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Abstract. In this paper we use some properties of spherical blowing-up to

give an alternative and more geometric proof of Gau-Lipman Theorem about

the differentiable invariance of the multiplicity of complex analytic sets. More-

over, we also provide a generalization of the Ephraim-Trotman Theorem.

1. Introduction

Let f : (Cn, 0)→ (C, 0) be the germ of a reduced analytic function at the origin

with f 6≡ 0. Let (V (f), 0) be the germ of the zero set of f at the origin. The

multiplicity of V (f) at the origin, denoted by m(V (f), 0), is defined as follows:

we write

f = fm + fm+1 + · · ·+ fk + · · ·

where each fk is a homogeneous polynomial of degree k and fm 6= 0. Then,

m(V (f), 0) := m.

In 1971, Zariski in [17] asked if the multiplicity of complex analytic hypersurface

was an invariant of the embedded topology, more precisely, he asked the following

Question A: Let f, g : (Cn, 0)→ (C, 0) be germs of reduced holomorphic functions

at the origin. If there is a homeomorphism ϕ : (Cn, V (f), 0) → (Cn, V (g), 0), is it

true that m(V (f), 0) = m(V (g), 0)?

This problem is known as Zariski’s problem and as Zariski’s Multplicity Conjecture

in its stated version. It is still opened, but there are some partial answers. For

example, in 1932, Zariski in [18] already had proved that his problem had a positive

answer when n = 2. For any n, Ephraim in [5] and independently Trotman in [14]

showed that the Zariski’s problem has a positive answer if the homeomorphism ϕ

and its inverse are C1.
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Since the notion of multiplicity is defined for any complex analytic set with

pure dimension (see, for example, [3] for a definition of multiplicity in higher

codimension), we can get the same Zariski’s problem in any codimension. How-

ever, it is easy to produce examples of complex analytic sets X,Y ⊂ Cn with

codimension greater than 1, being embedded homeomorphic and having different

multiplicities. For instance, there is a homeomorphism ϕ : (C3, 0) → (C3, 0) send-

ing the cusp X = {(x, y, z) ∈ C3; y2 = x3 and z = 0} over the complex line

Y = {(x, y, z) ∈ C3; y = x = 0}, so that in this case, m(X, 0) = 2 and m(Y, 0) = 1.

Therefore Zariski’s problem in codimension larger than 1 has a negative answer.

However, in 1983, Gau and Lipman in [9], showed that if X,Y ⊂ Cn are complex

analytic sets and there exists a homeomorphism ϕ : (Cn, V (f), 0) → (Cn, V (g), 0)

such that ϕ and ϕ−1 are differentiable at the origin, then m(X, 0) = m(Y, 0). This

result will be called here Gau-Lipman Theorem. In particular, Gau-Lipman The-

orem generalizes the quoted above result proved by Ephraim and Trotman, called

here Ephraim-Trotman Theorem. In order to know more about Zariski’s problem

see, for example, [7].

The aim of this paper is to give a short and geometric proof of Gau-Lipman

Theorem. To this end, we present some definitions and results in Section 2, and

in Section 3 we prove some more results and we present a proof of Gau-Lipman

Theorem. Finally, in Section 4, we present a generalization of Ephraim-Trotman

Theorem.

2. Preliminaries

This Section is closely related with the paper [13].

Definition 2.1. Let A ⊂ Rn be a subanalytic set such that x0 ∈ A is a non-

isolated point. A vector v ∈ Rn is tangent to A at x0 if there is a sequence of points

{xi} ⊂ A \ {x0} tending to x0 ∈ Rn and there is a sequence of positive numbers

{ti} ⊂ R+ such that

lim
i→∞

1

ti
(xi − x0) = v.

Let C(A, x0) denote the set of all tangent vectors of A at x0 ∈ Rn. We call C(A, x0)

the tangent cone of A at x0.

Notice that C(A, x0) is the cone C3(A, x0) as defined by Whitney (see [16]).

Remark 2.2. If A is a complex analytic set of Cn such that x0 ∈ A then C(A, x0)

is the zero locus of finitely many homogeneous polynomials (See [16], Chapter 7,

Theorem 4D). In particular, C(A, x0) is a union of complex lines passing through

0.
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Another way to present the tangent cone of a subset X ⊂ Rn at the origin 0 ∈ Rn

is via the spherical blow-up of Rn at the point 0. Let us consider the spherical

blowing-up (at the origin) of Rn

ρn : Sn−1 × [0,+∞) −→ Rn

(x, r) 7−→ rx

Note that ρn : Sn−1 × (0,+∞) → Rn \ {0} is a homeomorphism with inverse

mapping ρ−1n : Rn \ {0} → Sn−1 × (0,+∞) given by ρ−1n (x) = ( x
‖x‖ , ‖x‖). The

strict transform of the subset X under the spherical blowing-up ρn is X ′ :=

ρ−1n (X \ {0}). The subset X ′ ∩ (Sn−1 × {0}) is called the boundary of X ′ and it

is denoted by ∂X ′.

Remark 2.3. If X is a subanalytic set of Rn, then ∂X ′ = S0X × {0}, where

S0X = C(X, 0) ∩ Sn−1.

Definition 2.4. Let (X, 0) and (Y, 0) be subsets germs, respectively at the origin

of Rn and Rp.

• A continuous mapping ϕ : (X, 0)→ (Y, 0), with 0 6∈ ϕ(X \ {0}), is a blow-

spherical morphism (shortened as blow-morphism), if the mapping

ρ−1p ◦ ϕ ◦ ρn : X ′ \ ∂X ′ → Y ′ \ ∂Y ′

extends as a continuous mapping ϕ′ : X ′ → Y ′.

• A blow-spherical homeomorphism (shortened as blow-isomorphism)

is a blow-morphism ϕ : (X, 0) → (Y, 0) such that the extension ϕ′ is a

homeomorphism. In this case, we say that the germs (X, 0) and (Y, 0)

are blow-spherical equivalent or blow-spherical homeomorphic (or

blow-isomorphic).

The authors Birbrair, Fernandes and Grandjean in [2] defined blow-spherical

morphisms and homeomorphisms with the additional hypotheses that they are re-

quired to also be subanalytic. Here, we work with the same definition already

presented in [13].

Remark 2.5. Let X ⊂ Rm and Y ⊂ Rp be two subanalytic subsets. If ϕ : (X, 0)→
(Y, 0) is a blow-spherical homeomorphism, then we have a homeomorphism νϕ :

S0X → S0Y such that ϕ′(x, 0) = (νϕ(x), 0) for all (x, 0) ∈ ∂X ′. Moreover, the

mapping νϕ induces a homeomorphism d0ϕ : C(X, 0)→ C(Y, 0) given by

d0ϕ(x) =

{
‖x‖νϕ

(
x
‖x‖
)
, x 6= 0

0, x = 0.
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Let X ⊂ Rn and Y ⊂ Rm be two subsets. Let us recall the following definition:

a mapping f : X → Y is a Ck mapping, if for each x ∈ X, there exist an open

U ⊂ Rn and a mapping F : U → Rm such that x ∈ U , F |X∩U = f |X∩U and F is a

Ck mapping.

The next result was proved in [13], but we sketch its proof here.

Proposition 2.6. Let X,Y ⊂ Rm be two subanalytic subsets. If ϕ : (Rm, X, 0)→
(Rm, Y, 0) is a homeomorphism such that ϕ and ϕ−1 are differentiable at the origin,

then ϕ : (X, 0)→ (Y, 0) is a blow-spherical homeomorphism.

Proof. Observe that ν : S0X → S0Y given by

ν(x) =
Dϕ0(x)

‖Dϕ0(x)‖

is a homeomorphism with inverse

ν−1(x) =
Dϕ−10 (x)

‖Dϕ−10 (x)‖
.

Using that ϕ(tx) = tDϕ0(x) + o(t), we obtain

lim
t→0+

ϕ(tx)

‖ϕ(tx)‖
=

Dϕ0(x)

‖Dϕ0(x)‖
= ν(x)

Then the mapping ϕ′ : X ′ → Y ′ given by

ϕ′(x, t) =


(

ϕ(tx)
‖ϕ(tx)‖ , ‖ϕ(tx)‖

)
, t 6= 0

(ν(x), 0), t = 0,

is a homeomorphism. Therefore, ϕ is a blow-spherical homeomorphism. �

Definition 2.7. Let X ⊂ Rn be a subanalytic set such that 0 ∈ X. We say that

x ∈ ∂X ′ is a simple point of ∂X ′, if there is an open U ⊂ Rn+1 with x ∈ U such

that:

a) the germs at x of the connected components of (X ′∩U)\∂X ′, say X1, ..., Xr,

are topological manifolds with dimXi = dimX, for all i = 1, ..., r;

b) (Xi ∪ ∂X ′)∩U is a topological manifold with boundary, for all i = 1, ..., r;.

Let Smp(∂X ′) be the set of all simple points of ∂X ′.

Remark 2.8. By Theorem 2.2 proved in [12], we get that Smp(∂X ′) is dense in

∂X ′ if dim ∂X ′ = dimX − 1 and X has pure dimension (see also [1]).

Definition 2.9. Let X ⊂ Rn be a subanalytic set such that 0 ∈ X. We define

kX : Smp(∂X ′)→ N, with kX(x) is the number of components of ρ−1(X \{0})∩U ,

for U an open sufficiently small containing x.
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Remark 2.10. It is clear that the function kX is locally constant. In fact, kX is

constant in each connected component Cj of Smp(∂X ′). Then, we define kX(Cj) :=

kX(x) with x ∈ Cj ∩ Smp(∂X ′).

Remark 2.11. When X is a complex analytic set, there is a complex analytic set

Σ with dim Σ < dimX, such that Xj \Σ intersect only one connected component Ci

(see [3], pp. 132-133), for each irreducible component Xj of tangent cone C(X, 0),

then we define kX(Xj) := kX(Ci).

Remark 2.12. The number kX(Cj) is the integer number nj defined by Kurdyka

and Raby in [10, pp. 762], and is also equal to the integer number kj defined by

Chirka in [3, pp. 132-133], when X is a complex analytic set.

Remark 2.13 ([3, p. 133, Proposition]). Let X be a complex analytic set of Cn

and let X1, ..., Xr be the irreducible components of C(X, 0). Then

(1) m(X, 0) =

r∑
j=1

kX(Xj) ·m(Xj , 0).

Since the multiplicity is equal to the density (see [4, Theorem 7.3]), Equation

(1) was also proved by Kurdyka and Raby in [10].

Theorem 2.14. Let X and Y ⊂ Cm be complex analytic subsets of Cn of pure

dimension p = dimX = dimY , and let X1, . . . , Xr and Y1, . . . , Ys be the irreducible

components of the tangent cones C(X, 0) and C(Y, 0), respectively. If there is a

blow-spherical homeomorphism ϕ : (X, 0) → (Y, 0) such that d0ϕ(Xj) = Yj, for

j = 1, ..., r, then kX(Xj) = kY (Yj), for j = 1, ..., r.

Proof. Fix j ∈ {1, ..., r}, let p ∈ S0Xj × {0} generic and U ⊂ X ′ a small neighbor-

hood of p. As ϕ′ : X ′ → Y ′ is a homeomorphism, the image V := ϕ′(U) is a small

neighborhood of ϕ′(p) ∈ S0Yj × {0}. Moreover, ϕ′(U \ ∂X ′) = V \ ∂Y ′, since (by

definition) ϕ′|∂X′ : ∂X ′ → ∂Y ′ is a homeomorphism. Using once more that ϕ′ is a

homeomorphism, we obtain that the number of connected components of U \ ∂X ′

is equal to V \ ∂Y ′, showing that kX(Xj) = kY (Yj). �

Proposition 2.15. Let ϕ : A→ B be a C1 homeomorphism between two complex

analytic sets with pure dimension. If X is an irreducible component of A, then

ϕ(X) is an irreducible component of B.

To prove this result, we recall a well known result by Milnor [11].

Proposition 2.16 ([11], page 13). Let X be a complex analytic set of Cn. If X is

C1-smooth at x ∈ X, then X is analytically smooth at x.
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Proof of Proposition 2.15. By Proposition 2.16, ϕ(Sing(A)) = Sing(B) and then

ϕ|A\Sing(A) : A\Sing(A)→ B \Sing(B) is, in particular, a homeomorphism. More-

over, we know that if Y is a complex analytic set of pure dimension, then each

connected component of Y \ Sing(Y ) is open and dense in exactly one irreducible

component of Y . Let X∗ be the connected component of A \ Sing(A) such that

X∗ ⊂ X and X∗ = X. Thus, ϕ(X∗) is a connected component B \Sing(B). There-

fore, ϕ(X∗) is an irreducible component of B. As ϕ is a homeomorphism, we get

that ϕ(X) is an irreducible component of B. �

3. Differentiable invariance of the multiplicity

In this section, we present an alternative proof of Gau-Lipman Theorem ([9]),

about the differentiable invariance of the multiplicity.

Remark 3.1. Let X be a complex analytic set of Cn and let cn : Cn → Cn

be the conjugation map given by cn(z1, ..., zn) = (z1, ..., zn). Then cn(X) is a

complex analytic set and m(cn(X), 0) = m(X, 0). In particular, m(X×cn(X), 0) =

m(X, 0)2.

Let X be a real analytic subset of Rn with 0 ∈ X. We denote by XC the

complexification of the germ (X, 0) in Cn; (For more about complexification, see

[6] and [15]).

Lemma 3.2 ([6], Proposition 2.9). Let X be an irreducible complex analytic set of

Cn. Then, XC is complex analytic isomorphic to X × cn(X).

Proposition 3.3. Let X and Y be complex analytic sets of Cn. If ϕ : Cn → Cn is

a R-linear isomorphism such that ϕ(X) = Y , then m(X, 0) = m(Y, 0).

Proof. By additivity of the multiplicity and by Proposition 2.15, we can suppose

that X and Y are irreducible. Since ϕ : R2n → R2n is a R-linear isomorphism

(with the usual identification Cn = R2n), it is easy to see that its complexification

ϕC : C2n → C2n is a C-linear isomorphism and ϕC(XC) = YC. Then, by Lemma

3.2, XC is complex analytic isomorphic to X× cn(X) and YC is analytic isomorphic

to Y × cn(Y ). Thus, m(X × cn(X), 0) = m(Y × cn(Y ), 0), since the multiplicity is

an analytic invariant. Therefore, by Remark 3.1, m(X, 0) = m(Y, 0). �

Theorem 3.4. Let X and Y be complex analytic sets of Cn. If there is a homeo-

morphism ϕ : (Cn, X, 0)→ (Cn, Y, 0) such that ϕ and ϕ−1 are differentiable at the

origin, then m(X, 0) = m(Y, 0).
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Proof. Observe that Dϕ0 : (Cn, C(X, 0), 0)→ (Cn, C(Y, 0), 0) is a R-linear isomor-

phism. Then, by Proposition 2.15, Dϕ0 maps bijectively the irreducible compo-

nents of C(X, 0) over the irreducible components of C(Y, 0). Thus, let X1, ..., Xr

and Y1, ..., Yr be the irreducible components of C(X, 0) and C(Y, 0), respectively,

such that Yj = Dϕ0(Xj), j = 1, ..., r. As Dϕ0 is a R-linear isomorphism, by

Proposition 3.3, we have that m(Xj , 0) = m(Yj , 0), j = 1, ..., r.

Furthermore, by Proposition 2.6, ϕ is a blow-spherical homeomorphism, then by

Theorem 2.14, kX(Xj) = kY (Yj), for all j = 1, ..., r. By remark 2.13,

m(X, 0) =

r∑
j=1

kX(Xj) ·m(Xj , 0)

and

m(Y, 0) =

r∑
j=1

kY (Yj) ·m(Yj , 0).

Therefore, m(X, 0) = m(Y, 0). �

4. A generalization of Ephraim-Trotman Theorem

It is clear that Theorem 3.4 generalizes Ephraim-Trotman Theorem. In this

Section, we prove Theorem 4.2 which is also slightly more general than Ephraim-

Trotman Theorem.

Lemma 4.1 ([5], Theorem 2.6 and Theorem 2.7). If f : (Cn, 0) → (C, 0) is an

irreducible homogeneous complex polynomial, then H1(Cn\V (f);Z) ∼= Z. Moreover,

f∗ : H1(Cn \ V (f);Z)→ H1(C \ {0};Z) is an isomorphism.

Theorem 4.2. Let f, g : (Cn, 0)→ (C, 0) be two complex analytic functions. Sup-

pose that there are a complex line L ⊂ Cn such that L ∩ C(V (f), 0) = {0} and a

blow-spherical homeomorphism ϕ : (Cn, V (f), 0) → (Cn, V (g), 0) such that d0ϕ(L)

is a real plane. Then, m(V (f), 0) ≤ m(V (g), 0).

Proof. By Theorem 2.14, we can suppose that f and g are irreducible homogeneous

complex polynomials and ϕ send L over a real plane L̃ = ϕ(L).

Let γ be a generator of H1(L \ {0};Z). Then, (f |L\{0})∗(γ) = ±m(V (f), 0)

and (g|L\{0})∗(γ) = ±m(V (g), 0). In particular, i∗(γ) = ±m(V (f), 0), where i :

L \ {0} → Cn \ V (f) is the inclusion map, since

f∗ : H1(Cn \ V (f);Z)→ H1(C \ {0};Z)

is an isomorphism. However, ϕ∗ : H1(Cn \ V (f);Z)→ H1(Cn \ V (g);Z) is also an

isomorphism, then ϕ∗(i∗(γ)) = ±m(V (f), 0). Therefore,

(2) ((g ◦ ϕ)|L\{0})∗(γ) = ±m(V (f), 0),
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since g∗ : H1(Cn \ V (g);Z)→ H1(C \ {0});Z) is an isomorphism, as well.

Since L̃ = ϕ(L) is a real plane, there exists a complex plane H ⊂ Cn such that

L̃ ⊂ H. Then h = g|H : H ∼= C2 → C is a homogeneous polynomial with degree

k = m(V (g), 0). Therefore, h factorizes as h = g1 · · · gk, where each gr is complex

linear. However, by hypothesis, L∩V (f) = {0} and ϕ(V (f)) = V (g), then for each

r ∈ {1, ..., k}, we have

L̃ ∩ V (gr) = ϕ(L) ∩ ϕ(V (f)) = ϕ(L ∩ V (f)) = {0},

which means that L̃ and V (gr) are two transversal real planes in H ∼= R4 and, in

particular, H = L̃⊕V (gr). Thus, if P : H → L̃ is the linear projection over L̃ such

that Ker(P ) = V (gr), we can see that the inclusion map j : L̃ \ {0} → H \V (gr) is

a homotopy equivalence and P |H\V (gr) : H \V (gr)→ L̃\{0} is a homotopy inverse

of j. Moreover, η = ϕ(γ) is a generator of H1(L̃ \ {0};Z) and of H1(H \ V (gr);Z),

since ϕ : L \ {0} → L̃ \ {0} is a homeomorphism. Furthermore, by Lemma 4.1,

gr∗ : H1(H \ V (gr);Z) → H1(C \ {0};Z) is an isomorphism, for all r = 1, ..., k.

Therefore, |gr∗(η)| = 1 and, then,

|g∗(η)| ≤ k = m(V (g), 0),

since g∗(η) =
k∑
i=1

gr∗(η). However,

|g∗(η)| = |((g ◦ ϕ)|L\{0})∗(γ)| (2)= m(V (f), 0)

and therefore m(V (f), 0) ≤ m(V (g), 0). �

As a first consequence we get

Corollary 4.3. Let f, g : (Cn, 0)→ (C, 0) be complex analytic functions. Suppose

that there are two complex lines L,L′ ⊂ Cn such that

L ∩ C(V (f), 0) = {0} and L′ ∩ C(V (g), 0) = {0}

and a blow-spherical homeomorphism ϕ : (Cn, V (f), 0) → (Cn, V (g), 0) such that

d0ϕ(L) and d0ϕ
−1(L′) are real planes. Then, m(V (f), 0) = m(V (g), 0).

As another consequence we obtain the following

Corollary 4.4. Let f, g : (Cn, 0) → (C, 0) be complex analytic functions. If there

is a homeomorphism ϕ : (Cn, V (f), 0) → (Cn, V (g), 0) such that ϕ and ϕ−1 are

differentiable at the origin, then m(V (f), 0) = m(V (g), 0).

Proof. In this case, Dϕ0 and Dϕ−10 are R-linear isomorphisms from Cn to Cn.

Then, Dϕ0(L) and Dϕ−10 (L) are real planes whenever L is a real plane. Moreover,
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if L is a real plane, we get that Dϕ0(L) = d0ϕ(L) and Dϕ−10 (L) = d0ϕ
−1(L). By

Theorem 4.2, the result follows. �

It is easy to produce an example of a blow-spherical homeomorphism such that

it sends real planes over real planes, but it is not differentiable at the origin. Here,

we finish this paper presenting a simple example of a such blow-spherical homeo-

morphism.

Example 4.5. Let ψ : Rm → Rm be a linear isomorphism. We verify that the

mapping ϕ : Rm → Rm given by

ϕ(x) =

{
‖x‖ 1

2 · ψ(x)
‖ψ(x)‖ , x 6= 0

0, x = 0

is a blow-spherical homeomorphism that sends real planes over real planes but it is

not differentiable at the origin.
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