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1. INTRODUCTION

In combinatorics, many optimisation problems are defined as "the way of ordering n
number of items” such that a specific function is maximized (or minimized). Referred
to as permutation-based problems, or simply permutation problems, these combinato-
rial problems are characterized by the fact that their solutions are naturally codified
as permutations. Motivated principally by their versatility - ordered sets of items, col-
lection of disjoint cycles, transpositions, matrices or graphs- permutations appear in
a vast range of domains, such as graph theory, mathematical psychology or bioinfor-
matics, and, particularly, in logistic problems such as routing [Toth and Vigo 2001],
scheduling [Gupta and Stafford 2006] or assignment [Burkard et al. 1998]. The DNA
fragment assembly [Parsons et al. 1995], vehicle routing [Toth and Vigo 2001] or air-
craft landing scheduling [Beasley et al. 2000] problems are examples of the variety of
permutation problems.

If no constraint is assumed, the search space of solutions is defined as the set of all
the permutations of n items (n! solutions in total). Due to the factorial cardinality of
the search space, permutation problems are known as very hard problems when n goes
above a relatively small number. Indeed, the work of Garey and Johnson [Garey and
Johnson 1979] on computational complexity demonstrated that many of these prob-
lems are NP-hard.

In view of their complexity, computing optimal solutions is intractable in general.
For this reason, we are usually satisfied with good solutions. In this sense, the artifi-
cial intelligence community has proposed a large number of metaheuristic algorithms
that provide acceptable solutions in reasonable computation times. Generally, these
algorithms neither guarantee the optimality of solutions nor define how close the ob-
tained solutions are from the optimal ones. Among the vast amount of metaheuristic
algorithms, tabu search, scatter search, local search, variable neighbourhood search,
ant colony optimisation, simulated annealing and genetic algorithms are some of the
metaheuristics that have been applied on permutation problems.

Recently, Estimation of Distribution Algorithms (EDAs) [Larrafiaga and Lozano
2002; Lozano et al. 2006; Pelikan et al. 2002, 2006] have also been applied success-
fully to permutation problems. EDAs are population based optimization algorithms
that, at each generation, estimate a probability distribution from the selected so-
lutions in order to represent the (in)dependencies between the variables. Then, the
new solutions are obtained by sampling the probability distribution estimated in the
previous step. This process (hopefully) leads the algorithm towards the optimal so-
lution. Different EDAs have been proposed for discrete, continuous and mixed prob-
lems. Many works in the literature confirm the good performance of EDAs in artifi-
cial and real-world problems: Protein Folding [Armananzas et al. 2008], Capacitated
Vehicle Routing Problems [Tsutsui and Wilson 2004], Calibration of Chemical Appli-
cations [Mendiburu et al. 2006], Finding the Optimal Path in 3D Spaces [Yuan et al.
2007], Software Testing [Sagarna and Lozano 2006], Chemotherapy Treatment Opti-
mization for Cancer [Brownlee et al. 2008], Nuclear Reactor Fuel Management Param-
eter Optimization [Jiang et al. 2006], Dynamic Pricing [McCall et al. 2012] or Molecu-
lar Docking [Soto et al. 2012].

A recent review by Ceberio et al. [2012] studied the performance of several classical
EDAs when applied to permutation-based problems, confirming that, in general, they
are not very competitive. The permutation codification of solutions represents a real
challenge for EDAs, since classical probability distributions on the discrete or continu-
ous domains can not be efficiently adapted to deal with permutation solutions. Notions,
such as variable independence, are not naturally translated into the domain of permu-
tations since, in contrast to integer problems, two given positions in a permutation can
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not ever have the same value. This simple constraint, known as the mutual exclusiv-
ity constraint [Huang et al. 2009], requires in general a more complex mathematical
machinery in order to deal efficiently with the permutation nature of the solutions.

In order to overcome this drawback, recently, several distance-based probability
models, such as the Mallows and the Generalized Mallows models have been included
in the context of EDAs [Ceberio et al. 2011b,a, 2014, 2013, 2015]. This step opens
new research lines, both methodological and applied, in a topic (solving permutation
problems) of growing interest in the literature. In addition to theoretical works, in Ce-
berio et al. [2014] authors present an EDA based on the Generalized Mallows model
able to outperform state-of-the-art algorithms, obtaining new best-known results for
the Permutation Flowshop Scheduling Problem. Taking into account its potential, and
with the aim of providing a powerful tool for the community, we present a complete
framework of EDAs for permutation problems in Matlab, which is implemented as
an extension to the Mateda-2.0 toolbox of EDAs developed by Santana et al. [2010].
Particularly, we focus on two distance-based exponential probability models, called
the Mallows model [Mallows 1957] and the Generalized Mallows model [Fligner and
Verducci 1986]. In order to enhance the applicability and robustness of this frame-
work, based on these two models, we present six different EDAs (two models combined
with three distance-metrics): the Mallows EDA (MEDA) and the Generalized Mallows
EDA (GMEDA), under the Kendall’s-7, Cayley and Ulam distance-metrics. In addition,
four classical permutation problems have been also implemented for experimental pur-
poses: Traveling Salesman Problem (TSP) [Goldberg and Jr. 1985], Permutation Flow-
shop Scheduling Problem (PFSP) [Gupta and Stafford 2006], Linear Ordering Problem
(LOP) [Ceberio et al. 2014], and Quadratic Assignment Problem (QAP) [Koopmans and
Beckmann 1955].

The remainder of the paper is structured as follows: in the next section a brief intro-
duction on EDAs is given. In Section 3, the Mallows and Generalized Mallows models
under the Kendall’s-m, Cayley and Ulam distances are introduced, together with an
introduction to their implementation in Matlab. Section 4 describes the four permuta-
tion problems implemented in the package. Afterwards, Section 5 presents two com-
plete example-codes for solving PFSP and LOP by means of Mallows with Kendall’s-7
and Generalized Mallows models with Cayley. Finally, conclusions and ideas for future
work are presented in Section 6.

2. A BRIEF REVIEW OF EDAS ON MATEDA-2.0

Algorithm 1 provides the general overview of EDAs. The methods the user can imple-
ment or adapt are highlighted in italics.

EDAs begin with the generation of an initial set of solutions (usually called a pop-
ulation). Although the first population is usually randomly generated, it can be done
using a particular heuristic or seeding method in some situations, e.g., when previous
information about the approximate location of the optimal solutions is available.

Selection methods serve to identify the subset of solutions that will be used to learn
the probabilistic model. This subset usually gathers the solutions with the best value,
according to the evaluation function defined for the optimization problem. From now
on, we will refer to the evaluation function as fitness function. Accordingly, the value
returned by this function will be referred to as fitness value or simply fitness.

The learning method is a characteristic and critical component of EDAs. Depending
on the class of models used, this step involves parametric or structural learning, also
known as model fitting and model selection, respectively.

Sampling methods are used to generate new solutions from the learned probabilistic
models. They depend on the type of probabilistic model and the characteristics of the
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ALGORITHM 1: Estimation of distribution algorithm

Generate an initial population D, using a seeding method,
If required, apply a repairing method to Do;
Evaluate (all the objectives of) population Dy using an evaluation method,
If required, apply a local optimization method to Do;
t=1;
while The termination criterion is not met do
Select a set Dy of points from D; according to a selection method;
Compute a probabilistic model of D using a learning method,;
Sample a Dgqmpiea population using a sampling method;
If required, apply a repairing method to Dsampicd;
Evaluate (all the objectives of) population Dggmpicqd using an evaluation method,
If required, apply a local optimization method to Dsampied;
Create D, population from populations D;_1 and Dgqmpicqa using a replacement method,
t=t+1;
end

problem. In addition they can be conceived to deal with certain types of constraints in
the solutions.

Repairing methods should be applied for constrained problems where sampled solu-
tions may be unfeasible and some strategy to repair these solutions is available.

The evaluation method comprises the call to the fitness function (which measures the
quality of the solutions). For multi-objective problems this may imply the evaluation
of a set of functions. An advantage of EDAs and other evolutionary algorithms is that
the fitness function does not have to be differentiable or even continuous.

EDAs are global optimization algorithms and their results can be improved when
used together with local optimization methods that perform some local search depart-
ing from the current solution.

Replacement methods combine the solutions stored in the previous generation with
the current set of sampled solutions. The mixing policies can help to retain the best
solutions found so far, maintain the diversity in the population, etc.

Finally, the termination criteria method determines the stopping conditions for the
EDA algorithm. These criteria can be as simple as a fixed number of generations or
may imply a statistical analysis of the current population.

Mateda-2.0 provides a suitable modular framework to implement EDAs for permu-
tation problems. The design of the new algorithms can be mainly focused on the im-
plementation of new learning and sampling methods. In addition, for real-world per-
mutation problems other modules could be also modified, such as local optimization or
selection methods.

3. THE MALLOWS AND GENERALIZED MALLOWS MODELS

Before going into the details on probability models, some notation on permutations
and distances is introduced. Throughout this section, the permutations will be in gen-
eral denoted as o or 7. By 77! the inverse permutation of 7 is denoted. The compo-
sition of o and 7 is stated as ow. The permutation e stands for the identity permuta-
tion, i.e., e = 1234 ... n. For every distance considered in this manuscript, it holds that
d(o,7) = d(on~!,e). For notational convenience, the distance to e, d(on~!,¢), is also
denoted as d(om™1).

The Mallows model [Fligner and Verducci 1986] is a distance-based exponential
probability model over permutation spaces. Given a distance over permutations, the
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Mallows model is defined by two parameters: the central permutation oy, and the
spread parameter 6. Formally, the probability of every permutation ¢ under the Mal-
lows model is defined as follows:

P(o) = w(ﬁ)_lexp(—ﬁd(a, 00)) (D

where (0) denotes the normalization constant. When 6 > 0, the central permuta-
tion o( is that with the highest probability value (the mode), and the probability of
the other n! — 1 permutations decreases exponentially with the distance to the central
permutation. Roughly speaking, the closer a permutation o to o, the larger its prob-
ability. Moreover, when 6 = 0, we obtain the uniform distribution and, as 6 increases,
the distributions become more concentrated around the mode.

As an extension to the Mallows model, the Generalized Mallows (GM) model was
proposed in [Fligner and Verducci 1986]. Like the Mallows model, the GM is expo-
nential and unimodal. However, instead of using a single spread parameter 6, the GM
model makes use of a (n—1)-dimensional spread parameter 6 = (61,65, ...,0,,_1), where
each 60, affects a particular position in the permutation, and n is the size of the per-
mutation. This allows modeling a distribution with more emphasis on the consensus
of certain positions of the permutation while having more uncertainty in others.

Before going into details, it is worth stating that not every distance that can be
considered for the Mallows model can also be considered for the GM model. In fact, the
GM model requires the distance to be decomposed as the sum of n — 1 terms.

n—1
d(o,00) = Z S;(oapt) (2)
j=1
The vector grouping the terms S(0co;') = (Si(0oy ), ..., Su_1(00y")) is denoted as

the distance decomposition vector. The GM model, whose definition relies on this vec-
tor, is expressed as:

n—1

P(o) =¢(68) 'exp Z —0;S;(0o ") 3

j=1

In what follows, we introduce in detail the Kendall’s-r, Cayley and Ulam distances,
together with the methods defined to learn and sample the Mallows and GM model
under each of these distances. In addition, references to Matlab code will be given to-
gether with additional explanations. Further discussion about Mallows and GM mod-
els with the three distances, as well as several sampling and learning algorithms, can
be found in [Irurozki 2014] and [Irurozki et al. 2015].

3.1. Kendall’s-tau distance

The Kendall’s-m distance di(o,7) counts the number of pairwise disagreements be-
tween o and 7.

di(o,m) = {(i,4) =i <, (0(i) < o(g) Am(i) > 7(j))
V(m(i) <m(j) Ao(i) > o(4)) }]
It is equivalent to counting the number of adjacent swaps to convert c—! into 7—'. The
Kendall’s-m distance di (o) can be broken down into a distance decomposition vector

V(o) = (Vi(o),...,Va_1(0)), which is also referred to as inversion vector, and can be
expressed as follows:
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Vi(0) = D Lio(<o(i)- @)
i=j+1
It follows that V;(o) is equal to the number of items smaller than o(j) and it ranges
for0 < V(o) <n—jforl<j<n.

As an example, if o = 213645, then V(o) = (10020) and dy (o) = Z;:ll V;(o) = 3. The
conversion from V(o) to o and vice versa is carried out in time O(n?). Two auxiliary
methods have been defined (1) for extracting the decomposition vector V' associated
to a given permutation (see Table II, vVector), and (2) for obtaining a permutation
departing from V (see Table II, GeneratePermuFromV).

The spread parameter 6 of the GM model under the Kendall’s-7 distance is an (n —
1)-dimensional vector. Let o be a permutation sampled from a GM model under the
Kendall’s-7 distance, with parameters 6 and oy, where o((j) = i. The spread parameter
6; is related to position j in o in the sense that, the larger 6,, the larger the probability
of o(j) < i. In the ranking domain, when permutations are interpreted as rankings,
this means that item j is ranked in the first i positions with high probability. Further
details of the Mallows and GM models under this distance can be found in [Fligner
and Verducci 1986].

3.2. Cayley distance

The Cayley distance d.(o,7) counts the minimum number of swaps (not necessarily
adjacent) to transform o into 7. The Cayley distance is related to the concept of cycles
in o, defined as ordered sets {i1,...,is} C {1,...,n} such that o(i;) = iz, 0(i2) = is, ...,
o(is) = i1. When the reference permutation is the identity, d.(c) equals n minus the
number of cycles in o.

The distance decomposition vector X (o) = (X1(0),...,X,—1(0)) of the Cayley dis-
tance has length n — 1 and each term can be expressed as follows:

(5)

0 iff j is the largest item in its cycle in o,
Xj(o) =

1 otherwise.

Given o = 213645, its corresponding cycle notation is (21)(3)(456), the distance de-

n

composition vector is X (o) = 10011 and d.(c) = > j;f X;(o) = 3. This conversion from
o to X (o) can be run in time O(n). In this case, as done for Kendall’s-7, two methods
are also defined in Table II: xVector (to obtain the corresponding decomposition) and
GeneratePermuFromX (to obtain the permutation associated to a given X decomposi-
tion).

Like the GM model under the Kendall’s-7, the GM model (Eq. 3) under the Cayley
distance considers a (n — 1)-dimensional vector spread parameter 8. So, again, the
larger 6, the larger the probability that o(j) < i. For further discussion, we refer the
interested reader to [Irurozki et al. 2016].

3.3. Ulam distance

The Ulam distance d, (o, 7) counts the length of the complement of the longest common
subsequence (LCS) in ¢ and 7, i.e., the number of items which are not part of the LCS.
If the reference permutation is the identity, d,(c) equals n minus the length of the
longest increasing subsequence (LIS).

The classical example to illustrate the Ulam distance, d, (o, ), considers a shelf of
books in the order specified by o [Diaconis 1988]. The objective is to order the books as
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specified by 7 with the minimum possible number of movements, where a movement
consists of taking a book and inserting it into another position (delete-insert). The
minimum number of movements is exactly d, (o, 7).

For example, given o = 2136457, the length of the LIS is 5 and, therefore, d, (o) = 2.

The computation of the Ulam distance between two given permutations has com-
plexity O(nlogl) where [ is the length of the longest common subsequence.

There is no distance decomposition vector for the Ulam distance. Consequently,
the GM model can not be used with the Ulam distance. More details can be found
in [ITrurozki et al. 2014].

3.4. Learning

Learning the parameters of the Mallows or GM models given a sample of permuta-
tions is either known or conjectured to be NP-complete for all the distances considered
in this manuscript. There exist several approaches to learn the models considered in
this paper [Irurozki 2014]. On the one hand, EDAs do not require the best model to be
learned in each generation, since approximate models can be beneficial to explore other
areas of the search space. On the other hand, approximate algorithms are computa-
tionally more affordable than exact approaches, which is also desirable. The learning
step is usually split into two stages as follows:

(1) Approximate the central permutation, og.
(2) Estimate, by means of maximum-likelihood estimation (MLE), the spread param-
eter(s), 0, for the given distance.

We present three different methods for implementing step (1), which are:

— Borda [de Borda 1781]: Selects as central permutation the result of sorting the items
in descending order according to their average position across all the input permu-
tations. When the permutations come from a Mallows model under the Kendall’s-r
distance, the Borda permutation is an asymptotically optimal estimator of the cen-
tral permutation [Fligner and S.Verducci 1988]. No results exist in the literature
relating the Borda permutation with Cayley or Ulam distance.

— SetMedianPermutation: Selects the individual in the sample that minimizes the
sums of distances to the rest, given a particular distance.

— BestPermutation: Chooses the permutation with the best fitness.

Once the central permutation oy has been obtained, the spread parameter(s) are
estimated. In the case of MLE, the expression for these parameter(s) is obtained by
equaling the derivative of the likelihood to zero. Although these expressions differ for
each distance, in most of the cases numerical methods, such as Newton-Raphson, can
be used to obtain an approximate value. Exact expressions can be found in [Irurozki
et al. 2015, 2014; Irurozki 2014; Mandhani and Meila 2009].

The following example shows the call to the method declared for learning the GM
model with the Kendall’s-7 distance:

[model] = GMallows_kendall_learning(k,n,Card,SelPop,AuxFunVal,learning params)

where £ is the current generation of the EDA, and n is the number of variables (size)
of the permutation. The Card parameter is a matrix with the dimensions of all the
variables. The SelPop parameter is the population of permutations from which the
model is learned, AuxFunVal is the evaluation (fitness values) of the population for

1Note that there can be more than one sequence with the same LIS value. In this case, there are two
sequences: 13457 and 23457.
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Table I. Learning methods and related auxiliary functions for the different model and distance combinations.

Main Methods

Description

Mallows_{kendall,cayley,ulam} learning
GMallows_{kendall,cayley } learning

Methods called by the main learning method

Main methods for the learning step.

Description

{Borda,SetMedianPermutation,BestFitness}
CalculateThetaParameter{K,GK,C,GC,U}

{Kendall,GKendall,Cayley,Ulam } ThetaFuncion
{Kendall,GKendall,Cayley,Ulam } ThetaDevFuncion

Auxiliary functions

Different methods to approximate the central permutation.
Learn 6 parameter(s).

Auxiliary methods used to define the functions
to be solved by applying Newton-Raphson.

Description

{Kendall,cayley,ulam} _distance

Mallows_{kendall,cayley,ulam}_Probability
GMallows_{kendall,cayley } Probability

Mallows_{kendall,cayley,ulam} Probability_exp
GMallows_{kendall,cayley } Probability_exp

Calculate the distance between two permutations.

Calculate the probability assigned by the model
to a particular permutation.

Calculate the value of the exponential
part of the probability equation.

CalculatePsiConstants{K,GK,C,GC} Calculate the normalization term.

the selected problem, and learning params is the set of additional learning param-
eters (which can be different for each model). In all the cases —except for GM with
Cayley— learning params consists of the following: the first three parameters related
to the Newton-Raphson method used for estimating the 6 value: the initialTheta and
upperTheta are the interval values for 0, and maxit is the maximum number of iter-
ations allowed. The fourth parameter, RankingFun, indicates the function to be used
for approximating the central permutation (cy). In the case of GM with Cayley, as
Newton-Raphson is not needed, only one parameter is used (RankingFun).

In Table I, the different learning methods, together with related auxiliary functions
are presented?. Different functions have been defined for each step (or even sub-step)
of the learning phase, taking into account the modular design of the Mateda-2.0 tool-
box. Particularly, the main learning method calls two secondary methods, one for ap-
proximating the central permutation and the other for estimating the spread parame-
ter(s). Moreover, as this last method uses Newton-Raphson, it calls ThetaFunction and
ThetaDevFunction methods (except for GM-Cayley). This way, it is straightforward to
modify some parts of the code or write new code, it being enough to just change the
particular method and the call to it. For example, replace Newton-Raphson by another
numerical method, or include a new proposal to obtain the central permutation.

3.5. Sampling

The sampling step consists of generating permutations from the model obtained in
the learning stage. The sampling algorithm depends on the distance considered in the
model. Mallows and GM models under the Kendall’s-r and Cayley distances can be fac-
torized, leading to efficient sampling algorithms. Roughly speaking, the sampling step
uses the probability distributions learned for the V (Kendall’s-7) or X (Cayley) vectors
, samples V (or X) vectors, and finally converts the vector to the corresponding permu-
tation. Details of the sampling algorithms for both distances can be found in [Irurozki
2014] called Multistage Sampler. In the case of Ulam, the sampling algorithm relies
on the generation of combinatorial structures, which makes the sampling algorithms

2In order to avoid repeating each model - distance combination, we represent the different options between
keys. For example, the name of the learning method for GM with Cayley will be GMallows_cayley_learning.
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Table Il. Sampling methods and related auxiliary functions for the different model and distance com-
binations.
Main methods Description
Mallows_{kendall,cayley,ulam}_sampling
GMallows_{kendall,cayley}_sampling

Main methods for the sampling step.

Auxiliary functions Description
{v,x}Vector Decompose the permutation
GeneratePermuFrom{V,X} Obtain a new permutation from the {v,x}vector.

Table Ill. Functions defined to read the instances and evaluate a solution for the four permutation-
based problems implemented: TSP, PFSP, LOP, and QAP.
Methods Description
Read{TSP,PFSP,LOP,QAP}Instance = Method to read an instance of a given problem

Eval{TSP,PFSP,LOP,QAP} Method to evaluate a given solution (permutation)

more time consuming (details can be found in [Irurozki 2014] by the name of Distances
Sampler).
The method for sampling the GM model with the Kendall’s-r distance is called:

[pop] = GMallows_kendall_sampling(n,model,Card,AuxPop,AuxFunVal,sampling_params)

where n is the number of variables (size) of the permutation, model is the model
learned by the learning method, Card is a matrix with the dimensions of all the vari-
ables, AuxPop is the population from which the model was learned, and AuxFunVal is
the evaluation (fitness values) of the AuxPop data set. The sampling_params are the
additional sampling parameters (we follow the general scheme of the Mateda-2.0 tool-
box). In this case, our methods only require one parameter, N, which is the number of
new individuals to be generated.

In Table II the different sampling methods, together with related auxiliary functions
are presented?®.

4. PERMUTATION PROBLEMS

Mateda-2.0 toolbox includes implementations of discrete and continuous optimization
problems. Following the same idea, we have incorporated four problems defined on
permutations: Traveling Salesman Problem (TSP), Permutation Flowshop Scheduling
Problem (PFSP), Linear Ordering Problem (LOP), and Quadratic Assignment Problem
(QAP). These problems are challenging and they appear frequently in the literature.

Table III describes the modules implemented for each optimization problem. Each
problem is defined by two modules: one for reading the instance file and processing
the parameters (Read{TSP,PFSP,LOP,QAP}instance), and the other for evaluating the
solutions (permutations) (Eval{TSP,PFSP,LOP,QAP}).

The Read{TSP,PFSP,L0OP,QAP}instance module takes as the only parameter the file-
name of the instance to load. The output is a global variable with the name of the
problem that contains the parameters needed by EDA.

For example, to read a QAP problem, the method ReadQAPInstance is called:

ReadQAPInstance(InstanceName) ;

3As with the learning phase, we represent the different options between keys, V (or v) is for Kendall’s-r and
X (or x) is for Cayley
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where InstanceName is the path and filename of the instance to read. This module
creates a global variable, in this case called QAPInstance, that holds the data of the
problem. The global variable is used in order to avoid unnecessary traffic of arguments
across the main RunEDA process.

For the evaluation of a solution in the QAP problem, the method EvalQAP is called:

[vall] = EvalQAP(permutation);

where permutation contains the permutation that will be evaluated. As previously
mentioned, the instance data is taken from the global variable of the problem, in this
case called QAPInstance. The output parameter val is the fitness of the permutation.

All problems described in Table III have the same input parameter. For the four
problems, the methods to read and evaluate the problem are called in the same way.
However, regarding the global variables, each problem has its own structure and, thus,
the information stored for each problem is different.

— Traveling Salesman Problem (T'SP): This problem is described by one matrix of size
n X n containing the distances between the cities. The TSP implementation can work
with both symmetric and asymmetric matrices. Once the data is read, the distance
matrix of the problem and the number of cities are stored, in this order, in a global
variable named T'SPInstance.

— Permutation Flowshop Scheduling Problem (PFSP): The information about this
problem is contained in one matrix of size m x n containing the processing times
of executing job j, j = 1,2,...,n in machine i, ¢ = 1,2,..., m. The matrix that con-
tains the processing times, the number of machines, and the number of jobs are
stored, in this order, in a global variable named PFSPInstance.

— Linear Ordering Problem (LOP): It is described by one matrix of size n x n with
arbitrary natural numbers. Once the data is read, the matrix and problem size are
stored, in this order, in a global variable named LOPInstance.

— Quadpratic Assignment Problem (QAP): The information about this problem is con-
tained in two matrices of sizes n x n. The first matrix contains the flow between the
facilities and the second one the distances between the locations. Once the data is
read, the distance matrix, flow matrix and problem size are stored, in this order, in
a global variable named QAPInstance.

5. EXAMPLES

In this section, we will go through the whole process of optimizing an instance of the
Linear Ordering Problem (LOP) [Ceberio et al. 2014]. Additional examples, instances,
source c40de and program documentation can be downloaded from the web-site of the
toolbox.

First, in lines 1 to 3, the global variable of the problem is defined and the instance
is loaded (in this example the ’LOP-example-instance-30’ file). This instance corre-
sponds to a problem of size 30.

1 global LOPInstance
2 ReadLOPInstance(’LOP-example-instance-30’);
3 [matrix, size] = LOPInstance{:};

Then, we declare the general parameters of the EDA: size of the solution and car-
dinality of the variables (given by the instance), size of the population, the evaluation
function to be used, and the cache (explained later).

4http://www.sc.ehu.es/ccwbayes/files/perm_mateda.zip
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4 NumbVar = size;

5 Card = [ones(1,NumbVar); NumbVar*ones(l,NumbVar)];
6 PopSize = 10*NumbVar;

7 F = ’Evall0OP’;

8 cache = [0,0,1,0,0];

The toolbox allows storing different descriptors about the behavior of the EDA al-
gorithm during the optimization process. These descriptors are stored in the output
variable Cache (line 17). To specify the desired output information, a vector (cache)
specifying which components of the algorithm will be stored is used (line 8). cache (i)
= 1 determines whether the i-th component of EDA (i = 1,2,...,5) will be saved in
each generation (cache(i) = 0 otherwise). The five components considered are the fol-
lowing:

(1) Entire population.

(2) Selected population.

(3) Probabilistic model.

(4) Fitness values of the entire population.
(5) Fitness values of the selected population.

Now, we tackle the design of our particular EDA. First, see line 9, the method used
to initialize the population is chosen. In this case, a random initialization would be
preferred. With respect to the selection operator, lines 10-11, the NumbVar/PopSize per-
centage of the solutions with the best fitness are selected by truncation. In relation to
the replacement operator, line 12, the population is updated by adding the newly cre-
ated solutions and preserving the PopSize solutions with the best fitness. As regards
the stopping criterion, line 13, this is set to 500 generations of the algorithm.

9 edaparams{1} = {’seeding_pop_method’,’InitPermutations’,{}};

10 selparams(1:2) = {NumbVar/PopSize,’fitness_ordering’};

11 edaparams{2} = {’selection_method’,’truncation_selection’,selparams};

12 edaparams{3} = {’replacement_method’,’pop_aggregation’,{’fitness_ordering’}};
13 edaparams{4} {’stop_cond_method’, ’max_gen’,{500}};

Finally, we specify the probabilistic model that is going to be used. In this example,
we propose using the Mallows model under the Kendall-r distance. To this end, the
learning and sampling methods must be detailed (see lines 14-15):

14 edaparams{5}= {’learning_method’,’Mallows_kendall_learning’,{0.001,10,100, ’Borda’}};
15 edaparams{6}= {’sampling method’,’Mallows_kendall_sampling’,{PopSize-1,1}};
16 edaparams{7} = {’local_opt_method’,’greedy_Insert’,{100}};

With respect to the learning method, Borda is used to approximate the central per-
mutation, and the spread parameters are estimated in the range [0.001,10] with a
maximum of 100 iterations of the Newton-Raphson algorithm. According to the sam-
pling step, PopSize-1 new solutions are sampled from the model at each generation. A
local optimization method is also added to the EDA. In the example shown in line 16,
a greedy insert local optimizer with a maximum number of 100 movements is used.

Once the algorithm has been configured, it is executed by calling the function

17 [AllStat,Cache]=RunEDA(PopSize,NumbVar,F,Card,cache,edaparams)

In addition to the variable Cache, the output variable AllStat stores the following
statistics of each EDA generation:

— Information about maximum, mean, median, minimum, and variance of fitness val-
ues in the current population.
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— Best individual (according to an ordering criterion).

— Number of different individuals.

— Information about maximum, mean, median, minimum, and variance values of ev-
ery variable in the current population.

From the information stored in A11Stat, it is possible to illustrate the optimization
process followed by the algorithm. For example, Fig 1 shows the best fitness and mean
fitness of the individuals in the population across 500 generations. Fig 2 shows the best
permutations obtained in each generation (for the sake of clarity, only a subset of the
500 permutations is shown). In addition, using the information about the probabilistic
model stored in Cache (see line 8, where cache(3) was set to 1), a figure showing the
evolution (convergence) of the 0 variable has been plotted (see Fig 3).
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Fig. 1. Best and mean fitness obtained across 500 generations by the Mallows EDA proposed in the example
when optimizing a LOP problem.

6. CONCLUSIONS

Permutation-based optimization problems are present in many real-world scenarios,
such as those related to logistics, planning, etc. Recently, new estimation of distri-
bution algorithms have been proposed to solve this kind of problems in an efficient
way. In this paper, we propose an extension of the Mateda 2.0 toolbox, designed for
solving permutation-based problems. Based on two distance-based exponential proba-
bility models, the Mallows and Generalized Mallows models, the toolbox implements
the functions to run both models under the Kendall’s-r, Cayley, Ulam and Hamming
distances. In order to provide a testbed of functions, four classical permutation prob-
lems have also been implemented: Traveling Salesman Problem, Permutation Flow-
shop Scheduling Problem, Linear Ordering Problem, and Quadratic Assignment Prob-
lem. For the sake of illustrating the different functionalities, the paper introduces a
complete example of the definition of a problem, design and execution of the algorithm,
and finally an analysis and visualization of the results. Additionally, the toolbox per-
mits, without running EDAs, to make inference on permutation data by learning and
sampling Mallows and Generalized Mallows models on the different metrics explained
in this paper.

The algorithms have been implemented taking into account the modular nature of
the original Matlab framework. In this sense, it will be easy for a future user to extend
presented EDAs, including new probabilistic models, such as Plackett-Luce [Plackett
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Fig. 2. Best permutations (in columns) obtained in each generation of the Mallows EDA proposed in the
example when optimizing a LOP problem. For the sake of clarity, only a subset of the 500 permutations is
shown.
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Fig. 3. Evolution of the 0 value (a parameter of the probabilistic model) across generations.
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1975; Luce R. 1959], add new distance metrics to existing models: for example, Ham-
ming [Deza et al. 1998] or even implement mixtures of the probabilistic models [San-
tamaria et al. 2015].
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