qi is its current position in the box (see (5.13) and the
discussion in Section 5.6 for details)3. If the inserted particle appears in a very populated
area, the huge instabilities in the potential energies are expected and can lead to the explosion
of the simulation. To avoid such a scenario, we suggest using a slow growth procedure in which
a particle, once its position is decided, starts to grow progressively. If a particle is deleted, a
progressive shrinking is proposed.

Let us consider a transition which generates a state Γ̂ from an initial state Γ that has
a different number of real particles. The slow-growth trajectory is run for a time τ , which
is equivalent to l steps of the integration. During the slow-growth, the potential energy of
the initial state Γ evolves to the potential energy of the state Γ̂ with the different number of
particles. Thus, we get a time-dependent Hamiltonian (cf. (Stern, 2007))

HΓ→Γ̂(λ, r,p) = K(p) + UΓ→Γ̂(λ, r),

where
UΓ→Γ̂(λ = 0, r) = Ũ(Γ, r),

UΓ→Γ̂(λ = τ, r) = Ũ(Γ̂, r),

UΓ→Γ̂(λ, r) = UΓ̂→Γ(τ − λ, r).

Ũ(Γ, r) is the potential energy of the system at the state Γ, whereas UΓ→Γ̂(λ, r) is a corre-
sponding time-dependent potential energy. The parameter λ is an integer in the interval [0, τ ]
which controls the time dependency of the Hamiltonian. The simplest possible definition for
the time-dependent potential energy is a linear interpolation, such as

UΓ→Γ̂(λ, r) =

(
1− λ

τ

)
Ũ(Γ, r) +

(
λ

τ

)
Ũ(Γ̂, r), (5.20)

though more sophisticated time-dependent potential energies could be considered. We con-
sider here the one in (5.20).

Due to the reversibility of the definition of the time-dependent potential energy in (5.20)
the insertion and deletion processes are equivalent. If the Velocity integrator is used then the

3The particles in the reservoir could be also moved after some steps, it might have a positive effect on the
sampling.
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positions and momenta at any time t+ ∆t, can be found as

p(t+ ∆t/2) = p(t)− ∆t

2
∇
[(

1− t

τ

)
Ũ(Γ, r(t)) +

(
t

τ

)
Ũ(Γ̂, r(t))

]

r(t+ ∆t) = r(t) + ∆t p(t+ ∆t/2)

p(t+ ∆t) = p(t+ ∆t/2)− ∆t

2
∇
[(

1− t+ ∆t

τ

)
Ũ(Γ, r(t+ ∆t))

+

(
t+ ∆t

τ

)
Ũ(Γ̂, r(t+ ∆t))

]
.

Here ∆t is the time step and the time-dependent energy is chosen according to (5.20). Once
t+ ∆t is equal to τ , the state Γ̂ is generated. The last stage of the integration of the position
and the momenta reads as

r(t+ ∆t) = r(τ) = r(t) + ∆t p(t+ ∆t/2)

p(t+ ∆t) = p(τ) = p(t+ ∆t/2)− ∆t

2
∇Ũ(Γ̂, r(t+ ∆t)).

After the time τ , L− l steps are run with the regular velocity Verlet numerical integrator
(cf. (3.5)) to generate a new state Γ′. The same time step ∆t is used. There is no time-
dependent potential energy at this point.

It is advised to take L significantly larger than l. It helps in the relaxation of the system
and thus in the sampling, since more configurations will be accepted. Both L and l are tunable
parameters of the algorithms.

The moves suggested here ensure that the system evolves globally and avoids the “memory”
effect (Barker and Henderson, 1976), in which particles are always inserted and removed in
the same areas.

Similarly to (2.4) in Section 2.1, the integrator described above can be generally written
as

Ψ∆t,L,l : R6D → R6D,

(r,p) 7→ (r′,p′).

It is easy to see that the cases with no insertion or deletion imply l = 0.

5.7.2 GC-HMC: Metropolis tests

The Grand Canonical Hybrid Monte Carlo algorithms have to be equipped with proper
Metropolis tests to ensure the sampling in the desired ensemble. Three Metropolis tests,
corresponding to the moves described in (5.19), are derived in this section.

As in Section 2.1, in the HMC algorithms, the main difference with respect to pure MC
is that the particles follow dynamical trajectories (cf. Section 5.7.1 for details), which are
accepted or rejected. Thus, instead of only allowing local changes in the system, one performs
a global move by integrating the equations of motion (Mehlig, Heermann, and Forrest, 1992).
The conditional probability of a proposed configuration Γ′ started at Γ is given by (cf. (2.5))

ρS(Γ→ Γ′) = ρS(p),

where the initial momenta are drawn from the Maxwell-Boltzmann distribution (2.6). The
proposal probability depends only on the momenta.
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The Metropolis-Hastings test for a proposed configuration Γ′ initialized from Γ is (cf.
Hastings, 1970)

PA(Γ→ Γ′) = min

{
1,
π(Γ′)ρS(Γ′ → Γ)

π(Γ)ρS(Γ→ Γ′)

}
,

where π is the probability of observing the system in a state (5.11). Then, the three acceptance
probabilities PA are obtained:

• Move 1:

PA(ΓD → Γ′D−1) = min

{
1,

Dh3

exp (βµ)V
exp (−β(HΓ′ −HΓ))

}
; (5.21)

• Move 2:
PA(ΓD → Γ′D+1) = min

{
1,

exp (βµ)V

(D + 1)h3
exp (−β(HΓ′ −HΓ))

}
; (5.22)

• Move 3:
PA(ΓD → Γ′D) = min {1, exp (−β(HΓ′ −HΓ))}. (5.23)

It is easy to see that this acceptance rule is equivalent to the one used, for instance, by
Boinepalli and Attard, 2003. As in Section 2.1, we will denote the acceptance probabilities in
(5.21), (5.22) and (5.23) as α.

5.7.3 Grand Canonical Hybrid Monte Carlo

Though our ultimate goal is to develop a GSHMC algorithm for simulation in the grand
canonical ensemble, we start with a formulation of Grand Canonical Hybrid Monte Carlo
(GC-HMC). The algorithm is based on the canonical HMC (Duane et al., 1987), which has
been explained in detail in Section 2.1. Two other algorithms presented in the following
sections, GC-GHMC and GC-GSHMC, rely on this basic algorithm.

To keep track of changes from one state to other, we propose to assign to each particle i,
of Dtot particles, an index gi that can take the value 0 or 1 if the particle is in the reservoir
or it is real, respectively. This index can be used to describe the changes from one state to
the other. This is similar to the idea of occupancy by Rowley, Nicholson, and Parsonage,
1975. The sum of all of the indexes gi equates to the number D of real particles that has to
be always smaller or equal than Dtot.

The main steps of the algorithm are described below:

Algorithm 5 Grand Canonical Hybrid Monte Carlo
Input: ∆t: time step

L: number of integration steps
l: number of slow-growth steps
αr, αi, αm: probabilities of the moves
Ψ : discretization scheme
D: initial dimension of the system
Dtot: maximum number of particles used in the simulation
N : number of MC iterations
T : temperature

1: initialize r0, D0 = D, g0, l0 = l
2: for n = 1, . . . , N do
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3: l = l0
4: r = rn−1

5: D = Dn−1, g = gn−1

6: draw momenta p for ghost and real particles from Maxwell-Boltzmann distribution
(2.6)

7: pick randomly a move from (5.19)
draw x ∼ U(0, 1)
if x < αr
pick randomly a particle i and D′ = D − 1

else if x ≥ αr and x < αi + αr
pick randomly a particle i and D′ = D + 1

else
l = 0, D′ = D

end if
8: generate a proposal by integrating Hamiltonian dynamics

(r′,p′) = Ψ∆t,L,l(r,p)

9: calculate the acceptance probability α using (5.21), (5.22) or (5.23)
10: Metropolis test

draw u ∼ U(0, 1)
if u < α
accept: rn = r′, Dn = D′

if the move is insertion/deletion
gni = 1− gn−1

i

end if
else
reject: rn = r, Dn = D

end if
11: discard momenta p′, p
12: end for

The step 6 in the algorithm above ensures that, in case of insertion, the new particle is
initially drawn from the right distribution.

5.7.4 Grand Canonical Generalized Hybrid Monte Carlo

As discussed in Chapter 2, in the HMC algorithm the momenta are always completely re-
sampled after the Metropolis test (step 4 in Algorithm 1). This also applies to the grand
canonical ensemble version of HMC presented in Section 5.7.3. The partial momentum up-
date as introduced in the Generalized Hybrid Monte Carlo method (Section 2.2) often helps
to improve sampling efficiency of HMC. In order to take advantage of this feature in the HMC
simulation in the grand canonical ensemble, we adapt the Generalized Hybrid Monte Carlo
method to GC simulation.

The Grand Canonical GHMC (GC-GHMC) can be summarized as follows:

Algorithm 6 Grand Canonical Generalized Hybrid Monte Carlo
Input: M : mass matrix

∆t: time step
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L: number of integration steps
l: number of slow-growth steps
αr, αi, αm: probabilities of the moves
Ψ : discretization scheme
D: initial dimension of the system
Dtot: maximum number of particles used in the simulation
N : number of MC iterations
T : temperature
ϕ ∈ (0, π/2]: noise angle

1: initialize (r0,p0), D0 = D, g0, l0 = l
2: for n = 1, . . . , N do
3: l = l0
4: (r,p) = (rn−1,pn−1)
5: D = Dn−1, g = gn−1

6: partial momentum update for ghost and real particles

p∗ = cosϕ p + sinϕ u

u∗ = − sinϕ p + cosϕ u

where u ∼ N (0, β−1M)
7: pick randomly a move from (5.19)

draw x ∼ U(0, 1)
if x < αr
pick randomly a particle i and D′ = D − 1

else if x ≥ αr and x < αi + αr
pick randomly a particle i and D′ = D + 1

else
l = 0, D′ = D

end if
8: generate a proposal by integrating Hamiltonian dynamics

(r′,p′) = Ψ∆t,L,l(r,p
∗)

9: calculate the acceptance probability α using (5.21), (5.22) or (5.23)
10: Metropolis test

draw u ∼ U(0, 1)
if u < α
accept: (rn,pn) = (r′,p′), Dn = D′

if the move is insertion/deletion
gni = 1− gn−1

i

end if
else
reject and flip momenta: (rn,pn) = F(r,p∗), Dn = D

end if
11: end for



90 Chapter 5. Extension of GSHMC to Various Statistical Ensembles

5.7.5 Grand Canonical Generalized Shadow Hybrid Monte Carlo

The objective of the Generalized Shadow Hybrid Monte Carlo (GSHMC) described in Sec-
tion 4.3 is to maintain a high acceptance rate in the simulations. It is achieved by combining
a partial momentum Monte Carlo step with the importance sampling with respect to a mod-
ified density such as (4.2). As it has repeatedly been said, the modified Hamiltonian is better
preserved by a numerical integrator than the true Hamiltonian (see equations (4.4)-(4.5)). In
GSHMC, the shadow Hamiltonians H̃ [k] are used in the Metropolis tests instead of the true
Hamiltonian (see step 10 in Algorithm 3). Therefore, the better conservation of the modified
Hamiltonians leads to an improvement of the acceptance rate, which can be very beneficial
in the grand canonical ensemble, where many insertion/deletion proposals are rejected. The
Metropolis tests for GC-GSHMC can be derived by merely modifying (5.21)-(5.23) to re-
place Hamiltonians with modified Hamiltonians. Thus, depending on the type of move, the
acceptance probability PA for GC-GSHMC is defined as:

• Move 1:

PA(ΓD−1 → Γ′D) = min

{
1,

Dh3

exp (βµ)V
exp

(
−β
(
H̃

[k]
Γ′ − H̃

[k]
Γ

))}
; (5.24)

• Move 2:

PA(ΓD → Γ′D+1) = min

{
1,

exp (βµ)V

(D + 1)h3
exp

(
−β
(
H̃

[k]
Γ′ − H̃

[k]
Γ

))}
; (5.25)

• Move 3:
PA(ΓD → Γ′D) = min

{
1, exp

(
−β
(
H̃

[k]
Γ′ − H̃

[k]
Γ

))}
. (5.26)

Again, for the sake of simplicity we will denote the acceptance probabilities as α.
We can summarize the Grand Canonical GSHMC (GC-GSHMC) algorithm as follows:

Algorithm 7 Grand Canonical Generalized Shadow Hybrid Monte Carlo
Input: M : mass matrix

∆t: time step
L: number of integration steps
l: number of slow-growth steps
αr, αi, αm: probabilities of the moves
Ψ : discretization scheme
D: initial dimension of the system
Dtot: maximum number of particles used in the simulation
N : number of MC iterations
T : temperature
ϕ ∈ (0, π/2]: noise angle
k: order of the shadow Hamiltonian

1: initialize (r0,p0), D0 = D, g0, l0 = l
2: for n = 1, . . . , N do
3: l = l0
4: calculate the shadow Hamiltonian at (r,p) = (rn−1,pn−1)
5: D = Dn−1, g = gn−1

PMMC step
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6: generate a proposal for ghost and real particles by the partial momentum update

p∗ = cosϕ p + sinϕ u

u∗ = − sinϕ p + cosϕ u

where u ∼ N (0, β−1M)
7: calculate the shadow Hamiltonian at (r,p∗)
8: calculate the acceptance probability

αp = min



1,

exp
(
−β
(
H̃ [k](r,p∗) + 1

2(u∗)TM−1u∗
))

exp
(
−β
(
H̃ [k](r,p) + 1

2u
TM−1u

))





9: Modified Metropolis test

(r, p̄) =

{
(r,p∗) with probability αp
(r,p) otherwise

MDMC step
10: pick randomly a move from (5.19)

draw x ∼ U(0, 1)
if x < αr
pick randomly a particle i and D′ = D − 1

else if x ≥ αr and x < αi + αr
pick randomly a particle i and D′ = D + 1

else
l = 0, D′ = D

end if
11: generate a proposal by integrating Hamiltonian dynamics

(r′,p′) = Ψ∆t,L,l(r, p̄)

12: calculate the shadow Hamiltonian at (r′,p′)
13: calculate the acceptance probability α using (5.24), (5.25) or (5.26)
14: Metropolis test

draw u ∼ U(0, 1)
if u < α
accept: (rn,pn) = (r′,p′), Dn = D′

if the move is insertion/deletion
gni = 1− gn−1

i

end if
else
reject and flip momenta: (rn,pn) = F(r, p̄), Dn = D

end if
15: compute the weight

wn = exp
(
−β
(
H(rn,pn)− H̃ [k](rn,pn)

))
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16: end for
17: calculate the average of an observable Ω(r,p)

〈Ω〉 =

∑N
n=1wnΩn∑N
n=1wn

We remark that a modified Metropolis test in step 8 ensures that momenta are drawn with
respect to the correct distribution. The chemical potential does not play any role since the
number of particles does not change during the momentum update. Also, in the same step,
for the computation of the extended Hamiltonians Ĥ(r,p,u) = H̃(r,p)+ 1

2u
TM−1u only the

noise u corresponding to the real particles is considered. The partial momentum update is
applied to both real and ghost particles, so in case of insertion, the new particle would follow
the right distribution. However, since the modified Hamiltonian H̃(r,p) is computed only
for real particles, the “kinetic” term 1

2u
TM−1u is calculated in the same dimension, i.e., D.

Obviously, the same applies to Ĥ(r,p∗,u∗).

5.8 Results

We have tested the algorithms proposed in Section 5.7 with Lennard-Jones fluids, aiming to
compare the obtained results with the data previously presented in the literature. We consider
the potential energy between two Lennard-Jones molecules at a center-to-center distance r as

U(r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]
, (5.27)

where ε and σ are the parameters characterizing the fluid. All the simulations in this section
have been performed with a truncated and shifted potential (Smit, 1992), and the results are
reported in reduced units (details can be found in Appendix C.1). The cutoff distance was
set to 2.5σ and periodic boundary conditions were imposed in all three dimensions.

The thermodynamic properties of interest are density ρ and pressure p. While ρ is calcu-
lated as D/V , p is computed using (5.18) and the details of its computation are explained in
Appendix C.2.) for different temperatures T and chemical potentials µ. Similar experiments
have been previously performed in (Adams, 1979; Yao, Greenkorn, and Chao, 1982; Lo and
Palmer, 1995) using Monte Carlo or molecular dynamics.

Following (Lo and Palmer, 1995), we have investigated two temperatures, T ∗ = 0.769 and
T ∗ = 1.0. For different chemical potentials and temperatures, the densities and pressures,
measured during simulations with three new algorithms, were compared with the values ob-
tained from the Nicolas equation of state (EOS) (Nicolas et al., 1979; Johnson, Zollweg, and
Gubbins, 1993). Since studying the vapor-liquid equilibria is of interest in many applica-
tions, we chose the simulation points on both sides of the vapor-liquid coexistence curve (Lin,
Blanco, and Goddard III, 2003). The investigated points are shown in Figure 5.5.
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Figure 5.5: Phase diagram of Lennard-Jones systems. The investigated ther-
modynamic points are plotted for both liquid and gas phases. The plot was
taken from (Lin, Blanco, and Goddard III, 2003) and adapted to this study.

All results presented in this section were calculated from the simulations of length t∗ =
50000. Our aim was (i) to validate the novel algorithms through comparison with the EOS
predicted data; and (ii) to compare accuracy and performance of the novel algorithms between
themselves. In addition, we also compare the simulations with experiments performed with
the GC-MC method by Yao, Greenkorn, and Chao, 1982.

At each thermodynamic point in the liquid branch, the same integration time steps were
used for GC-HMC, GC-GHMC and GC-GSHMC. For the thermodynamic points in which
T ∗ = 0.769 and for the case with T ∗ = 1.00 and µ∗ = −2.852, the reduced time step was
∆t∗ = 0.01. For T ∗ = 1.00 and µ∗ = −1.757, a bigger time step was possible, namely
∆t∗ = 0.2. In all cases, the trajectory lengths were set to L = 500 and l = 100. In the case
of GC-GSHMC and GC-GHMC, the angle ϕ in the partial momentum update (cf. Step 6
in Algorithm 6 and step 6 in Algorithm 7) was assigned to 0.3. The fourth order shadow
Hamiltonians (4.10) were used with GC-GSHMC. For all considered methods, the probabilities
of the three different moves where chosen to be 1/3, as suggested in Section 5.7.1.

The results obtained using GC-MC, GC-HMC, GC-GHMC and GC-GSHMC along the
liquid branch are shown in Table 5.5. For clarity, the chosen thermodynamic points (tem-
peratures and chemical potentials) are presented in the dashed column whereas the reference
values obtained from the EOS are shown right next to their equivalent values obtained in the
simulations.
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conditions properties
method T ∗ µ∗ ρ∗ ρ∗(EOS) p∗ p∗(EOS)

GC-GSHMC

0.769 -2.999 0.780 ± 0.000 0.780 0.343 ± 0.022 0.324
0.769 -2.727 0.800 ± 0.002 0.800 0.533 ± 0.015 0.539
1.00 -2.852 0.650 ± 0.001 0.650 0.272 ± 0.055 0.226
1.00 -1.757 0.750 ± 0.001 0.750 0.976 ± 0.025 0.999

GC-GHMC

0.769 -2.999 0.780 ± 0.002 0.780 0.291 ± 0.045 0.324
0.769 -2.727 0.800 ± 0.002 0.800 0.466 ± 0.075 0.539
1.00 -2.852 0.651 ± 0.019 0.650 0.244 ± 0.032 0.226
1.00 -1.757 0.750 ± 0.001 0.750 0.939 ± 0.052 0.999

GC-HMC

0.769 -2.999 0.780 ± 0.003 0.780 0.222 ± 0.122 0.324
0.769 -2.727 0.800 ± 0.002 0.800 0.453 ± 0.081 0.539
1.00 -2.852 0.654 ± 0.009 0.650 0.236 ± 0.011 0.226
1.00 -1.757 0.751 ± 0.005 0.750 0.927 ± 0.68 0.999

GC-MC

0.769 -2.999 0.780 ± 0.005 0.780 0.231 ± 0.113 0.324
0.769 -2.727 0.803 ± 0.002 0.800 0.532 ± 0.015 0.539
1.00 -2.852 0.640 ± 0.012 0.650 0.204 ± 0.032 0.226
1.00 -1.757 0.754 ± 0.005 0.750 1.015 ± 0.106 0.999

Table 5.5: Liquid branch densities ρ∗ and pressures p∗ at given temperatures
T ∗ and chemical potentials µ∗ calculated using GC-MC, GC-HMC, GC-GHMC
and GC-GSHMC. The densities and pressures obtained from the Nicolas equa-
tion of state (EOS) are also reported.

All methods produce results that are close to the expected reduced densities and pressures.
The best agreement with the EOS values is found, in general, with the GC-GSHMC algorithm.

The sampling performance is also compared for the four methods. The time-normalized
effective sample size (ESS) (Geyer, 1992) and the acceptance rates are shown in Table 5.6.
From now on we call a time-normalized ESS simply ESS. The ESS are calculated for the
potential energy. The relative ESS with respect to the GC-MC ESS are reported. The aim is
to demonstrate the improvement in sampling obtained with the new methods presented in this
chapter. For simplicity, only a few of the states considered above in Table 5.5 are presented
now. However, the similar trends were observed in the other thermodynamics states.
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conditions properties
method T ∗ µ∗ α (%) ESS

GC-GSHMC 0.769 -2.999 46.60 9.92
1.00 -1.757 51.28 12.08

GC-GHMC 0.769 -2.999 32.70 7.96
1.00 -1.757 31.47 10.04

GC-HMC 0.769 -2.999 32.20 4.84
1.00 -1.757 31.24 7.96

GC-MC 0.769 -2.999 32.33 1
1.00 -1.757 28.54 1

Table 5.6: Liquid branch acceptance rates (α) and effective sample sizes
(ESS) observed in GC-MC, GC-HMC, GC-GHMC and GC-GSHMC simula-
tions. ESS was normalized with respect to the data obtained with GC-MC for
given T ∗ and chemical potentials µ∗.

The low acceptance rates in all presented simulations are due to the number of rejections of
the insertion/deletion moves. As expected, GC-GSHMC demonstrates the highest acceptance
rates due to the better conservation of the shadow Hamiltonians included in the Metropolis
test, even in the cases of insertion/deletion. Higher order shadow Hamiltonians could be used
to improve the acceptance rates. The fact that GC-MC produces the poorest sampling is not
surprising. It is well known that HMC reduces the correlation between successive sampled
states with respect to MC by using the Hamiltonian dynamics for better exploration of the
phase space. This leads to a quicker convergence to the desired distribution. Finer tuning of
the parameters ϕ, L or l could improve sampling performance of all HMC-based methods.

We performed the similar tests at different thermodynamic points in the gas branch.
Again, at each thermodynamic point, the same integration time steps were used for GC-
HMC, GC-GHMC and GC-GSHMC. The reduced time step was ∆t∗ = 0.01 for the cases
with T ∗ = 0.769 and ∆t∗ = 0.02 otherwise. In all cases, the trajectory lengths where set to
L = 500 and l = 100. In the case of GC-GSHMC and GC-GHMC, the angle ϕ was 0.3. As
in the liquid case, the probabilities of the three different moves were always assigned to 1/3,
and the fourth order shadow Hamiltonians (4.10) were used with GC-GSHMC. The results
observed with GC-MC, GC-HMC, GC-GHMC and GC-GSHMC along the gas branch are
shown in Table 5.7.
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conditions properties
method T ∗ µ∗ ρ∗ ρ∗(EOS) p∗ p∗(EOS)

GC-GSHMC

0.769 -4.127 0.0050 ± 0.0000 0.0050 0.0035 ± 0.0002 0.0037
0.769 -3.646 0.0100 ± 0.0000 0.0100 0.0069 ± 0.0001 0.0071
1.00 -3.200 0.0700 ± 0.0009 0.0700 0.0504 ± 0.0002 0.0515
1.00 -3.150 0.0744 ± 0.0037 0.0780 0.0559 ± 0.0005 0.0552

GC-GHMC

0.769 -4.127 0.0050 ± 0.0000 0.0050 0.0035 ± 0.0002 0.0037
0.769 -3.646 0.0100 ± 0.0000 0.0100 0.0067 ± 0.0001 0.0071
1.00 -3.200 0.0697 ± 0.0012 0.0700 0.0501 ± 0.0002 0.0515
1.00 -3.150 0.0741 ± 0.0064 0.0780 0.0561 ± 0.0029 0.0552

GC-HMC

0.769 -4.127 0.0052 ± 0.0001 0.0050 0.0033 ± 0.0005 0.0037
0.769 -3.646 0.0102 ± 0.0004 0.0100 0.0065 ± 0.0016 0.0071
1.00 -3.200 0.0698 ± 0.0011 0.0700 0.0499 ± 0.0032 0.0515
1.00 -3.150 0.0740 ± 0.0037 0.0780 0.0562 ± 0.0153 0.0552

GC-MC

0.769 -4.127 0.0052 ± 0.0005 0.0050 0.0035 ± 0.0002 0.0037
0.769 -3.646 0.0097 ± 0.0053 0.0100 0.0067 ± 0.0003 0.0071
1.00 -3.200 0.0694 ± 0.0012 0.0700 0.0494 ± 0.0127 0.0515
1.00 -3.150 0.0741 ± 0.0075 0.0780 0.0560 ± 0.0121 0.0552

Table 5.7: Gas branch densities ρ∗ and pressures p∗ at given temperatures
T ∗ and chemical potentials µ∗ calculated using GC-MC, GC-HMC, GC-GHMC
and GC-GSHMC. The densities and pressures obtained from the Nicolas equa-
tion of state (EOS) are also reported.

One important observation is that, in general, the errors are much smaller than in the
liquid case. Also, the agreement with the EOS data is better for all tested methods than in
Table 5.5. While all methods produce accurate results, the GSHMC simulations reproduce
the EOS data the most accurately.

As in the liquid case, we inspected the sampling performance of the tested methods. The
relative time-normalized effective sample size (ESS) and the acceptance rates are shown in
Table 5.8. Again, for simplicity, only a few of the states considered above in Table 5.7 are
presented here.
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conditions properties
method T ∗ µ∗ α (%) ESS

GC-GSHMC 0.769 -4.127 57.17 12.05
1.00 -3.150 57.42 16.15

GC-GHMC 0.769 -4.127 50.01 12.95
1.00 -3.150 47.42 13.05

GC-HMC 0.769 -4.127 48.05 10.95
1.00 -3.150 47.28 9.90

GC-MC 0.769 -4.127 41.45 1
1.00 -3.150 42.16 1

Table 5.8: Gas branch acceptance rates (α) and effective sample sizes (ESS)
observed in GC-MC, GC-HMC, GC-GHMC and GC-GSHMC simulations. ESS
was normalized with respect to the data obtained with GC-MC at given T ∗

and chemical potentials µ∗.

As expected, higher acceptance rates than in the liquid case are found. The trend of
the highest acceptance rates for GC-GSHMC is reproduced again. However, for the gas
branch simulations, the bigger difference between the acceptance rates of GC-MC, GC-HMC
and GC-GHMC is observed. As in the liquid case, even without a detailed tunning of the
algorithms’ parameters, the superiority over GC-MC of the newly developed GC-HMC, GC-
GHMC and GC-GSHMC methods in the sampling efficiency has been demonstrated. The
best performance was achieved with GC-GSHMC and GC-GHMC.

5.9 Conclusions and future work

The HMC, GHMC and GSHMC algorithms have been extended for the first time to the grand
canonical ensemble. Their validity has been proved in simulations of Lennard-Jones fluids at
different conditions. All three new methods reproduce well the predicted data (Nicolas et
al., 1979; Johnson, Zollweg, and Gubbins, 1993). Also, the new algorithms sample up to 16
times better than the MC algorithm by Yao, Greenkorn, and Chao, 1982. Among three new
methods, GC-GSHMC shows the best accuracy and sampling efficiency.

The proposed algorithms are only valid for homogeneous systems. Our future goal is
to extend them to simple inhomogeneous systems and implement and test with rigid water
models for the potential use in simulation of proteins in water.

Another future direction is to improve acceptance rates of the new methods. In very
dense systems, the placement of a new particle can play a fundamental role in sampling
efficiency of Monte Carlo based methods, since a completely random placement can lead to
dramatic changes of the energy and thus rejections in the Metropolis tests. One possible
way for improving the placement of inserted particles and increasing the acceptance rates is
combining the current algorithms with the cavity-based methods (Mezei, 1980; Mezei, 1987;
Deitrick, Scriven, and Davis, 1989). Another possible extension to the algorithms presented
here would be to allow continuous changes in D (Cağin and Pettitt, 1991; Lo and Palmer,
1995; Boinepalli and Attard, 2003) and investigate the effect of such changes on the overall
efficiency of simulations.
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Chapter 6

Enhancing Performance and Accuracy
of MHMC for Simulation of Complex
Systems: Numerical Integrators

6.1 Introduction

Replacing the standard Verlet integrator with a splitting integrator specified by a suitable
value of a parameter may significantly improve, for a range of time steps, the conservation
of the Hamiltonian and thus the acceptance rate of the proposals in the Hybrid Monte Carlo
(HMC) method (see (McLachlan, 1995; Blanes, Casas, and Sanz-Serna, 2014) and Chapter 3
for details). Such integrators, however, possess shorter stability limits than the Verlet algo-
rithm, as explained in Section 3.2.2.3. Also, the user is confronted with the problem of how
best to choose the value of the parameter. The drawbacks of the use of splitting integrators,
more sophisticated than Verlet, may be alleviated by resorting to the Adaptive Integration
Approach (AIA), proposed in Section 3.3. For a user-chosen time step, this approach auto-
matically identifies an optimal, system-specific integrator, by using information on the highest
frequencies of the harmonic interactions present in the system; this information is typically
extracted from the input data intended for a molecular dynamics package. The term “opti-
mal” refers to the fact that the selected integrator minimizes, within a family of two-stage
integrators, the expectation of the energy error for harmonic forces. When stability is an
issue, AIA automatically chooses the Verlet integrator and, as the time step is reduced below
the Verlet limit, AIA moves to more accurate integrators.

The family of modified Hamiltonian Monte Carlo (MHMC) methods introduced in Sec-
tion 4.2 consists of HMC algorithms which, instead of sampling from the target canonical
distribution (4.1), sample from an auxiliary importance density (4.2). Verlet/leapfrog has
been the integrator of choice for MHMC methods and until recently such a decision has never
been challenged. However, in (Radivojević, 2016; Radivojević and Akhmatskaya, 2017) it has
been shown that replacing Verlet with optimized two-stage splitting integrators in MHMC
may improve the observed sampling efficiency by a factor of up to 4 in high-dimensional sta-
tistical problems. In those references, though, there is no recipe for the rational choice of the
integration scheme or/and the time step for a given system.

In this chapter, we present and analyze the novel multi-stage integrators, which were
specifically derived for MHMC methods.

In Section 6.2 we introduce the modified multi-stage integrators with fixed parameters
and compare their performance with that of the integrators proposed for HMC. In Section 6.3
we extend the ideas of AIA to derive a Modified Adaptive Integration Approach (MAIA) for
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MHMC, in order to automatically select, for a given system and time step, the two-stage
integrator with optimal conservation of the modified Hamiltonian, leading to the highest
acceptance rates in MHMC. Extended MAIA (e-MAIA) offers the extra feature of controlling
the stochasticity introduced in the momentum refreshment step in MHMC. Implementation of
MAIA and e-MAIA in MultiHMC-GROMACS is explained in Section 6.4. Numerical results
for proving the efficiency of MAIA and e-MAIA are provided in Section 6.5.

6.2 Modified multi-stage integrators

We focus on multi-stage integrators belonging to families (3.25) and (3.27). There are two
reasons for an interest in these integrators in the context of MHMC. One is their potential
to achieve, at a given computational cost, higher accuracy than Verlet. More accurate in-
tegrations imply higher acceptance rates in Hybrid Monte Carlo methods and thus better
space exploration. A second possible benefit for the MHMC algorithms from the integrators
of this class is that, due to the extra accuracy, they may avoid the need for computationally
expensive, higher order modified Hamiltonians.

Our goal is to derive new multi-stage integrators to be used in the methods which sample
with modified Hamiltonians, i.e., MHMC, and compare their impact on the performance of
such methods with the efficiency of advanced integrators for HMC (McLachlan, 1995; Blanes,
Casas, and Sanz-Serna, 2014) and the Verlet integrator.

In MHMC methods, the Hamiltonian dynamics equations are the same as in HMC meth-
ods. However, MHMC are based on different Metropolis tests where the acceptance rate
depends on the capability of the integrator to conserve the value of a modified Hamiltonian.
Indeed, the sampling performance of MHMC is controlled not by the energy error with respect
to the true Hamiltonian as in HMC, but by the energy error with respect to the modified
Hamiltonian. Thus, in order to enhance the performance of MHMC, the authors of (Radi-
vojević and Akhmatskaya, 2017), inspired by the ideas of (McLachlan, 1995) and (Blanes,
Casas, and Sanz-Serna, 2014) for improving HMC performance, designed the new integrators
for MHMC by minimizing (expected) error in the modified Hamiltonians (4.3). To distinguish
the new minimum error and minimum expected error integrators for sampling with modified
(M) Hamiltonians from the corresponding ones designed for the HMC method, the authors
of (Radivojević and Akhmatskaya, 2017) use the prefix M-; for instance, M-ME will denote
minimum error integrator for sampling with modified Hamiltonians. We will follow these
notations from now on.

In this section, we briefly review the major ideas behind the derivation of such integra-
tors and present the resulting parameters. Then, we introduce yet another member of this
group belonging to the three-stage family (3.27), which did not appear in (Radivojević and
Akhmatskaya, 2017). We conclude the section with the comparison between modified multi-
stage integrators and their counterparts developed for HMC. Performance of Verlet is also
assessed.

The error metric for the derivation of the minimum error integrator proposed in (McLach-
lan, 1995) for sampling with a true Hamiltonian in the HMC method has been adapted to
replace a true Hamiltonian with a modified Hamiltonian. This resulted in a modified mini-
mum error integrator of two-stages, M-ME2 (see (Radivojević, 2016; Radivojević et al., 2018)
and Table 6.1). Additionally, for problems with quadratic potential and kinetic function, the
analysis of (Campos and Sanz-Serna, 2017) provides the condition for the highest stability
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limit for three-stage integrators. In particular, the integrators that lie on the hyperbola

6ab− 2a− b+
1

2
= 0, (6.1)

have considerably longer stability limit than others. As it has been explained in Section 3.2.2.2,
the relation (6.1) reduces the three-stage integrators to a one-parameter family. The resulting
parameter value for M-ME3 (modified minimum error of three-stages) has been obtained in
(Radivojević et al., 2018) and it is presented in Table 6.1.

In order to derive integrators with an optimal expected modified energy error, the strategy
similar to the one proposed in (Blanes, Casas, and Sanz-Serna, 2014) is adopted. The idea is
to find such parameters of integrators that minimize the expected value of the modified energy
error. Thus, in this case, the energy error resulting from numerical integration is in terms
of the modified Hamiltonian and the expected value is taken with respect to the modified
density (4.2).

Similar to the case of (Blanes, Casas, and Sanz-Serna, 2014), one may prove that the
expected error in the modified Hamiltonian E[∆H̃ [4]] is positive. The objective then is to find
a function ρ(h, b) that upperbounds E[∆H̃ [4]], i.e.,

0 ≤ E[∆H̃ [4]] ≤ 1

β
ρ(h, b), (6.2)

where b is the parameter of a multi-stage integrator family. For the analysis, the one-
dimensional harmonic oscillator is considered as in Section 3.2.2.3 (cf. (Akhmatskaya et al.,
2017)). To find the error in the modified Hamiltonian after L integration steps with a time step
h, one first finds the numerical solution for a single time step (q(t+h), p(t+h)) = ψh(q(t), p(t)).
In matrix form, this is given by (3.30), with coefficients Ah, Bh, Ch depending on the integra-
tor (cf. (3.31)). For the two-stage family of integrators, the resulting coefficients of Sh are
(3.32) and for the three-stage integrators are (3.33). With the Ah, Bh, Ch coefficients, for a
shadow Hamiltonian (4.10), one can define the function ρ in (6.2) as (cf. (Radivojević, 2016))

ρ(h, b) =
(MBh + Ch)2

2M(1−A2
h)

, (6.3)

where

M =
1 + 2h2µ

1 + 2h2λ

depends on the parameters λ and µ of the shadow Hamiltonian, and the time step h. Note
that the true Hamiltonian can be recovered by setting coefficients λ, µ to zero. Doing so, we
obtain exactly (3.38), i.e., the same function as derived in (Blanes, Casas, and Sanz-Serna,
2014):

ρHMC(h, ξ) =
(Bh + Ch)2

2(1−A2
h)

.

Finally, in the two-stage case, by substituting (3.32) into (6.3) one obtains the expression

ρ(h, b) =
h8
(
b
(
12 + 4b(6b− 5) + b(1 + 4b(3b− 2))h2

)
− 2
)2

4(2− bh2)(4 + (2b− 1)h2)(2 + b(2b− 1)h2)(12 + (6b− 1)h2)(6 + (1 + 6(b− 1)b)h2)
, (6.4)

which bounds the expected error in the modified Hamiltonian. This function is then used
within an optimization routine to find the value b that provides the optimal conservation
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of the modified Hamiltonian for a specific system. The resulting integrator was named M-
BCSS2, and the details of its derivation can be found in (Radivojević, 2016). The value of
the parameter of M-BCSS2 is provided in Table 6.1.

Finally, one can construct the ρ function (6.3) for three-stage integrators. Using again
the stability analysis from (Campos and Sanz-Serna, 2017), namely enforcing the condition
(6.1), doing a minimization as in (Blanes, Casas, and Sanz-Serna, 2014; Radivojević, 2016)
we obtain the parameter of the M-BCSS3 integrator for sampling with MHMC.

All integrators and coefficients that have been presented in Chapter 31 and this section
are summarized in Table 6.1. The integrators derived in this study are highlighted.

integrator application number of stages coefficients hmax

Verlet HMC, MHMC 1 – 6.000

BCSS2 HMC 2 b = 0.21178 3.951

M-BCSS2 MHMC 2 b = 0.238016 4.144

ME HMC 2 b = 0.193183 3.830

M-ME2 MHMC 2 b = 0.230907 4.089

BCSS3 HMC 3 a = (1− 2b)/4(1− 3b) 4.662
b = 0.11888

a = (1− 2b)/4(1− 3b)M-BCSS3 MHMC 3
b = 0.1441153

4.902

a = (1− 2b)/4(1− 3b)M-ME3 MHMC 3
b = 0.142757

4.887

Table 6.1: The splitting integrators for sampling with the true or 4th order
modified Hamiltonians developed or tested in this study. Stability limit hmax is
computed for problems with a quadratic potential and here presented in terms
of the three-stage family.

In Figure 6.1, max0<h<h̄ ρHMC(h, b) from (3.49) (dashed lines) and max0<h<h̄ ρ(h, b) from
(6.4) (solid lines) are plotted as functions of the maximal time step h̄ (here normalized to
the three-stage schemes, i.e., h̄r-stage = r · h̄/3, r = 1, 2, 3). While ρHMC(h, b) is shown for
two- and three-stage HMC integrators, ρ(h, b) is depicted for two- and three-stage MHMC
integrators. The corresponding functions for the Verlet integrator are also plotted. We note
that the upper bound of the expected error in Hamiltonian, or modified Hamiltonian, and
thus the error of the method, is lower for integrators derived for MHMC than in the case of the
HMC specific integrators, which confirms the better conservation of modified Hamiltonians
than true Hamiltonians by symplectic integrators. As follows from Figure 6.1, the multi-stage
integrators derived for HMC and MHMC provide better accuracy than Verlet for time steps
smaller or equal to a half stability limit of Verlet, i.e., h̄ = 3, with three-stage integrators
being superior to the two-stage class2. The integrators derived for MHMC guarantee a better
accuracy than other integrators for h̄ even bigger than 3, which implies their efficiency for

1The parameters for BCSS2 and BCSS3, and ME have been taken from the original papers (Blanes, Casas,
and Sanz-Serna, 2014) and (McLachlan, 1995), respectively.

2One should notice that h̄ in Figure 6.1 refers to a time step for a three-stage integrator. If Verlet is viewed
as a single stage integrator, its half stability limit corresponds to h̄ = 1.
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bigger time steps compared with Verlet and multi-stage integrators for HMC. A logarithmic
scale version of the left-hand graph, shown in the right-hand graph, gives a better insight into
the behavior of the functions.
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Figure 6.1: Upper bound for the expected energy error for the two- and
three-stage (M-)BCSS, (M-)ME and Verlet integrators for sampling with the
true Hamiltonian (dashed) and 4th order modified Hamiltonian (solid). Right-
hand graph shows the same functions on a logarithmic scale.

It is important to note that the Verlet integrator has the largest stability interval among
other splitting integrators, and due to this, care should be taken of the choice of the time
step when using multi-stage integrators. The stability intervals (0, hmax) computed for each
of the examined integrators are given in Table 6.1 in terms of the three-stage family. We
note that the trends of the stability limit hmax for each integrator are in agreement with the
corresponding upper bound functions. Nevertheless, as Figure 6.1 suggests, the accuracy is
degrading with h̄ approaching the stability limit. It is the characteristics of the simulation
problem (such as the dimension of the system, number of observations, nature of the physical
system) that determine the optimal time step and therefore the integrator which would provide
the best performance.

The implementation of the modified integrators presented in this section is explained in
Section 7.4. However, since the different integrators are specified through a parameter b,
their implementation does not differ from that used for the integration schemes introduced in
Section 3.2.2.

We investigated the performance of the multi-stage integrators discussed in this chapter
using the GSHMC method described in Section 4.3 and belonging to the MHMC class.

As a benchmark, we chose the toxin system introduced in Section 3.5.2. The simulations
were performed for a range of time steps: 10, 15, 20, 22.5 and 25 fs (in one-stage dimensions).
Different lengths of MD trajectories L were also tested, but for the sake of clarity, in all tests
presented here the length of MD trajectories was fixed to 4000 steps for Verlet and scaled
correspondigly for two- and three-stage integrators. The angle ϕ used for the momentum
refreshment was set to 0.2 and the modified Hamiltonian (4.10) was used for all tests.

We start by measuring the acceptance rates in the GSHMC simulations with different
multi-stage integration schemes. A fundamental feature of the GSHMC method is that it
maintains very high acceptance rates. It is confirmed in Figure 6.2 (left), where the effect of
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various multi-stage integrators and the standard Verlet on the acceptance rates in GSHMC
simulations is presented. For small time steps, all integrators guarantee high acceptance
rates, but the situation changes as the time step increases and the shorter stability intervals
of the different multi-stage methods (cf. Table 6.1) result in acceptance rates well below
those achieved with Verlet. We observe that the integrators derived specifically for sampling
with modified Hamiltonians (solid lines) in general show better acceptance rates than their
non-modified counterparts (dashed lines). Moreover, the M-BCSS3 integrator provides the
best conservation of the modified Hamiltonians and thus the highest acceptance rates. The
exception occurs for the biggest time steps tested, where Verlet leads to the highest acceptance
rates due to its better stability. All the trends presented in Figure 6.2 (left) are in a good
agreement with the theoretical predictions shown in Figure 6.1.

The averages of simulated temperatures T calculated in GSHMC simulations were used
for evaluating the accuracy provided by the tested integration schemes. Figure 6.2 (right)
confirms that all the methods are capable of producing the desired averaged temperature.
The only exceptions are the two-stage methods derived for HMC, which, for the biggest time
steps, obtained unrealistically high temperatures as a result of the very low acceptance rates
observed during the simulations in these cases (Figure 6.2 (left)).
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Figure 6.2: Toxin. Acceptance rates (left) and average temperatures (right)
as functions of the time step ∆t. Comparison of the two-stage (M-)BCSS2,
(M-)ME(2), three-stage (M-)BCSS3, (M-)ME(3), and Verlet integrators.

We shall see next how the integrators impact the sampling efficiency of GSHMC, measured
in terms of ESS of the toxin drift to the preferred interfacial location over the equilibration
and production periods. We notice that no time normalization for ESS is required as the
simulation parameters (∆t, L, overall length) are chosen in the way to maintain the same
computational cost for all tests. Figure 6.3 presents the relative ESS (i.e., ESS normalized
with respect to the values obtained with Verlet) calculated from GSHMC simulations using
different integrators and time steps. In the left-hand graph, ESS is calculated for equilibration
period, during which the toxin is moving towards its desired position in the bilayer membrane.
Clearly, M-BCSS3 provided the highest values of ESS and thus the best sampling for all choices
of time steps but the last one, for which the acceptance rates decay due to a lower stability
limit than for Verlet. In the right-hand graph, ESS is calculated for the production phase of
the simulations, i.e., once the toxin has reached its equilibrium position. As it is the case for
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equilibration, M-BCSS3 provided the highest values of ESS and thus the best sampling for all
choices of time steps but the last one. Importantly, the highest absolute ESS over the range
of studied time steps has also been observed with the M-BCSS3 integrator.
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Figure 6.3: Toxin. Relative ESS (with respect to Verlet) for the equilibration
(left) and production (right) phases of the simulations. Comparison of the two-
stage (M-)BCSS2, (M-)ME(2), three-stage (M-)BCSS3, M-ME3, and Verlet
integrators.

In summary, we demonstrate that the multi-stage integrators specifically developed for
MHMC methods can outperform in accuracy and sampling efficiency the traditionally used
integrators, including Verlet, for a range of time steps. However, their performance drops
with increasing a time step and can become poorer than that achieved with Verlet. Thus,
given a time step, the question “which integrator to choose?” remains unclear. In the next
section, we will propose the solution to this problem by introducing the adaptive integration
approach.

6.3 Adaptive algorithms

We present two novel two-stage adaptive algorithms: the Modified Adaptive Integration Ap-
proach (MAIA) and the extended MAIA (e-MAIA).

6.3.1 MAIA

MAIA is an algorithm which adapts the parameter b in the two-stage integrators (3.43) to the
problem being solved and the value of ∆t chosen by the user so as to maximize the expected
acceptance rate α of the proposal (q′,p′) in (4.8) or, equivalently, to minimize the expectation
of the modified energy error

∆H̃ [4](q,p∗) = H̃ [4](q′,p′)− H̃ [4](q,p∗),

with respect to the modified density (4.2).
The analysis is based on a study of the one-dimensional harmonic oscillator (cf. Sec-

tions 3.2.2.3 and 6.2) for two-stage integrators (cf. Akhmatskaya et al., 2017). For a method
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of the family (3.43), the modified Hamiltonian in (4.10) takes the form

H̃ [4](q, p) =
1

2

p2

M
+

1

2
kq2 + ∆t2λ

k

M2
p2 + ∆t2µ

k2

M
q2. (6.5)

If ω =
√
k/M is the angular frequency of the harmonic oscillator and h denotes the nondi-

mensional time step defined as h = ω∆t, then for the expected ∆H̃ [4] it holds (6.2), with the
function ρ presented in (6.4). Note that the expectation E[∆H̃ [4]] is taken with respect to the
probability π̃ (4.2) sampled by the algorithm.

For a model consisting of D, possibly coupled, harmonic oscillators with angular frequen-
cies ωi, i = 1, . . . , D, the bound becomes

E[∆H̃ [4]] ≤ 1

β

D∑

i=1

ρ(hi, b),

with hi = ωi∆t. Minimization of the right-hand side will, therefore, ensure optimal conserva-
tion of the modified Hamiltonian in the harmonic model.

In MAIA, given a physical problem which includes nonharmonic forces and a value of
∆t, we estimate the fastest of the angular frequencies, ω̃, of the two-body interactions and
compute the nondimensional quantity

h̃ =
√

3ω̃∆t, (6.6)

with
√

3 being a safety factor to be discussed presently. We then find the value of b that
minimizes

max
0<h<h̃

ρ(h, b). (6.7)

Note that (0, h̃) is the shortest interval that contains all the values hi =
√

3ωi∆t, where ωi
are the frequencies in the problem. In contrast to AIA, where the factor of

√
2 had to be used

to avoid resonances of up to fourth order, in MAIA, the factor
√

3, covering resonances of up
to fifth order, was found to be appropriate (see Table 3.1).

The MAIA algorithm can be summarized as follows:
Given a physical system and a value of ∆t, the MAIA algorithm determines the value of

the parameter b to be used in (3.43) in the following way:

1. Find the periods or frequencies of all two-body interactions in the system. Determine
the minimum period T̃ = 2π/ω̃, with the fastest frequency ω̃, and compute the nondi-
mensional quantity h̃ in (6.6).

2. Check whether h̃ < 2
√

2, which is the usual stability limit in molecular simulation for
Verlet integrators (see for instance (Mazur, 1997)). If not, there is no value of b for
which the scheme (3.43) is stable for the attempted time step ∆t and the integration is
aborted.

3. Find the optimal value of the parameter b by minimizing (6.7) with the help of an
optimization routine.

When ∆t is “large” for the problem at hand, in the sense that stability is the primary
concern, MAIA will choose b = 1/4, i.e., the Verlet integrator. Smaller values of ∆t allow
MAIA to reduce b and increase accuracy in the conservation of the modified Hamiltonian (see
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Figure 6.4). Figure 6.4 also shows the advantage of MAIA when compared with the older
algorithm AIA, developed for the HMC method, which does not use modified Hamiltonians
and samples with respect to the target canonical density. This is also in agreement with the
expectations in (4.4) and in (4.5).

The right panel of Figure 6.4 also confirms the two different expectations of the Hamilto-
nian error and the modified Hamiltonian error in equations (4.4)-(4.5).
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Figure 6.4: Parameter b for different integrators as a function of h̃ (left) and
bounds of the expected energy error measured with respect to the true, in solid
lines, or modified Hamiltonian, in dashed lines (right). There are two lines for
VV, as it may be used to sample from the true (HMC) or the importance den-
sity (GSHMC). AIA operates with respect to the true energy and MAIA with
respect to its modified counterpart. The algorithms that operate with modified
Hamiltonians possess smaller expected errors. This explains why, in general,
VV GSHMC has higher acceptance rates than VV HMC and MAIA improves
on AIA. Since in this section only two-stage integrators are discussed, from
now on we drop the index 2 introduced in Section 6.2 for two-stage integrators,
i.e., M-ME2, M-BCSS2.

Figure 6.5 justifies why AIA and MAIA can be useful: the integrators with fixed parameter
minimum error, BCSS, ME and VV (and their modified counterparts) have the smallest
expected (modified) energy error for different choices of a time step. Thus, the methodology
that automatically tunes the integrator parameter is useful.
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Figure 6.5: Minimum bounds of the expected energy error among the three
two-stage integrators VV, ME and BCSS (left) and expected modified energy
error among the three two-stage integrators VV, M-ME and M-BCSS (right).
The time steps studied are all smaller than 3 since the loss of stability for the
biggest time steps is not interesting in this comparison.

6.3.2 e-MAIA

The overall performance of an MHMC method depends not only on the acceptance rate α
of the proposal made after each MD integration leg (see (4.8)) but also on the momentum
update acceptance rate αp in (4.12). The latter may play an important role in the quality
of sampling (previous investigations on this issue can be found in (Akhmatskaya and Reich,
2008; Wee et al., 2008)) since αp determines the frequency of the momenta resamplings. So
far, we have looked for the integrator that maximizes α and our next objective is to find a
way to control αp.

As we did above, we build the analysis on the use of a harmonic oscillator model. For the
scalar harmonic potential, the stationary marginal p.d.f.’s of the (stochastically independent
variables) p and u (see (4.11)) are

π(p) ∝ exp

(
−β
(

1

2

p2

M
+ ∆t2λ

k

M2
p2

))
, π(u) ∝ exp

(
−β

2

u2

M

)
, (6.8)

respectively, and the extended Hamiltonian in (4.13) reads

Ĥ(q, p, u) = H̃ [4](q, p) +
1

2

u2

M
,

with H̃ [4] given in (6.5). As it was shown in (Radivojević, 2016), the difference in extended
Hamiltonian satisfies

∆Ĥ = Ĥ(q, ptrial, utrial)− Ĥ(q, p, u)

= ∆t2λ

(
sin2 ϕ

(
k

M2
u2 − k

M2
p2

)
+ 2 cosϕ sinϕu

k

M2
p

)
,

and from here it is found that

E[β∆Ĥ] = ∆t2βλ sin2 ϕ
ω2

M

(
E[u2]− E[p2]

)
.
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From (6.8) we have

E[p2] = β−1M
(
1 + 2∆t2λω2

)−1
, E[u2] = β−1M,

and then
E[β∆Ĥ] = ∆t2λ sin2 ϕω2

(
1−

(
1 + 2∆t2λω2

)−1
)

=
2∆t4λ2 sin2 ϕω4

1 + 2∆t2λω2
.

In terms of the dimensionless time step h = ω∆t, one obtains

E[β∆Ĥ] =
2h4λ2 sin2 ϕ

1 + 2h2λ
. (6.9)

For the model consisting of D harmonic oscillators with angular frequencies ωi, i = 1, . . . , D,
the equivalent of (6.9) is

E[β∆Ĥ] =

D∑

i=1

2h4
iλ

2 sin2 ϕ

1 + 2h2
iλ

≥ D2h̄4λ2 sin2 ϕ

1 + 2h̄2λ
, (6.10)

where hi = ωi∆t are the dimensionless time steps and h̄ = ω̄∆t with ω̄ equal to the slowest
angular frequency among all the oscillators.

Using αp ≤ exp (−β∆Ĥ) (see (4.12)), from the inequality (6.10) and for a concrete choice
of the angle ϕp, we can find the approximation

− logE[αp]

D
≈ 2h̄4λ2 sin2 ϕp

1 + 2h̄2λ
. (6.11)

It has to be remarked that the fastest oscillation frequency features in the analyses of MAIA
and its predecessor AIA, but the slowest frequency is used in (6.11).

From (6.11), the expected acceptance rate in the momentum update may be controlled
by three parameters: the parameter λ = λ(b) that depends on the specific integrator being
used, the parameter h̄, which for a given problem is a function of ∆t, and the angle ϕ. This
fact motivates the algorithm that we call extended MAIA or e-MAIA. For a user-chosen ∆t,
e-MAIA first finds an integrator within the family of two-stage schemes that maintains the
smallest expected modified energy error in the molecular dynamics part of the MHMC algo-
rithm and then adjusts the value of ϕ to achieve a desired acceptance rate for the momentum
update step. As explained above, the acceptance rates in the momentum update step depend
on the choice of angle ϕ, whereas the MAIA analysis does not depend on ϕ. This means that,
for some fixed values of ϕ and ∆t, the integrator nominated by MAIA may not be favorable
for maintaining an appropriate acceptance rate in the momenta. The goal of e-MAIA is to
provide an adaptive choice of the angle ϕ to achieve a target, user-specified acceptance rate
in the momentum update step while keeping the highest acceptance rate for positions.

While a high acceptance rate in the MD part has a positive effect on sampling with
modified Hamiltonians, a too-frequent acceptance of momentum (close to 100 %) could lead
to two undesired scenarios: (i) an accuracy deteriorating thermalization of the simulation, if
the high acceptance rate is caused by a value of the angle ϕ very close to zero (cf. (Wee et
al., 2008; Akhmatskaya, Bou-Rabee, and Reich, 2009)); or (ii) a disruption of the dynamical
trajectories if the momenta are always resampled while ϕ is significantly bigger than zero
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(cf. (Akhmatskaya and Reich, 2008)). In the first scenario, the simulation will mimic an MD
behavior in the NVE ensemble. The rationale for introducing e-MAIA is the possibility of
simultaneously adapting the parameters b and ϕ to control both the acceptance probabilities
α and αp of the MD integration legs and the momentum updates.

The algorithm e-MAIA is as follows:

1. For a given physical problem, choose a time step ∆t for the integration of the equations
of motion, a target acceptance rate ARp for the momentum update, and an initial value
ϕ0 of the angle ϕ.

2. Find the slowest and the fastest angular frequencies in the harmonic interactions, ω̄ and
ω̃, respectively.

3. The integrator parameter b∗ is obtained as in MAIA by optimization of the function ρ
in (6.4). This choice of b∗ guarantees the highest possible acceptance rate for harmonic
interactions in the MD step.

4. The function which bounds the expected extended Hamiltonian error is given by (see
(6.11))

τ(h̄, b∗, ϕ) =
2h̄4λ∗2 sin2 ϕ

1 + 2h̄2λ∗
,

where λ∗ is the value of λ when b = b∗ and

h̄ = ω̄∆t. (6.12)

The angle ϕ∗ is chosen as
ϕ∗ = arg min

ϕ∈(0,π/2]
θ(ϕ), (6.13)

with
θ(ϕ) =

∣∣∣∣−
log (ARp)

D
− τ(h̄, b∗, ϕ)

∣∣∣∣ .

5. If the selected ϕ∗ is smaller than ϕ0, then either decrease the target ARp and go to step
4 or, alternatively, define the function

σ(h, b, ϕ0) = ρ(h, b) + τ(h, b, ϕ0) (6.14)

and choose b∗∗ that minimizes max
0<h<h̃

σ(h, b, ϕ0). The fastest oscillation is used again for

the momentum update part, since in this case we are constructing an upper bound of
the expected energy error.

We stress that for very small values of ϕ, an MHMC method loses its extra sampling
abilities and behaves similarly to standard molecular dynamics. In e-MAIA, this possibility
is eliminated in step 5 of the algorithm in two ways. One option is to keep decreasing
the target ARp until ϕ∗ rises above ϕ0. Another option is to optimize the joint bound
function constructed for both expected errors, E[β∆H̃] and E[β∆Ĥ]. Though this sacrifices
the position acceptance rates, the expected loss is small provided that ϕ0 � π/2.

The reader should notice that, whereas MAIA in principle works for any method that
samples with respect to modified Hamiltonians, e-MAIA only works for those MHMC methods
which perform the momentum update step in the way described in (4.11).



6.4. Implementation 111

6.4 Implementation

Similarly to AIA, MAIA and e-MAIA have been implemented in the GROMACS preprocessing
module grompp. The preprocessing module is run only once before any simulation and, thus,
it does not introduce computational overheads in the simulation.

In addition to the grompp standard functionalities, the more advanced analysis of the
harmonic interactions is included in this module in MultiHMC-GROMACS. As has been
explained in Section 3.3, the fastest harmonic interaction predetermines a maximal time step
allowed for the stable numerical integration of the equations of motion. On the other hand, the
slowest harmonic interactions are used in the e-MAIA algorithm to identify the best choice of
the parameter ϕ. In MultiHMC-GROMACS, grompp searches for the periods corresponding
to the fastest and slowest oscillations, T̃ and T̄ , respectively. The value T̃ is used to define
the upper limit of the dimensionless time step, h̃ =

√
3(2π/T̃ )∆t, following MAIA algorithm.

The optimal value of the parameter b for a MAIA or e-MAIA integrator is then found as
the argument that minimizes the maximum of ρ (6.4) for the range of dimensionless time
steps from zero to h̃. As in Section 3.3, the minimization is performed with a particle swarm
optimization algorithm driven by a golden section search. The value T̄ is used to determine
the angle ϕ, as explained in the e-MAIA algorithm.

Both b and ϕ are stored in the input record structure introduced by GROMACS for keeping
all the input data during the whole simulation. Thus, b and ϕ can be accessed from every
routine in the package.

The integrators resulting from the Modified Adaptive Integration Approach described
above belong to the family (3.43) and thus are naturally included in the list of integrators
implemented (see Section 7.4 for details). The parameter used in the .mdp file is maia. In
case Extended MAIA is used, the parameter maia is selected, but two more parameters have
to be added to the .mdp file: a boolean variable that decides if e-MAIA is used or not and
the target acceptance rate ARp. The angle of the GSHMC method will be used as the initial
value ϕ0 (more details on the GSHMC parameters can be found in Section 7.3). The specific
parameters in the .mdp file are summarized below:

extended_maia = yes; yes / no
target_ar = 0.9; any positive rational
parameter_phi = 0.2; 0<phi<pi/2

Obviously, to run e-MAIA, both MAIA and GSHMC methods have to be selected.
The flowchart in Figure 6.6 summarizes MAIA and e-MAIA algorithms.
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Input
* Modified .mdp file
* Standard GROMACS input

Adaptivity

MAIA
1. As 1. in No adaptivity case
2. Calculate the fastest period T̃ and

the dimensionless time step h̃ (6.6)
3. Set ψ(h, b) = ρ(h, b) (6.4)
4. Find b∗ as arg min

b∈(0,1/4]
max

h∈(0, h̃)
ψ(h, b)

5. Set ϕ∗ = ϕ0

e-MAIA

e-MAIA
1. Calculate the slowest period T̄ and

the dimensionless time step h̄ (6.12)
2. Calculate ϕ∗ from (6.13)

1. Set new ARp

2. Go to e-MAIA step 2

1. Set ψ(h, b) = σ(h, b, ϕ0) (6.14)
2. Go to MAIA step 4

ϕ∗ < ϕ0
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No adaptivity
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1.a. Calculate period T
1.b. If 5∆t ≥ T , STOP
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* Define the integrator in the Trotter
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Runner (mdrun)

Preprocessor (grompp)

Figure 6.6: Flowchart of the Modified Adaptive Integration Approach
(MAIA) and the extended MAIA (e-MAIA) as implemented in MultiHMC-
GROMACS.

6.5 Numerical experiments

In order to evaluate the efficiency of the proposed (e-)MAIA algorithm, we first compared its
performance with that of several integration schemes which potentially can compete with it.
Then we estimated the performance of GSHMC combined with (e-)MAIA in comparison with
other popular sampling methods. More precisely:
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• e-MAIA was compared with fixed parameters integrators specifically derived for MHMC
methods. The counterpart of BCSS for modified Hamiltonians (M-BCSS) and the equiv-
alent to the scheme of McLachlan that minimizes the errors of modified Hamiltonians
(M-ME) were included in the comparison. Both M-BCSS and M-ME have been recently
derived (cf. (Radivojević, 2016) and Section 6.2) and implemented in MultiHMC-
GROMACS. All three integrators were combined with the GSHMC method. Also,
e-MAIA was compared with integrators successfully used for molecular simulation in
MD, HMC and GSHMC. The velocity Verlet and AIA combined with GSHMC were
selected in this case.

• e-MAIA was compared with MAIA when both were implemented within GSHMC.

• GSHMC was compared with HMC and MD. For each tested sampling method, the most
efficient integrator was used: e-MAIA was chosen for GSHMC and AIA was employed
in MD and HMC.

To provide a fair comparison, the following issues have been taken into account while
producing the numerical results. To equalize the time spent on force calculations using Verlet
and two-stage integrators, Verlet was always run with half a time step and twice the number
of steps. Also, in the simulations with HMC and GSHMC, the number of Metropolis tests was
kept constant regardless of the acceptance/rejection output. The computational overhead due
to the evaluation of modified Hamiltonians in GSHMC was taken into account by normalizing
calculated integrated autocorrelation functions with respect to computational times. We
notice that this overhead is, on average, of 1-2 % with respect to MD with the v-rescale
thermostat or with respect to HMC, since both MD and HMC have the same computational
cost. We also notice that the overheads of GSHMC tend to decrease when the trajectory
lengths increase.

The tests were performed using two benchmark systems previously introduced for testing
AIA (see Section 3.5.2). Both benchmarks, toxin and villin, were run over a range of time steps
∆t. The aim was to monitor the evolution of the parameters b and ϕ (4.11) automatically
chosen for each ∆t in (e-)MAIA, and estimate their effect on the overall sampling performance
of GSHMC. In all plots in this section, values of time steps correspond to two-stage integrators
and assume twice smaller time steps for velocity Verlet.

Different lengths of MD trajectories L in GSHMC simulations were also tested. This
parameter may play an important role in the sampling efficiency of GSHMC simulations
when the chosen values are either too small or too large, as it has been observed in (Wee
et al., 2008). However, for the sake of clarity, in all tests presented in this work, the length
of MD trajectories was fixed to 2000 steps when two-stage integrators were used and to 4000
otherwise. These values were found to be good choices for both GSHMC and HMC with
different integration schemes and this is also confirmed by findings in Section 3.6. Also, as
discussed above, for this trajectory length L the computational overheads of GSHMC with
respect to MD are smaller than 1%.

With the obvious exception of e-MAIA, the angle used for the momentum refreshment
(4.11) was set to 0.2 for all tests unless stated otherwise.

Each test has been repeated 10 times and every result reported here was obtained by
averaging over the multiple runs to reduce statistical errors.

The numerical experiments were performed using the two benchmark systems from Sec-
tion 3.5.2: toxin and villin. The same system setups were also considered.
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6.5.1 Toxin

We start by measuring the acceptance rates of positions and momenta in the GSHMC simu-
lations with different integration schemes. For the sake of clarity, we excluded from the plots
the results for the MAIA algorithm, leaving only the data for e-MAIA. This makes sense
because the position acceptance rates for MAIA and e-MAIA are always very similar (see
step 3 of the e-MAIA algorithm), while e-MAIA has a clear advantage over MAIA as far as
the acceptance rates for momenta are concerned. We shall provide more details on this issue
later.

The primary objective of the MAIA algorithm is to maximize the acceptance of position
proposals in an MHMC method by minimizing the expected errors in modified Hamiltonians.
Then, the first natural test for MAIA is to check whether the position acceptance rates
observed in GSHMC simulations combined with MAIA are not below those observed with
other two-stage integrators. In Figure 6.7, the effect of various integrators such as e-MAIA,
the modified versions of BCSS (M-BCSS) and ME (M-ME), the standard VV, and AIA on
the acceptance rates in GSHMC simulations is investigated. The trends presented in the plot
in the left are in good agreement with the theoretical prediction in Figure 6.4 (right panel).
Indeed, the acceptance rates obtained with the modified adaptive approach e-MAIA, over the
range of time steps considered, are never lower than the ones provided by the other integrators
tested. For small time steps, all integrators, except AIA, guarantee high acceptance rates,
but the situation changes as the time step increases and the shorter stability intervals of
M-BCSS and M-ME result in acceptance rates well below those achieved with e-MAIA and
VV. The low acceptance rates for AIA are not surprising since this method was developed
for sampling with respect to the true Hamiltonian and provides the lowest expected errors
in Hamiltonian rather than in modified Hamiltonian. However, for the largest time step of
50 fs, the parameter b in AIA becomes equal to 1/4 and thus AIA is equivalent to VV (see
Figure 6.4, left). The same applies to MAIA/e-MAIA for the longest time step, as can also be
seen in Figure 6.4 (left). It merely reflects the fact that the velocity Verlet integrator possesses
the longest stability interval among the two-stage integrators and the adaptive methods AIA
and MAIA select velocity Verlet when the time step goes beyond the stability limit of other
two-stage integrators.

The acceptance rates for momenta are shown in the right panel of Figure 6.7. For e-
MAIA, we fixed the target acceptance ARp to 90 % bearing in mind that too high (near 100
%) acceptance rates may degrade accuracy, whereas low acceptance rates usually reduce the
sampling efficiency of GSHMC. With this target set, e-MAIA chose an appropriate value of
ϕ for each time step being tested. The simulations with other integrators were run with the
fixed value ϕ = 0.2, which was selected to achieve good performance for the longest time
steps. Naturally, with every integrator, the parameter ϕ can be adapted, by trial and error,
to each simulation and time step, but we have to stress that, in practice, blindly tuning the
value of ϕ is somewhat time-consuming and not necessarily results in the optimal choice of ϕ.
That is why the ability of e-MAIA to automatically optimize such a choice is very welcome.
As follows from Figure 6.7 (right), for all tested time steps, e-MAIA maintained well the
target ARp by varying ϕ. The other integrators being combined with GSHMC led to very
high, unwelcome acceptance rates for most time steps tested.
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Figure 6.7: Toxin. Acceptance rates for positions (left) and momenta (right)
observed in GSHMC simulations when using M-BCSS, M-ME, VV, AIA (all
dashed lines), and e-MAIA (solid line). e-MAIA maintains the target ARp of
90 % for each value of ∆t (right).

We shall see next how the trends observed above for the acceptance rates impact the
sampling efficiency of GSHMC. In the case of toxin, this efficiency was measured in terms of
the integrated autocorrelation function IACF of the toxin drift d to the preferred interfacial
location over the “convergence period.” The IACF is defined as

IACFΩ =
K′∑

l=0

ACF(τl), (6.15)

where ACF(τl), l = 0, . . . ,K ′ < K is the standard autocorrelation function for the time series
Ωk ofK samples, k = 1, . . . ,K (see (Kennedy and Pendleton, 2001; Allen and Tildesley, 1989)
for details). For GSHMC, the ACF’s are calculated taking into account the weights collected
during simulations as suggested in (Radivojević, 2016). We notice that in all simulations
performed the normalized weights are close to 1 due to small differences between modified and
true Hamiltonians observed in the simulations as well as the choice of temperatures (common
for molecular simulations of biological systems) leading to β < 1. This means that the metrics
designed for weighted and nonweighted methods would not generate data that are too different.
This, however, is not expected in a general case and is not common in statistical applications
(see (Radivojević and Akhmatskaya, 2017) for a detailed discussion). The IACF in (6.15)
gives a quantitative measure of the time required, on average, to generate an uncorrelated
sample. Low values of measured IACFs imply low correlations between samples and thus
more efficient sampling.

Figure 6.8 (left) presents the IACFs (normalized with respect to computational time)
obtained from GSHMC simulations using different integrators and time steps. The simulations
with e-MAIA provided the lowest values of IACFs and thus the best sampling for all choices
of time step. All methods showed the good performance at ∆t = 40 fs and, for this time step,
the simulations with e-MAIA resulted in efficiency (as measured by IACF) from 5 (vs. M-
BCSS, VV) to 9 (vs. AIA) times higher than the simulations with other integration schemes.
For the largest time step, ∆t = 50 fs, the performance achieved using e-MAIA was 12 times
better than in the simulations with M-BCSS and M-ME. However, it did not differ any more
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from those observed in the simulations with VV and AIA since for this long time step both
AIA and e-MAIA chose velocity Verlet as an integrator.
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Figure 6.8: Toxin. Sampling efficiency of GSHMC combined with the inte-
grators used in Figure 6.7. On the left, IACF of the drift, d, of the toxin to the
preferred interfacial location evaluated as a function of ∆t in GSHMC tests.
On the right, the distribution of d observed in GSHMC simulations with vari-
ous integrators using a time step of 30 fs. The solid black line (right) presents
the “true” distribution produced with a ten times longer simulation (200 ns).

The right panel of Figure 6.8 compares the distributions of the distance d between the
c.o.m. of the toxin and the c.o.m. of the bilayer, collected from simulations with ∆t = 30 fs
with different integrators, against a “true” distribution. Such distribution was obtained from
an MD simulation with velocity Verlet, over a time interval of length 200 ns, i.e., ten times
longer. As for all tests in this section, the plots have results averaged over 10 repetitive runs.
The curve corresponding to the simulation with e-MAIA shows the best match with the “true”
distribution.

The performances of e-MAIA and MAIA are compared in Figure 6.9. We chose the target
ARp in e-MAIA to be 90 % and the angle ϕ in MAIA to be equal to 1.1, which was the
value found by e-MAIA for achieving the target ARp = 90 % in GSHMC simulations at the
smallest time step tested, ∆t = 20 fs. Figure 6.9 reveals that, even though both e-MAIA and
MAIA find the same integrator parameter b, leading to similar acceptance rates for positions,
a good choice of the angle ϕ may visibly improve the sampling performance of GSHMC. The
improvement is by factors of 8 and 2 for ∆t = 40 fs and ∆t = 50 fs, respectively. The
evolution, as the time step increases, of the optimal parameter ϕ as calculated by e-MAIA is
also shown in Figure 6.9 (right).
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Figure 6.9: Toxin. e-MAIA (solid) vs. MAIA (dashed). Acceptance rates for
positions and momenta (left), IACFs (center) and the angle ϕ (right) found by
e-MAIA as a function of the time step (right) observed in GSHMC simulations.
The angle ϕ used in MAIA was 1.1 and the target ARp for e-MAIA was 90 %.

To finalize the numerical experiments on the toxin benchmark, we compared, using the nor-
malized IACF metrics, the performance of three sampling methods, MD, HMC, and GSHMC.
For each method, the best performing integrator was selected. Thus, GSHMC was combined
with e-MAIA, based on the findings discussed above, whereas the AIA integrator was used for
HMC and MD, according to the recommendations in Section 3.6. Figure 6.10 (left) demon-
strates the superiority of GSHMC over the other two methods, regardless the choice of time
step. For the optimal choice of time step for this system, namely, ∆t = 40 fs, the sampling
efficiency of GSHMC is 4 times higher than that of HMC and 11 times better than that of
MD. For the longest time step, ∆t = 50 fs, the difference is even more dramatic and expressed
in improvement factors of 17 and 30 over HMC and MD, respectively. Plotted in Figure 6.10
(right) are the distributions of the distance d between the c.o.m. of the toxin and the c.o.m.
of the bilayer produced by GSHMC, HMC, and MD simulations using a time step of 30 fs.
They also confirm the better convergence of the GSHMC results to the “true” distribution.
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Figure 6.10: Toxin. Sampling efficiency: GSHMC (e-MAIA) vs. HMC (AIA)
vs. MD (AIA). The best integrator for each sampling method was employed.
Sampling efficiency was measured by means of IACFs (left) and the distribution
of the distance between the toxin and the membrane bilayer (right). The solid
black line (right) presents the “true” distribution produced with a ten times
longer simulation (200 ns).
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6.5.2 Villin

As in the toxin case, we first inspected the acceptance rates for positions and momenta in
GSHMC simulations with different integrators and found that the e-MAIA method worked as
expected, i.e., provided the best position acceptance rates (Figure 6.11, left) and maintained
the target momenta acceptance rate of 90 % (Figure 6.11, right) for all choices of time steps.
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Figure 6.11: Villin. Acceptance rates for positions (left) and momenta (right)
observed in GSHMC simulations when using M-BCSS, M-ME, VV, AIA (all
dashed lines) and e-MAIA (solid line). e-MAIA maintains the target ARp of
90 % for each value of ∆t (right).

In contrast to the coarse-grained toxin benchmark, a quantitative analysis of the MAIA’s
contribution to the GSHMC performance gain is not feasible with the atomistic villin bench-
mark. Such an analysis would require a long, computationally demanding series of simula-
tions, for a range of time steps, integrators, and sampling methods. It is, however, possible
to find evidence of the positive impact of MAIA on the sampling efficiency of GSHMC by
using comparatively short simulations of 5 ns and metrics directly related to the quality of
sampling.

One of such metrics is the radius of gyration (RG), which provides an estimation of the
compactness of the desired structure, and is computed as

RG =

(∑n
i=1‖ri‖2Mi∑n
i=1Mi

)1/2

,

where n is the number of atoms in the structure, ri the distance between atom i and the
center of mass of the structure, and Mi the mass of atom i. As in the study by van der Spoel
and Lindahl, 2003, we considered the experimental value of 0.94 nm as a target value and
investigated the level of convergence to this value in short simulations when using different
time steps, numerical integrators, and simulation methods.

Another metric used in this study relates to the positional root-mean-squared deviation
(RMSD). The RMSD of a group of atoms in a molecule with respect to a reference structure
can be calculated as

RMSD =

√√√√ 1

n

n∑

i=1

δ2
i ,
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where δi is the distance between the positions of atom i in the two structures being compared.
Following the ideas from van der Spoel and Lindahl, 2003, we calculated the maximal

RMSD of the α-carbon between any two visited structures in each simulation in order to
judge the level of exploration of conformational space during the simulation.

In Figure 6.12 we plot, as functions of the time step, the radii of gyration and maximal
RMSDs of the α-carbon calculated from the data collected in GSHMC simulations using e-
MAIA, M-BCSS, M-ME, VV and AIA integrators. The simulations with e-MAIA (solid line)
produced the best approximations to the experimental data (left plot), the highest values
of maximal RMSD (right plot) (implying better sampling) and the smallest performance
degradation at the longest time steps.
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Figure 6.12: Villin. Sampling efficiency of GSHMC combined with the inte-
grators used in Figure 6.11: radius of gyration (left) and maximum RMSD of
the α-carbon of the protein (right). The solid black line (left) represents the
target experimental value of 0.94 nm.

The comparison of the results obtained using MAIA and e-MAIA in GSHMC simulations
of villin confirmed the trends observed earlier in the toxin tests. Both methods achieved almost
the same position acceptance rates, whereas the momenta acceptance rates were significantly
higher in the simulations with e-MAIA (Figure 6.13, left). The latter was possible due to
the automatic tuning of the parameter ϕ provided by e-MAIA for maintaining the target
ARp = 90% (Figure 6.13, right); its positive effect can be noticed in Figure 6.13, center.
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Figure 6.13: Villin. e-MAIA (solid) vs. MAIA (dashed). Acceptance rates
for positions and momenta (left), radii of gyration (center) and the angle ϕ
found by e-MAIA as a function of the time step (right) observed in GSHMC
simulations. The angle ϕ used in MAIA was 0.9 and the target ARp for e-MAIA
was 90 %.

Figure 6.14 compares the radii of gyration (left) and maximal RMSDs of the α-carbon
(right) obtained from the simulations of villin using three different sampling methods,
GSHMC, HMC, and MD. As in the toxin case, the best performing integrator was used for
each sampler, i.e., e-MAIA was selected for GSHMC and AIA was combined with HMC and
MD. For both metrics, GSHMC demonstrated the best results over the range of time steps.
Its advantage over HMC and MD is most visible at longer time steps when both HMC and
MD lose accuracy and sampling efficiency.
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Figure 6.14: Villin. Sampling efficiency: GSHMC (e-MAIA) vs. HMC (AIA)
vs. MD (AIA). The best integrator for each sampling method was employed.
Sampling efficiency was measured through the radius of gyration (left) and the
maximum RMSD of the α-carbon of the protein (right). The solid black line
(left) represents the target experimental value of 0.94 nm.

Some extra explanations can be found in Figure 6.15, where the evolution with time
of the relative radii of gyration observed for each simulation method with respect to the
results obtained in MD simulations. We have calculated the radii of gyration for all three
methods using two different simulations lengths, the whole simulation and half of it. This
plot demonstrates that the difference in performance between GSHMC with e-MAIA and MD
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with AIA increases with increasing simulation time. This suggests that, for more realistic
simulation times, at least as good, but likely the bigger improvements, of GSHMC over MD
can be expected. The same conclusions can be made when comparing GSHMC with HMC or
HMC with MD.
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Figure 6.15: Villin. Evolution with time of the relative radii of gyration
(RG) observed for each simulation method with respect to the RG found in
MD simulations. The dashed lines represent the RG at half of the simulation
time whereas the solid lines are used for the full simulations.

Additionally, we have generated Ramachandran plots considering all residues of the protein
except for glycine. In Figure 6.16 the Ramachandran plots, obtained for the largest time step
∆t = 6 fs, are presented as two-dimensional joint distributions of ϕ and Ψ angles. Figure 6.16
confirms the advantages of GSHMC over other tested methods. Indeed, GSHMC combined
with e-MAIA is the only method capable of sampling all regions including the less populated
basins in the ϕ, Ψ > 0 region, which were out of reach for HMC and MD sampling.
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Figure 6.16: Villin. Sampling efficiency: GSHMC (e-MAIA) vs. HMC (AIA)
vs. MD (AIA). Ramachandran plots for all residues of the protein except for
glycine with ϕ torsion on the horizontal axis and Ψ on the vertical axis. The
best integrator for each sampling method was employed. The time step was
6 fs, the largest in these tests.
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Obviously, a deep atomistic study of the villin folding requires significantly longer runs
than those presented here, as well as the incorporation of additional sampling techniques,
such as, for example, parallel tempering, to the simulations. The latter can be implemented
similarly, with a similar cost for all three methodologies considered in our study. However,
the simulations will undoubtedly be more efficient if the underlying sampling method provides
higher sampling efficiency, which is the case for GSHMC with e-MAIA.

6.6 Conclusions

We have introduced the new multi-stage integrators for modified Hamiltonian Monte Carlo
(MHMC) methods. The proposed two- and three-stage integration methods provide better
conservation of modified Hamiltonians than does the Verlet integrator, commonly used in
MHMC. Each of the derived methods is characterized by its coefficients, which are obtained
from the minimization of the (expected) error in modified Hamiltonians introduced by nu-
merical integration. The new methods were tested and compared with Verlet and also with
the sophisticated splitting integrators previously suggested for sampling with HMC.

For two-stage modified integrators, we have also proposed an adaptive integration ap-
proach ultimately leading to enhancing the accuracy and sampling efficiency of modified
Hamiltonian Monte Carlo (MHMC) methods. Given a simulation system and a user-chosen
time step, the Modified Adaptive Integration Approach (MAIA) identifies the two-stage nu-
merical integrator which, when used in the Hamiltonian dynamics step of an MHMC method,
provides the best conservation of the relevant modified Hamiltonian and thus the highest
acceptance of the proposed trajectories. An enhanced variant of MAIA, e-MAIA, tailored to
Generalized Shadow Hybrid Monte Carlo (GSHMC) methods, additionally supplies a value of
the parameter ϕ that, for the problem under consideration, keeps the momentum acceptance
at a user-desired level. The MAIA algorithm has been implemented, with no computational
overhead during simulations, in MultiHMC-GROMACS, the modified version of the popu-
lar software package GROMACS. The effect of the use of MAIA on the sampling efficiency
of GSHMC has been demonstrated by using constrained atomistic and unconstrained coarse-
grained benchmarks and compared with the performance of other suitable integration schemes,
including the popular velocity Verlet integrator. The tests revealed that the replacement in
GSHMC of any fixed two-stage integrator with e-MAIA leads systematically to improve-
ments in sampling efficiency of up to an order of magnitude. The performance comparison of
GSHMC, HMC, and MD combined with their best choices of numerical integrators (e-MAIA,
AIA, AIA, respectively) confirmed the efficiency and robustness of the GSHMC-MAIA combi-
nation, whose advantages are especially noticeable when using the longest possible simulation
time steps. For such cases, GSHMC, while maintaining good accuracy in simulation, provided
a sampling efficiency (as measured with IACF) up to 30 times higher than the efficiency that
may be achieved with MD.
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Chapter 7

Implementation. The
MultiHMC-GROMACS Package

7.1 Introduction

Typical systems studied with molecular simulations consist of a vast number of atoms. Thus,
high-speed computers are essential for performing the computationally-intensive simulations
(cf. (Board et al., 1994; Klepeis et al., 2009)). Despite the fact that the first simulations
of homogeneous systems had been performed in the 50s, macromolecular applications only
started to become feasible in the mid-80s with the advent of high-speed parallel computing.
On the other hand, the progress in macromolecular simulations could not be possible with-
out advanced numerical algorithms and their efficient implementation on high-performance
computers. Some essential algorithms proposed for molecular simulation have been reviewed
in Chapter 1. While the whole range of methods developed until now is not covered there,
the mentioned algorithms are the most relevant to the topic of this dissertation. All these
methods are commonly used in MD simulations and available in all popular modern MD
software packages, such as GROMACS (Berendsen, van der Spoel, and van Drunen, 1995;
Hess et al., 2008), Amber (Salomon-Ferrer, Case, and Walker, 2013), LAMPPS (Plimpton,
1995), Desmond (Bowers et al., 2006), CHARMM (Brooks et al., 2009), NAMD (Nelson et
al., 1996), etc. Each algorithm and software package have their limitations, and it is a user’s
responsibility to choose (and tune if necessary) the most appropriate method/package for the
problem of interest.

The new algorithms presented in this dissertation have been implemented in the modified
version of GROMACS, developed in BCAM and called MultiHMC-GROMACS. This package
has been used to produce all numerical results presented in this study. GROMACS is a popu-
lar MD software package available under the GNU Lesser General Public License. It is written
in the C programming language, highly optimized for maximal computational efficiency and
fully parallelized using the MPI protocol. The package is used primarily for performing molec-
ular dynamics simulations. It supports most important algorithms expected from a modern
molecular dynamics implementation. In the following sections, the MultiHMC-GROMACS
package, partially developed during the Ph.D., will be explained in detail.
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7.2 MultiHMC-GROMACS: Overview

GROMACS is one of the most computationally efficient and versatile molecular dynamics
packages available today. Its open-source nature makes it an excellent choice for implement-
ing and benchmarking new methods. GROMACS supports state-of-the-art molecular dynam-
ics algorithms and offers an extremely fast calculation of non-bonded atomic interactions,
which usually are the dominant part of molecular dynamics simulations. Its main structure
is summarized in Figure 7.1.

Generate a GROMACS topology:
pdb2gmx

Enlarge the box:
editconf

Solvate the protein: solvate

Generate mdrun input file:
grompp

Run the simulation: mdrun

Analysis:
view

Analysis:
energy

eiwit.pdb

conf.gro

topol.top

conf.gro

conf.gro

grompp.mdp

topol.top

state.cpt

topol.tpr

traj.xtc/traj.trr ener.edr

Figure 7.1: Main structure of the GROMACS package. The core GROMACS
modules are shown in red, whereas the important files are highlighted in blue.

MultiHMC-GROMACS has been developed to achieve better accuracy and sampling per-
formance in GROMACS through the use of Hybrid Monte Carlo methods and multi-stage
numerical integrators (the details of those techniques can be found in the previous chapters).
Currently, MultiHMC-GROMACS is based on GROMACS 4.5.4 (Pronk et al., 2013). How-
ever, its migration to later versions of GROMACS, to take advantage of CUDA-based GPU
acceleration (Páll et al., 2015; Abraham et al., 2015), is underway. The first implementation
of MultiHMC-GROMCAS has been described in detail in (Escribano, Akhmatskaya, and Mu-
jika, 2013). During the elaboration of this dissertation, the following new features have been
introduced to MultiHMC-GROMACS:

• Hybrid Monte Carlo (HMC) and Generalized Hybrid Monte Carlo (GHMC). More de-
tails will be provided in this chapter.
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• The reduced-flipping method by Wagoner and Pande, 2012. It is a straightforward
extension of the GSHMC implementation, which introduces an optional flipping in case
of a proposal rejection, in step 11 of the Algorithm 3 (Section 4.3).

• Andersen barostat and its combination with Generalized Shadow Hybrid Monte Carlo
(GSHMC). The implementation has been discussed in detail in Section 5.2.2.

• New shadow Hamiltonians for the GSHMC method. Such Hamiltonians have been
explained in Section 4.3.1 and more details will be provided later in Section 7.3.

• Multi-stage integrators derived for HMC methods sampling with true and modified
Hamiltonians. The introduction of multi-stage integrators in the code is discussed in
this chapter.

• Extension of two-stage integrators to constrained dynamics using the RATTLE algo-
rithm. It is explained in Section 3.4.

• Combination of two-stage integrators with MTTK, Nosé-Hoover and v-rescale ther-
mostats. The details will be provided in Section 7.3.

• The adaptive integration approaches AIA, MAIA and e-MAIA. The details of the im-
plementations can be found in Section 3.4 for AIA, and in Section 6.4 for MAIA and
e-MAIA.

As stated above, the implementations of the novel algorithms developed in this disserta-
tion have been already explained in the corresponding chapters. In this chapter, we present a
general structure of MultiHMC-GROMACS and emphasize the important concepts and ap-
proaches proposed for the implementation of the key algorithms. We will mainly focus on the
mdrun module unless otherwise specified since the majority of the algorithms implemented in
MultiHMC-GROMACS have been introduced there. The new functionalities, as implemented
in MultiHMC-GROMACS, do not interfere with the original GROMACS routines, aiming
to maintain its performance and parallelization, since those are the strongest points of the
package.

The chapter is structured as follows. The implementation of HMC methods is discussed
in Section 7.3. The integration framework proposed in MultiHMC-GROMACS is explained
in Section 7.4. We feature the main differences between MultiHMC-GROMACS and original
GROMACS package and provide the conclusions in Sections 7.5 and 7.6, respectively.

7.3 HMC and GHMC as particular cases of GSHMC

The GSHMC method (cf. Section 4.3) had been previously implemented in MultiHMC-
GROMACS as explained in detail in (Escribano, Akhmatskaya, and Mujika, 2013). We have
extended this implementation to make it more general and introduced HMC and GHMC (cf.
Chapter 2) as particular cases of GSHMC. It is clear that GHMC is just GSHMC without the
modified Hamiltonians and with a less complicated partial momentum update (no Metropolis
test required). Also, as explained in Table 2.1, HMC is a particular case of GHMC. To
illustrate this in detail, we provide the structure of the GSHMC algorithm in Figure 7.2,
where the notations of Section 4.3 are used.



128 Chapter 7. Implementation. The MultiHMC-GROMACS Package

Momentum update

p∗ = cosϕ p + sinϕ u

u∗ = − sinϕ p + cosϕ u

min
(

1, e−β∆Ĥ
)Metro
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(q, p̄) = (q,p∗) (q, p̄) = (q,p)

Molecular dynamics

Ψ∆t,L(q, p̄) = (q′,p′)
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1, e−β∆H̃
)Metro
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s

(qi,pi) = (q′,p′) (qi,pi) = (q,−p̄)

yes no

yes no

Figure 7.2: Structure of the GSHMC algorithm.

Figure 7.3 presents the GHMC algorithm as a particular case of GSHMC illustrated in
Figure 7.2. The features specific to GHMC are highlighted in red. More precisely, there is no
Metropolis test after the momentum update (which is equivalent to considering a test that is
always accepted) and the shadow Hamiltonians now are substituted by the true Hamiltonians.
The latter can be viewed as a shadow Hamiltonian whose expansion is of an order of two.
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Momentum update

p∗ = cosϕ p + sinϕ u

u∗ = − sinϕ p + cosϕ u

Molecular dynamics
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)Metro
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Figure 7.3: Structure of the GHMC algorithm as a special case of GSHMC.

The similar procedure as above can be applied to HMC. In Figure 7.4 the changes with
respect to GHMC (Figure 7.3) are represented in red again. In this case, there is no partial
momentum update; the momenta are always fully resampled with respect to the Maxwell-
Boltzmann distribution. Thus, since the momenta are always completely discarded, after the
Metropolis test, only the positions are stored.
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qi = q′ qi = q
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Figure 7.4: Structure of the HMC algorithm as a special case of GHMC.
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Figure 7.5 shows how the GSHCM implementation (and then that of GHMC/HMC) fits
into the structure of do_md(), the routine performing MD steps in GROMACS. We call
this part of the code gshmc(), to emphasize the fact that the GSHMC method is the most
sophisticated among the Hybrid Monte Carlo family. As HMC methods are not a part of the
released GROMACS version, all functions inside of the gshmc() module do not belong to the
original GROMACS library. The shadow Hamiltonians are implemented in the subroutine
shadow() and Metropolis test is performed in the function metropolis(). The calculation of
shadow Hamiltonians will be discussed in more detail later. It is clear that the metropolis()
function can be easily used for the three methods HMC, GHMC and GSHMC. One only needs
to pass to the subroutine the appropriate information. The function momentum_update() can
be used in GSHMC, GHMC and HMC for partial momentum update. In the latter, ϕ is fixed
to π/2. The monte_carlo() routine generates the noise u for the momentum update from
the temperature T (see Section 4.11 for details).

Set t = 0, n = 1, simulation
time tfinal, trajectory length L
and initial state (q(t),v(t)).
(qcurr,vcurr) = (q(t),v(t))

if t < tfinal
End the simulation,
save the final state

Velocity kick:
update_cords() v

(
t+ ∆t

2

)

Position drift:
update_cords()

q(t+ ∆t)

Forces update:
do_force()

F (q(t+ ∆t))

Velocity kick:
update_cords()

v(t+ ∆t)

if n = L

n = 0
qprop = q(t+∆t)
vprop = v(t+∆t)

write_traj() Output the accepted state

Accept/reject a proposed state and gener-
ate the next current state:
(qout,vout) = gshmc(qcurr,vcurr,qprop,vprop)

q(t+ ∆t) = qout

v(t+ ∆t) = vout

qcurr = qout

vcurr = vout

yes

no

yes

no

t
→
t

+
∆
t,
n
→
n

+
1

Figure 7.5: Update of configurations in MultiHMC-GROMACS.

The parameter file .mdp for GSHMC, GHMC and HMC has the following additional
variables:

; Hybrid Monte Carlo methods =
method = GSHMC; HMC / GHMC / GSHMC / MD
parameter_phi = 0.2; 0<phi<pi/2
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nr_mom_updates = 1; any positive integer
variable_change = no; yes / no
nr_MD_steps = 1000; any positive integer
hamiltonian_order = 4; 4 / 6
shadow = BCH; BCH / Legendre
canonical_temperature = 310; any positive rational
momentum_flip = yes; yes / no
reduced_flip = no; yes / no

The variable method decides whether to run HMC, GHMC, GSHMC or MD. The variables
parameter_phi and nr_MD_steps correspond to ϕ and L in the notation of Section 4.3,
respectively. Both nr_mom_updates and variable_change are features that were suggested
in the original formulation of the algorithm (Akhmatskaya and Reich, 2008) but are not
considered in the experiments of this dissertation. It is clear that hamiltonian_order alludes
to the order of the expansion of the shadow Hamiltonian (4.9). Currently, there are two
options implemented, fourth and sixth order. The variable shadow chooses the formulation of
the shadow Hamiltonians. Now there are two options available, Legendre and BCH. Legendre
is the one considered in the original GSHMC paper (Akhmatskaya and Reich, 2008) and
derived discretizing the Lagrangian (cf. (4.9)). BCH is obtained using the BCH formula
(Radivojević, 2016) (cf. (4.14)). The temperature used in the momentum update step is
fixed to canonical_temperature. The reader should notice that the HMC methods work as
thermostats and thus this is the reference temperature. It has to be remarked also that the
momentum_flip decides between the original algorithm, which flips momenta upon rejection
(cf. Section 4.3), and a version without momentum flip (Akhmatskaya, Bou-Rabee, and Reich,
2009). A reduction of the flips upon rejection, as suggested by Wagoner and Pande, 2012,
can also be selected with a reduced_flip parameter.

Since HMC and GHMC are implemented as particular cases of GSHMC, only part of the
parameters above have to be used for those methods. Namely, the length of the trajectory,
nr_MD_steps, and the canonical temperature, canonical_temperature, in both cases; the
angle ϕ, parameter_phi, and the choice of momentum flip1, momentum_flip, in the GHMC
case.

7.3.1 Calculation of shadow Hamiltonians

The implementation of two types of shadow Hamiltonians has been discussed in Section 4.3.1.
Here we remark some practical features of those implementations.

The original GSHMC method (Akhmatskaya and Reich, 2008) considers the modi-
fied Hamiltonians (4.9) (in this dissertation we limit ourselves to the 4th order case). In
MultiHMC-GROMACS, these shadow Hamiltonians are selected for a simulation with the
parameter Legendre. The derivatives in (4.9) are prohibitively expensive to compute ana-
lytically. Thus, they are approximated by the central differences method. For instance, the
third order derivative of the position at time tn can be calculated as

Q(3)(tn) =
−1

2Q(tn−2) + Q(tn−1)−Q(tn+1) + 1
2Q(tn+2)

∆t3
+O(∆t2).

1The reader should note that, since the momenta are completely refreshed in the HMC method, the
momentum flip does not play any role.
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Therefore, in order to calculate a shadow Hamiltonian at time tn, two short trajectories have
to be run, one forward (tn+1, tn+2) and another backward (tn−1, tn−2), and the generated
positions have to be stored. The positions and momenta at time tn also have to be stored dur-
ing the shadow Hamiltonian calculation. The forward trajectory is followed by the backward
trajectory initialized at the recovered state at tn. Therefore, the calculation of the shadow
Hamiltonians requires extra force calculations which leads to an increase in the computational
costs. However, the trajectories run for the computation of the shadow Hamiltonians might be
reused for other purposes. For instance, after a momentum update, the calculation of a new
shadow Hamiltonian is required for the Modified Metropolis test (step 6 in the Algorithm 3
(Section 4.3)). If the new momentum is accepted, the two forward steps can be viewed as the
two first steps of the MD trajectory used to generate the next proposal for the MDMC step.

In addition, we implemented another formulation of the shadow Hamiltonians as proposed
in (4.10) and it can be selected for its use in a simulation with the parameter BCH in the .mdp
file. The implementation of such shadow Hamiltonians is done in terms of derivatives of the
momenta (4.14). Thus, the derivatives orders can be reduced by one with respect to (4.9).
While in (4.9) the highest order derivative was the third, in (4.14) only first and second
derivatives are required. As an illustration, the second order derivative of the momenta at
time tn can be calculated as

P̈(tn) =
P(tn−1)− 2P(tn) + P(tn+1)

∆t2
+O(∆t2).

Therefore, in this case, the shorter forward and backward trajectories are required for eval-
uation of a shadow Hamiltonian at time tn; only tn+1 and tn−1 are needed. It means that
the BCH shadow Hamiltonians in their current implementation are less expensive than the
Legendre ones.

7.4 Integrators in MultiHMC-GROMACS

7.4.1 General integration framework

The integration of the equations of motion, in the presence of thermostat, barostat and con-
straints using the velocity Verlet integrator (VV), as implemented in GROMACS, is illustrated
in Figure 7.6. The reader should note that the implementation is done in terms of velocities
instead of momenta.
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given: q(t), v(t),
F (q(t))/M for all atoms

velocity kick
v(t) → v(t+ ∆t/2)

position drift
q(t) → q(t+ ∆t)

position constraint
q(t+∆t) → q′(t+∆t)

velocity kick
v(t+∆t/2) → v(t+∆t)

q(t) = q′′(t+ ∆t)
v(t) = v′′(t+∆t)

barostat
q′(t+∆t) → q′′(t+∆t)

thermostat
v′(t+∆t) → v′′(t+∆t)

velocity constraint
v(t+∆t) → v′(t+∆t)

Figure 7.6: Flowchart of one integration step with velocity Verlet and a time
step ∆t in the presence of thermostat, barostat and constraints, as implemented
in GROMACS.

Keeping in mind the scheme in Figure 7.6, multi-stage (two-, three- and four-stage) inte-
grators proposed in Sections 3.2.2 and 6.2 have been implemented in MultiHMC-GROMACS.

The implementation of multi-stage integrators in MultiHMC-GROMACS is general
enough to allow the use of all members of the families introduced previously for HMC
and in this thesis for MHMC. The appropriate integrator can be selected with the variable
integrator in the .mdp file. The values of the variable integrator corresponding to each
available integrator are summarized in Table 7.1.

integrator parameter reference

Leapfrog md Feynman, Leighton, and Sands, 1964
Velocity Verlet md-vv Swope et al., 1982

BCSS2 two-s Blanes, Casas, and Sanz-Serna, 2014
M-BCSS2 two-s-m Radivojević et al., 2018

HOH two-s-HOH Predescu et al., 2012
ME two-s-minE McLachlan, 1995

M-ME2 two-s-mme Radivojević et al., 2018
AIA aia Fernández-Pendás, Akhmatskaya, and Sanz-Serna, 2016
MAIA maia Akhmatskaya et al., 2017

BCSS3 three-s Blanes, Casas, and Sanz-Serna, 2014
M-BCSS3 three-s-m Radivojević et al., 2018
M-ME3 three-s-mme Radivojević et al., 2018

BCSS4 four-s Blanes, Casas, and Sanz-Serna, 2014

Table 7.1: Parameters used in the .mdp file to select an integrator in
MultiHMC-GROMACS.
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We notice that, except for md and md-vv, all numerical integrators have been implemented
within this thesis.

Before we go to the detailed explanation of the implementation of integrators in
MultiHMC-GROMACS, we would like to stress that after many years of development,
the constant addition of new features, methods and bug-fixes by many different contributors
has made the upper layers of the released version of GROMACS very convoluted. In par-
ticular, the main flow of the MD method resides in the function do_md(), which necessarily
includes options for using all different integrators, constraints algorithms, temperature and
pressure coupling methods, parallelization schemes, output writing... The implementation of
a new algorithm by a GROMACS user will most likely require introducing changes to this
function. Re-writing do_md() from scratch would demand a tremendous amount of work,
both in terms of programming and testing, with a high probability that some functionalities
would be broken in the process. Therefore, here we propose a more light-handed approach,
needing only a partial revision of the function do_md() in order to make it cleaner and easier
to follow. These changes helped us with the implementation of new integrators and Hybrid
Monte Carlo methods. The better structuring of the code would also allow in the future for
more obvious modularity and will make subsequent clean-ups more feasible than a complete
re-writing of the whole function.

In GROMACS, the integration of the equations of motion is done in the do_md() function.
Apart from initialization of all necessary structures, it mainly consists of a loop over the
number of steps in which the function update_coords() is repeatedly evaluated. This loop
allows for some flexibility. However, its structure can be changed aiming to have it simpler
and more versatile. One of the input variables of the update_coords() function is a flag that
indicates if the update of either velocities or positions is performed. For simplicity we will
use the notations of update_velocity() and update_position() to refer to the two possible
functionalities of the update_coords() function. In the original implementation of GSHMC
(Escribano, Akhmatskaya, and Mujika, 2013), the structure of the integration of positions
and velocities is as follows:

Algorithm 8 General integration framework
1: while number of integration steps do
2: update_velocity()
3: gshmc()
4: update_velocity()
5: update_position()
6: update_forces()
7: end while

Here, gshmc() denotes the piece of the code which performs all the functions related to
the GSHMC, GHMC and HMC methods.

Due to the ordering of the function calls, the logic in the algorithm above is not really
intuitive, but it can be better understood in the following pseudo-code:
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Algorithm 9 General integration framework rewritten
1: while number of integration steps do
2: update_velocity()
3: update_position()
4: update_forces()
5: update_velocity()
6: gshmc()
7: end while

The structure in Algorithm 9 is the one we have adopted for the implementation of the
multi-stage integrators. In the following sections, we discuss the details of the implementation
of two- and three-stage integrators.

7.4.2 Two-stage integrators

Splitting schemes can be easily implemented directly from their Trotter expansions (cf. Sec-
tion 3.2.3). The main while loop in do_md() is slightly modified with respect to Algorithm 9,
but the idea of alternative updates of velocities and positions remains. The Liouville operator
(cf. (3.39)) can be written as

iL̂ = iL̂v + iL̂q,

where iL̂v and iL̂q are the deterministic Newtonian evolution of velocity and positions, re-
spectively

iL̂v =
F (q)

M

∂

∂v
, iL̂q = v

∂

∂q
.

Thus, the two-stage splitting schemes from Section 3.2.2.1 can exploit the flexibility of the
general Trotter formulation:

eiL̂∆t ≈ eiL̂vb∆t · eiL̂q
∆t
2 eiL̂v(1−2b)∆t · eiL̂q

∆t
2 · eiL̂vb∆t, (7.1)

with 0 ≤ b ≤ 1/4. As explained in Section 3.2.2.1 (cf. (3.26)), equation (7.1) can be written
as

eiL̂∆t ≈
(
eiL̂vb∆t · eiL̂q

∆t
2 · eiL̂v(1/2−b)∆t

)
·
(
eiL̂v(1/2−b)∆t · eiL̂q

∆t
2 · eiL̂vb∆t

)
. (7.2)

From the expression above, it is straightforward to suggest an appropriate modification for
the while loop in Algorithm 9, since the two parentheses in (7.2) can be viewed as two “steps”
of an asymmetric velocity Verlet integrator. Thus, one step of (7.1) corresponds to two laps of
Algorithm 9 where the parameter b is an input of function update_velocity(). Therefore, it
is not necessary to add extra function evaluations in Algorithm 9. The current implementation
is summarized in Algorithm 10, emphasizing the dependence on b of update_velocity().
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Algorithm 10 Two-stage integrators implementation
1: while 2 × number of integration steps do
2: update_velocity(b)
3: update_position()
4: update_forces()
5: update_velocity(b)
6: gshmc()
7: end while

As it has repeatedly been remarked, the fact that the number of integration steps is
doubled in the while loop in Algorithm 10 does not increase the computational cost with
respect to the standard Verlet for a correct choice of a time step vs. a length of an MD
trajectory (cf. Section 3.2.2.3).

With two-stage integrators, the kinetic energies are calculated as in the velocity Verlet
case. The averages are done after the positions and velocities are updated half step, and after
they are updated the whole step. Thus, positions and velocities are synchronized in time.

If one uses the neighbor list parameter n as a frequency for updating the long-range forces,
the two-stage formulation can be directly combined with a multi-step formulation such as the
RESPA algorithm by Tuckerman, Berne, and Martyna, 1991. If one splits the forces F (q)
into short and long-range forces as

F (q) = Fs(q) + Fl(q),

one can also split the Liouville operator iL̂v in

iL̂vs =
Fs(q)

M

∂

∂v
, iL̂vl =

Fl(q)

M

∂

∂v
.

Then, (7.1) reads as

eiL̂∆t ≈ eiL̂vl
∆t
2 ·
(
eiL̂vsb∆t · eiL̂q

∆t
2 · eiL̂vs(1−2b)∆t · eiL̂q

∆t
2 · eiL̂vsb∆t

)n
· eiL̂vl

∆t
2 .

This algorithm is not implemented yet, but the flexibility of the formulation of Algorithm 10
would allow its easy introduction.

7.4.2.1 Combining two-stage integrators with thermostats and barostats

In the case of using a thermostat, such as Nosé-Hoover (Nosé, 1984b; Hoover, 1985), we can
also express the time evolution of a system in terms of Liouville operators. In GROMACS, for
ensuring the ergodicity of the sampling, the Nosé-Hoover chain approach is used (Martyna,
Klein, and Tuckerman, 1992). For the sake of simplicity, we take the chains of length 1. Thus,
one can define the following Liouville operator (cf. (Martyna et al., 1996))

iL̂NHC = −pξ
Q
v
∂

∂v
+
pξ
Q

∂

∂ξ
+ (T − T0)

∂

∂pξ
,
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where ξ is the heat bath variable (that has its own momenta pξ), Q is a constant that acts as
a mass, and T is the temperature and T0 is the reference temperature. Thus,

eiL̂∆t ≈eiL̂NHCb∆t ·
(
eiL̂vb∆t · eiL̂q

∆t
2 · eiL̂v(1/2−b)∆t

)
· eiL̂NHC(1/2−b)∆t·

eiL̂NHC(1/2−b)∆t ·
(
eiL̂v(1/2−b)∆t · eiL̂q

∆t
2 · eiL̂vb∆t

)
· eiL̂NHCb∆t.

(7.3)

The v-rescale thermostat (Bussi, Donadio, and Parrinello, 2007) can also follow the similar
scheme and the rescaling can be done in the same points in which the NHC’s are evaluated.
Actually, in the original formulation in (Bussi, Donadio, and Parrinello, 2007), the Nosé-
Hoover thermostat is recast in a way that mimics the v-rescale approach.

The MTTK barostat has been formulated by Martyna et al., 1996. The idea is very similar
to the formulation of the Nosé-Hoover terms of the same authors. In this case, they define
the following Liouville operator associated to the barostat

iL̂NHC-baro = −
(

1 +
d

D

)
pε
W

v
∂

∂v
+

(
(dPint − dPext)V

W
− pε
W

pξ
Q

)
∂

∂pε
,

where pε is the momentum associated with the logarithm of the volume V (ε = log V/d) and
W is the mass of the barostat. The pressure is calculated through the virial theorem. Thus,
(7.3) reads as

eiL̂∆t ≈eiL̃NHCb∆t ·
(
eiL̂vb∆t · eiL̂q

∆t
2 · eiL̂v(1/2−b)∆t

)
· eiL̃NHC(1/2−b)∆t·

eiL̃NHC(1/2−b)∆t ·
(
eiL̂v(1/2−b)∆t · eiL̂q

∆t
2 · eiL̂vb∆t

)
· eiL̃NHCb∆t,

where iL̃NHC = iL̂NHC + iL̂NHC-baro.
The different Trotter expansions above suggest how the Nosé-Hoover, v-rescale and

MTTK algorithms have been implemented in MultiHMC-GROMACS for two-stage integra-
tors. The updates associated with the thermostat/barostat are implemented in the routine
update_coupling(). Such function is adapted to receive the parameter b as an input. Thus,
the rescaling of the velocities can be accurately performed.

7.4.3 Three-stage integrators

As it has been remarked in Section 3.2.2.2, the three-stage integrators in (3.27) cannot be
written in three equal velocity Verlet substeps similarly to (7.2). Thus, the ideas explained
in the section above cannot be applied to this case and the general framework from Algo-
rithm 9 leads to numerical instabilities after some steps. The most straightforward solution
has been to add extra evaluations of the function update_coords() with the different param-
eters (which depend on b only as explained in Section 3.2.2.2). These additional evaluations
of update_coords() are only considered in a case when the three-stage integrators are used.
The current implementation is explained in Algorithm 11.
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Algorithm 11 Three-stage integrators implementation
1: while number of integration steps do
2: update_velocity()
3: update_position()
4: update_forces()
5: update_velocity()
6: update_position()
7: update_forces()
8: update_velocity()
9: update_position()

10: update_forces()
11: update_velocity()
12: gshmc()
13: end while

Special care has to be taken of the parallelization due to the extra force evaluations.
Clearly, Algorithm 11 is also applicable to the modified three-stage integrators (cf. Sec-

tion 6.2).

7.5 MultiHMC-GROMACS vs GROMACS: Summary

• Functionalities: New functionalities introduced in MultiHMC-GROMACS and not
available in the released version of GROMACS are summarized in Table 7.2.

sampling HMC, GHMC, GSHMC

integrator

two-, three-, four-stage splitting integrators
two- and three-stage modified splitting integrators
AIA
MAIA and e-MAIA

barostat Andersen

Table 7.2: New functionalities in MultiHMC-GROMACS with respect to the
released version of GROMACS.

• Performance: GSHMC combined with e-MAIA demonstrates up to 60 times better
sampling efficiency than does MD combined with Verlet for some choices of time steps
(Fernández-Pendás, Akhmatskaya, and Sanz-Serna, 2016; Akhmatskaya et al., 2017).
The only methodology among the proposed and implemented in MultiHMC-GROMACS
that introduces overheads is GSHMC (Escribano, Akhmatskaya, and Mujika, 2013). The
current implementation’s overheads are, on average, of 1-2 % with respect to MD with
the v-rescale thermostat (Akhmatskaya et al., 2017).

• Limitations: MultiHMC-GROMACS is based on the version 4.5.4 of GROMACS de-
scribed in (Pronk et al., 2013). The code is not available for its use with GPU paral-
lelization (Páll et al., 2015; Abraham et al., 2015).
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7.6 Conclusions

In this chapter, the MultiHMC-GROMACS software package has been presented. The imple-
mentation of new algorithms proposed in this thesis has been discussed in detail in the previous
chapters. Here we supply the implementation details of the well-established methodologies
presented in Chapters 2 and 3 which do not appear in the released version of GROMACS. The
current structure of MultiHMC-GROMACS provides the flexibility for introducing different
Hybrid Monte Carlo algorithms. Switching from one methodology to another is regulated
by the values of input parameters. The MultiHMC-GROMACS code also offers a general
framework for introducing new integrators and algorithms that can be expressed in a Trotter
formulation. Two-, three- and four-stage integrators in original and modified formulations,
and the adaptive integration schemes for HMC, MD and GSHMC (AIA, MAIA, e-MAIA) have
been successfully implemented in MultiHMC-GROMACS. The two-stage integrators have also
been combined with the v-rescale, Nosé-Hoover, and MTTK thermostats and barostats. Since
the multi-step algorithms can be easily expressed in the Trotter form, the current structure
allows for a smooth implementation of this kind of methodologies.

7.7 Published papers

1. M. Fernández-Pendás, B. Escribano, T. Radivojević, and E. Akhmatskaya (2014).
"Constant pressure hybrid Monte Carlo simulations in GROMACS". In: Jour-
nal of Molecular Modelling 20.12, p. 2487. URL: http://dx.doi.org/10.1007/
s00894-014-2487-y

2. M. Fernández-Pendás, E. Akhmatskaya, and J. M. Sanz-Serna (2016). "Adap-
tive multi-stage integrators for optimal energy conservation in molecular simula-
tions". In: Journal of Computational Physics 327, pp. 434–449. URL: http:
//www.sciencedirect.com/science/article/pii/S0021999116304569

3. E. Akhmatskaya, M. Fernández-Pendás, T. Radivojević, and J. M. Sanz-Serna
(2017). "Adaptive splitting integrators for enhancing sampling efficiency of modified
Hamiltonian Monte Carlo methods in molecular simulations". In: Langmuir 33.42, pp.
11530–11542. URL: https://doi.org/10.1021/acs.langmuir.7b01372

http://dx.doi.org/10.1007/s00894-014-2487-y
http://dx.doi.org/10.1007/s00894-014-2487-y
http://www.sciencedirect.com/science/article/pii/S0021999116304569
http://www.sciencedirect.com/science/article/pii/S0021999116304569
https://doi.org/10.1021/acs.langmuir.7b01372




141

Chapter 8

Conclusions, Future Work and
Contributions

8.1 Conclusions

In this thesis, we developed the methodologies for enhancing the sampling abilities and im-
proving the accuracy of the Hybrid Monte Carlo methods applied to molecular simulations.
For this purpose, two main directions have been explored: splitting integrators and importance
sampling.

First, we investigated an effect of splitting integration schemes on the performance of Hy-
brid Monte Carlo methods and proposed a novel methodology called the Adaptive Integration
Approach (AIA). This algorithm offers, for any chosen time step, a system-specific integrator
which guarantees the best energy conservation for harmonic forces achievable by an integrator
from a family of two-stage splitting schemes, including velocity Verlet. While improvements
in energy conservation do not necessarily imply dramatic changes in sampling, they improve
acceptance rates in Hybrid Monte Carlo methods. The performed experiments showed that
in molecular dynamics AIA leads to improvements of sampling as measured by the metrics
considered. The improved sampling may arise as a consequence of either enhanced accuracy
with a given time step or due to the possibility of longer time steps. The AIA scheme can be
implemented, without introducing computational overheads in simulations, in any software
package which includes MD and/or HMC. The analysis of integrated autocorrelation functions
and folding evolution demonstrated, for selected sizes of time steps, that AIA possesses up to
5 times better sampling performance than the other tested schemes.

Though the first importance sampling hybrid Monte Carlo algorithms, or Modified hybrid
Monte Carlo (MHMC), have been developed in the early 2000s and showed some promising
results, our objective was to improve further accuracy and performance of such methods and
to extend their applicability to a wide range of problems. The special attention was paid
to a particular MHMC method, the Generalized Shadow Hybrid Monte Carlo (GSHMC).
The GSHMC method was initially available only in the NVT ensemble. However, in this
thesis, it was also adapted to the NPT ensemble using an Andersen barostat. The newly
developed NPT-GSHMC method showed the same level of accuracy as was demonstrated
by NPT-MD and NVT-GSHMC, and the comparable sampling efficiency to NVT-GSHMC,
outperforming in this category NPT-MD. Then, the GSHMC algorithm, and HMC and GHMC
also, were extended for the first time to the grand canonical ensemble. The validity of the
three algorithms was proved in simulations of Lennard-Jones fluids at different conditions.
All three new methods reproduced well the predicted data. Also, the new algorithms sampled
up to 16 times better than a well-established MC algorithm. Among three new methods,
GSHMC showed the best accuracy and sampling efficiency.
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Finally, both approaches were combined: we introduced multi-stage integrators for en-
hanced sampling with modified Hamiltonian Monte Carlo (MHMC) methods. The proposed
two- and three-stage integration methods provide better conservation of modified Hamilto-
nians than does the Verlet integrator commonly used in MHMC. For two-stage modified
integrators, we also proposed an adaptive integration approach ultimately leading to enhanc-
ing the accuracy and sampling efficiency of MHMC methods. Given a simulation system and
a user-chosen time step, the new algorithm called Modified Adaptive Integration Approach
(MAIA) identifies the two-stage numerical integrator which, when used in the Hamiltonian
dynamics step of an MHMC method, provides the best conservation of the relevant modi-
fied Hamiltonian and thus the highest acceptance of the proposed trajectories. An enhanced
variant of MAIA, e-MAIA, tailored to GSHMC methods, additionally supplies a value of
the parameter ϕ that, for the problem under consideration, keeps the momentum accep-
tance at a user-desired level. The MAIA algorithm was implemented, with no computational
overhead during simulations, in MultiHMC-GROMACS. The effect of the use of MAIA on
the sampling efficiency of GSHMC was demonstrated in simulations with constrained atom-
istic and unconstrained coarse-grained benchmarks and compared with the performance of
other suitable integration schemes, including the famous velocity Verlet integrator. The tests
revealed that the replacement in GSHMC of any two-stage integrator with e-MAIA leads
systematically to improvements in sampling efficiency of up to an order of magnitude. The
performance comparison of GSHMC, HMC, and MD combined with their best choices of nu-
merical integrators (e-MAIA, AIA, AIA, respectively) confirmed the efficiency and robustness
of the GSHMC-MAIA combination, whose advantages are especially noticeable when using
the longest possible simulation time steps. For such cases, GSHMC, while maintaining good
accuracy in simulation, provided a sampling efficiency (as measured with IACF) up to 30
times higher than the efficiency that may be achieved with MD.

The in-house software package called MultiHMC-GROMACS was also presented. The
implementation of new algorithms proposed in the thesis was discussed in detail. The im-
plementation details of the well-established methodologies that do not appear in the released
version of GROMACS, such as HMC or the multi-stage integrators, were supplied. The
current structure of MultiHMC-GROMACS provides the flexibility for introducing different
Hybrid Monte Carlo algorithms. Switching from one methodology to another is regulated
by the values of input parameters. The MultiHMC-GROMACS code also offers a general
framework for introducing new integrators and algorithms that can be expressed in a Trotter
formulation. Two-, three- and four-stage integrators in original and modified formulations as
well as the adaptive integration schemes AIA, MAIA and e-MAIA were successfully imple-
mented in MultiHMC-GROMACS. The two-stage integrators were also combined with the
v-rescale, Nosé-Hoover and MTTK thermostats and barostats, and with the RATTLE al-
gorithm for solving constraints. Since the multi-step algorithms can be easily expressed in
the Trotter form, the current structure allows for a smooth implementation of this kind of
methodologies.

8.2 Future work

Several ideas for future work can be suggested for improving the methods and results presented
in this thesis.

The AIA and MAIA schemes proposed in Chapters 3 and 6 may be extended in a natural
way to multiple-time step (MTS) algorithms such as those based on Reversible multiple time
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scale molecular dynamics (Tuckerman, Berne, and Martyna, 1992), the Generalized Hybrid
Monte Carlo method (Escribano et al., 2015), the Stochastic, resonance-free multiple time
step algorithm (Leimkuhler, Margul, and Tuckerman, 2013), etc. AIA and MAIA ideas can
be also easily extended to three-stage integrators.

The NPT-GSHMC method presented in Chapter 5 can be improved by introducing a weak
coupling thermostat (Faller and de Pablo, 2002) or anisotropic changes in the box (Parrinello
and Rahman, 1981). The grand canonical algorithms, also proposed in Chapter 5, are only
valid for homogeneous systems. A future goal is to test them with rigid water models for the
potential use in simulation of proteins in water. Another possible future direction is to improve
acceptance rates of the new methods. In very dense systems, the placement of a new particle
can play a fundamental role in sampling efficiency of Monte Carlo based methods, since a
completely random placement can lead to dramatic changes of the energy and thus rejections
in the Metropolis tests. One possible way for improving the placement of inserted particles
and increasing the acceptance rates is combining the current algorithms with the cavity-based
methods (Mezei, 1980; Mezei, 1987; Deitrick, Scriven, and Davis, 1989). Another possible
extension to the algorithms presented here would be to allow continuous changes in D (Cağin
and Pettitt, 1991; Lo and Palmer, 1995; Boinepalli and Attard, 2003) and investigate the
effect of such changes on the overall efficiency of simulations.

As to the MultiHMC-GROMACS package presented in Chapter 7, some limitations of
the version in use have to be overcome. Currently, MultiHMC-GROMACS is based on the
version 4.5.4 of GROMACS (Pronk et al., 2013) and thus is not available for its use with
GPU parallelization (Páll et al., 2015; Abraham et al., 2015). Therefore, the upgrade of
MultiHMC-GROMACS to the latest version of GROMACS is another future task.
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Appendix A

Stability Analysis

A.1 Calculation of the transition matrix for different integra-
tors: Harmonic oscillator

We consider the harmonic oscillator with equations of motion (3.6) where the forces are
F (q) = −ω2q and the masses are assumed to be trivial. Then, we show how to calculate the
transition matrix S in (3.8) with the velocity Verlet integrator formulated as

1. v(t+ ∆t/2) = v(t) + ∆t
2 F (q(t));

2. q(t+ ∆t) = q(t) + ∆t v(t+ ∆t/2);

3. v(t+ ∆t) = v(t+ ∆t/2) + ∆t
2 F (q(t+ ∆t)).

Thus, for a time step ∆t and the problem defined in (3.7), the matrix S is computed as the
product of the three evolutions of velocities and positions above:

S =

(
1 0

−ω∆t
2 1

)(
1 ω∆t
0 1

)(
1 0

−ω∆t
2 1

)

=

(
1− (ω∆t)2

2 ω∆t

−ω∆t+ (ω∆t)3

4 1− (ω∆t)2

2

)
.

In the case of the two-stage integrators of the family (3.25) the matrix S for the harmonic
oscillator case is calculated as

S =

(
1 0

−bω∆t 1

)(
1 ω∆t

2
0 1

)(
1 0

−(1− 2b)ω∆t 1

)(
1 ω∆t

2
0 1

)(
1 0

−bω∆t 1

)

=

(
1− (ω∆t)2

2 + b(1− 2b) (ω∆t)4

4 ω∆t+ (2b− 1) (ω∆t)3

4

−ω∆t+ b(1− b)(ω∆t)3 − b2(1− 2b) (ω∆t)5

4 1− (ω∆t)2

2 + b(1− 2b) (ω∆t)4

4

)
.

In the case of the three-stage integrators of the family (3.27) the matrix S for the harmonic
oscillator case is calculated as

S =
(

1 0
−bω∆t 1

)(
1 aω∆t
0 1

)( 1 0
−( 1

2
−b)ω∆t 1

)(
1 (1−2a)ω∆t
0 1

)(
1 0

−( 1
2
−b)ω∆t 1

)(
1 aω∆t
0 1

)(
1 0

−bω∆t 1

)

=

(
A B
C D

)
,
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where

A = D = 1− (ω∆t)2

2
+ a(1− 4b2 − a(2− 4b))

(ω∆t)4

4
+ a2(2a− 1)(1− 2b)2b

(ω∆t)6

4
,

B = ω∆t+ a(1− a)(2b− 1)(ω∆t)3 + a2(1− 2a)(1− 2b)2 (ω∆t)5

4
,

C =− ω∆t+ (1− 2a(1− 2b)2)
(ω∆t)3

4
+ a(2a(1− b)− 1)b(1− 2b)

(ω∆t)5

2

+ a2(1− 2a)(1− 2b)2b2
(ω∆t)7

4
.

A.2 Limitations on a time step in the GROMACS code

If one investigates the restrictions on a choice of a time step in the GROMACS package, the
following statement can be found inside of the code:

The stability limit of leapfrog or velocity verlet is 4.44 steps per oscillational
period.

It does not seem consistent with the well known linear stability limit for the velocity Verlet
integrator of h < 2/ω, where ω is the angular frequency of the harmonic oscillator. However,
it is consistent with the restriction due to non-linear instability studied (cf. (Skeel, Zhang,
and Schlick, 1997))

h <
√

2/ω. (A.1)

It has been explained above that this condition allows avoiding some non-physical resonances
that might be introduced by the symplectic integrator. More details can be found in Sec-
tion 3.2.1.1.

Using equation (A.1) and the definition of ω for the harmonic oscillator it is easy to show:

h <
√

2/ω ⇒ ωh <
√

2

ω =
2π

T



⇒

2π

T
h <
√

2, (A.2)

where T denotes the period of the harmonic oscillator. Now, we can define h as

h :=
T

nstepsT
, (A.3)

with nstepsT being the number of steps performed per period. Substituting (A.3) in (A.2),
one obtains

2π

T

T

nstepsT
<
√

2⇒ nstepsT >
2π√

2
=
√

2π ≈ 4.44.
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Appendix B

Numerical Derivatives of Positions
and Momenta

• q̇ = M−1p.

• ṗ = −Uq.

• q̈ = M−1ṗ = −M−1Uq.

• p̈ = −UqqM−1p.

• ...
q = −M−1UqqM

−1p.

• ...
p = −UqqqM−1pM−1p+ UqqM

−1Uq.1

• q(4) = −M−1UqqqM
−1pM−1p+M−1UqqM

−1Uq.

• p(4) = −UqqqqM−1pM−1pM−1p+ 3UqqqM
−1UqM

−1p+ UqqM
−1UqqM

−1p.

• q(5) = −M−1UqqqqM
−1pM−1pM−1p+3M−1UqqqM

−1UqM
−1p+M−1UqqM

−1UqqM
−1p.

1The higher order derivatives are needed for the shadow Hamiltonians of order higher than fourth.
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Appendix C

Lennard Jones Simulations

C.1 Reduced units in the Lennard-Jones simulations

The parameters ε and σ in (5.27) are used to define the reduced units traditionally used in
molecular simulations (Allen and Tildesley, 1989). We choose the mass of the particles m to
be the unit of mass, the hard-core radius of the potential energy function σ to be the unit of
length and the depth of the potential energy function ε to be the unit of energy. Thus, the
following reduced units are defined:

• temperature T ∗ = kBT
ε = 1

βε ,

• volume V ∗ = V
σ3 ,

• density ρ∗ = ρσ3,

• pressure P ∗ = Pσ3

ε ,

• time t∗ =
√

ε
mσ2 t,

• force F ∗ = Fσ
ε ,

• potential energy U∗ = U
Nε (Yao, Greenkorn, and Chao, 1982).

In our context, it is more interesting to have in reduced units the Planck’s constant h rather
than the thermal de Broglie wavelength as in (Yao, Greenkorn, and Chao, 1982; Rowley,
Nicholson, and Parsonage, 1975) (cf. equations (5.21)-(5.22)). Thus, since the Planck’s
constant has units of Julius times seconds, it has to be normalized with the reduced time and
the reduced energy1. Then,

h∗ =
h

εσ
√
m/ε

=
h

σ
√
mε

.

Then, from this definition one can get

Λ =
h√

2πmkBT
=

h∗σ
√
mε√

2πmT ∗ε
=

h∗σ√
2πT ∗

⇒ Λ∗ =
Λ

σ
.

The chemical potential, since it has energy units, in reduced units is defined as (cf. (Yao,
Greenkorn, and Chao, 1982))

µ∗ =
µ

ε
.

1See (Mohazzabi and Mansoori, 2005), where it is done for the concrete case of argon. The procedure works
in general.
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Thus, it is easy to see that the quantity βµ that appears several times (cf. equations (5.11)
or (5.21)-(5.22)) can be easily made dimensionless:

βµ = βµ∗ε =
µ∗

T ∗
.

C.2 Computation of the forces and the virial with a Lennard
Jones potential

We first introduce the following notation:

qij = qi − qj , qij = |qij |.

In the absence of external forces, the potential can be represented in the simplest case as a
sum of pairwise interactions:

U =
N∑

i=1

N∑

j>i

u(qij).

It is clear that the condition j > i prevents the double counting of the particle pairs. The
forces acting on the particles are composed in such a case of the individual interactions with
the rest of the particles

Fi =
N∑

j 6=i
fij ,

where
fij = −du(qij)

dqij
· qij
qij
.

Thus, with the notation presented above, the potential energy in (5.27) can be written as

U(r) = 4ε

[(
σ

qij

)12

−
(
σ

qij

)6
]
.

The inter-particle forces arising from the Lennard Jones potential above have the form

fij =
48ε

r2
ij

[(
σ

qij

)12

− 1

2

(
σ

qij

)6
]
qij .

The virial is defined as (cf. (Goldstein, 1980))

vir =
1

3

∑

j>i

fij · qij .

Thus, in the case of a Lennard Jones potential. it can be computed as

vir =
1

3

∑

j>i

{
48ε

[(
σ

qij

)12

− 1

2

(
σ

qij

)6
]}

.
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