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Abstract

In this dissertation several quantitative weighted estimates for singular integral op-
erators, commutators and some vector valued extensions are obtained. In particular
strong and weak type (p, p) estimates, Coifman-Fefferman estimates, Fefferman-Stein
estimates, Bloom type estimates and endpoint estimates are provided. Most of the
proofs of those results rely upon suitable sparse domination results that are provided
as well in this dissertation. Also, as an application of the sparse estimates, local ex-
ponential decay estimates are revisited, providing new proofs and results for vector
valued extensions.






Summary

We say that w is a weight if it is a non-negative locally integrable function. A fun-
damental family of classes of weights, due to the fact that it characterizes the bound-
edness of the Hardy-Littlewood operators on weighted L? spaces was introduced by
B. Muckenhoupt in [116]]. Those weights are the so called A, weights. We say that
w € A, inthecase 1 <p < ooif

1 1 L\
[w]Ap=sgp@/Qw<@/Qw—p> < 00.

In the case p = 1, we say that w € A, if

< 0.

' Muw

[w]A1 = ‘

In this dissertation we shall study quantitative estimates on weighted L? spaces for
singular integral operators such as Calderén-Zygmund operators satisfying a Dini
condition, operators with a kernel satisfying an A-Hérmander condition, rough sin-
gular integrals (with homogeneous kernel without regularity) and also for commuta-
tors of some of those operators with a symbol b or a vector of symbols b and some
vector-valued extensions. Essentially if G is some of the aforementioned operators,
we will be interested in estimates like

”Gf”LP(w) < cp,GCU,w”f”LP(U) 1< p<o

/ w < chU’w/A (ﬂ) v.
(G FI>1) !

Our main concern will be to establish the constant ¢, , in a “precise” way. For instance,
in the case v = wwithw € A and 1 < g < p we will be interested in the quantitative
relation between ¢, , and the constant [w] , .
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A fundamental tool to obtain quantitative estimates is the so called “sparse dom-
ination”. We recall that it is possible to tile R” by cubes of sidelength 2/ for every
integer j with all it sides parallel to the axis. We call D;(R") that family of cubes and
denote D(R") = | J,., D;(R").

jez

We say that S C D is an g-sparse family # € (0, 1) if for each O € D there
exists a measurable subset £, C Q such that the sets E, are pairwise disjoint and

nlQ| < |Epl.

The sparse condition was implicit in the literature, probably since appearance of
the Calder6n-Zygmund decomposition [19], has been exploited in a number of appli-
cations in harmonic analysis. However in the recent years, the understanding on how
to exploit the sparse condition has allowed to obtain quite interesting results within
the theory and more in particular in the scope of quantitative weighted estimates. A
paradigmatic example is the the simplification of the proof of the A, theorem [96]
that motivated the development of such a “technology”.

The A, theorem, established by T. Hytonen in [73], states that the dependence
on the A, constant of the boundedness constant of Calderén-Zygmund operators is
linear, namely if T is a Calderén-Zygmund operator then

IT £l 20 < Cn,T,z[w]A2||f||L2(w)- (1)

Prior to Hytonen’s result, D. Cruz-Uribe, C. Pérez and J. M. Martell [38] estab-
lished the preceding estimate for class of more regular operators. The technique they
employed relied upon reducing the problem to a suitable dyadic operator, the sparse
operator. Given a sparse family S we define the sparse operator A by

A= & /Q f 2.

QeS

Establish (1) for this operator was easy so, a way to simplify the A, theorem was to try
to reduce the result to for T to something in terms of sparse operators. That was what
A. K. Lerner [96] did, obtaining a control in norm which was good enough to settle
(1). Not much later A. K. Lerner and F. Nazarov [[101] and J. M. Conde-Alonso and G.
Rey [33] independently established the fact that the domination is actually pointwise,
namely, given a Calderén-Zygmund operator T', for each f “good enough”, there exist
3" sparse operators such that

3n

ITfCOl < e ), Ag 1 F1(0).
j=1



SUMMARY V

Since the appearance of that pointwise domination result, the so called sparse dom-
ination theory has rapidly developed with the contribution of a number of authors.
Actually, sparse domination is going to be a fundamental ingredient in this disserta-
tion. For each of the operators mentioned above we will present the sparse domination
results in the literature and our contributions in that direction.

Throughout this dissertation we will see that sparse domination results allow to
provide a number of weighted estimates such as strong type and weak type (p, p) in-
equalities, Coifman-Fefferman and Fefferman-Stein type estimates, A; — A, quanti-
tative estimates, Bloom type estimates and also quantitative weighted estimates. Also
as an application of sparse domination results we will revisit the local exponential de-
cay estimates introduced in [122]]. The contents outlined in the preceding estimates
are organized in the dissertation as follows.

The purpose of Chapter [1]is to recall and fix notation about basic function spaces
that we will deal with throughout the dissertation such us Lebesgue function spaces.
We will recall as well the definition and some basic properties of BMO and of the
dyadic structures we will rely upon in many of our results. We will end up this chapter
presenting a result that allows, among other applications, to reprove John-Nirenberg
theorem.

Chapter [2| will be devoted to introduce the main operators of the dissertation.
Among them its worth mentioning Hardy-Littlewood maximal operators and certain
generalizations of it, A-Hormander operators that are kind of an “intermediate step”
in terms of regularity compared to Calderén-Zygmund operators and operators sat-
isfying the classical Hormander condition, commutators and certain vector-valued
extensions. We will try to provide some historical background when defining those
operators. We will also present some results with proofs that will be needed later on
in this dissertation.

Chapter 3]is structured in two sections. The first of them will be devoted to present
A, weights. We will gather the fundamental properties that weights in that class en-
joy. We will also present the A class which is the union of the A, classes and is
characterized by the finiteness of the following quantity

1
[wl,_ = Sgp w(0) /QM(WZQ)

as it was shown in [[153}59,77]. We will also recall the sharp reverse Holder inequality
(77], namely, there exists ¢, such that for every weight w € A if 1 <r <1+ !

Cn[w]Aoo
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(L/w’>:$2L/w.
|Q| [0) |Q| o

We will end up that section presenting some corollaries of that estimate that will be

then

quite useful in the remainder of the thesis. The second section will be devoted to
the history of A, estimates, focusing especially on Calderén-Zygmund operators and
commutators, from what we could call the “qualitative era” when the dependence on
the A, constant was not a matter of study to the “quantitative era” in which we could
say that we currently are and in which determining the quantitative dependence on
the A, constant is essentially the key question.

In Chapter [4 we present the sparse domination results on which will rely upon to
provide almost all the rest of the results in the thesis. Probably the most important
contribution in that direction of this thesis is the pointwise domination for commu-
tators established in a joint work with A. K. Lerner and S. Ombrosi [106]. Some other
contributions around sparse domination are covered in [21]] where vector-valued ex-
tensions of that result and of the corresponding results for Hardy-Littlewood maximal
operators and of Calderén-Zygmund operators were studied and in [81]] where sparse
domination results were provided for A-Hormander operators. In this thesis the afore-
mentioned results for commutators have been extended to multisymbol commutators.

The first section of Chapter [5|is devoted to present quantitative strong and weak
type (p, p) estimates for the operators presented in Chapter[2] Some remarkable results
in that direction are those ones devoted to vector-valued extensions, the estimates for
rough singular integrals, which are the best known up until now, and the quantitative
estimates for A-Hormander operators. In the second section we will address Bloom
type inequalities for commutators. We will show that the fact that b is in a modified
BMO class will be a necessary and sufficient condition for a two A, weights inequality
for commutators to hold. We will end this chapter presenting Coifman-Fefferman type
estimates, namely, inequalities such as

”Gf”Lp(w) < Cw”Mf”Lp(w) O<p<o

where M is suitable maximal operator and w € A_. We will provide quantitative
versions of that estimate in the case 1 < p < o0. In the case A-Hormander operators
we will present as well negative result in terms of the size of the maximal operator
needed in the right hand side of the estimate for it to hold. Our results in this estimate
are essentially contained in [106} 105, 111} [81]].
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In Chapter [6] we obtain Fefferman-Stein type estimates, namely two weight esti-
mates with the following form

NG Sl oy < Ccﬁw”f”LP(lT/fw)

where M is a certain maximal operator. From some of those estimates we will de-
rive the corresponding A, — A_ estimates. We will end up the section presenting
A;/ P(ASNY? — A, type estimates, improving A, estimates known for Calderén-
Zygmund operators, rough singular integrals with Q € L*(S"™!) and their commu-
tators with a symbol in BMO, and some vector valued extensions. Most of the results
obtained in this chapter are contained in [129,[111] [140] improving results previously
obtained in [131]).

Chapter [7] is devoted to settle weighted endpoint inequalities for the operators
presented in Chapter 2| The kind of estimates we will consider will be the following

/ wSCGcUW/A<m>U (2)
G FI>1) ’ !

In case we assume that w € A, we will be interested in the case u = w. In other
case, our cases of interest essentially will be those when v = Mw where M is a
suitable maximal operator. The strategy, when possible, will be to obtain a two weight
estimates and deduce from it the A, estimate. Probably the most remarkable results in
the chapter are the result for rough singular integrals [111]], for which (2) holds with
A =t,v=w € A andc,, = [w],_[w],, log(e+[w], ), being that the best known
estimate, and the results in [106] for commutators, with v = M 1, 1 (jog 1og 11+ W and

Cpw = ! with e > 0 and A(t) = tlog(e + t) and consequently in the case v =w € A,,

v, £

o = (W] A [w] A log(e + [w] Am) since they improve every known result. Results in

this chapter are established in [111] 106} 81]].

In Chapter 8| we revisit local exponential decay estimates. Those estimates where
introduced in [87] and thoroughly studied in [122] and have the following form. Let
G alinear or a sublinear operator and Q a cube of R” and supp f C Q, then

Hxe€Q : |Gf(X)|>tM;f(x)}| < cexp(—@4(1))| 0]

where @, is an increasing funcion and M a maximal operator. Sparse domination
results will allow to reprove known results and to obtain some new results with proofs
based on sparse domination. We will also prove that the subexpontential estimate for
the commutator obtained in [122] is sharp. The results in this section are taken from
[130, [21] §1].
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We end this dissertation with Chapter[9]in which we present some open questions
that naturally arise from the results presented along the memory.



Resumen

Diremos que w es un peso si es una funcién no negativa localmente integrable. Una
familia de clases de pesos fundamentales, por el hecho de caracterizar la acotacién
del operador maximal de Hardy-Littlewood en espacios L? con pesos, fue introducida
por B. Muckenhoupt en [116]]. Son los llamados pesos A,. Diremos que w € A, en el
casoen que 1 < p < oo si

1 1 L\
[w], =su —/w(—/wﬂ> < 0.
? o 10| Jo 10| Jo
En el caso p = 1, diremos que w € A, si

Mw
e < 0.
w

[w]A1 = ‘ L@

En la presente disertacion se estudiaran estimaciones en cuantitativas espacios
L? con pesos para operadores singulares integrales, tales como los operadores de
Calderéon-Zygmund con condicién de Dini, operadores con nucleo satisfaciendo una
condicién A-Hoérmander, integrales singulares rough (con ntcleo sin regularidad) y
también para conmutadores de estos operadores con un simbolo b o un vector de
simbolos b y algunas extensiones vectoriales. Esencialmente si G es alguno de los
operadores anteriormente citados, estaremos interesados en desigualdades del tipo

NG/ Nl oy < CpCowll [l 1 <p<o

/ w < chvyw/A (ﬂ) v.
(1G/1>1) !

En particular nos interesaremos con establecer establecer la constante ¢, ,, con “pre-
cision”. Por ejemplo en el caso v = wconw € A,y 1 < g < p nos interesara la
relacion cuantitativa de la constante c,, , con la constante [w], .

’ q
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Una herramienta fundamental para obtener dichas estimaciones es la dominacion
sparse. Recordamos ahora que es posible particionar R” mediante cubos diadicos de
longitud de lado 2/ para todo entero j con sus lados paralelos a los ejes de coordenadas.
Llamemos D;(R") a dicha familia de cubos y denotemos por D(R") = UjeZ D,(R").

Diremos que S C D es una familia #-sparse con # € (0, 1) (en castellano po-
driamos traducir n-dispersa) si para cada Q € D existe un medible E, C Q tal que
los conjuntos E, son disjuntos dos a dos y ademas |Q| < | E|.

La condicion sparse estaba implicita en la literatura, posiblemente desde la in-
troduccion de la descomposicion de Calderon-Zygmund [19], y ha sido empleada en
multitud the ocasiones dentro del contexto del analisis armonico. Sin embargo, en los
ultimos afios, el grado de comprension de como explotar la condicién sparse ha permi-
tido obtener resultados sumamente interesantes dentro de la teoria y en particular en
el ambito de las desigualdades cuantitativas con pesos. Un ejemplo claro de esto es la
simplificacion del teorema A, que esencialmente fue la motivacion para el desarrollo
de dicha “tecnologia”.

El teorema A,, que fue establecido por T. Hytonen en [73], afirma que la dependen-
cia de la constante A, de la constante de acotacién para todo operador de Calderdon-
Zygmund es lineal, es decir, si T' es un operador de Calderén-Zygmund entonces

||Tf”L2(w) < Cn,T,z[w]AZHf”m(w)- 3)

Anteriormente al resultado de T. Hytonen, D. Cruz-Uribe, C. Pérez y J. M. Martell [38]]
establecieron la estimacion anterior para una clase de operadores con mas regularidad
que los operadores de Calderén-Zygmund. La técnica empleada se basaba en reducir
el problema a un operador diddico adecuado, el operador sparse. Dada una familia
sparse S definimos al operador A4 como

Asf@ =Y ﬁ /Q f o)

Qes

Demostrar la estimacion en (3) para este operador resulta sencillo, de manera que
una posible forma de simplificar, o al menos dar una prueba alternativa del resultado
de T. Hytonen es intentar reducir el problema general a estos operadores. Este fue
el camino que emprendié A. K. Lerner [96] que obtuvo una estimacién en norma,
suficiente para establecer (3). No mucho mas tarde, y de manera independiente, A. K.
Lerner y F. Nazarov [101] y J.M. Conde-Alonso y G. Rey [33] establecieron que dicha
dominacion es de hecho puntual, es decir, dado un operador de Calderén-Zygmund 7',



RESUMEN X1

para cada f “suficientemente buena”, podemos encontrar 3" operadores sparse tales
que

y
TGl < er Y As1f1(0)

J=1

A partir de estos primeros resultados de dominacioén puntual ha tenido lugar un
rapido desarrollo de la llamada teoria de dominacion sparse, con la contribuciéon de
un gran numero de autores. De hecho, la dominacion sparse, sera un ingrediente fun-
damental en el desarrollo de la presente disertacion. Para cada uno de los operadores
mencionados al comienzo de este resumen recordaremos los resultados de dominacion
sparse presentes en la literatura y presentaremos también nuestros resultados en dicha
direccion.

Como veremos a lo largo de esta memoria los resultados de dominacién sparse
permiten obtener diversas estimaciones con pesos. Entre ellas, obtenemos desigual-
dades de tipo fuerte y débil (p, p), estimaciones de tipo Coifman-Fefferman, de tipo
Fefferman-Stein, que junto con la desigualdad de Holder inversa sharp nos permite
obtener estimaciones A, — A, cuantitativas, estimaciones de tipo Bloom, es decir, esti-
maciones con dos pesos para conmutadores con simbolo en una clase BMO adaptada
a dichos pesos y también estimaciones en el extremo, en algunos casos obteniendo de-
sigualdades con dos pesos con un operador maximal de tipo Orlicz en el lado derecho
de la desigualdad o directamente trabajando con pesos A,. También como aplicacion
de los resultados de dominacion sparse, presentamos un capitulo en el cual revisamos
las estimaciones locales exponenciales profusamente estudiadas en [122]].

Los contenidos que hemos resumido en los parrafos anteriores se organizan como
sigue.

El propésito del Capitulo [1| es el de introducir, a modo de recordatorio y al ob-
jeto de fijar notacion, espacios de funciones basicos, como los espacios de Lebesgue,
que seran el ambiente natural para los resultados de esta tesis. También recordare-
mos la definicioén y algunas propiedades fundamentales del espacio de funciones de
oscilacion media acotada (BMO) asi como las estructuras diadicas que seran funda-
mentales en la muchos de nuestros resultados. Cerraremos dicho capitulo con un lema
que permite, entre otras aplicaciones, redemostrar el teorema de John-Nirenberg.

El Capitulo [2[1o dedicaremos a presentar los operadores que tendran un rol pro-
tagonico a lo largo de la disertacion. Entre ellos cabe citar al operador maximal de
Hardy-Littlewood y ciertas generalizaciones del mismo, a los operadores de Calderon-
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Zygmund, a los operadores A-Hormander, que resultan ser un “eslabén intermedio”
en el sentido de la regularidad del nticleo entre los operadores satisfaciendo la condi-
cion de Hérmander y los operadores de Calderén-Zygmund, las integrales singulares
rough, los conmutadores y algunas extensiones vectoriales. Trataremos de contex-
tualizar dando algunas pinceladas a nivel histérico la presentacion de dichos oper-
adores. Asimismo, también nos detendremos en la prueba de algunos resultados que
seran necesarios en el resto de la disertacion.

El Capitulo [3| esta estructurado en dos secciones. La primera de dichas secciones
la dedicaremos a presentar a los pesos A . Se hara un compendio de las propiedades
fundamentales de las que gozan los pesos en dicha clase. También presentaremos a
la clase A, que resulta ser la union de las clases A, y que esta caracterizada por la
siguiente cantidad finitud de la siguiente cantidad

1
N ra) /QM(“”‘Q)

tal como se establecié en [153] [59, [77]. Recordaremos la sharp reverse Holder in-

equality [77] (que podria traducirse como desigualdad de Holder inversa precisa), que
afirma que existe una constante dimensional ¢, tal que para todo peso w € A, si
l<r<l+—

Cn ono

entonces

<L/w’>;s2L/w.
10l Jo 1Ol Jo

Cerraremos la seccion proporcionando algunas consecuencias de dicha desigualdad
de Holder inversa que seran de gran utilidad en el desarrollo del resto de la tesis. La
segunda seccion la dedicaremos a un somero repaso histoérico de las desigualdades con
pesos A, poniendo el foco especialmente en los operadores de Calderon-Zygmund y
los conmutadores, desde lo que podriamos denominar como “era cualitatitva” cuando
se obtenian estimaciones con pesos sin darle mayor importancia a la dependencia a la
“era cuantitativa” en la cual podria decirse que nos encontramos inmersos y en la que
uno de los propodsitos fundamentales es el determinar la dependencia cuantitativa de
la constante de acotacion del operador de la constante Ap, es decir, de [w] 4,

El Capitulo|4/se centra en presentar los resultados de dominacién sparse sobre los
cuales construiremos gran parte del resto de resultados de la tesis. Probablemente la
contribucion mas importante es la dominacién puntual para el conmutador estable-
cida en un trabajo conjunto con A. K. Lerner y S. Ombrosi [106]]. Algunas otras con-
tribuciones que también se presentan en esta tesis en cuanto a dominacién sparse se



RESUMEN  Xxliii

encuentran en [21], donde se recogen extensiones vectoriales de dicho resultado y de
la correspondiente dominacion sparse para el operador maximal de Hardy-Littlewood
y para operadores de Calderéon-Zygmund, y en [81]] donde se pueden encontrar resul-
tados de dominacion sparse para operadores A-Hormander. En el caso de los resulta-
dos de dominacion sparse para el conmutador, los resultados en los trabajos citados
han sido extendidos en la presente memoria para incluir el caso de los conmutadores
multisimbolo.

La primera parte del Capitulo [5|estara dedicada a presentar estimaciones cuanti-
tativas de tipo fuerte y de tipo débil (p, p) para los operadores que introdujimos en
el Capitulo |2| Algunos resultados resenables en esta direccién son los relativos a las
extensiones vectoriales, que completan y mejoran resultados cuantitativos ya cono-
cidos, la estimacion para los operadores rough, que es la mejor disponible hasta la
fecha, y las estimaciones relativas a los operadores A-Hoérmander, para los cuales no
se habia obtenido ninguna estimacién cuantitativa hasta la fecha. En la segunda sec-
cién se abordan las desigualdades de tipo Bloom para conmutadores. Veremos que el
hecho de que b esté en un espacio BMO “modificado” es condicién necesaria y sufi-
ciente para que se verifique una desigualdad con dos pesos A, para integrales singu-
lares. Terminaremos el capitulo presentando algunas desigualdades de tipo Coifman-
Fefferman, es decir desigualdades del tipo

”Gf”Lp(w) < Cw”Mf”Lp(w) O<p<o

donde M es un operador maximal adecuado y w € A_. Veremos que es posible
obtener versiones cuantitativas en el caso 1 < p < 0. En el caso de los operadores
de tipo A-Hormander también presentamos un resultado negativo en términos del
tamafio del operador maximal en el lado derecho de la estimacion necesario para
equilibrar la desigualdad. Nuestros resultados de este capitulo estan esencialmente
contenidos en [[106} 105} 111} [81]].

En el Capitulo [6] obtenemos desigualdades de tipo Fefferman-Stein, es decir, de-
sigualdades con dos pesos de la siguiente forma

NG SNl Loy < cc}\?w”f”Lp(Mw)

donde M es cierto operador maximal. De dichas desigualdades derivaremos las corre-
spondientes estimaciones de tipo A; — A_,. Terminamos la seccién presentando esti-
maciones de tipo A,l/ P(AZPY/Y — A_ que mejoran las estimaciones A, conocidas para
operadores de Calderén-Zygmund, integrales singulares rough con Q € L®(S" 1)y
sus conmutdores con simbolo en BMO asi como de algunas extensiones vectoriales.
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Buena parte de los resultados presentados en este capitulo aparecen en [129,111]140]]
mejorando resultados obtenidos previamente en [[131]].

El Capitulo [7| se centra en establecer desigualdades con pesos en el extremo para
los operadores presentados en el Capitulo 2| El tipo de desigualdades que tendremos
en consideracion sera el siguiente.

/ wSCchw/A<m>u (4)
(G f1>1) ’ !

Si asumimos que w € A, estaremos interesados en el caso u = w. En caso contrario,
los casos en los que estaremos interesados seran aquellos en los que v = M w donde
M seraun operador maximal adecuado. La estrategia, siempre que sea posible, sera la
de obtener una desigualdad con dos pesos y deducir de la misma el caso con un peso
en A,. Probablemente los resultados mas resefiables de la seccion son el resultado
para el operador rough [111] para el cual (4) se verifica con A(¥) = t, v = w €
Ay, = [wl, [wl, logle + [w], ), siendo la mejor estimacion conocida, y los
resultados obtenidos en [106] para commutadores, con v = M 1, 1 (og log 1)1+ W> Cp o =
é y A(#) = tlog(e + 1), y como consecuencia en el casou = w € A, conc,, =
[w] A, [w] A log(e + [w] Am) ya que mejoran las mejores estimaciones conocidas. Los
resultados de este capitulo provienen esencialmente de [[129,106) [81]].

En el Capitulo (8| revisitamos las estimaciones de decaimiento exponencial local.
Dicho tipo de estimaciones fueron introducidas en [87] y estudiadas en profundidad
en [122] y tienen el siguiente aspecto. Si G es un operador lineal o sublineal y O es
un cubo de R" y supp f C O entonces

{x € Q : [Gf ()| >1Msf(X)}] < cexp(=@s1)|0|

donde @, es una funcién creciente y M un operador maximal. En este capitulo
daremos demostraciones nuevas de muchos de los resultados contenidos en [122] y
aportaremos algunos resultados nuevos como las estimaciones para extensiones vec-
toriales de conmutadores y nuevas estimaciones para operadores A-Hormander y sus
conmutadores. También demostraremos que el decaimiento subexponencial estable-
cido en [[122] para el conmutador es sharp. Los resultados de esta seccion provienen
de [130, 21} [81].

Terminaremos esta tesis con el Capitulo[9] en el cual presentaremos algunas pre-
guntas abiertas que surgen de manera natural a partir de los resultados presentados
a lo largo de la memoria.
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1 Preliminaries and basic notation

The purpose of this chapter is to present the notions on which the rest of the disser-
tation will rely on.

The two first sections review Lebesgue spaces and bounded mean oscillation func-
tions. Those contents will be essentially based in classical references in the field and
especially among them [62]], [50] and [[63] [64]].

We will also present some dyadic structures that will be the cornerstone for the
sparse domination results that will be studied throughout the rest of the dissertation.
The contents in that section will be borrowed essentially from [101]].

1.1 Lebesgue spaces

| Definition 1.1. Let (X, M, ) be a measure space and f a measurable function. Let
1 < p < o0. We define

1

1 W px s i= ( / |f|Pdu)"
X

”f”Lw(X,,,) 1= ess sup,ey [ f(X)]

and in the case p =

In both cases if the measure and/or the space are clear from the context we shall
drop them in our notation and just write L?. We observe that the applications we have
just defined satisfy the following properties:

« lafllp, = lalllfll
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< Nf+glle <Al + gl

But there are functions f not identically zero such that || ||, = 0. It readily follows
from the definition of || - ||,, that if || f||,, = O, then f = 0 p-a.e. so considering the
quotient set with the equivalence relation R that identifies functions that differ only
in a zero measure set we have that || - ||, is a norm over that quotient space. Taking
this remark into account we give the following definition.

| Definition 1.2. Let (X, M, u) be a measure space. Let 1 < p < co. We define the
space LP(X, u)
L"(X,pn) = {f u — measurable : || fl|,, < oo} /R

where fRg ifand only if f = g u-a.e.

In this case we shall also drop X and/or u from the notation whenever they are
clear from the context and write simply L?. We also will not take care about classes
and will just write f € L7, since the relation considered R allows us to think in a.e
identities.

| Definition 1.3. Given 1 < p < co we define the conjugated exponent p' as

1 1
-+ —, = 1
p b

In the case p = 1, abusing of notation we define p' = co.

Now we gather some basic properties of L? spaces.

« L7 spaces equipped with their corresponding norms, namely || - || ;, are Banach
spaces.
« Holder inequality: If 1 < p < oo then

/ reldu < 1 Lo lgll o
X

« Norm by duality: If 1 < p < oo then, given f € L?(u) we have that

/fgdﬂ‘
X

We end up this section recalling Minkowski’s integral inequality. This inequality
will have an important role in the proofs of some estimates for commutators.

”f”Lp(”) = sup
llgll

r? (=1
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Lemma1.1. Let (X, u)and (Y, v)be two o-finite measure spaces and let 1 < p < 0.
Then for every non-negative measurable function F defined on (X, y) X (Y,v) we
have that

N :
</ (/ F(x,y)dﬂ(X)> dV(y)> S/ </ F(x,y)”d\/(y)> d u(x).
Y X X Y

1.2 Bounded mean oscillation functions

Bounded mean oscillation functions arise in a natural way in a number of situations
of Harmonic analysis. For instance, they appear in the so called 7'(1) theorem that
provides a sufficient condition for singular integrals to be bounded on L2, or related
to the behavior of singular integrals in the endpoint, since that class of operators does
not map L* to L* but L* to BMO. One of our main concerns in this dissertation are
commutators and, as we shall see, the interplay between them and BMO is something
almost inextricable.

We say that a locally integrable function b is of bounded mean oscillation, namely
that b € BMO if

16l = sup—/ 1b(x) = by dx < oo
o 0

where the supremum is taken over all the cubes of R" with sides parallel to the axis
and b, = L [, b
lo| /@

It is straightforward from the definition of BMO that L* C BMO. Actually that
inclusion is strict, since there exists functions such as log | x| that belong to BMO \ L*.
| - llgmo fails to be a norm since for every constant function b = c, ||b|lgpo = O.
Nevertheless, identifying functions that differ just in a constant, we have that || - ||gy0
turns out to be a norm over the quotient space, and equipped with that norm BMO
is a Banach space. Some of the preceding facts and the following property of BMO,
that will be vital for our purposes in this dissertation and which we end this section
with, are due F. John and L. Nirenberg [84].

| Theorem 1.1. Let b € BMO and a cube Q. Then we have that
A
|{x €0t Ibtw) = bl > 4}| < elole ™Mo 4> 0.

Conversely, if b is a function satisfying the preceding property then b € BMO.
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1.3 Dyadic structures

In this section we present some results and definitions related to certain dyadic struc-
tures that will be fundamental during this dissertation since they are the cornerstone
of the notion of sparse operators that we will present in Chapter |4 The definitions
and results we present here are essentially borrowed from [101]]. We remit the reader
there to a very thorough and self-contained treatment of the matter.

1.3.1 Dyadic lattices and adjacent dyadic systems

We call D(Q) the dyadic grid obtained repeatedly subdividing O and its descendents
in 2" cubes.

| Definition 1.4. A dyadic lattice D in R" is a family of cubes that satisfies the fol-
lowing properties

1. If O € D then each descendant of Q is in D as well.

2. For every 2 cubes Q,, Q, we can find a common ancestor, that is, a cube Q € D
such that Q,, 0, € D(Q).

3. For every compact set K there exists a cube Q € D such that K C Q.

A way to build such a structure is to consider a sequence of cubes {Q; } expanding
each time from a different vertex (see Fig. [1.1). That choice of cubes gives that R" =
U,;Q; and it’s easy to check that

D= J{oe D))
J

is a dyadic lattice.

Given a dyadic lattice D and any cube Q, in some situations it would be desirable
to have a cube P € D such that O C P and |P| ~ |Q|. By the definition of dyadic
lattice it is clear that we can find a cube P such that Q C P. The problem is that such
a cube could be arbitrarily larger than P. Now we observe that we can find Q' € D
such that the center of O, ¢, € Q' and % < I(Q') < I(Q). We observe that also
O C 30 (see Figure[1.2). We may consider then the family

F={30: 0 €D)
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Figure 1.1: Sequence of cubes in R?

naively expecting that it is a dyadic lattice. Cubes in that family may overlap in very
fancy ways so in general this could not be the case. Nevertheless the situation is not
as bad as we may think. 7 is not a dyadic lattice but the union of 3" dyadic lattices as
the following lemma states.

Lemma 1.2 (3" Dyadic lattices trick). Given a dyadic lattice D there exist 3" dyadic
lattices D; such that

3"
30 : 0eDy =D,
j=1
and for every cube Q € D we can find a cube R, in each D; such that O C R, and
3lg =g,
1.3.2 Sparse and Carleson Families

We start presenting the definition of sparse family (see Figure[1.3).
| Definition 1.5. S C D is a n-sparse family with n € (0, 1) if for each Q € S we
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Figure 1.2: 3"-Dyadic Lattices Trick

can find a measurable subset E, C Q such that
nlol < |EQ|

and all the E, are pairwise disjoint.

This explicit definition of sparse family is quite recent. Nevertheless, the concept
of sparse family was somehow implicit in the literature since the 50s. We may set the
first appearance of that idea in the seminal paper of A. P. Calder6én and A. Zygmund
[19]. In that work they introduced a decomposition, nowadays named after them, that
has become the key to the study of a number operators in harmonic analysis using
real variable techniques. The precise statement is the following.

| Theorem 1.2 (Calderén-Zygmund decomposition). Let f € Llloc(Rn) such that
Iél /Q f = 0as|Q| — oo and A > 0. There exists a family of cubes {Qj} such that

i< L/ £ ()ldx < 2"4

10,1 Jo,
Furthermore, there exist functions g and b on R" such that f = g + b satisfying the
following properties.

L llgll < 1 f 1l and gl o < 27A.
2. b= Zj b;, where each b; is supported in a dyadic cube Q; and the cubes Q; are
pairwise disjoint.
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3. /Q.bj(x)dx=0
4. |1b;ll 0 < 271210
5 210, < 511w

As we can see Calderon-Zygmund decomposition essentially consists in breaking
a function f in a “good part” g, which is bounded, and in a “bad part” b, which is built
upon “atoms” supported in disjoint cubes that have mean zero.

We observe that the collection of cubes {Qj?} obtained taking A = a* where a >
2"+ for every k € Z in Lemma satisfies that for

EQ;‘ = Qf \ U Q;'m
j

the sets EQk are pairwise disjoint and satisfy that —|Qk| |EQk| Hence {Qk} is a
sparse famlly This fact was exploited for the first tlme in [18]] ‘and it is also used,
for instance, in the proof of the Reverse Holder inequality that appears in [62]. Ap-
parently, this fact was explicitly exploited for the first time in [125]]. For a detailed
historical background about dyadic grids and the sparse condition we encourage the
reader to consult [35].

Let us focus now on Carleson families.

| Definition 1.6. A family S C D is called A-Carleson, A > 1, if for every cube
0€9,
Y [P <AlOl.

PEeS,PCQ

It is not hard to see that every n-sparse family is (1/#7)-Carleson. The converse
statement is more involved and is established in [101, Lemma 6.3], where it is shown
that every A-Carleson family is (1/A)-sparse. Also, [101, Lemma 6.6] says that if S
is A-Carleson and m € N such that m > 2, then S can be written as a union of
m families S, each of which is (1 + %)—Carleson. Relying on the above mentioned
relation between sparse and Carleson families, the latter fact may be stated as follows.

Lemma 1.3. If S C D is n-sparse and m > 2, then there exist m
families Sj C D such that S = u;":ls -

m
/o] Sparse

To end this section we present a method to produce sparse families from existing
ones adding families of cubes. Given a family of cubes S contained in a dyadic lattice
D, we can associate to each cube Q € S a family 7(Q) C D(Q) such that O €
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Figure 1.3: Example of a %—sparse family

F(Q). In some situations it is useful to construct a new family that combines the
families 7(Q) and S and remains a sparse family. One way to build such a family is
the following.

For each F(Q) let ;(Q) be the family that consists of all cubes P € F(Q) that are
not contained in any cube R € S with R C Q. We define the augmented family S as
s=JFo.

Qes
We observe that by construction, that the augmented family S contains the original

family S. Furthermore, if S and each 7 (Q) are sparse families, then the augmented
family S is also a sparse family. We state this fact more clearly in the following lemma.

Lemma1l.4. IfS C 9D isan n,-sparse family then the augmented family S built upon
n-sparse families 7(Q),Q0 € S, is an %-Sparse family.
0

The idea of augmentation and the preceding lemma were introduced in [101]. A
combination of that result and the idea of estimating by oscillations over a sparse
family (see [60,74,95]) was exploited in [106]] to provide a result that connects sparse
families and, essentially, BMO functions. Let us denote by Q(b; Q) the standard mean
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oscillation,

Q(b;Q)=ﬁ/|b—bQ|dx.
o

Lemma 1.5. Let D be a dyadic lattice and let S C D be a y-sparse family. Assume
that b € L, . Then there exists a 54, -sparse family S C @ such that S C S and for

every cube Q € S',
|b(x) = bol <22 )\ Q(b; R) yx(x) (1.1)
RES,RCO

fora.e. x € Q.

The proof of this lemma,

Proof. Fix a cube Q € 9. Let us show that there exists a (possibly empty) family of
pairwise disjoint cubes { P;} € D(Q) such that Zj |P;| < %|Q| and for a.e. x € Q,

|b(x) = bo| < 2"2Q(b;0) + Y [b(x) = by |1, (1.2)
J

Consider the set
E={xe0: Mib-by)x)>2"Qb0)},

where

Mgf(x) sup /If(y)l Y.

repio) | Pl
It is not hard to check that |E| < WlQl' If E = @, then holds trivially with
the empty family { P;}. Suppose that E # ). The Calderén-Zygmund decomposition

applied to the function y, on Q at height 4 = 2}% produces pairwise disjoint cubes
P; € D(Q) such that

—IPI<IPNEl <31

and |E \ U, P;| = 0. It follows that 3’ | P;| < §|Q| and P, N E° # 0.

Therefore,

|bp = byl < /lb boldx < 2"2Q(b; Q) (1.3)

1P

and for a.e. x € O,
16(x) = bgl xo\,p, < 2"2QB: Q).
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From this,

IA

b)) = bolig < 1bGX) = bolagy,r )+ Y, by = bolxs
J

+ D 1b(x) = bplp

J

2"2Q(b; Q) + Y, |b(x) = by L 1p»
J

IA

which proves (1.2).

We now observe that iij C R, where R € D(Q), then RN E° # @, and hence P,
in (1.3) can be replaced by R, namely, we have

|bg — le < 2n+29(b§ 0).

Therefore, if U ij C U, R;, where R; € D(Q), and the cubes { R,} are pairwise disjoint,
then exactly as above,

|b(x) — bl < 2"2Q(b; Q) + ) [b(x) — by | g, (1.4)

Iterating , we obtain that there exists a %-sparse family F(Q) C D(Q) such
that for a.e. x € Q,

|b(x) = bolig <22 ). Q(b; P)yp.
PeF(Q)

We now augment S by families F(Q), Q € S. Denote the resulting family by S.
By Lemma S is —L—-sparse.
2(1+y)

Let us show that holds. Take an arbitrary cube Q € S. Let { P} be the cubes
appearing in (1.2). Denote by M(Q) a family of the maximal pairwise disjoint cubes
from S which are strictly contained in Q. Then, by the augmentation process, U; P; C

Upesmo) P- Therefore, by ,

|b(x) = bolrg 2"2Q: Q)+ Y [b(x) = byl xp(x). (1.5)
PeM(Q)

Iterating this estimate completes the proof. Indeed, split SQ) = {P e S:PC 0}
into the layers S(Q) = Upe oMy where M, = O, M, = M(Q) and M, is the union
of the maximal elements of M, _,. Iterating k times, we obtain

|b(x) = boliag <2 Y% Qb Pxp+ Y, 16(x) = bplyp(x).  (16)

PeS(Q) PeM,
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4
2(14y)

Now we observe that since S is -sparse,

k

1 1 2(1+vy)
LIPS 2 D IPIS g X Pl p1el

PeM,; i=0 PeM,; PeS(Q)

Therefore, letting k — oo in (1.6), we obtain (1.1).

11






2 | Main operators

The purpose of this chapter is to present the operators that will play a basic role
throughout the rest of the dissertation. All of them are linear or sublinear operators
so let us recall the definition of linear and subilinear operator.

| Definition 2.1. Let X and Y be [K-vector spaces. Let x,y € X and every a, f € K.
An operator T : X — Y is linear if

T(ax + py) = aT(x) + fT(y)

and sublinear if
[T (ax + By)| < |aT'(x)| + [T ()] .

Now we are going to establish what we mean by boundedness of an operator.

| Definition 2.2. Let (X, u) and (Y, v) be measure spaces. A linear (sublinear) opera-
tor T is bounded from LP(X, u) to LY(Y,v) if for every f € L?(X, u)

”Tf”Lq(Y,v) < c”f”LP(X,y)

where ¢ > 0 is a constant independent of f. We will call || T 1»x - racy ) the smallest
constant such that the preceding estimate holds. We observe that

17l T f 1 pogy )
Lr(X. )= Li(Y,u) = sup @ @—.
! Y a0 1 s

In the case that the measure spaces are the same and p = q we may write just ||T'|| 1,

to denote || T || Lo(x yy— Lo(x o)

In case an operator does not satisfy a strong type estimate there is still the chance
that it satisfies a suitable weaker condition.
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| Definition 2.3. Let (X, u) and (Y, v) be measure spaces. A linear or a sublinear
operatorT is bounded from LP(X, u) to LY*(Y, V), or that it satisfies a weak-type (p, q)
estimate if for every f € LP(X, u)

WT [l possy .y = iug WHyeY [ Tf()|> A} < cllf N o
>

wherec > 0 is a constant independent of f . Anagolously we will denote ||T || 1 x i)— Loy )
the smallest constant such that the preceding estimate holds. We observe that

1T f Loy,
”T”LP(X’M)_)Lq,OO(Y’”) = sup _
AN £pex 470 ”f”Lp(X,,,)

It is not hard to check that from Chebyshev’s inequality it follows that

1 W ey < 1A N

Hence the condition we have just defined is weaker than the former.

The power of these weak-type estimates stems from the fact that they allow to
recover strong-type estimates via interpolation. We present as a sample the following
result due to Marcinkiewicz.

| Theorem 2.1. Let (X, u) and (Y, v) o-finite measure spaces and 0 < Do < p; £ 0.
Let T be a sublinear operator defined on L + L”' and taking values in the space of
measurable functions on Y. Assume that there exist A,, A, < oo such that

||Tf||Lﬂ0-°°(Y,v) < A()”f”L”O(X,M)

IT f Nl ooy iy < Aol S M Lo x 0y
Then, for all p, < p < p, and for all f € LP(X, u) we have the estimate

||Tf||LP(Y,v) < A”f”LP(X,ﬂ)

where
1 1 1 1

PP Po P

1
A=2< L, 2 )pA"B“’IIA%“’Il.
p—py p-p) ° !

We will also need a quantitative version of the so called Kolmogorov’s Lemma so
we present it here.

Lemma?2.1. Let S bealinear operator such that S : L'(y) - L"*(u)andv € (0, 1).
Then if E is a measurable set such that 0 < u(E) < oo

12 V \% bl % 12
/ 1SN dn < 2SI, iYL,
E

-V

Proof. It suffices to track constants in [50, Lemma 5.6] choosing C = ||.S||,1_ /1. |
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2.1 Maximal operators

Let f € L} (R"). We define the Hardy-Littlewood maximal operator as

M f(x) = sup — / 1f)ldy
x€Q |Q| (0]

where each Q = [a,, a; +1,]X--X[a,,a,+[,] with |, > Ois a cube with sides parallel
to the axis containing x. We point out that we could have defined this operator with
averages over balls instead of cubes or with open cubes. All those definitions are

pointwise comparable with constants depending on n.

Hardy-Littlewood maximal function is a fundamental operator in harmonic anal-
ysis. One remarkable fact is that it is possible to control singular operators in norm
using this operator, as we will see later. One of its basic properties is the following
result that was provided by G. H. Hardy and J. E. Littlewood in [66] in dimension 1
and by N. Wiener in higher dimensions [152]].

| Theorem 2.2. Let1l < p < 0. Then IMI| gy < c,p

In the case p = 1 he have that || M| ;1 = co. This fact follows from quite simple
examples. Indeed, it suffices to consider the case n = 1 and to take f(x) = yo (%) to
see that [ M f|| ;1) = co. Nevertheless Hardy-Littlewood maximal function satisfies
a weak-type (1, 1) inequality as was also proved in [66]].

| Theorem 2.3. M is of weak-type (1, 1).

2.1.1  Orlicz Maximal operators

It is possible to define “variations” of the Hardy-Littlewood maximal operator, such
as composing it with itself or for example taking L" averages, namely given r > 0 we
denote by M, the operator defined as M, f(x) = M(|f |’)(x)%. All those variations of
the Hardy-Littlewood maximal operator are quite useful in harmonic analysis but for
some applications we need maximal operators defined in “more precise” scales. To be
able to produce that kind of operators we will rely upon a definition of average over
a cube that generalizes the standard L? local norms.

Given a cube Q and a non negative function A with A(0) = 0 we define the
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localized Luxembourg norm of a function f with respect to a function A as follows

”f”AQ_”f”A(L)(y)Q_lnf{/1>0 ,u(Q)/ <|f(x>|>d/4$1}.

Among the functions A considered to take that kind of local averages, it is usually

desirable to restrict ourselves to a class of functions that satisfy certain properties.
The class of functions that we will be dealing with most of the time is the following.
We say that A is a Young function if it is a continuous, nonnegative, strictly increasing
and convex function defined on [0, c0) such that A(0) =0 and lim,_,_. A(¥) = c0.If A
is a Young function || f|| 4 , is comparable to

’ ’ A | f(x)]
Wy = 1 Vo = LE{“M 5 / A( : )dﬂ}.

This result is due to Krasnosel’skii, M. A. and Rutickii, Ja. B. [89, p. 92] (see also [137,
p. 69]). In fact,

=00

||f||A(;4),Q ”f”A(y)Q 2||f||A(;4)Q

In both definitions we shall drop u from the notation when y is the Lebesgue measure
and write w instead of y when we deal with a measure 4 = wdx absolutely continu-
ous with respect to the Lebesgue measure. We would like to point out that if we take
A(t) = t" for some 0 < r < oo then

||f||A,Q=< (Q)/Ifl’ )

In the sequel we denote || f|l 5o = (/)40 = (f).o in the case of Lebesgue measure,
(f)i’Q if the average is taken with respect to a measure y or (f)} , if u = odx.

Another interesting property of this kind of averages is that

1 lago <1 @ A(lf)Ddu < 1. (2.1)

This fact will be quite useful in the sequel. Also, it is not difficult to prove that if A, B
are Young functions such that A(t) < k B(¢) for all f > ¢, then

N/ [ a0 < (ACe) + O f 1 .0

for every cube Q.
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Given a non negative function A with A(0) = 0 we can define the maximal func-
tion associated to A as

M, f(x)=M,, f(x)= Sug 1S Auy.0-

Maximal operators built in this way where thoroughly studied in [125]. There it was
established that if A is a doubling Young function such that A € B, namely if

A
/ (t)ﬂ<oo,
1 Pt

then ||M,||,, < oo. Later on T. Luque and L. Liu [112], showed that the doubling
condition on A is superfluous. Actually it is possible to provide a quite precise bound

of || M ||, We are going that in the following lemma that we borrow from [[78, Lem-
mas 2.1 and 2.2]. Before that, we recall that associated to each Young function A there
exists a complementary function A defined as follows

A(t) = sup{st — A(s)}

s>0

This complementary function is also a Young function and it satisfies the following
pointwise estimate

t < AT HATI(@) < 21 (2.2)
Now we are in the position to introduce the promised lemma.

Lemma 2.2. Let A a Young function. Then

M 4ll e < c,a,(A)

where 1
a,(A) = (/ﬁ%%)p <
and also
M4l < c,a5(A)
where

- » ;
B,(A) = < / (_—’ ) dZ(t)) < .
A \ A®)
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By using Lemma it was established in [78] that, for A(¢) = t?(1 + log™ ¢)P~1*9
withl < p<ooand0<6 <1,

1
1\7
IMally < (5)" (23
In the case A(t) = " (1 < p,r < ), by standard computations we have that
1
— , =1 ’
At) = 1P <i> ' <1 — l) <t (2.4)
rp rp

Therefore M; < M|, . Again standard computations show that

rp
1
Myl < c,p(F)7 . (2.5)

Now we gather some examples of maximal operators related to certain Young func-
tions that will appear along this dissertation.

« A(t) = " with | < r < 0. In that case A(f) ~ " with % + % = 1 and then
M,=M,

« A(t) = tlog(e + 1)* with @ > 0. In this case A(?) ~ et — .M, = Mo Lo
We observe that for everya > 0, M < M, < M, for every 1 < r < oo, and if
a = k € N it can be proved that M, ¥ M**!, where M**! = Mo D oM.

« If we consider A(f) = tlog(e + )" log(e + log(e + 1))* with [ > 0, a > 0, we shall
denote M, = M 10 1)/(loglog 1=~ We note that

M L(log L) (log log L)1+ W < C¢ M L(log Ly+e W e>0.

Another useful property that makes interesting those “non-standard averages” is
the fact that under suitable conditions, generalized Holder inequalities hold for them.

Lemma 2.3. Let Ay, Ay, A,, ..., A, be continuous, nonnegative, strictly increasing
functions on [0, co) with A(0) = 0 and lim,_,__ A(f) = oo such that

ATI AT .. AN < kA (2.6)

then
AO (XIXZK-‘.-xk> < Al(xl) +A2(X2) + -+ Ak(xk)' (2.7)

If additionally A, is a Young function, then for all functions f|, ..., f,, and all cubes
O we have that

Wf1 Sz Fillaguo S kel fillag.oll f2ll a0 - 1kl 4,000
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Proof.  Fix (x,,...,x;) and consider t, = A,(x,) + A,(x,) + -+ + A, (x,). Combining
and the fact that each A, is increasing it readily follows that

-1 -1 -1
A (Al (ty)A; (:))...Ak (z0)> <

Al-_l(to) > Al_l(Al(x,)) = X;
and A, is strictly increasing, holds.

and since

Let us consider now #; > || f;|lg - Since A is convex A, (i) < %Ao(t) and then
we have that using

/ <|f1 |>dﬂ§lL/Ao<|fl.“fkl>d

,u(Q) kxt, .. ku(Q) Jo Kty ...t
|f1> L/A <ﬂ>d>

_k<M(Q)/ ( W S\ )

Consequently
Ufy o filly o < Kty e

and it is enough to take the infimum on each ¢, to finish the proof of the Lemma. |

Using generalized spaces we can define subspaces of BMO as follows. We define

||f||Osc

expL®

=sup|[f — fQ”‘PS,Q
o
where
Y(@t)=e —1 t>0,

with s > 0, is a Young function. Then the space Osc is defined as

exp LS

Ocopre = { £ € LLR) : Ifllose,,,, <.

We observe that John-Nirenberg’s theorem yields BMO = Osc,
for every s > 1

exp - 1t s also clear that

Osc ¢ BMO.

exp LS

The following result is an almost straightforward consequence of Lemma|2.3|that
will be useful for our purposes.
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Corollary 2.1. Lets,,...,s, > 1 and denote Z:;] Sl Then

1
@/ |f1 fkgl < cs”fl”expLSl,Q ”fk”expL"k,Q”g”
o)

L(log L)% 0

Proof.  We denote @, (1) = e" — 1. Then (p?(t) = log(x + 1)% and we have that

_ _ _ _ _ X
P (0. o] (OO = 9 [ () ... ¢ () ——— < x
s log (x + 1)+
and Lemma [2.3|gives the desired result. |

We observe that from (2.2) and Lemma [2.3|it follows that

1

u(Q) /Q [/gldp < 411/ Nag ollgllign.o (2.8)

Another direct consequence of Lemma [2.3] of interest for us is the following. If B is a
Young function and A(?) is a strictly increasing continuous and non-negative function
on [0, o0) with A(0) = 0 such that lim_,__ A(f) = o0 and also A~'(1) B! (1)C~'(¢) < «t
with C~1(t) = ¢"" for t > 1, then,

t—00

”fg”B(”),Q < C”f”exle/m(”),Q”g”A(M),Q < CK”f”exle/h(,,),Q”g”A(M),Q (2.9)
foralll <h <m.

For all the maximal operators that we have presented in this section we can define
dyadic counterparts just restricting the corresponding supremums to consider only
cubes in some dyadic lattice D. We will denote that kind of maximal operator adding
a superscript D, that is, given a maximal operator M, its dyadic counterpart with
respect to the dyadic lattice D is Mf. It is clear that if M, is any of the maximal
operators defined in this section then M/? f(x) £ M, f(x). The converse is not true
in general but we still can obtain the following result as a direct consequence of the
discussion in Subsection [L.3.1]

Lemma 2.4. Let A be a Young function and y a doubling measure. Then there exist
3" dyadic lattices D; such that

3"
D,
My f() S e, DM F(x)
j=1
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2.1.2  Operators based on oscillations and the Lerner-Nazarov formula

Now we are going to present another operator that plays an important role in this
dissertation. Given f € Llloc([R") we define

MPf(x) = sup —— / () = foldx
x€Q |Q| (0]

where f, = IEII/Q f.

This operator was introduced by C. Fefferman and E. M. Stein in [58]. Its impor-
tance stems from the fact that it is closely related to BMO since b € BMO if and only
if M*b € L™ and also from its relation with singular operators and commutators as
we will see quite soon. Given s > 0. We define

M = L/ - s>;.
O] §ES<IQI Qlf fol

Now we present the definition of local oscillation [95] which is given in terms of
decreasing rearrangements.

| Definition 2.4. Let A € (0, 1), a measurable function f and a cube Q. We define
,(f:Q) :=inf ((f = )xp) (410D
Let x € Q, we define
m; o, f(x)= sup w,(f;0)
XEQCQO
For any function g we recall that its decreasing rearrangement g* is given by
g =inf{a>0 : |[{xeR" : |g]|>a}| <t}.
In particular,

((f —0)xp) (AQh =inf{a>0: [{x€Q : |f —c|>a}| <AQl}.

A result that was fundamental for the use of the local oscillation is the following
representation formula that was introduced by A. Lerner in [95]], and refined in by T.
Hytonen in [[74]]. Here we present the latter version of the formula.



22 QpANTITATIVE WEIGHTED ESTIMATES FOR SINGULAR INTEGRALS AND COMMUTATORS

| Theorem 2.4. Let f be a measurable function, and Q, a fixed cube. Then there exists
a (possibly empty) %-sparsefamily S C D(Q,) such that for every A € (0,1/2"+2],

FG) =m Q| £ Y, ®,(£:0) £

Qes

where m ((Q) stands for the median of f over Q, that is, a possibly non unique number
such that

(x €0 : 700 >m @) <30l

{(x €0 : f(x) < m(Q)}] < %IQI-

Local oscillation has another interesting property that connects it to the Feferman-
Stein maximal function. The following result tells us that the averages over cubes used
to define M f f with y > 0 control the local oscillation.

Proposition 2.1. Let f be alocally integrable function, Q a cube, 4 € (0,1) and y > 0.
Then

((f - z0) (AIOD < <m/Q|f—c|mx> .

Consequently

w,(f;0) < (ﬁ/ |f_fQ|ydx>y'
o
Proof.  We recall that

((f —0)xp) (AQh =inf{a>0: [{x€Q : |f —c|>a}| <AQl}.

e (1 _ v
Then if a = (ﬂlQI fQ | f c|7dx> using Chebyshev

{er : |f—c|><ﬁ/Q|f—c|ydx>;}‘

- {er : |f—cv>ﬁ/g|f—c|wx}

A
Sﬁ/|f—c|ydxﬁ/l|Q|
0 - (o]
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This yields that

((f = z0) (AIOD < <M/Q|f—c|7dx>

Now we define Lerner-Nazarov oscillation [101]]. We would like to observe that
decreasing rearrangements are not involved in the definition.

| Definition 2.5. Let f be a measurable function. If A € (0,1) and Q is a cube, we
define the A-oscillation of f on Q as

w,(f;0) :=inf {w(f;E) : ECOQ, |E|>1-1|0|}
where

w(f; E)=sup f —inf f.
E E

In the following result, we prove that local oscillation controls Lerner-Nazarov
oscillation.

Proposition 2.2.  Given a measurable function f we have that for every 4 € (0, 1)

w(f;0) <2w,(f;0).

Proof. We start the proof of this lemma recalling that
S1 @0 = inf I xpelpe-

where E is any measurable set contained in R” (see [74] or [94]). Taking that identity
into account it is clear that

w0 =inf inf N(f -0z

ceR ECQ, |E|<A|0]

LDO

since it allows us to write

inf_|(F-0xo, =infla>0: [xe0 : 1f—el>a}l <AOI).

1
ECO.|E|<4|0|

Now we observe that

w,(f;Q) =inf {w(f;OQ\ E) : ECO, 40| > |E|}.
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Let ¢ > 0. We see that

w(f; E)=su —inf f=supf —c+c—inf
(f;O\ E) Q\Ef Q\Ef Q\Ef Q\Ef

= sup(f —¢) +sup(—f +¢) <2[|(f — ) xp\ell L
O\E O\E

And taking infimum on both sides of the inequality
w,(f;0) <2w,(f;0).

To end this Section we introduce Lerner-Nazarov formula (cf. [101]).

| Theorem 2.5. Let f : R" — R be a measurable function such that for each e > 0
[{x € [-R,R]" : |f()| > €}| = o(R").

Then for each dyadic lattice D and every A € (0,27"2] we can find a é—sparse family
of cubes S C D (depending on f') such that

IfOl <S¢, D w,(f; Qxplx)  ae.

Qes

We observe that this formula can be regarded as a refinement of the formula that
we presented in Theorem [2.4] Indeed, taking into account Proposition [2.2] the oscilla-
tions involved are smaller than the ones involved in Theorem|2.4] The other improve-
ment that this approach provides is the fact that it allows us to obtain a pointwise
estimate instead of an estimate involving the median.

2.2 Singular integral operators

The paradigmatic and somehow “model” singular integral operator is the Hilbert
transform

. 1

Hf(x)= hrr(} —f(dy.

TV x—yl>e M T
M. Riesz [139] proved that the Hilbert transform is of strong type (p, p) for every p > 1
and A. N. Kolmogorov [88] established that it is also of weak type (1, 1). The Hilbert
transform and its n-dimensional counterparts, namely the Riesz transforms,

. X;p =Y .
R; f(x) =lim ———f(y)dy 1<j<n,

£-0 |[x—y|>€e |x - y|n+l
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had been studied using complex analysis techniques until the groundbreaking work
of A.P. Calderén and A. Zygmund [19]. In that paper they introduced a decomposition
(Lemma , that enabled them study the L? boundedness of the class of convolution
type operators that we present now. Let Q € L!(S"!) where S"~! denotes the n — 1
dimensional sphere. Let us take p(f) such that

1
QW) — Q(s)| < p(lu—s]) and /p(t)%mo.
0

Then we define

T f(x) = lim

-0

Q(x — -
/ ((x=»/Ix=yD FOo)dy.
x—yl>e

|x — y|

Later on, in 1978, R. Coifman and Y. Meyer [29] introduced the notion of standard
kernel that allowed to study non-convolution type operators as well. Those opera-
tors ended up being called Calderén-Zygmund operators. We will consider a slightly
wider class of operators than Coifman and Meyer weakening the smoothness condi-
tion imposed to the kernel.

| Definition 2.6. We say that a linear operator T is a w-Calderén-Zygmund operator
with w satisfying a Dini condition if T is bounded on L* and it admits the following
representation

Tf(x)= / K(x,y)f(v)dy (2.10)
-

where K : R"XR"\{(x,x) : x € R"} - R isalocally integrable kernel that satisfies
the following conditions

e Size condition: If x # y
Ck

|K(x, p)| < .
|x =yl

(2.11)

e Smoothness condition: If |x — x'| < %lx -y

K, 9) = K( )]+ 1K x) = K(r0)] < — w("“’“') (2.12)
|x — y|" |x — yl

where @ is a modulus of continuity satisfying a Dini condition, namely an increas-
ing, subadditive function with w(0) = 0 such that

1
dt
lollpin; = / w(t)T <o
0
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We shall also consider operators satisfying a more restrictive condition, namely
the log-Dini condition.

1
1\ dt
”a)”log-Dini = / a)(t) log <_> < 0.
o 1)t

We observe that [|@||piy < ||l j0-pini- Hence operators satisfying a log-Dini condition
satisfy also a Dini condition. If we take w(f) = ct® with § > 0, clearly w satisfies a
log-Dini condition and we recover the original definition provided by Coifman and
Meyer. In this case we will say that T is a Calderéon-Zygmund operator satisfying a

Holder-Lipschitz condition.

Using Calder6n-Zygmund method it is a well known result that Calderon-Zygmund
operators are of weak-type (1, 1). We shall keep a fully quantitative version of that
result that appears in [80] since we will need it later on.

| Theorem 2.6. If T is a w-Calderén-Zygmund operator then

1T o pe < €T Nl L2 + N0l ping) (2.13)

Besides Calderon-Zygmund operators there is a wide range of operators satis-
fying quite diverse smoothness conditions, weaker than the pointwise smoothness
condition that Calderén-Zygmund operators satisfy.

| Definition 2.7. Let A a Young function. We say that a kernel K, namely a locally
integrable function K : R"XR"\{(x,x) : x € R"} — R satisfies an A-Hormander
condition or that K € H , if Hy = max{Hy |, Hy ,} < co where

Hy, =sup sup Z (2% - 10))"

0 x,ze%Q k=1

(K(x,+)— K(z,+)) )(sz\z"*lQ”A 2k’

Hy, = sup sup > (24 10)"

x,ze%Q k=1

(K(-,x) — K(-,2)) ){sz\zk-lQ”A 240"

We say that T is an A-Hormander operator if there exists K € H, such that T admits
a representation like (2.10).

If A(t) = t" we shall write H, to denote the corresponding Hérmander class. Abu-
sing of notation, we may also consider the case A(f) = oo in the preceding definition
replacing the A-norms by the L* norm. We will denote by H_, that class.
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We observe that H , classes of kernels are nested. Indeed, if A(#) < x B(f) then
Hy C H,. If we call Hp,; the class of kernels satisfying equations and (2.12),
then we have that

My, CH_ C-CH,C- CH,

where H, is the class of operators that satisfy the classical Hormander condition,
which for non-convolution type operators reads as follows

sup sup / |K(x,y) — K(z,y)|dy < oo,
o x,ze%Q R"\Q

sup SHP/ |K(y,x) — K(y,2)|dy < c0.
o x,ze%Q R"\Q

Hoérmander condition made its first appearance in [72] where it was shown to
be a sufficient condition for the L? boundedness. In the case of H, classes they ap-
peared implicitly in [90] finding an interesting application to rough singular integrals
in [151]]. The gerneralized Hérmander condition in terms of Young functions is due to
M. Lorente, M. S. Riveros and A. de la Torre [114]]. In every case the L? boundedness
(1 < p < o) and the weak-type (1, 1) inequality that the A-Hormander operators
satisfy follows from the fact that operators safisfying a Hormander condition enjoy
those properties. Now we present a fully quantitative weak-type (1, 1) estimate since
we will need later on.

Lemma 2.5. Let A be a Young function. If T is a A-Hérmander operator then
1T o < ¢ (1T 2 p2 + Hy)

and as a consequence of Marcinkiewicz theorem and the fact that the the dual of T is
again a A-Hormander operator,

||T||Lp_>Lp < c, (”T”Lz_,Lz + Hx) .

Proof.  For the endpoint estimate, following ideas in [80, Theorem A.1] it suffices to
follow the standard proof using Hérmander condition, see for instance [50, Theorem
5.10], but with the following small twist in the argument. When estimating the level
set {|T f(x)| > A} the Calderén-Zygmund decomposition of f has to be taken at level
a A and optimize a at the end of the proof.

For the strong type estimate it suffices to use the endpoint estimate we have just
obtained combined with the L? boundedness of the operator to obtain the correspond-
ing bound in the range 1 < p < 2 and duality for the rest of the range. |
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Another class of singular integrals that will be studied in this dissertation is the
class of rough homogeneous singular integrals of convolution type. This class is es-
sentially the same that Calderén and Zygmund studied but without any regularity in
the kernel.

| Definition 2.8. Let Q € L'(S"!) such that fgn_l Q = 0. We define the rough sin-
gular integral T, by
2 (=)
[x=yl

T, f(x) = lim ——Ff(»dy.

€0 |x—y|>e | _yln

The fact that no regularity condition is assumed on Q makes T, an object that
turns out to be difficult to handle in comparison to Calderén-Zygmund operators.
We will be interested in the case in which some size condition is imposed. For Q €
Llog L(S"!), AP. Calderén and A. Zygmund [20] established that T, is bounded
on L? for every 1 < p < oo. It is also known that T, is of weak type (1, 1). That
fact was established by M. Christ [23] and S. Hoffman [69] in the case n = 2 and
Q € LYS'") with 1 < g < o0, by M. Christ and J. L. Rubio de Francia [24] in the
case Q € Llog L(S') and finally by A. Seeger [145] in full generality, namely when
Qe LS.

We end this section presenting a maximal version of singular integral operators.
Given a locally integrable kernel K : R" X R" \ {(x,x) : x € R"} = R, we define
the maximal operator T* by

T*f(x) = sup

>0

/ K(x,y)f(y)dy
x—yl>e

In the case of Calderéon-Zygmund operators those operators are bounded on L?
and are of weak type (1, 1) as follows from a generalization of the classical Cotlar’s
inequality (see [64, Theorem 4.2.4 p. 228]). We borrow the following fully quantitative
endpoint estimate from [[80].

| Theorem 2.7. Let T* a maximal w-Calderén-Zygmund operator with  satisfying
a Dini condition. Then

1Tl e < € (IT M2 + i+ ll@lli)
In the case of rough singular integrals it is known that if Q@ € L*(S"') with

fS"‘l Q = 0, then T is bounded on L” (see for instance [46]). However it remains an
open question whether it is of weak type (1, 1) or not.
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2.3 Commutators

Let T be a linear operator and b € Llloc([R”) that we will call the symbol. Given a
function f we define the commutator of T" and b by

[6,T1f(x) = bT f = T(bf).

Iterated versions of this operator are also of interest by themselves. Given b,, b,, ..., b, €
Llloc(IR”) symbols such that b, - b, - - - bl.j € L] wherei € {1,...,m} we define

Tif =1b, by, ... [b, TS = bilby_ys ... [b1, TN = [by_ys ... [by, T11(Dy S).

In case b, = b,--- = b, we will denote T;f = T} f. Making a convenient abuse of
notation we will also assume that Tbo =T.

In this dissertation we will be concerned about the case in which T is a singular
integral and b is a symbol in BMO or some other related class and we will refer them
just as commutators. Commutators of singular integrals and symbols in BMO were
introduced by R. Coifman, R. Rochberg and G. Weiss [31]] to study the factorization of
Hardy spaces in several variables. In that paper the following theorem was proved.

| Theorem 2.8. If T is a singular integral operator of convolution type, b € BMO
and 1 < p < oo then [b,T] is bounded on L?.

Two proofs of that result were provided in [31]]. The first one is quite involved,
requires several pages of computations and only works for singular integrals. The
second one, the so called “conjugation method”, has been more influential since it is
quite versatile, due to the fact that it works for every linear operator satisfying some
weighted inequalities. We will give more details about that method in Subsection[5.1.2]

It was also established in [31] that the following converse result for Theorem 2.8|
holds.

| Theorem 2.9. Let1 < p < co. If the Riesz transforms R; 1 < j < nare bounded on
L? then b € BMO.

This fact shows the intimate connection between the boundedness of commuta-
tors of singular integrals and the fact that the symbol belongs to BMO. That result was
improved by S. Janson in [82] replacing the Riesz transforms for any operator given
by a smooth homogeneous kernel, and A. Uchiyama [149] provided an even more
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general condition for homogeneous kernels satisfying a Lipschitz condition. Those
conditions where further weakened in [65]]. In Section 5.2 we will further generalize
and weaken the condition in [65]].

We have just recalled that commutators are of strong type (p,p) for 1 < p <
Now we turn our attention to the case p = 1. Commutators usually exhibit a more sin-
gular behavior than singular integrals and their endpoint behavior is a paradigmatic
example of that additional singularity, since they are not of weak-type (1, 1). That fact
was established by C. Pérez in [124] using an example. Let us take b(x) = log |x + 1|,
H the Hilbert transform and f(x) = X[o./2]- It is clear that /R f= % Now if x > e
then

10g|x+l|—10g‘)/+i) 1/210g|x+l‘_10g‘y+l| 10g<x+1>
A)J/Z] 2x—y 2 dyz/o : x - dch%

Taking that into account we observe that calling ¢(f) =

{x>e : log () >/1}‘
X

=csupA|{x>e: p(x)> A} =csup A~ '(A) —e) =
A>0 A>0

@ since it is a strictly

decreasing function for ¢ > e, we have that

supAl{x : [b,H]f(x)> A} > csupl
A>0 A>0

since

lim Mo~ () —e) = lim (A)(4 — e) = co.

Also in [124] a suitable replacement for the weak-type (1, 1) estimate of the commu-
tator was provided.

| Theorem 2.10. LetT be a Calderén-Zygmund operator satisfying a Holder-Lipschitz
condition and b € BMO. Then

[{x e R" :|[b,T1f(x)| > A}| SCT/q)(lf”lb”BMO) dx

A

where ®(t) = tlog(e + 1).

We call this type of estimate L log L estimate. It seems natural to wonder whether
this estimate is, in some sense, the most suitable one. Quite recently N. Accomazzo
[1] has established the following result (see also [65] for similar results).
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| Theorem 2.11. Let Q € L'(S") with /sn Q = 0 and assume aditionally that €
satisfies a Lipschitz condition. Let
o(i2)
lx=yl

Tof(x) =lim —— S (Wdy.

poyle 1% = I

Assume that the following estimate

) |xEl
|{x e R" 2 116, Gl ()] > A}| < Cﬂ/q’ <TE> 4

holds for G = Ty, T;. Then b € BMO.

Hence, the L log L estimate turns out to be a quite good replacement for the weak-
type (1, 1) estimate.

2.4 Vector valued extensions

The operators we have considered in the preceding sections admit vector-valued ex-
tensions. Given a linear or a sublinear operator G, 1 < ¢ < oo and f* = {; };‘;1, we
define ]
q

G, f(x) = <i )Gf,-(x)\q>
j=1

In case G is the Hardy-Littlewood maximal operator this operator was introduced
by C. Fefferman and E. M. Stein [57]] as a generalization of both the scalar maximal
function M and the classical integral of Marcinkiewicz. They are of strong type (p, p)
and of weak type (1, 1).

If G is a Calderén-Zygmund operator, the L” boundedness of that operator was
obtained, for example in [34]. However, a study of that kind of operators replacing £¢
for a Banach space had been carried out earlier in [9)]. We also encourage the reader
to consult [142] for some more interesting extensions.

The case G = [b,T] made its first appearance in [133]]. In that work several
weighted estimates were obtained.

We will devote the remainder of the section to collect some quantitative unweighted
estimates for vector-valued extensions. These estimates are somehow implicit in the
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literature and will play an important role to establish pointwise sparse estimates for
those operators.

2.4.1 Quantitative unweighted estimates of some vector valued ex-
tensions

Proposition 2.3. Let 1 < g < oo and T a w-Calderén-Zygmund operator with @
satisfying Dini condition. Then

Iqu||L1—>le°° < ¢, ([@lpin; + 1T M Lo 10)-

Furthermore, since ||T|| ;.. < ¢,, ([a)]Dini + ||T||L2_>L2)

||Tq||L1—>L1~°° < cn,q([a)]Dini + 1T 12 12)-

Proof. Fix A > 0 and let {Q,} be the family of non overlapping cubes that satisfy
Aa < L/ | f (0], dx < 2"a4, (2.14)
10,1 Jo,

and that are maximal with respect to left hand side inequality. Let us denote by z; and
by r; the center and side-length of each Q;, respectively. If we denote Q = Uj 0,
then, it is clear that | f(x)|, < alae x € R"\ Q.

Now we split f as f = g + b, in a slightly different way to the usual. We consider
g = {g}2, given by

()_{ fi(x) forx e R"\ Q,
T g, forxe o,

where, as usual, ( f,.)Qj is the average of f; on the cube O i and

b(x) = {b,(x0)}2, = {Z b,,-(x)}
Q,

with b,;(x) = (f;(x) — (f,.)Qj))(Qj(x). Let Q = U,;20;. We then have

oo
i=1

yeR T, fW] > A <|ly eR\G : [Tyg()l > 4/2}]
+ |§| (2.15)
+|{ye R'\Q : [T b(y)| > /1/2}|.
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The rest of the proof can be completed following standard computations (see for in-

stance [133]]) and choosing a = yields the desired conclusion. |

1Tl g ra
In our next result we prove that Hq : LP® — P> For that purpose we will use
the following Fefferman-Stein type estimate obtained in [[127, Theorem 1.1]

| Theorem 2.12. Let1 < p < q < o then, if g is a locally integrable function, we

have that
— p
[ () < [ 1rnme
R" R"

As we anounced, using the estimate in Theorem 2.12} we can obtain the following
result.

| Theorem 2.13. Let1 < p, g < oo0. Then

Hqu Lre S Cug )lflq Lpe
Proof. Letusfix 1 < r < min{p, q}. Then
r e
[Ferl,. = |Grr) ], = | ()]
' Lpe® Lr®
Now by duality
r l %
|G7r) |, =] o [ onry|
Lr® ligll (B),lzl R~
L\r/)>
and using Theorem 2.12]
[ (3,1 o< [ |(3r) o] < [ 11,12
R" R R7

ARSI
< gl 11 Wl oy < Copgll 11 e

Summarizing

1
p

— 1
(% < (Cppall 171y W)™ < ol 1F 1, N

e ” (H"f>r

[
r

L
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Another result that we will need in this dissertation is a fully quantitative esti-
mate of the weak-type (I, 1) of T* . We will obtain that estimate via a suitable Cotlar
inequality. We recall that in [80, Theorem A.2] the following result is obtained

Lemma 2.6. LetT a w-Calderéon-Zygmund operator with w satisfying a Dini condi-
tion and 6 € (0, 1). Then

T*f(x) < €5 (MG(T FDG) + (TNl o2 + [@]pis) M F (X)) -

Armed with that lemma we are in the position to prove the following vector-
valued Cotlar’s inequality.

Lemma 2.7. LetT a w-Calderéon-Zygmund operator with o satisfying a Dini condi-
tion, 6 € (0,1)and 1 < g < 0. Then

—_ P 1 —_
T,/ () < ¢ (MaT S + (1T o2+ (@) Mo S ()
where |T f|° stands for { Tf,° }
j=1
Proof. It suffices to apply Lemma to each term of the sum. |

| Theorem 2.14. Let T a w-Calderén-Zygmund operator with @ satisfying a Dini
condition, and 1 < q < . Then

IT* f Nl e < Cusg (1T N 22 + [@]pi) 11N L

Proof. Using the previous lemma

IT*, fll 1o < €0 (Hﬁg(ﬁfﬁ)(x)é

‘Ll,oo) :

o F (TN e + (@) Hﬁq f

For the second term we have that

3,7 <cudllfl

so we only have to deal with the first term. We observe that

[T 11730007

L= [MaaT 00

oS S Cn767q

1
5
T 6
L! | fl% L%’“’

= Cosg [T/ |1 < ConallTollmaslIF Ll

Now, taking into account [2.3] we have that

1
B

1
Lé’

max {lITq”Ll—)LLw, T 22 + [CU]Dini} < Cig (”T”LZ—>L2 + [w]Dini)

we are done. |



3 | A,weights

We say that a function w is a weight if it is a non-negative locally integrable function.
We may set the first appearance of a variant of A, weights in the literature in the early
60s in the work of M. Rosenblum [141]]. That work was motivated by earlier results
due to H. Helson and G. Szegé6 [67] and was meant to deal with the convergence of
Fourier series.

In 1955 E. M. Stein [146] proved that the Hardy-Littlewood maximal operator is
bounded on L?(|x|*) withn = 1,1 < p < c0cand @ € (—i,l — i) and later in a
joint work with C. Fefferman [57]] he also proved that M is also bounded on L?(w) if
Muw(x) < cw(x) a.e. for some constant. As we will see later, weights satisfying this
condition are the so called A, weights. B. Muckenhoupt [116] in the early 70s, char-
acterized the weights w such that M is bounded on L?(w) in the one dimensional
case. His motivation to study that question were the fact that the error term of sev-
eral orthogonal series could be bounded by some variant of the maximal operator,
the possibility of obtaining some mean summability results and also to find all the
weights for which the Hilbert transform is bounded on L?. All in all, he established
the following result for n = 1.

| Theorem 3.1. Let w be a weight and let 1 < p < co. The following statements are
equivalent:

1. M is bounded on LP(w).
2. wWE Ap, namely

1 p-1
[wl, = <Sgpﬁ/QW(X)dx> <|IE|/Qw(x)'de> < oo (3.1)

If p =1 then the following statements are equivalent
1. M : LY(w) =» L">®(w)
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2. w € A,, namely

< oo (3.2)

Mw
w LDO

[w]A] = '

The classes of weights introduced in the preceding Theorem are the so called 4,
weights. Those classes have played a fundamental role in the growth of Harmonic
analysis since they were discovered, leading to important developments in the theory.
For a very beautiful and well motivated introduction to the A, classes we strongly
recommend to read the classical book of J. Garcia-Cuerva and J. L. Rubio de Francia
(62, Chapter IV].

In the rest of the sections of this chapter we will present some basic properties
that will be important during the rest of the dissertation and we will try as well to
make a brief outline of the history of weighted inequalities involving A, weights and
singular integrals.

3.1 Some basic properties of A, weights

The purpose of this section is just to collect some basic properties and results related
to A, weights. We will not go into details in this section, so we remit the reader to
basic references such as [62] [63] 50] for the proofs of most of the results contained
here.

In the following proposition we gather some basic properties of A, weights.

Proposition3.1. Letl <p<ocoandw € A,.

1
L. If1 <p<oothenw »' € A,. Furthermore

1 L
w_pj] = [w]"".
[ Ap/ A”

2. [w] 4,2 1 and the equality holds if and only if w is a constant.
3. The A, classes are increasing as p increases. For 1 < p < g < co we have

[w], < [wl,

4. w(x)dx is a doubling measure, namely, for every 4 > 1 and every cube O we
have that

w(AQ) < A" [w], w(Q)

where if FE is a measurable set w(E) = / £ w(x)dx.
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For some applications it is fundamental to have methods to produce A, weights.
Now we present a way to produce that kind of weights departing from maximal op-
erators.

Lemma3.1. Let A a Young function. Then, if 0 < § < 1 we have that (M, f)° € A,
for every locally integrable function f. Furthermore

1
[(MAf)é]A] < Cnm.

We observe that in its original version, namely choosing M, to be the Hardy-
Littlewood maximal operator, this result was pointed out to the authors of [34] by R
Coifman and appeared explicitly in [30] for the first time. It was later extended to the
result that we have just presented here in [78, Lemma 4.2].

Another way to produce A, weights is the following easy and ingenious trick due
to J. L. Rubio de Francia [[62, Section 5].

Lemma3.2. Letl < g < . Let

[o0]

Z IIMII

k=
Then we have that

1. h< Rh
2. |RAll L, < 2[Rl L0
3. Rh € A,. More precisely

[RA1,, <2IM]..
This construction is called Rubio de Francia algorithm. We observe that the defini-

tion of Rh relies upon the fact that we have chosen M to define it. It is also possible to
build this kind of algorithm replacing M by other operators suited to each situation.

Now we present a way to produce A, weights that also characterizes the A, class.

Lemma33. Ifw € A, then there exist v}, v, € A, such that

w = v,

Conversely if v;, v, € A, then Ulv ” € A,. Furthermore, in both cases,

(W], < [v)14 0,1



38 QEJANTITATIVE WEIGHTED ESTIMATES FOR SINGULAR INTEGRALS AND COMMUTATORS

The second part of the result is a straightforward computation. The first part is
the so called A, Factorization Theorem and it is due to P. Jones [85]. A much simpler
proof of that result can be obtained exploiting variations of Rubio de Francia algorithm
(28, 62].

We end up this section presenting a modification of Rubio de Francia algorithm
borrowed from [104} 78] that will be used later on in this dissertation.

1 1
Lemma3.4. Denote S(h) =v »M(hvr), where v is a weight and 1 < p < 0. Define
a new operator R by

R(h) = —

Then, for every h € L?(v), this operator has the following properties:
1. 0 < h < R(h),
2. IR Loy < 21141 Loy,

1 1
3. R(h)v» € A, with [R(h)vP]A < ¢,p . Furthermore, when v = M ,w for some
1
Young function A, we also have that

[Rh],_ < c¢,[Rh], < c,pf

(see the next section for the definition of the A constant).

Proof.  The proof of the result is essentially contained in [62, Section 5]. We establish
here just the last part, namely, the fact that when v = M ,w for some Young function
A, we also have that [Rh], < ¢,[RhA],, < c,p’. The first estimate holds in general as
we will note in the following section. For the remaining one, using Lemma 3.1]

c =
A "2p—1

since 2;—: =1+ b+1 < 2. Taking that fact and Lemmainto account,

(rt, = [Romoi (s7737) 7| < [rows], o5 <

A3
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3.2 The A_ class and the Reverse Holder Inequality

As a consequence of the Jensen inequality we have the following estimate

exp(lél /loglh(x)ldx) < (é/glh(x)l%lx)q

for every 0 < g < oo0.If w € A, applying it to w!

w(Q) 1/1 )w(Q)< / p1d>_1
0] exlo<|Q| og (W) dx ) < Jor gy [, w0 T (69

and it is possible to prove that the right hand side of this estimate tends to the term

with g = [ﬁ then

on the left hand side as p — .

Taking this into account we can define A_ weights as follows.

| Definition 3.1. We say that a weight w is a A, weight if

[w]Am,exp Sup |(QQ|) eXp (Iél /lOg (w(x)_l) dX> < 0.

We observe that taking into account (3.3) we have that

(W] exp < [W]y - (3.4)

U 4, cA..

1<p<0

Consequently

In the following theorem we collect some of the characterizations of the A class.
| Theorem 3.2. The following statements are equivalent:

L. weA,.
2. A Reverse Holder inequality hods for w, that is, there exist 0 < ¢, e < oo such that
for all cubes Q we have that

1

1 Lte I+e /
— d d
<|Q| /Qw(x) x) IQI w(x)dx.

3. There exist ) < c¢,6 < oo such that for every cube Q and every measurable subset

A of Q then
o () o
w) ~ \lol/) '
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4. There exists 1 < p,,,c,, < oo suchthatw € A, and [w]A <c,
5. There exists ¢ > O such that fore every cube Q and for every r> 1

lretafey e

6. The following supremum is finite

[w]A sup—/M(;(Qw)(x)dx< 00.
101 Jo

For a thorough study of different characterizations of the A class we remit the
reader to [52]].

We observe that from the fourth part of the preceding theorem it follows that

U 4,=4..

1<p<o

The last characterization is due to N. Fujii [59] and was rediscovered by J. M. Wilson
[153]). From now and so on we call [w], the A constant. We observe that this 4
constant satisfies that

[w]Am < cn[w]Awexp < cn[w]Ap w e Ap 1<p<oo.

Besides the preceding estimate, the importance of this constant stems from the fact
that it is, nowadays, the smallest possible constant characterizing the A class as it
was proved in [[77]]. In several situations a fundamental tool to take advantage of the
definition of the A constant is the following sharp reverse Holder inequality.

Lemma 3.5 (Reverse Holder inequality). There exists 7, > 0 such that for every

we A,
(é /Q w(xywdx) s2p [ weoa ()

withr, =1+ . Furthermore, the preceding estimate is optimal in the following

T"ono

sense. If a weight w satisfies a Reverse-Holder inequality with exponent r > 1, namely

<|Q| /w(x) dx> SKé/Qw(x)dx

then [w], < c¢,kr.
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Some precedents of this kind of that “precise” reverse Holder inequality can be
traced back to [103]], where an estimate in terms of the A, constant was obtained, and
to [25]], where an analogous estimate in terms of the A, constant was proved. was
established in [77] (see [79] for another proof) and also in that work it was proved
to be a fundamental tool to obtain mixed-type quantitative estimates (see Subsection
[3.3.2). We will make use of this estimate several times along this dissertation.

3.2.1 Some corollaries of the reverse Holder inequality

In this section we gather some useful corollaries of the reverse Holder inequality. We
begin presenting the following quantitative version of (3.5) established in [81]].

Lemma3.6. There exists ¢, > 0 such that for every w € A_, every cube Q and every
measurable subset E C Q we have that

1

w(E) <2 <ﬂ>m
w(Q) |0

1

Proof. Letuscallr, =1+ where 7, is the same as in Lemma 3.5 We observe

Tn ono

that using Reverse Holder inequality,

1

1 I w (1EI\ 7%
E = < [ rw
w(E) |Q||Q| Qw}(E_IQ|<|Q|/Qw > <|Q|>

EI\7T
<2w(Q) (%)

which yields the desired result, since r’w ~ c,[w] A |

Combining John-Nirenberg Theorem and Lemma [3.6] the following result was ob-
tained in [81]].

Lemma3.7. Letb € BMO and w € A_ . Then we have that
|Ib— bQ”expL(w),Q < cn[w]Aoo 161l gpmo-

Furthermore, if j > 0 then

— b | <c [w) /
16— bol ||expL}(w),Q < ¢, lwly Nbllgyo-
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Proof. We recall that

. 1 |/ ()]
”f”expL(w),Q:lnf{/1>0 : w/gexp <T) —ldw < 1}

where dw = wdx. Consequently, it suffices to prove that

b(x) — b
L/exp | ol -ldw<1,
w(Q) Jo Cn[w]Am”b”BMO
for some ¢, independent of w, b and Q. Using layer cake formula, Lemma [3.5| and
Theorem [11]

| /()]
LU(Q) / < > LU(Q) / {X SH O |b(x) — bQ| > /lt}) dt

“n[wJAm

w(Q)dt

{x €0 : |b(x)—by| > At}
w(Q)/ 10|

b 2N
SZe/ ele g e dt,
0

so choosing 4 = ac,e2"||b|[gyolwl,

(e 9] _+ o0
2e/ ele Wi lblemoe?” ¢ — Ze/ 1= g4
0 0

and choosing @ such that the right hand side of the identity is smaller than 1 we are
done.

To end the proof of the Lemma we observe that for every measure y such that

u@Q) >0,

! / <|f<x>|f>5 / /)
—— [ exp —1ldu.
Q) Jo A 1Q)

Consequently

b =bolll 1  =]b~

exp LT (4),0 bo ”eXp L(w).0 (3.8)

and the desired result follows. |

Another result that will be useful to deal with BMO symbols and A weights in
the scale of L? spaces is the following.
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Lemma3.8. Letb € BMO and w € A_. Then we have that
|6 — bQ”LP(w),Q < Cnl’[w]Aoo |61l smo-
Furthermore, if j > 0 then
16 = bol Il oo < (eupiltw] s Y 1bllyo-

Proof.  Using the layer cake formula combined with Lemma [3.6)and John-Nirenberg
Theorem

1
@/le(x) — by |Pw(x)dx

N wa) /Omtp_lw({x €0 : |b(x) = by| > thdt

W(Q)d t

erQ b(x) — qg>4)
w(Q)/ 10|

sp/,ﬁ*emwm%mmm.
0

N

——— we have that
el [Bllpmoe2”

Now using the change of variables t =

p/ Ple ol Hb“Bl\Wz"dt<p(c [w],_ ||b||BMOeZ")"/ sPle™5dt
0 0
= p(c,[w],_l1bllgmoe2")T(p)

and this yields

1 ,%
<w(Q) /Q 1600 = bQ"’w(X>dX> < c,plwl,_lIbllgo-

To end the proof we observe that

1 ; ’
<—w(Q) /Q |b(x) —le”’w(x)dx>

1 e -
- (@/Q|b(x) - bgl”’w(x)dx> < (c.jplwly_lIbllgyo) -
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Now we present a result that provides a precise control of the openness property
of the A, weights.

Lemma3.9. Letw € AP with 1 < p < oo then, for s = % where € =

and
Tn[o_]Aoo
L
o =w »' we have that w € A, and [w],, <2[w], .
s 5 p

_1
Proof.  Since w € A, we have that6 = w »' € A,. Now we observe that p — 1 =

(f - 1) (1 + £) with € > 0 to be chosen. Then

o) o))" o)

1

TnGAw

() ()2 G ) )2
10l Jo 10l Jo 10l Jo 10| Jo ?

Hence, it suffices to choose

If we choosel +e =1+

then by Lemma [3.5| we have that

This ends the proof. |

The following lemmas that we borrow from [75, Lemma 2.1}, [77, Lemma 7.4] also
follow from the Reverse Holder inequality.

Lemma3.10. Letpe (1,0),w € Ap and b € BMO. There exist constants € >

0 such that

n.p’ cﬂ,[’

Re(bz)
[e w] A) < Cop [w]Ap

for all z € C with

Enp
|z| < : :
1bllgumo ([wl,_ +1o]4_)
Lemma3.11. Letw € A, and b € BMO. There exist constants ¢,, ¢, > 0 such that

[eRe(bz)w]A < c, [w]Am
for every z € C such that

€
|z] € ———.
”b”BMO[w]Am
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We would like to end this section presenting a result that exploits the interaction
between A weights and sparse families. To establish that result first we need the fo-
llowing dyadic version of the Carleson embedding lemma that we borrow from [77].

| Theorem 3.3. Let D be a dyadic lattice and let {ap}oep be a sequence of nonneg-
ative numbers satisfying the Carleson condition

Y ay < Aw(R), RED,
OCR

for some constant A > 0. Then, for all p € (1,) and f € LP(w),

1/p
1 ? '
( 2 aQ(@ /Qg(x)w(X)dx> > < AT P Nlgl o

e

Now we present the announced result.

Lemma3.12. Letw € A_.Let D beadyadiclattice and S C D be an -sparse family.
Let ¥ be a Young function. Given a measurable function f on R" define

Agsf(x) 1= Z I lwry.0 0 (X)-

Qes

Then we have 4
”A‘I‘,Sf”Ll(w) < ;[W]AWHM\IJ(L)JCHU(W).

Proof.  First, we see that

1w s S = X 1 henow(@) < Y, (inf My, f(2)w(Q)

QeSs Qes
1 ! 2
< %<W@ /Q (Mg, f () w(x)dx ) ().

Applying Carleson embedding theorem (Theorem with g = (My,f )% we have
that

2
) (w(lQ) /gw(x)d(x)> w(Q) < 4AlIgll7z = 44N My, S iy
Q€S 0

provided we can show that the Carleson condition

Y w(0) < Aw(R)

OCR
ResS
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holds. We observe that

Y woy < Y Mg < 3ot M) Eg

&k S 10|
ResS ResS ReS

< 1 / M (yrw)(z)dz < l[w]Amw(R).
nJr n

Then we have that the Carleson condition holds with A = %[w] A This ends the

proof of the lemma. |

3.3 Some historical remarks about Ap estimates for
singular integrals and commutators

3.3.1 Qualitative estimates era

Essentially since the appearance of the A, condition it became a question of interest
the study weighted inequalities for many different operators. Let us state more clearly
what we mean. Let G be a linear or a sublinear operator and 1 < p < o0. Given a
weight w € A, the question is whether there exists or not a constant ¢ depending on
w and maybe also on the dimension of the space, n and on p, such that

”Gf”Lp(w) < C”f”Lp(w)-

Usually in the case p = 1 the question is whether there exists or not a constant ¢ > 0
depending on w and maybe also on # such that

NGl Loy < cllfll i)

Plenty of works have been devoted to the study of those kind of estimates for singular
integrals among other operators. In the rest of the section we will outline some of the
classical methods in the literature allowing to deal with weighted A, estimates of
singular integrals and commutators.

3.3.1.1 Good-A estimates

One of the first methods that found a fruitful application in order to prove strong type
weighted inequalities was based on the so called good-4 inequalities. That technique
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was introduced by D.L. Burkholder and R.F. Gundy [16] and relies upon obtaining a
suitable estimate for level sets. Given a doubling measure y and operators G and .S
we call good-4 each estimate that has the following form

p{x € X 1 |G| > ¢4, ISF)| < p(mA}) < cwmu({x € X @ |Gf(x)] > A))

where n € (0,1), v : [0,1] = [0, c0) is a continuous function such that () — 0
when n — 0 and @(n) € [0, ) for every 5 € [0, 1]. It is not hard to prove that this
kind of estimates allow to prove L? estimates, such as

/IGfI”dMSC/ISfI”dM
X X

and that is precisely the approach that was exploited by R. Coifman and C. Fefferman
[27]. In that work they obtained the following good-A estimate

w({T*f > 24, Mf <ni}) < en’w{T*f > 4}) (3.9)

where w € A_ and T stands for the maximal Calderén-Zygmund operator. To obtain
such an estimate the idea is to localize {x € R" : T* f(x)} via Whitney decomposi-
tion. This reduces the problem to study

Hxe€eQ : T°f(x)> 24, Mf(x) < Ay} < cy Q|

where each Q is a Whitney cube and f is supported on Q. Once that estimate is
established it suffices to use (3) in Theorem to obtain (3.9). Relying upon that
good-4 inequality, as we said before, R. Coifman and C. Fefferman established the
following result.

| Theorem 3.4. Let T* a maximal Calderén-Zygmund operator and w € A,. Then
foreach0 < p < o

/ (T* f(x)’w(x)dx < cT’p’w/ M f(x)’w(x)dx
R" R"

This kind of estimates is nowadays known as Coifman-Fefferman estimate. If we
assume additionally that w € A, (1 < p < o0), that estimate combined with the fact
that M is bounded on L?(w) yields that T is bounded on L?(w) as well.

There are several references in which applications of the good-4 method are pro-
vided, among them we encourage the reader to consult [148, Chapter XIII] where this
kind of technique is presented as a general method and also [86] for some elegant
examples of the use of that technique.
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3.3.1.2 The connection with the Fefferman-Stein M* maximal function

As we announced in Subsection there is an intimate connection between M* and
the weighted boundedness of Calderén-Zygmund operators. Not much later than the
good-4 techniques appeared, another different approach showed up in [34]. Relying
upon the Fefferman-Stein estimate for the M* function, namely, that for every 1 <
p<ooandw € A, then

IM £l 1oy < CllMP £l Loy

it was enough to find some suitable control for the composition M*(T f). Indeed, for
example, if T is a Calderén-Zygmund operator it was established in [34] that

MXTf)< e, M, f (3.10)

for every r > 1. Relying upon that control, given p > 1, if w € A, then for a suitable
choice of 1 <r < p we have that w € A, and we can proceed as follows

”Tf”Lp(w) < ||M(Tf)||L,,(w) < cw||Mﬁ(Tf)||L,,(w) < Cr,w”Mrf”Ln(w) < Cr,w”f”Lp(w)-

The philosophy behind this approach is that a suitable control of the “oscillations” of
an operator provides useful information about the operator, in other words, the idea
is that since M*f is defined in terms of the following oscillations

1
— — fold
IQl/QIf(X) foldx

the study of such oscillations for T' f provides useful information to obtain weighted
estimates. This approach can be refined studying a slightly small type of oscillations,

namely
1 5 g
— — d :
<|Q|/Q|f(X) fotax)

MYTf) < e;Mf (3.11)

In [3] it was proved that

where 0 < 6 < 1. Relying upon this estimate we can also obtain weighted inequalities.
Indeed, given w € A, we can obtain a new proof of Coifman-Fefferman estimate
arguing as follows

IT W rey < ENMST Ol oy < IMET Pl 1oy < WM f | oy

Furthermore, in the range 1 < p < o0, if we additionally assume, that w € Ap then

”Tf”Lp(w) < C”Mf”u(w) < c”f”LP(w)'
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3.3.1.3 Some remarks about the case of the commutator

In the case of the commutator no good-A4 type estimate is available yet. If » € BMO
and T is an operator having a suitable theory of weights, namely if T is bounded on
L?(w) provided that w € A, we have that [, T] is bounded on L”(w) just applying
the conjugation method (we will provide more details in Subsection|[5.1.2).

In the particular case of T being a Calderon-Zygmund operator satisfying a log-
Dini condition, an alternative way to establish the L” boundedness of [b, T] relies on
the following M* pointwise estimate.

MY, T1F)(X) < ¢, lIbllpyo (MJ(T )+ M,f)  1<s<r<oo (312

That proof appeared explicitly for first in [82] (see also [148| p. 417]) and it is appar-
ently due to J. Strémberg. Again, a refinement of analogous to the one obtained
for T is available. In this case, given 0 < § < € < 1 we have that

M, T 1)) < 5 1bllsmo (M (T £)(x) + My 0 f) (3.13)

The subtle refinement of having M, ,,,,; on the right hand side of proved to
be crucial in [124] to obtain a suitable replacement of the good-A estimate that made
possible to provide the L log L estimate that we presented in Theorem[2.10} Another
fundamental consecuence of this kind of estimate is that it allows to derive the cor-
responding Coifman-Fefferman estimate (see [126]]), namely that if w € A_, then for
every 0 < p < co we have that

/ 15, TV P w)dx < er.pallbllyg / My fOPwdx (3.14)
R" R"

3.3.2 Quantitative estimates era

In 2001 K. Astala, T. Iwaniec and E. Saksman [4]] conjectured the linear dependence
of the Ahlfors-Beurling transform B on the A, constant, namely, that

||Bf||L2(w) S c[w]Azllf”LZ(w) w e A2.

Their motivation to raise such a conjecture was to settle a self-improvement property
of the integrability properties of the derivatives of the solution of the Beltrami equa-
tion. One year later S. Petermichl and A. Volberg [136] gave a positive answer to that
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question. Those works may be considered the beginning of a still active trend in the
theory of weights, the study of quantitative estimates in terms of A, constants. How-
ever, the result of S. Petermichl and A. Volberg was not the first result establishing
dealing with the quantitative dependence on the A, constant. In the early 90s, S. Buck-
ley devoted a substantial part of his PhD dissertation [13] to study the dependence on
the A, constant of several operators. For instance, in the case of the Hardy-Littlewood
he proved that if w € A, with 1 < p < co then

1

”Mf”Lp(w) < c[w];_pl ”f”LP(w)

being the exponent of the A, constant sharp in the sense that it is not possible to
replace it for any smaller one. Coming back to singular integral operators, after the
before mentioned work of S. Petermichl and A. Volberg, the interest in this kind of
estimates that provide a quantitative relation between the boundedness constant of
the operator and the A, constant grew, drawing the attention of a number of authors.
In the following lines we make a brief overview of some of the contributions in this
direction:

1. Vector valued maximal function: This result was obtained by D. Cruz-Uribe,
J.M. Martell and C. Pérez [38]. Let 1 < p, g < oo Then
- —
”Mq(f)”LP(w) < cn,p,q[w]Ap ”f”LP(w) (315)
2. Calderon-Zygmund operators: For this class of operators we have the fol-
lowing estimate

{17

max
”Tf”Lp(w) < C[W]Ap ||f”Lp(w) l<p<oo, weA

>
In [134] and [135] S. Petermichl proved that the Hilbert and the Riesz transforms
respectively satisfy the following estimate. In [38] the conjecture was settled for
kernels having some extra regularity. The problem was solved in full generality
for Holder-Lipschitz kernels by T. P. Hytonen [73] for the case p = 2. The
linearity on the A, constant was enough to provide the result for every p > 1
in virtue of the sharp extrapolation theorem due to O. Dragicevic, L. Grafakos,
M.C. Pereyra and S. Petermichl [48]]. For kernels satisfying just a Dini condition
the result is due to M. T. Lacey [91].

3. Rough Singular Integrals: In the case Q € L®(S"!), this question was adressed
for first in [80], where the linear dependence on the A, constant for that class
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of operators has been conjectured. Nowadays the best estimate available was
established in [[111] and reads as follows. Given Q € L®(S"!) we have that

”Tgf”Lp(w) < Cn”Q”Loo(Sn—l)[w]ip||f||Lp(w) l<p<oo, we A,

In the case Q € L%'log L(S"') where 1 < g < oo and Q € L%'log L(S"™") if

and only if
* . dt
12 Lot 1og L1y = q/ tlog(e + 1) |{9 €S 1 1QO)] > 1}’ — <
0
it was established in [32] that
max{l,p_;q,}
”Tgf”mw) < ¢, 1L o log L(S"—')[w]Ap/q, ||f||Lp(w) l<p<oo, we Ap/q/.

4. Commutators: Relying on the conjugation method that was introduced first in
[31]] (see also [2]]) and that we present in Subsection|5.1.2 the following estimate
was provided in [25]. Given, b € BMO and a linear operator 7" such that

”T”LZ(w) < C(P([W]Az)”fllﬂ(w)

then
1T oy < ”b”IEMOC[w]]ZZgD([w]AZ)”f||L2(w)'

Among the aforementioned results, the case of Calderén-Zygmund operators is
quite significant, since it has lead to the development of a very deep understanding
of those operators that has materialized in the fact that it is possible to control them
by the so called sparse operators. Sparse operators are positive operators that are
defined in terms of sums of averages over dyadic cubes belonging to a suitable family.
The so called sparse domination techniques have been applied successfully to other
operators. The next chapter will be devoted to present results in that direction.

Further development in terms of quantitative estimates came as a consequence
of the inspiring work of T. Hytoénen and C. Pérez [77]]. In that work they introduced,
or perhaps, to be more precise, rediscovered the A_ constant that we presented in
Subsection [3.2/and provided several mixed A, — A, bounds which are sharper than
the A, bounds, since the A constant is smaller than the A, constant. We may also
outline here other kind of estimates such as the endpoint estimates in terms of the
A, constant or even more sharply in terms of the A; — A_ constant, but since we
will present some results in that direction we will give more details about that kind
of estimates as they show up.






4 | Sparse domination

Let D be a dyadic lattice and S C D a sparse family. A sparse operator .S can be
regarded as an operator build upon the sum over the sparse family S as follows

Sfx) = Z AL, Q)(X) xp(x)

Q€S

The paradigmatic example of this kind of operators is the linear and positive operator

defined taking A(f, Q)(x) = é /Q f(»)dy that yields

Asf(x) = / Sy xo(x).

&t IQI
The relevance of A stems from the fact that it is intimately connected to Calderén-
Zygmund operators. This connection was firstly found and exploited by A. K. Lerner
in [96]]. In that work, the following result was established.

ITfllx < crsupllAsflix (4.1)

where X is a Banach functions space and the supremum is taken over all the sparse
families S of every dyadic lattice. That result relied upon the so called Lerner’s for-
mula (See Theorem [2.4). Taking into account Proposition [2.1] this approach can be
regarded as a refinement of the approach to this result presented in Subsection [3.3.1]
based on the M* function (see ) The idea is that, in this case, a more precise
measure of the oscillation is studied. combined with the following estimate that
appeared first in [38]

||A5”L2(w) < Cn[w]A2||f||L2(w)
provided a new proof of the A, Theorem.
J. M. Conde-Alonso and G. Rey [33] and independently A. K. Lerner and F. Nazarov

[101]] proved that it is actually possible to obtain a pointwise domination for Calderén-
Zygmund operators satisfying a log-Dini condition. The result they provided reads as
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follows. For every function f there exist 3" dyadic lattices D; and sparse families
S, C D; such that
3}1

TGOl < ey ) As 1F1(0) (42)
j=1

Actually this estimate also works for maximal Calder6én-Zygmund operators satisfy-
ing just a Dini condition, as was proved by M. T. Lacey [91]]. Furthermore it is possible
to provide precise quantification of ¢;. We can choose ¢, = [w]p;, + ¢x + IIT]|;2 as
was established in [80]. In both papers [91}80], establishing that the families built are
actually sparse was a relatively involved task.

A.K. Lerner [97] adressed the case of Calderon-Zygmund operators obtaining the
same quantitative estimate provided in [80], with some extra advantages. The first of
them, is that his way to build the sparse family is based on a wise use of Calderén-
Zygmund decomposition, so checking the sparse condition of the family becomes
straightforward. The second advantage of his approach is that it actually provides a
quite flexible method to obtain pointwise estimates. That second advantage will be
exploited in this chapter to obtain several sparse domination results.

Besides being a tool to simplify the proof of the A, Theorem, sparse domination
results, both in a pointwise sense and in terms of a dual form, namely, estimates as
the following one,

/ Tfg<cr, Z / A(f, O)x)dx|gll 4,05
R" 0

Qes
where S is a Sparse family, have become a fruitful source of refinements of known
results and completely new results. In the following lines we are going to try to list
some of the contributions based on that approach.

« [15] and [108] are devoted to non-smooth multilinear singular integrals, the
L"-Hoérmander operators.

+ [44] presents sparse domination of sharp variational truncations and a sparse
domination for multilinear commutators.

+ In a series of papers by F. Di Plinio et. al several operators are studied obtaining
bilinear type sparse domination results:

— In [45] sparse domination results for variational Carleson operators, namely

r>1/r

for the following class of operators

TN '
f(&)e™d¢
&io1

NeN g <-<éy \ j=1

N
C,f(x)=sup sup <Z
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when 2 < r < oo are obtained.

— In [41] the object of study are singular integrals and the sparse estimates
are obtained studying dyadic shifts.

— Domination of multilinear singular integrals by positive sparse forms are
obtained in [40].

— A sparse domination principle for rough singular integrals [32]. In this
work a general method to obtain sparse bounds is provided. The method
is applied to obtain sparse domination result for Calderén-Zygmund oper-
ators, L"-Hormander, operators rough singular integrals and the Bochner-
Riesz operator at the critical index. Relying upon this last applications se-
veral beautiful consequences are provided in [111]].

— In [46] the authors obtain a sparse bound for maximal rough singular in-
tegrals. A convex body domination result for the matrix valued rough sin-
gular integral is also provided in that paper.

« Following techniques in [32] a sparse control for bilinear rough singular inte-
grals is obtained in [5]].

« In [92] sparse bounds in the bilineal sense for spherical maximal functions are
obtained. Relying upon them some new weighted inequalities for weights in
the intersection of some Muckenhoupt and reverse Holder classes are derived.

« In [93] the authors establish sparse bounds for a a class of oscillatory and ran-
dom singular integrals.

+ In [26] the Hilbert transform along curves is studied via sparse operators.

« In [8] the operators under study are the ones given by Bocher-Riesz multipliers.
Also several applications are provided.

« Sparse techniques also provide interesting results in the discrete setting. In [42]]

« [7] provides some new applications relying upon suitable sparse domination
results.

« In [10] it is shown that sparse domination techniques can be extended far be-
yond the standard Calderén-Zygmund theory, enabling the authors to control
non-integral singular operators.

4.1 Sparse domination for singular operators

This section is devoted to present a pointwise sparse domination result for A-Hormander
operators. Prior to that we need the following definition.

| Definition4.1. Givenl < p, < p, < o0, we define Y(p,, p,) as the class of functions
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A @ [0,00) — [0,00) for which there exist constants c,,, ¢, ,,t, = 1 such that
" < ¢y, A(t) foreveryt > t, andt’ < c, , A(1) for everyt <ti,.

Although the classes of functions Y(p,, p,) that we have just defined may seem
restrictive, they essentially contain every case of interest mentioned in Subsection

211

Armed with the preceding definition we are in the position to present the state-
ment of the announced pointwise sparse domination theorem.

| Theorem 4.1. Let A € Y(p,, p;) a Young function with complementary function A.
Let T be an A-Hérmander operator. For every compactly supported f € C*(R") there
exist 3" dyadic lattices D; and sparse families S; C D; such that

.
ITFO] < e,er Y Ays ()
Jj=1

where

Apsf )= Y 1 laoxo™)

Qes

andcy =c,, , max{c, ,.c,, } (HK + ”T”L2—>L2)'

If T is a w-Calderén-Zygmund operator, then T is a L*-Hormander singular op-
erator, with Hy < c,([w]p;,; + cx)- In that case the result follows applying Theorem
with A(f) = t which yields the corresponding estimate with ¢; = ||T||,2_,2 +
[@]pin; + Ck-

Proof of Theorem |4.1

The proof of Theorem [4.1] follows the scheme in [97], [108] and [106]. We start re-
calling some basic definitions. Given T be a sublinear operator we define the grand
maximal truncated operator M by

M, 7 f(x) = sup ess sup T(f)(Rn\3Q)(§)‘
03x  ¢eQ

where the supremum is taken over all the cubes QO C R” containing x. We also con-
sider a local version of this operator

Mero, /()= sup ess sup|T(f £30,130)€)]

x€EQCQ, ¢e0
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We are not aware of the appearance of the following result in the literature. It
essentially allows us to interpolate between L” scales to obtain a modular inequality
and it will be fundamental to obtain a suitable control for M ; in Lemma

Lemma4.1. Let A be a Young function such that A € Y(p,, p;). Let G be a sublinear
operator of weak type (p,, p,) and of weak type (p,, p;). Then

n A <cA’G lf(tx)l ) dx

where Cag = 2max{cA’pO, Cap, } max {”G”L[’O—»L[’O*w’ ”GllLPl—»L/’lv‘x’}

(xeR" : |G<x)|>r}|s/

R

Proof.  We recall that since A € Y(p,, p;) there exist ¢,, CapyrCap, = 1 such that
0 < ¢y, At) forevery t > 1, and 1" <c, , A(t) for every 1 <1,. Let

K = 2max {”G”Lﬂo—»U’om’ ”G”Ll’l—)Ll’l’m}

and let us consider f(x) = f,(x) + f,(x) where
Jox) = f(x))({|f(x)|>1m}(x)’

fix) = f(x)x{lf(xnglm}(x)'

Using the partition of f and the assumptions on G we have that

[{x eR" 1 |Gf(x)| > A}

{xER” : |Gf0(x)|>§}’+ {xe[R” : |Gf1(x)|>§}‘

Po I
ST (. pPReT R (U

S/ <K|fo(X)|>p°dx+/ <K|f1(x)|>"‘ dx
e A o A

Now we observe that, using the hypothesis on A,

Do Do
/ <K|fo(x)|> dx = / <K|f(x)|> dx
Rn A {|f(x)|>£tAA} A

SCAPO/ A<K|f(x)|>dx
5 l A
{Ircotia)

and analogously

/ <K|Jf1(x)|>”1 dx:/ (Klf(X)|>p‘ g
Re A {Iro1stea} A

| /()] )
<c Alxk dx
o /{If(x)IS%tM} < A

<
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The preceding estimates combined with the convexity of A, namely, that cA(f) <

A(ct) for every ¢ > 1, yield
A <m21)<{cA,p(),cA’l,1 }KM> dx.

(xeR" : IGf(x)|>/1}IS/ -

RV!

Now we are going to establish two properties that will be basic for us. The first
one is contained in [97, Lemma 3.2] while the second one is a generalization of that
result in the spirit of [108 Proof of Theorem 1.2].

Lemma4.2. Let A be a Young function such that A € Y(p,, p,) with complementary
function A. Let T be an A-Hérmander operator. The following estimates hold

1. Forae. x € Q,
IT(f X30,)O| < €, ITl L1 1 f(X) + My g f ().
2. Forall x € R” and 6 € (0, 1) we have that
Mpf(x) S5 (HyM,f(X)+ M(T ) + Tl g1 p1e M () -
Furthermore

[{xeRr" : Mpf(0)> 2}

£ ()l (43)
< / A <max{cA’P0,cA,p1 }CnJ’O’Pl (HK,; + ||T||Lz_,Lz) 1 dx.
er

Proof. The first part of the lemma was established in [97, Lemma 3.2], so we only
have to deal with the second part. We are going to follow ideas in [108]]. Let x, x', & €
0cC % -30. Then

IT(f Arm30) ()] < +ITfCD+IT(f x30) (XD

/ (K&, ) - KK, y) f(ndy
R"™\3Q

Now we observe that

/ (K& ) - KK, ) f(ndy
R™\3Q

\ 1
< ) 243"1(Q)" K ) — K(x. .,
< ; Q) [2£30]| 2430\26-130 |( &,y (x y)) f(y)‘ y
<2 Z 2kn3n Q)" (K(f, ) — K, .)> )(2k3Q\2k—13Q||22k3Q N/l a2e30
k=1 ,

S CnHK,ZMAf(x)
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Then we have that
IT(f Arm30) O] < ¢, Hy 7M f () + [T f )| + T (f 30) X

L’ (Q, %) averaging with 6 € (0, 1) and with respect to x’,

|T(f)(Rn\3Q)(f)|

= e\ At/ <L/ i (xl)lgdx’y i <L L f)(sg(x')l‘sdx’>5
101 Jo 101 Jo
< Cus (HK,ZMAf(x) + M(T f)(x) + <é / |Tf)(3Q(x')|5dx’> 5) )
o

For the last term we observe that by Kolmogorov’s inequality (Lemma [2.1)

0 AT IRY 0
(lQl/Q|m3Q<x>| dx> <2(525) 1Tlmpers /3Qf

1

<, (=) T e MO,
Summarizing
IT(f xama0) O < €5 (Hy 7M 4 f(x) + My(T £)x) + Tl 112 1o M f(x))
and this yields
My f() <5 (HgzMuf )+ MyTH) + TN o peMf()) . (44)

Now we observe that ||T'|| ;1 1. M f(x) < ||T'|| ;12 10 M 4 f(x), and since Lemma

2.5 provides the following estimate
1T o pe < (Hg 7+ TN 22 12),

we have that

({x ER" 1 HyzM,f()+ Tl o pe M f(x) > /1}‘

< Cn/ A <Cn(HK,Z + ”TJL2—>L2)|f(x)|> d (4.5)
R}’l
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Let us focus now on the remaining term. Since A € Y(p,, p;) taking into account
Lemma [4.1]

|{x ER" : M,Tf)(x)> ,1}( < / A <CA,M50T@> dx
RVI

where k = 2max{c,,,c,, } max {||M;oT || s o> |M50T || o - o . Now we
observe that for every 1 < p < o0

1 1
V|| s S8
”M(S(Tf)”me = ||M(|Tf| )”ng < cn,p,(S ”lel ||2151‘°°
= cn,p,& ||Tf||LPs°° S cn,p,éllTllLP—)LPv‘x’ ”f”LP'

This estimate combined with Lemma [2.5]yields
IMsoT || oy e < Cnps (HK,Z + ”T”L2—>L2) .
Hence

[{xeRr" : MyTf)) > 2}

£ (+6)
< ./[R" A <c”,p05171,5 maX{CAsPo’ cA,Pl } (HK,Z + ”T”L2—>L2) A dx.

Since @ is non decreasing, it is not hard to see that for ¢ > 1 cA(#) < A(ct). Using

this fact combined with equations (4.4), (4.5) and (4.6) we obtain (4.3). |

Armed with the preceding technical results we are in the position to prove Theo-
rem

Proof of Theorem

We fix a cube O, C R". We claim that there exists a %-sparse family 7 € D(Q,)) such
that for a.e. x € Q,

|7 230,))| < .7 Br()) (47)

where

Br(£)x) = I £ 1430 20)

Q€eF

Suppose that we have already proved (4.7). Let us take a partition of R" by cubes
O; such that supp(f) C 30, for each j. We can do it as follows. We start with a cube
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Q, such that supp(f) C Q, and cover 3Q, \ Q, by 3" — 1 congruent cubes 0;. Each
of them satisfies Q, C 30 ;- We do the same for 9Q,, \ 3Q,, and so on. The union of
all those cubes, including Q,,, will satisfy the desired properties.

We apply the claim to each cube Q;. Then we have that since supp f/ C 3Q; the
following estimate holds a.e. x € Q;

IT £ stg,(¥) = |T(f 130)(9)| < €7 B ()

. 1 . . .
where each 7; C D(Q)) is a ;-sparse family. Taking 7 = U F; we have that 7 is a
%—sparse family and

IT ()| < e er Br(f)(x)

From the discussion in Subsection[1.3.1]it follows that there exist 3" dyadic lattices
such that for every cube Q of R” there is a cube R, € D, for some j for which
30 C Ry and |Ry| < 9"|Q|. Now since 30 C R, and |R,| < 3"|30| we have that
||f||A,3Q, < Cn||f||A,RQ~ Setting

S;={R,€D, : Q€ F}

and using that F is %—sparse, we obtain that each family S; is ﬁ—sparse. Then we
have that

y
TSN < eer Y Ays (NG
j=1

Proof of the claim

To prove the claim it suffices to prove the following recursive estimate: There exist
pairwise disjoint cubes P, € D(Q,) such that > j |P;| < l|QO| and

|T(f)(3Q0)(x)|)(QO < CnCT||f||3QOZQO(x) + Z |T(f}(3pj)(x)|)(1>j-
J

a.e. in Q. Iterating this estimate we obtain with F = {ij} where {PI.O} ={Q,},
{le } ={P;}and {ij} are the cubes obtained at the k-th stage of the iterative process.

It is also clear that F is a %—sparse family. Indeed, for each ij it suffices to choose

— k k+1
Eﬁ_q\Ug .
J
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Let us prove then the recursive estimate. We observe that for any arbitrary family of
disjoint cubes P, € D(Q,) we have that

T(f)(3Q0)(x) )(Qo(x)
T(f 230, Zopy, 5,0+ 25 [T 230,060 15, (0)

IA

IA

T(f 230, )| Xo, 5,00+ X [T t300330)X)| 15,0 + X [T 138)(0)| 20, 0)
J J

So it suffices to show that we can choose a family of pairwise disjoint cubes P, €
D(Q,) with ¥, | P;| < %|Qo| and such that for a.e. x € Q,

|7 130,))| Hopy, 5,0+ X [T 2303 25,0
J (4.8)

< CnCT”f”?,Q)(Q(X)
Now we define the set E as

E = {x €0 : |fl> an”f”A,SQO}
U{x €0y : Myrg (N> acrllflasg,}-

Taking into account the convexity of A and the second part in Lemma [4.2]

@, |l /1l 430,

max{c, ,,C,, }C Hz+ Tl 2p2) | ]
+ C,,/ A »Po P17 "1PosPy ( ) dx
30

ancT”f“A,3Q0

1
5= f30, I/
< 3n 130l 30, Q + Cn |QO| A( |f| >dx

1Qol + — T
@1 1430 , 130l J3g /11430
0 0 0

2.3 ¢,
s( +—>@&
(04 a

n n

Then, choosing «, big enough, we have that

1

|E| < 2n+2

19yl
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Now we apply Calderon-Zygmund decomposition to the function y, on Q, at
height 4 = —. We obtain pairwise disjoint cubes P; € D(Q,) such that

)(E(x) S 2n+1

for a.e. x ¢ | P;. From this it follows that ‘E \U; P

satisfies that
2 1P =
J

|P N E| 1
2ﬂ+1‘|P|/”E TPl 2

from what it readily follows that | P, n E°| > 0.

n 1
<2"™E| < §|Qo|

and also that

/\

We observe now that for each P, since P, N E¢ # ,
Moo,T,QO (fHx) < ancT”f”A,3Q0
for some x € P, and this implies

€ss sup |T(f,¥3QO\3Q)(§)‘ < anchlfllA,3Qo
¢eQ

which allows us to control the sum in (4.8).

Now, by (1) in Lemma [4.2] since by Lemma 2.5 || T || ;1 j100 < ¢,(H, + Tl 12 12)
we know that a.e. x € Q,,

T/ 1130,)(0)| < €, O+ Mo, (1D ()

Since |E \ Uj Pj) = 0, we have that, by the definition of E, the following estimates
holdae. x € 0, \ U, P,

£ < @1 lLaso,
Mo 1.0, (/) X) < @, fll 430,

Those estimates allow us to control the remaining term in (4.8) so we are done. |
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4.2 Sparse domination for commutators

Intending to obtain a suitable sparse domination for commutators the first step is to
guess which would be the most suitable candidate. We recall that if 7" is a Calder6n-
Zygmund operator it satisfies the following Coifman-Fefferman estimate.

/ |T f(x)|Pw(x)dx < c/ Mf(x)Yfwx)dx weA,, 0<p<oo.
R" R"

We observe that the sparse operators that control T are built upon L' averages over
cubes, which are the same kind of averages that are used to build M. In the case of
the commutator we have that given b € BMO the following Coifman-Fefferman type
estimate holds (see [126]])

/ |[[6, T1f(x)|Pw(x)dx < c||b||’]’3MO/ Moo f(DPwx)dx weA,, 0<p<oco.
R" R"

Arguing as before it would be natural to think that a suitable choice of sparse operator
to control [b, T'] is the following

Bf)= Y flltgro

QeSs

Even though this guess seems quite natural it is actually false. That fact is contained in
the following result obtained in a joint work with C. Pérez [130] and that we present
now.

| Theorem 4.2. Let T be a Calderén-Zygmund operator and b € BMO. It is not
possible to find a finite set of n-sparse families {Sj }jvzl with N depending just on n,
contained in the same or in different dyadic lattices D; and depending on f such that

N
5. T1f (Ol < ¢y D Bsf(x) ae x€R (4.9)
j=1

where stf(x) = degj ||f||L10gL,Q Xo(X).

In [130] two proofs of this result were provided. One of them relies upon an ap-
plication of a Rubio de Francia algorithm and the dependence on p and p’ of the un-
weighted strong type estimate. The other one will be a straightforward consequence
of the arguments provided in Chapter [§| so we postpone it until that point. Let us
present then just the proof based on the Rubio de Francia algorithm.
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Proof.  Suppose that holds, then we can prove the following L' inequality
1B T1f | L1y < lwl g, 1M £l L1 )- (4.10)

Indeed, relying upon

al al w(Q)
” b, T]f”Ll(w) <c Z ”stf”L'(w) Z Z |f||L10gLQ |Q| |Q|

= j=1 Q€S;
l w(Q)

S Z Z ”f”LlogLQ | | |E(Q)|
j=1 Q€S;

CbT al

< — / M oo L f )M uw(x)dx

= 1Qes EQ)

< NT’[w]AI M2 f | 11y
since M* &% M, . Using (4.10) we can obtain the following L? version,

I[b, T]f”Lp(Rn) < Cnp”MQf”LP(R") p>1 (4.11)

Indeed, by duality we can find g > 0 in L” (R") with unit norm such that

106, T1f iy = / [, T/ () g x.
R’I

/

Now using the Rubio de Francia algorithm presented in Lemma [3.2| choosing ¢ = p
we have that
[Rg]Al <2|M|l <cup

and also that g < Rg and ||Rgl|;» < 2||g|l ./ ®n = 2. Then,

[ 115 oleax < [ 18,7170l Reod
Rn R”?
and using and Holder inequality
/ |[b, T1f (x)| Rg(x)dx < c [Rgl,, / M?f(x)Rg(x)dx
R~ R~

<ep / M2 F()Rg(x)dx < epll M2 F 1| | RE N v
R)’l

2
<cpl|lM f”LP(R")'
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Hence (4.11)) is established. Now since

2
||M2||LP(R") <c, (p/) p>1

we have that
2
B, T oy < cp (1) p>1 (4.12)
Now let us observe that if we take [b, H] with b(x) = log |x| and f(x) = o ;,(x) then
b, H1f Iy 2 cp® P> 1,

and this leads to a contradiction when p — oo. To prove this lower estimate first we
are going to see that

Hx € O.1) ¢ [[b HIf Xl > 1} 2ceV 1>, (4.13)

We note that for x € (0, 1) we have that

1 log(x) — log(y) 1 log(i) 1/x log(%)
0 0

dt.
11—t

[b,H]f(X)=/

0 X—=Y

Now we observe that

1/x log(;) og(5) 1/x log(+)
dt = dt + dt

log(2
and since 1g_i;) is positive for (0, 1) U (1, o) we have for 0 < x < 1 that

1+ Tog(H)
|[b, H]f(x)| >/ 1
1 - t

Finally, a computation shows that

1/x log(%) 1\2
/ dtz(log—) x — 0.
1 1 -1t X

Consequently, we have that for some x, < 1

112
b, H1f(x)| > ¢ <1og—) 0<x < x
X

and then for some 7, > 0,

{x €0, 1) : |[b, H]f(x)| > 1}
{xe(O,x&:e(log%) >t}‘=e“/’/_C t>1,

2
>
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as we wanted to prove. Relying upon estimate (4.13), it follows that for some #, > 0
1
Wb, H1f || Loy = 1| B, H] [l oy = Su(1)3t|{x €R : |[b, H]f(x)] > 1}]
>

1
P

2
> supt {xE(O,xO): c<10g1> >t}
>t X
-Vt
>suptcep >cp tye Vio

>1,

and this concludes the proof. |

Another possible approach that we may consider to look for a candidate can be
motivated as follows. We know that an w-Calderén-Zygmund operator satisfying a
Dini condition can be controlled pointwise by sparse operators, namely

Asf(x) = / FOdyxo(x).

& 2ol

We may consider the commutator [, A¢] and look for a suitable sparse control for it.
Assuming that b and f are good enough we can argue as follows.

[b. Aslf(x) = bAf = As(bf) = bx) Y foxo() = X (b )oxo)

Q€es Qes
= b(x) ) foxo() = D, ((b=bo)oxo() = Y, bofoxo)
Qes QesS Qes
= D () = bp) foxo™) = X (b= by) o xpX)
Q€es Q€S

Then taking modulus we would have that

|15, Al GO < D) 1B = bollfloao() + X (b= bp) Nloxotx)  (4.14)

Q€S Q€S

The operators in the right hand side of turn out to be the correct choice
to control [b, T]. Actually we are going to obtain versions of this control suited for
more general singular operators and for symbol multilinear commutators. This result
generalizes [[106, Theorem 1.1] and [81, Theorem 1].

| Theorem 4.3. Let A € Y(p,,p,) a Young function with complementary function
A. Let T be an A-Hérmander operator. Let m be a positive integer. For every compactly
supported [ € CX(R") and b, ..., b, € LIIOC(R”) such that |||b|,|| 4o < oo for every
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cube Q and for every 6 € C;(b) where j € {1, ...,m}, there exist 3" dyadic lattices D;
and sparse families S; C D, such that

3" m
T3S Ol < Cumer D, D, Dy AL (0.

j=1 h=0 c€C,,(b)

where

A5 (b, )0 = Y |66 = bol . || £ 15 = o,

Qes

x
40 Xo(X)
and ¢y =c,, , max{c, ,.c,, } (Hz+ Tl p2)-

If T is a w-Calderén-Zygmund operator, T it is also is a L*-Hoérmander singular
operator, with Hy < ¢,([w]p;,; + cx)- In that case the corresponding result follows
applying Theorem [4.3| with A(f) = ¢ which yields the corresponding estimate with
cr = [Tl 222 + [@]p;; + cx- We end this section presenting the proof of Theorem
4.3

Proof of Theorem 4.3

From the discussion in Subsection it follows that there exist 3" dyadic lattices
such that for every cube Q of R” there is a cube R, € D, for some j for which
30 C Ry and |R,| <970

We fix a cube Q, C R". We claim that there exists a %-sparse family 7 € D(Q,)
such that for a.e. x € Q,,

m

T3 s0,)0| S ey 2y D) BRb ) (4.15)
h=0 6€C,(b)
where
By (b, f)(x) = QZF |50 = b, |, |1/ 6=, |, 20

Suppose that we have already proved (4.15). We take exactly the same partition of
R" by cubes Q; such that supp(f) C 3Q; that was taken in the proof of Theorem .
Now we apply the claim to each cube Q;. Then, since supp /' C 3Q,, the following
estimate holds a.e. x € Q ;

T3/ ()] st0, (%) = |T5(f 230)(¥)| < e, By (b, ()
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where each 7, C D(Q;) is a %-sparse family. Taking 7 = (J ; we have that " is a

%-Sparse family and

m

T < coer D) Y, B, )

h=0 6€C,,(b)

Now since 30 C R, and |R,| < 3"[30] we have that || /|| s 30, < ¢,|lf |l .z - Setting
S;={R,€D, : Q€F}
and using that F is %—sparse, we obtain that each family S; is %w—sparse. Then we

have that .
5| < Cumer D, D, D, AL (0. )X

Jj=1 h=0 c€C,(b)

Proof of the claim li

To prove the claim it suffices to prove the following recursive estimate: There exist
pairwise disjoint cubes P; € D(Q,) such that ), | P;| < %lQol and a.e. in Q,),

|Ti,’(f)(3Q0)(x) | X0,

<y -t ot

h=0 c€C,(b)

+ DT 1) 2

X
ollaz0, )(QO( )

Iterating this estimate we obtain (4.15), exactly as in the proof of Theorem [4.1] Let us
prove then the recursive estimate. We observe that for any arbitrary family of disjoint
cubes P; € D(Q,) we have that

T5(f 230,)(%)| Z0,(X)

<[5 130, Zopu, 2, + X T 230,)60] 5, (0
J

< Tg(f)@go)(x) )(Qo\Uij(x)
+ Y |10 t0,50)00)| 20 + X [T 43)00)| 2,0
J J
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So it suffices to show that we can choose a family of pairwise disjoint cubes P, €
D(Q,) with 3, | P,| < |Q,| and such that for a.e. x € Q,

T3/ 230,00 o0, 7, )+ 2 | TolF 23,30 8, ()

m

<cer Y 2 [0 =bay | |7]0=ba,,

h=0 6€C,(b)

X0, ()

o l1A,30,

Following the computations of [132] p. 684] we can write

T =Y Y 1 (b0 - 1) T((b0)=7) ). @19

h=0 c€C,(b)

Using that identity we have that

IT3(f 230, Hopvo,p, + 2\ T3 3opap ) 2,
J

S Z Z )b_bRQo o T((b_bRQO)Gf}(3QO> IQO\U,'P,- (417)
h=0 c€C,(b)

+Z Z |b_bRQO GIZ‘T<<b_bRQO>O_fI3QO\3pj> )(Pj. (4.18)
h=0 c€C,(b) j

Now for h =0,1,...m, 0 € C,(b) we define the set E_ as

Moo}
o A30,

U {x €0y : Maro, ((b=bry,) f)>aser|||b b,

‘b—b

RQ0

EU:{erO : )b—bRQOL|f|>an

Moo}
o A30,

and we call E = (J;_, U, cc, s Er- Now we note that taking into account the convex-
ity of A and the second part in Lemma 4.2}

/Qo

b—b

b—bg, | I/

[

RQo

|E,| <

a,

Roo | & HA,3Q0

max{c, , s, Yy p (H;-i' ||T”L2—>L2) ‘b - bRQO‘g |1
+c, A dx
30, a,cr H ‘b —-b

Roy | & HA,3QO
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|1

/1 |Qo| ‘ RQO

el
»0%0

1
130, f390 b bRQo

<3" dx

RQO c RQO c ||A,3QO

2'3” cn
< ( +—> 1Oyl
a, a,

Then, choosing a, big enough, we have that

|E| < 1Ol

2n+2

Now we apply Calderon-Zygmund decomposition to the function y, on Q, at
height A = oo We obtain pairwise disjoint cubes P; € D(Q,) such that

+l

ZE(X) S 2n+1

for a.e. x & |J P,. From this it follows that ‘E \U; P

satisfies that
MLAE
J

|P,NE| 1
2"+1‘|P|/“ TPl T2

from which it readily follows that | P, n E¢| > 0.

n 1
<2"™E| < §|Qo|

and also that

/\

We observe that then for each P, we have that since P, n E¢ # {J, then

Mg, (- bRQO)U )@ < aer|||b=be, |,

lica,

for some x € P, and this implies

ess sup
teQ

r ((b B bRQO >o‘ f)(3Qo\3Q> (5)‘ < lr H ‘b - bRQO o H14,3Qo

which allows us to control the summation in (4.18)).

Now, by (1) in Lemma [4.2] since by Lemma 2.5 ||| 11, ;10 < ¢,(H 4 + I Tl ;2 12),
we know that a.e. x € Q,,

‘T ((b=bry, ) 1£1x30,) 0

< cyer [BX) = bry | 1f @+ Meirg, (5= bry, ) 171) )
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Since ’E \ U i PJ‘ = 0, we have that, by the definition of E, the following estimate

660 = b | 17 < |5 b | 7],
holds a.e. x € O, \ |, P; and also
MOO,T,QO <<b_bRQ0>6|f|>(x) San b_bRQO GfHA,3Q0

holds a.e. x € O, \ J; P;- Consequently

SCCT)Hb—b

RQO o'f”

'T ((b - bRQo>5 fZ3Q0> (x)

Those estimates allow us to control the remaining terms in (4.17) so we are done. |

A30,

4.3 Rough singular integrals and commutators

We begin this section presenting a sparse domination in the bilinear sense for rough
singular integrals. That result is a particular case that can be derived from the general
framework introduced in [32]. In that work, a general method to produce bilinear
sparse domination results is introduced and applied to rough singular integrals, to
Calder6on-Zygmund operators and to L"-Hormander operators.

| Theorem 4.4. LetQ € L'(S"") and let T, the rough singular integral associated
to Q. Then forall1 < p< oo, f € LP(R") and g € L” (R"), we have that

1 1/s
Tnedx| <e.Cs'sw 3 ([ 11) (i [ 16)"
‘/ng ) T ste;(Q ><|Q|Q )
where each S is a sparse family of a dyadic lattice D,

l<s<oo ifQe&LxS",
g <s<oo if Qe L% log L(S™1)

and

Q| [ o1 if Qe Le(S" ),
cT={” [PE (s") w1

”Q”Lq.l log L(S"1) lfQ c Lq’l log L(gn—l)'
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In [99] the preceding result was reproved in the case Q € L®(S"!). Relying
upon the techniques used in that paper, a suitable counterpart for commutators was
provided in [140]. Here we extend that result to symbol multilinear commutators.

| Theorem4.5. Let T, be a rough homogeneous singular integral withQ € L*(S"™").
Then, for every compactly supported f,g € C®(R") every b, ... b, € BMO and 1 <
p < oo, there exist 3" dyadic lattices D; and 3" sparse families S; C D, such that

3" m

KT f &) < b 19wy Y, D, D, BF (b f.8)  (4.20)

j=1 h=0 ¢€C,(b)

where

BF? o(b.f.8)= D {|b=bo|,, )rof8lb—bol,),0l0l

Q€S

Proof of Theorem |4.5

The proof of Theorem[4.5]is a direct corollary of a series of results that we will present
throughout this section. Those results are based in the scheme introduced in [99] and
generalize the results obtained in [140]].

Given an operator T we define the bilinear operator M, by

My (f 8)(x) = sup —— / IT(f ool 14,
0O>x |Q| (0]

where the supremum is taken over all cubes O C R” containing x. Our first result
provides a sparse domination principle based on that bilinear operator.

| Theorem 4.6. Let1 < g <rands > 1andm a positive integer. Assume that T is a
sublinear operator of weak type (q, q), and M maps L" X L* into L"*°, where % = % + é
Then, for every compactly supported f,g € C*(R") and every b,, ... b,, € BMO, there
exist 3" dyadic lattices D; and 3" sparse families S; C D; such that

3" m
(T3 ) < i DD, D BF{, s (b.f.8) (4.21)
j=1 h=0 c€Cy(b)
where
BF? (b, f.8)= D {(b=bg), )ro{(b=bp)yg)ol0l
Q€S
and

K =Tl pospoe + Myl prgps oo
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It is possible to relax the condition imposed on b for this result and the subsequent
ones, but we restrict ourselves to this choice for the sake of clarity.

Proof.  From the discussion in Subsection it follows that there exist 3" dyadic
lattices D, such that for every O C R”, there isa cube R = R, € D ;i for some j, for
which 30 C R, and |R,| < 9"|Q|.

Let us fix a cube Q, C R". Now we can define a local analogue of M, by

1
My, (f,8)(x)= sup — / IT(f x30,\30)1 1814y
03x,0CQ, |Q| (0]

For every o € C"(b) we define the sets E,(0), E,(o) as follows

E\(0) ={x € Qg : IT(f(b=bg, )s230)X)| > Ai(@)f(b=bg, )s)430,}

Ey0) ={x €0y : Myg,(f(b=bg, )os 8 = br, ), )x)

> Ay(0)S (b= by )o)r0,$8( = bry o), 100l }
We define
Q=] E0)UEy0).
Taking )
A1(0) = (e)"IT | o pas and Ay(0) = ¢, Ml oo

with c,, c, ., large enough we have that

n,r,v

1

|Q| S 2n+2

1Oy

Now applying Calderén-Zygmund decomposition to the function y, on Q, at height
A = —— we obtain pairwise disjoint cubes P; € D(Q,) such that

on+l

1
2n+1

1
IPI <|P,nE| < 3IP

and also |[Q \ U;P;| = 0. From the properties of the cubes it readily follows that
Y|P <310Q)| and P,n Q¢ # §.

At this point we observe that since [Q \ U; P;| = 0, we have that

[ AT = bry oS00 by Dol < 40Xy, [ 186y,
Op\V; P; Qo
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Also, since P; N Q° # {J, we obtain

/P. |7((b - bRQO)gf)(3QO\3Pj)| |(b— bRQO)gfgl

< Ay(o){(b - bRQO)f>r,3QO<g(b - bRQO)gl>S,QO|Q0|-

Our next step is to observe that for any family of pairwise disjoint cubes P; € D(Q,),

/ ITy(f 2ol

0y

- / T rg)llel + 3 / IT(f 2ol
Oo\V; P; J P;

< / T3 gl + Y / T30/ 2r0mar)le]
0o\, P i 7F

+ X [ 10zl
i e

For the first two terms, we recall that following the computations in [132, page 684]
we can write

m

Lfo=Y, ¥ D" (b0-7) T((b0-7) £)e0. @2

h=0 c€C,,(b)

Hence,

/ T3 sgllel + Y / IT(f 230,030)le]
0)\U; P, 7 /P '

53 [ el () )

h=0 c€C,,(b)

SR EAR (AR

h=0 c€Cy(b) j

lg(x)|dx (4.23)

|g()ldx (4.24)

Therefore, combining all the preceding estimates with Holder’s inequality (here we
take into account ¢ < rand s > 1) and calling A = ZU(AI(G) + A,(0)) we have that

[ 10 molsl < 3 [ 150l
Q9 J P;

A D (S0 =bry Vo0, (b= br, )w8)s0,100].

h=0 c€Cy(b)
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Since )] i |P;| < %|Q0|, iterating the above estimate, we obtain that there is a %-
sparse family 7 C D(Q,)) such that

/ IT(f o )lIgl S A D DA =g ragl(b—br,)y@)olOl  (4.25)
Qo

h=0 c€C,(b) QEF

To end the proof, take now a partition of R" by cubes R; such that supp (f) C 3R,
for each j as in the proof of Theorem[4.1] Having such a partition, we apply (4.25) to
each R;. We obtain a %-sparse family 7, C D(R;) such that

[Tl 4T T T A= b ) al® - br)oe),ol0
R.

J h=0 c€C,(b) O€F;

Therefore, setting F = U iF

JREEYS MDD MR RN CE RS IATe)
5

h=0 c€Cj,(b) QEF

Now since 3Q C Ry, and |Ry| < 3"|3Q|, clearly (h), 39 < ¢,(h), g, Further,

setting S; = {R € D, : Q € F},since F is %—sparse, we obtain that each family S;

o1
is —-sparse. Hence
2.9

3" m
[N <A Y 3 P (b= 80,040~ by, sl
.

j=1 h=0 6€C,(b) Q€F
and (4.21) holds. |

Given 1 < p < oo, we define the maximal operator M, by

1/p
Mp’Tf(x) = sup <é/ |T(f)(Rn\3Q)|”dy> .
o

0O>x

Our next step is to provide a suitable version of [99, Corollary 3.2] for the com-
mutators. The result is the following.

Corollary 4.1. Let1 < q < rands > 1 and a positive integer m. Assume that 7T is
a sublinear operator of weak type (g, q), and M, ;- is of weak type (r, r). Then, for
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every compactly supported f,g € C®(R") and every b, ... b,, € BMO, there exist 3"
dyadic lattices D; and 3" sparse families S; C D; such that

m

.
(T3S o) S ek D, D, D, BFL s (b, 18)

J=1 h=0 6€C,(b) !

where

BF? (b, f.8)= D {(b=bg), )ro{(b—by),8)0lQl

Q€S

and
K = IlT”Lq_)LqA,oo + ||MS’,T”L’—>LK°°'

Proof.  The proof is the same as [99] Corollary 3.2]. It suffices to observe that
IMpllprxpsmpvs < CAIMy pllprmpns (1/v=1/r+1/s),

and to apply Theorem |

Remark 4.1. At this point we would like to note that if 7" is an w-Calderén-Zygmund
operator, with w satisfying a Dini condition, since M, ; is of weak-type (1, 1) with

”Moo,T”L‘—»lem <c, (CK + T2 + ”0)”1)1111)
as was established in [97, Lemma 3.2] and we have that
IT s pie < € (1T N2 + ol

then from the preceding Corollary it follows that we can recover a bilinear versions
of the sparse domination established in [[106, Theorem 1.1] and in [81, Theorem 1] in
the case of Calderén-Zygmund operators.

In order to use Corollary [4.1] to obtain Theorem we need to borrow some
results from [99]. Given an operator 7', we define the maximal operator M, ;- by

M, f(x)= Zup(T(f Xrn30)Xo) (A0 0< A<

That operator was proved to be of weak type (1, 1) in [99] where the following esti-
mate was provided.

| Theorem 4.7. IfQ € L®(S" 1), then

1
1M, 112110 < Gl R e (14108 7) 0 <2< L. (4.26)



78 QEJANTITATIVE WEIGHTED ESTIMATES FOR SINGULAR INTEGRALS AND COMMUTATORS

Also in [99] the following result showing the relationship between the L! — L:®
norms of the operators M, ;- and M, was provided.

Lemma 4.3. Let0 < y < 1 and let T be a sublinear operator. The following state-
ments are equivalent:

1. There exists C > 0 such that for all p > 1,
”Mp,Tf”Ll_,Ll,oo <Cp,

2. There exists C > 0 such that forall0 < 4 < 1,
1 14
WM, +fllpope £C (1 + log ;> .

At this point we are in the position to prove that Theorem[4.1|follows as a corollary
from the previous results. Indeed, Theorem [4.7| combined with Lemma[4.3|with y = 1
yields

M, e £ 6PIR Lo

with p > 1. Also, by [145]], we have that
”TQ||L1—>L1-°° S c ||QI|Lw(§n—l)~

Hence, applying Corollarywith g=r=1ands = p> 1 we are done. |

4.4 Sparse domination for vector valued extensions

The results that we present in this section are essentially part of a joint work with M.
E. Cejas, K. Li and C. Pérez [21]]

4.4.1 Sparse domination for vector valued Hardy-Littlewood maximal
operators

This subsection is devoted to present a sparse domination for vector valued Hardy-
Littlewood maximal operators. The proof will rely upon the Lerner-Nazarov formula
that we presented in Theorem
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| Theorem 4.8. Letl <g< o and f = {7} y such that for each € > 0

{xe[ R, RY" |Mf(x)|>e}

= o(R").

Then there exists 3" dyadic lattices D, and 3" é-sparsefamilies S, C D, depending on
f such that

3"!
M, f()] <e,, ZAZkIfIq(X)
=1

1
1 a
where A% 111,00 = (Zoes, (5 fo1/1,) #0)
Proof. We are going to prove

1

3 q
M, f(x)<c, ;(QZ; <| ] / |f|> xQ(x>> : (4.27)

First we observe that from Lemma [2.4]it readily follows that

3"
Mf(x)<c, Y MPf(x).
k=1

Taking that into account it is straightforward that

.
M, f(x)<c, Y M. f(x). (4.28)
k=1

Now we recall the following estimate for Lerner’s oscillations

w, (31 7)) <2 <|Q|/|f|>

that was established [38, Lemma 8.1]. Since by Proposition

w, (M, r)0) <2, ((M, )% 0).
(7)) < (g1 1)

then,
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Using now Lerner-Nazarov formula (Lemma there exists a %-sparse family S ¢ D

such that
M X< ) w Xo(%)
z (75 50) 0
< Zona > (& [ 171) 7o
< — Xo(X).
QesS Q o ©
Consequently

1

Hff(x)gcn,q<2< 1 / |f|> xQ<x))
E\lo|

—D
Applying this to each M . “ £(x) in (4.28) we obtain the desired estimate. |

4.4.2 Sparse domination for vector valued Calderén-Zygmund oper-
ators and commutators

Again exploiting techniques in [97] and in [106] we can obtain a suitable sparse con-
trol for vector valued extensions of Calderén-Zygmund operators and commutators.

| Theorem 4.9. LetT a w-Calderén-Zygmund operatorand 1 < q < co. If f = {f;}
and|f|, € LY(R") is a compactly supported function, then there exist 3" dyadic lattices
D, and 3" %—sparsefamilies S, € D,. such that

.
T, 760| < cer Y, A1)
k=1

where A f(x) = ZQES IEII f FWdyxo(x) and cp = cg + [@]pi; + 1T ] 12 12

For symbol multilinear commutators the corresponding result reads as follows.

| Theorem 4.10. Let T a w-Calderén-Zygmund operator m a positive integer and
l<g<ooIff ={f}and|f|, € L*(R") is a compactly supported function and
b,,...b, € L;OC and such that |b|, € Lfocfor everyo € C;(b) where j € {1,...,m},
then there exist 3" dyadic lattices D, and 3" %-sparsefamilies S, € D,. such that

3" m
(T, f GOl < eumer D0, D Al (b1 F1)E)

j=1 h=0 ¢€C,,(b)
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where

A 56 ) = 3 1660 = bl . |1 16 = bol, |, , 2000
Q€S ’

and cp = cx + [@lpy + 1T |l 22 12

Proofs of Theorems 4.9/ and |4.10

The proofs of Theorems and follow, with straightforward modifications, the
same scheme as the proofs of Theorems [4.1] and [4.3| respectively so we will omit the
corresponding proofs. The idea is that it essentially suffices to replace the techni-
cal Lemma by suitable estimates for vector valued extensions. Those estimates
are provided in the following result. For the proof we will follow the scheme in [97,
Lemma 3.2].

Lemma 4.4. Let T an w-CZO with w satisfying Dini condition and 1 < g < o0. The
following pointwise estimates hold:

1. Forae x € Q,
IT(f 2301 < ¢TIl prs | £ 1,0 + My o f(x)
2. Forall x € R"
Mz () < ¢ (@i + e )M, f () + T, f (x).

Furthermore

HM;q L < Cuylr
where ¢, = cx + [@lpi + 1T || 122 12

Proof.  First we prove the estimate in (1). Fix x € int Q,, and let x be a point of
approximate continuity of T',(f x30,) (see [54, p. 46]). For every € > 0,

E={yeBe.s) : IT,(f1:0)0) = T,(f 220)0)] <e |

we have that lim lES(x)ll = 1, where B(x,s) = {z € R" : |x — z| < s}.

520 B(x,5)

Denote by Q(x, s) the smallest cube centered at x and containing B(x, s). Let s > 0
be so small that O(x, s) C Q. Then for a.e. y € E (x),

1T, 230) ST (f 130) W) + € ST (f Zaps) D + Mz f() +€
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Now we can apply the weak type (1, 1) estimate of Tq. Then

IT ,(f X30,) )|
< ess. 1(n)f T ,(f X300e) D + Mz o f(x) + €
= 1
<|IT o T—— + M= + €.
<NT Npisp E.00)] 3Q(M)Iflq 7,0,/ (X) + €

Assuming that x is a Lebesgue point of | f|, and letting s — 0 and € — 0 proves the
estimate in part (1).

Now we focus on part (2). Let x,& € Q. Denote by B, the closed ball centered at
x of radius 2diamQ. Then 3Q C B,, and we obtain

1T ,(f 2m30) O] < T, (f 2 )& + T (f x5.130)©E)
< AT ) (f 2am5 )& = T o(f e )X
+ 1T ,(f 28.30) ] + T, (f m )|

By the smoothness condition, since ||a|” — |b|"| < ¢,|a — b|" for every r > 0 we
have that

T ,(f Xen5)E) = T ,(f X 5.)(X)]

= <Z IT(f,-an\B)(f)l‘I) - <2 |T<f,.;(W\BX><x)|q>
Jj=1 j=1
S Cq (Z ‘T(fJXIR”\BX)(g) - T(fj,}/Rn\Bx)(x)‘q)
=1

Since )T(fj;(Rn\Bx)({,‘) — T(fj;(W\BX)(x)‘ < ¢ l@]piiM f;(x) we have that
T ,(f X5 )E) = T ,(f X 5,0

1Y) g 7 o
< 0l | 2 |M70| ) = ey lolomM, /()
j=1
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On the other hand using the size condition

T ,(f X530 < <Z IT(f,-)(BX\3Q)(§)|">

j=1

< ccx <i<|31 |/ 1) )

< e (Z Mf,(x)) ) < c,cx M, f(x)

Jj=1

To end the proof of the pointwise estimate we observe that

IT ,(f Xm )OI < T*, £ (x).

Now, taking into account the pointwise estimate we have just obtained and Theorem
it is clear that
[+

This ends the proof. |

< .
LisLbe = CngCT







5 ‘ Weighted strong and weak type
(p, p) estimates

51 A,—- A, estimates

5.1.1 Singular integrals

In this section we are going to deal with strong and weak type estimates for singu-
lar integrals. The approach we will follow will mainly rely upon sparse domination
results. We start borrowing a result that was established in [[76]].

| Theorem 5.1. Let1 < p < oo andr > 0. Let S a n-sparse family. Let w € A, and

1

let us also call 6 = w'-r. Then

1 (1_1)* 1
”S;”LP(LU) S cn’p’r’r][w]j;p [w]A; 8 + [O-]'I;oo

where S f = <ZQ€S <|13| fQ f(J’)dy>r;(Q(x)>% and (% _ i>+ =1_Lifp>rand0

otherwise. If additionally r # p then

N |-

1
p

el

”S; ”Lp(w)_,me < Cn,p,r,n[w]zp[w]Aw

Taking into account (4.2), the preceding result with r = 1 allows us to obtain
quantitative weighted estimates for Calderén-Zygmund operators satisfying a Dini
condition that had been already obtained in [77] in the case of Calderén-Zygmund
operators satisfying a Holder-Lipschitz condition.
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| Theorem 5.2. LetT aw-Calderén-Zygmund operator satisfying Dini condition and
l<p<oolfwé€E A, then

1Tl < €rerliely, ([w] 7 +lol, ) 10 v

and also . B

”Tf"pr(w) ¢ CT[w]A [w]A ”f”Lp(w)
where ¢ = cx + [@]pig + 1T |l 2 1o
Relying upon Theorem 5.1|result we can establish also a quantitative estimate for

A-Hormander operators. In order to do that we need an approximation result that
was established in [17]].

Lemma5.1. Let A Young function and Q a cube. Then

At% 1 %
||f||A,QSC(stlZJ¥> (t) ><@/Q|f|’dx> r>1

With the preceding results at our disposal we can state and prove the promised
quantitative estimate for A-Hormander operators that was obtained in [81]].

| Theorem 5.3. Let A € Y(p,, p,) be a Young function with complementary function
AandT an A Hormander operator. Let 1 < p < oo and 1 < r < oo and assume that
AD)T

K, 4 = sup,., < 0o. Then, for everyw € A,

! 1

0T £ W iy < eaer K aleel, ([w]" +lo /,15;00) 1/ 1 oo (5.)

1
[
v

wherec,, = w

Proof. As we observed before, combining Lemma [5.1] and Theorem [5.1] and taking
into account the sparse domination in Theorem 4.1}

3n
1T Fll iy < c, Z( / <AAsf)>

p 1/p
T Z (/ <Z ||f||A,Q}(Q(X)> dx)
Jj=1 R" \ ges
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3" 1/r P
< Culr Z Kr,A / Z < / |f|r> ){Q(x) dx
j=1 R \ ges [

1/r 1/r
= c,er ) KAl AL AL IO
j=1

1/p

11 r\l
rr =3 T rr 1
<c, e K A[w]”// <[w]( ) +1o,, :/ > A,

L/ (w)

1

1 L
= chTKr,A[w]zp/r <[l'0]23o P/r > ||f”LP(w)
as we wanted to prove. |

It is also possible to provide another quantitative result for A-Hoérmander oper-
ators that relies upon a “bumped” variant of the A, class in the spirit of [39, 125].

| Theorem 5.4. Let B € Y(p,, p;) be a Young function with complementary func-
tion B and let A, C be Young functions such that for a given t, > 0 we have that

—1 —
AT'(HB (1)C(t) < ct foreveryt > i, with A € B,. Let T be a B-Hormander opera-
tor. Then if w € A, is a weight satisfying additionally the following condition

0= sp 2 w(0) “w-i ’
4@ 10|
we have that
1 1
”Tf”Ll’(w) [w]A (C) w]z[)”f”Lﬂ(w)' (52)

Proof. Using duality we have that

sl = 0 3 Ilsg [ s

||g||Lp( y2=1oes

Now we observe that, since 0 /Q gw < inf, M (g), then

1 v P
- E,) < M (g)”
QZES(LU(Q)/Qg) w( Q)—Qéq . (@ w

< / Mgy w< e, llgll”,
Rn

L (w)
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—1
Since we know that A~!(r)B (1)C~!(t) < ct for every t > f,, some t, > 0, applying
generalized Holder inequality we have that

11 - 1 _1
”f“B,Q =l fwrw ””B,Q < c1||fw”||A,Q”w ””c,Q

Since A € B,, we have
1 1
Y lrw gl Eols Y, [ Myrwly
oes ges Y Eg
1
< [ Mty 54

1
S Cn’p/ (pr)p = cn,p”f”ip(w)'
Rn

Then, taking into account (5.4) and (5.3),

1 _1
T lno [ £ X Mrwtlole o [ &
o (o]

oesS Qes

. N .
=y 3wl gl 8D (b [ )iy

1
Qes |EQ|5 w(EQ):7

1 =
Tl 1 p
< c,5up co WO S | fuwi 0l Eol

1
0 |Eole w(Ey)? oes

(2 (i ) )]

1
lw>lico w(Q)
< Cp,pSUP 1 1 ”f”Lﬂ(w)”g”Lp’(w)’
© |Egle w(Egy)”

and we are left with controlling the supremum. Now we recall that for every mea-
surable subset S C Q, as a direct consequence of the linear dependence on the A,

constant of the weak-type (p, p) of the maximal function,

p
w(@) <c, <||%||> [w]y w(S).

Choosing § = E,, in the preceding inequality and taking into account the properties
of E,, we have that
w(Q) < clwl, w(Eq)
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we have that

10 o w(@) w(@)? w(@)"”

T T = ”w—l/p”C’Q |E |1/p w(E )I/P’
|EQ|p LU(EQ)I’ (@) o
— ¢ [lwF| w(@)'? w(@)'"”
=c, w c.0 |Q|1/p LU(EQ)I/P
L w@)
< y _—
= cP[w 4,(C) w(EQ)l/”,
1 1
S npr][w]A (C)[w];p'
This ends the proof. |

In the case of rough singular integrals it is possible as well to provide a quantitative
estimate relying upon Theorem 4.4, The following result is borrowed from [32]].

| Theorem 5.5. LetQ € L%!'log L(S"™") such that /S"—l Q=0withl < g < . For
everyw € A, with q' < p < oo we have that

el

1T, ||Lp(w)_>Lp(w) < Cp, [w]

In the case of Q € L*. The first quantitative result was provided in [80]. The
approach to the problem in that work is based in making some clever adjustments
to the scheme that was successfully introduced in [53]] (see also [151] and [49]). The
method consists in using a decomposition of T, into more regular parts for which an
unweighted L? estimate with exponential decay is available. Then interpolation with
change of measure allows to combine the bounds for the pieces. Relying upon these
ideas the following estimate was settled in [80]

2
”TQ”LZ(W) < cn||Q||Lw(§,,,1)[w]A2

However the best possible estimate for every p > 1, that recovers the preceding esti-
mate in the case p = 2, was obtained in [111]] and reads as follows.

| Theorem 5.6. LetQ € L™ satisfying fgn—l Q=0andw € A,. Then

1 L 1

”TQ”LF(w) < C,,||Q||Loo(§n—1)[w]/’;p([w]f{w + [G]Zm)min{[w]Aw, [O']Am}, l<p<oco.

In particular,
P

1Tl Loy < €l poo(sn- 1)[w] , 1 <p<oo.
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We also have the following weak type estimate

1 1+L

+
||TQ”LP(W)_>U,00(W) < cn”Q”Lw(gnfl)[w]zp[w]Amp

which combined with the the strong type estimate yields

[ ]r:[i]n{lm } )

”TQlle(w)_,Lp,oo(w) < cn”Q”Lw(SH) w

Proof.  'We begin observing that Theorem [4.1] with s = 1 + ¢ yields

2 101(/) (&) 14e0-

Qes

Using [109, Theorem 1.2] with p, = 1 and g; = 1 + ¢, have that

1 1 1 1

¢ T, Tte o > o
(T, < =0l 7wl + 1O o I8l )

where
1 + & "\’ £
— (¢ ) p-D+1=p+—L
p pP—(~0+¢)
[+ 142 L
U= Gl+s—p/ = Ww pl_(l+e), u= wl—p =o0.
By definition,

L 1 11
-1 v V| =1 =)

(0] 7 _sup / ty <1+5> e (—/0') e
! 0 191 Jo

v

ep/
= Sup / p (1+&) p —(1+¢€)
101 Jo

Taking into account Lemma[3.5] let

/-\ Q
§|~
S~

Q

~

ep’ _ 1
p—~U+¢) 2rn[w]Aco

Then
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Now we observe that choosing 6 = , then

47, [w ]A
p
pl-(1+e)

1 , —_—
<L/01+5>m _ (L/w(1+5)<1+p—,j("l+£))><1+a)(1+p,71m)
10| o) (9 10)

We observe that (1+6) (1 + ) <1+

p—(l+e)

. Then, by reverse Holder inequality

TplW Ago
we have that

1+
o' (l+e)

(L/w(“‘”(lﬂ'fﬁﬂ))m <4<L/w>l+m
101 Jo — N0l o

and from this point, by Jensen inequality

1+L o
(L/w> T—(70 < L wl+P'*<p‘+f> _ L/U
10l Jo 10| Jo 101 Jo

Hence by the second part of Lemma we have that [v], < ¢, [w],_. Altogether,

1 1

+ [o] oo)”f”u(w)”g”y’(g)-

/

KT f,g) < cn,T[w] Jwly (wly

The above estimate implies that

1 1

L 1
”T(f)lll_p(w) < CnT[w] [w] ([I/U]f;oo + [G]Zw)llf”u(w)-
Since T is essentially a self-dual operator (observe that T is associated to the kernel
Q(x) := Q(—x)), by duality, we have

1

_tlely )

:; ==

1
T\ Loy = ”Tt”LP'(O') < CnT[O-],I; [U]A ([w]

= ¢, (W]’ o1, (Ll ’ +[o]:; ).

Thus altogether, we obtain

1 1 1

T oy < €yt ([wli + (o1, )min{[o],_,[wl], )

- in[ ]p 1

Now let us consider the weak type inequality. By the sparse domination formula
in Theorem [4.4] we get
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(T f )] < ers’ (1 Dollgwl )yl

Qes

Then, Holder’s inequality yields

L R N
(lgwl’)y < (gl w) 5wt ")

Let . |
s=l+——— r=14—.
SPT;',[I’U]ADo 4p
Then it is easy to check that
1, 1 1
sr<l+—<p, and(s——)r—s+—<1+—.
2p r—1 T,[wly_

Combining the arguments above we obtain

KT fo g0 < eyl D AIf Dollel ) (why *|

Qes

= cprliel 3 (1700 s /Q el w0dx) (@)

Qes

<c,rlwly, / Z<|f|>Q}(QM5gLde

QeSs

<c,rlwly

Z<|f|>Q)(Q

Qes

” Msrg || LIJ/J (w)
LP®(w)

Thus, we conclude that

1

l+
KT f,gw)| < Cp,r[w] [W]A ”f”u(w)”g”u’l(w)

Finally by taking the supremum over ||g||;,.1(,, = 1 we have that

1+ 1
! 2
TSl <c “Q”Lw(gn—l)[w]Amp [w]zp”f”u(w) < cn”Q”Loo(§n—l)[w]Ap||f||Lp(w)-



5. WEIGHTED STRONG AND WEAK TYPE (p, p) ESTIMATES 93

5.1.2 The commutator and the conjugation method
The following lines are devoted to introduce the so called conjugation method for the
commutator which can be traced back to [31]].

Let T alinear operator. Let us call T,(f) = e**T(fe~?*). We first observe that using
Cauchy Integral Theorem

d 1 T.(f)
T"f =—T. = — dz, > 0.
b f dzm Zf z=0 2ri |z|=¢ Zm+1 ¢
If || - || is a norm then using Minkowski inequality we may write
IS < 5—= sup [IT-(/)ll
TE |z|=¢

Hence the question reduces to establish the following estimate

IT (O <« f1l

uniformly in z for a suitable €. In the following theorem we presenta A, — A, estimate
for iterated commutators using this approach.

| Theorem 5.7. Let1 < p < oo and 1 < q,,q, < p. Let T a linear operator and
beBMO.Ifwe A, ,veEA,, and

”Tf”l_p(w) < KTCn,p(P(Va W)”f”LP(U)

where V = ([U]qua [U]Aoo’ [GU]AOO)’ W = ([w]Aq1 , [W]Am, [Gw]Am) and @ is a non-
decreasing, continuous function such that (0) = 0, then

WT," f 1 oy < CapllbllgmoXr ol 1 oo
with
m
Krwo = kr@ (VW) ([w]Aw +[o,), +[v], + [aU]Aw)
where

V' = (Cn,qz[U]qu, Cn[U]Am’ cn[Gu]Am) and W'= (cn,ql [w]Afn s cn[w]Am7 cn[aw]Aw)'

Proof.  As we noted before the statement of this result, we have to obtain a uniform
estimate for ||7,(f)|| s, for a suitable choice of € > 0. We observe that

Re (=bz) ,Re pb Re (—b
TS oy = NTCf NP Ly = IT(f TP poercinny-
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min{e, , £, ,)

2llbllpmo ([l 4, +ow]a,, +vla +lou14,)
3.11|we have that weR¢®b? ¢ A, and peRe@hz) e A, . Then

Now we observe that taking € = by Lemmas (3.10{and

Re (=b Re (—b
IT(fe e Z))”Lp(weke(pbz)) <kl fe e Z)”Lp(ueke(pbz)) = ||f||Lp(U)
where
I7 — ([UeRe(pbz)]qu’ [UeRe(pr)]Aoo’ [O-UeRe(pr)]Aoo),

T R R R
W = ([we* "], . [we ], [0, )

and k = ¢, Kqu(V W). Again, taking into account Lemmas and [3.11| we have
that k < Cn’pKqu(V’, W) and we are done.

The preceding result is very flexible, since it allows to obtain quantitative weighted
estimates just having at our disposal quantitative estimates for the operator that we
commute with. Now we present a series of theorems that are a direct consequence of

Theorem [5.7] combined with Theorems and [5.6| respectively.

| Theorem 5.8. Let T be a w-Calderén-Zygmund operator. Let 1 < p < oo, w € A,
m a positive integer and b € BMO. Then

1

1T 11 < ¢ perliBllppoltol <[w]" +[o1; )([w] + 101, 1 M oy

| Theorem 5.9. Let A € Y(p,, p,) be a Young function with complementary function
A and T an A-Hormander operator. Let b € BMO and m a positive integer. Let 1 < p <

A(t)

o0 and 1 < r < p and assume that K, , = sup,,; —— < co. Then, for everyw € A

p/r’

1T F Wiy < €erllbl o Kpalily ([w] +[o /,]E;w><[w],4w 6,14 )" 1 W o
(5.5)

1
— oy Lo
whereo,, =w .

| Theorem 5.10. Let Q € L'(S"™") with [, , Q = 0. Let T, be a rough singular
integral, m a positive integer and b € BMO. Then if 1 < p < oo

”(TQ);,nf”Lﬁ(w) < cn,p”b”gMoKw,Q”f”LP(w)

where

1

+ [0, )y min{[w],_.[o],_}(wl,_+[o], )"

SN

©

1
Kpao = ”Q”Loo(gn—])[w]zp([w]
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if Qe L*(S"Handw € A, and

max{ 1,%}
=4

Kpo = 1] Lo log L(S"—')[w]Ap/q, ([W]Aoo + [Up/q/],qoo)m

if Qe L' log L(S" ) andw € A,

5.1.3 Estimates for vector valued extensions

The first result in this section is contained in [21]]. And it is a straightforward conse-
quence of the sparse domination results together with Theorem5.1]

| Theorem 5.11. Let1 < p,g< oo andw € A,. Then

M, sy S Cupglwly ([w]ﬁi‘x + [a];';m> 11 Loy

1 11
IM (Ol Lrowy < Cn,p,q[W]jp[W]S: ">*|||f|q||u(w) if p # q.

IfT is an w-Calderon-Zygmund operator. Then

1Ty (N iy < Cupgltol <[wli + [a]§m> 11 2oy (5.6)

T sy < Cupgltol 1y NS 1l P # 4.

We would like to point out that in the case of the maximal operator the sharp
dependence on the A, constant had been obtained in [38] but the mixed A, — A
estimates and the weak-type estimate are new. In the case of Calderén-Zygmund op-
erators the A, bound was obtained in [144] but again both, mixed A, — A, bounds
and the weak type estimate are new.

Now we turn our attention to commutators. We are going to prove that the con-
jugation method can be extended to the vector valued setting as well.

| Theorem 5.12. Let1 < p,q < o0 and 1 < q,,q, < p. Let T a linear operator. If
we Aql’ vE qu, and

IT o f 1oy < €a®V s WS N Lo
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where V = ([v], [U]A ,lo ]A ), W = ([w]A , [w ]Am’[dw]f\w) and ¢ is a non-
decreasing, continuous functzon such that @(0) =0, “then

[

Koo =@ (V. W') (lwl,_+[o,14_+[vl, +Ilo,]1 )"

w,v

Lo(w ) ”b”BMO wy”f”LP(w)

with

where
V' =g ltly sclvlyclol,) and W' =(c,, [wly e lwly,clo,],).
Proof.  We know that

myp __ d zb —zb
1) f = " T(fe™)

dz, €>0

= - N
z=0 2ri |z|=¢ zm+

where

z = T,(f) —eZbT<fb> z e C.
eZ

Taking that into account
T.(f)
/ iz
27[1 |z|=¢ Zm+1

[ é 0 q é
<Z IT,:"fj<x>|"> <Z )
Lw =1 j=1

Lr(w) Lr(w)

@D,

Now we use Minkowski inequality with respect to the measures dz and 9. Then

=1 T |\
<,Z‘ 2_m/|| o 47 ) <27rg’"+1 /m <Z |T(f)|‘1> dz

Lr(w) Lr(w)
Now we can use Minkowski inequality again and we have that

1 ol D\ .
Y /|Z|:8<Z|Tz(fj)l> dz Sy liug (ZIT(fN)

J=1
Lr(w) Le(w)

The rest of the proof is analogous to the proof of Theorem so we omit it. |

The preceding result combined with yields the following result.

| Theorem 5.13. Let T an w-Calderén-Zygmund operator, m a positive integer and
b€ BMO.If1 < p,q<ocoandw € A, then

(T, 7,000 < Cnnallblliolwl, <[w]j?m + [G]Zw> ([0l +10Ls )" W1l
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5.2 Bloom’s type estimates

In the 80s, S. Bloom [[12] obtained an interesting two weights estimate for the com-
mutator of the Hilbert transform H: if u, A € Ap, l<p<oandv = (,u//l)l/”, then
b € BMO, if and only if

(b, H]f”LP(/l) < c(p, 4, /l)llb”BMOv ”f”Lp(N) (5.7)

where BMO, is a weighted variant of the BMO space which is defined as the class of
locally integrable functions b such that

16l zrr0, = sup

! /Ib—bQIdx<oo.
o V(O) 0

In the early 90s, J. Garcia-Cuerva, E. Harboure, C. Segovia and J. L.Torrea [61]]
adressed this problem for iterated commutators of strongly singular integrals, namely
given r > 0 and a smooth radial function (x) with supportin {x € R" : |x| < 2}, the
convolution type operator T f (x) = (k * f)(x) defined with kernel k(x) = |x|™"e/*I™".
For that class of operators they established the following result.

| Theorem 5.14. Let1 < p < 0o and u, A € A,. Let T a strongly singular integral
1
and m a positive integer. Then, ifb € BMO 1 withv = (u/ ) then

”Tbmf”uu) < C/;,,,,g”f”u(ﬂ) (5.8)

The proof of that result relies upon a suitable M* estimate and on extrapola-
tion techniques. The authors claim that those arguments can actually be adapted to
Calderéon-Zygmund operators as well.

Quite recently, I. Holmes, M. Lacey and B. Wick [70] extended to Calderdn-
Zygmund operators satisfying a Lipschitz condition relying heavily upon Hytonen’s
representation theorem [73]] for such operators. They also provided a natural coun-

terpart for higher dimensions, namely if holds for every Riesz transform then
b € BMO,.

In the particular case when 4 = A = w € A, the approach in [70]] seems to recover
the quadratic dependence on the A, constant that was established in [25]. That was
observed in [71]] where the authors show that

II[b, T]”L2(M)—>L2(,1) < CT”b“BMO[V]A2 [M]Az[/ﬂAz-
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In the case of iterated commutators, besides the aforementioned estimate provided
in Theorem I. Holmes and B. Wick [71] proved that » € BMO, nBMO is a
sufficient condition for to hold. Shortly after that result was simplified by T.
Hytoénen [75] using the conjugation method. In view of it was a natural question
to think whether a quantitative version of could be provided, and also think about
the relation between the sufficient conditions » € BMO, nBMO and b € BMO . We
start dealing with the latter. The following result, that was established very rece;'lmtly in
[105] shows that b € BMO, N BMO is contained and in some cases strictly contained
inbe BMOV L.

Lemma5.2. Letu € A, and r > 1. Then

BMO, nBMO C BMO , .

L
-

(5.9)

Furthermore, the embedding (5.9) is strict, in general. Namely, for every r > 1, there
exists a weight u € A, and a function » € BMO , \ BMO.

Proof. By (3.6),
| /|b(x)—bQ|dxs%/|b(x)—bQ|dx
ur(Q)’/e u(Q)-10|" /e

S _ (L _
_c<u(Q)/Q|b(x) ledx> (IQI/le(x) bQ|dx> ,

from which readily follows.

1

S 1=

To show the second part of the lemma, let u(x) = |x|%,0 < @ < n. Thenu € A,.
Let b = u'/" = |x|*". Then b € BMO,,.;,. However, b € BMO, since it is clear that b
does not satisfy the John-Nirenberg inequality. |

Let us consider now some examples. Let » = 1 and let H be the Hilbert transform.
Set 4 = |x|"/? and A = 1. Then we obviously have that y,A € A,. Define v =
(u/M)? = |x|"/* and let b = v!/2 = |x|'/8. Then b € BMO, ., since for every
interval I C R,

1 1/2 12
vl/z(I)/Ilv —(v/%),ldx <£2.

Therefore, assuming that the remarks of the authors on Theorem are true, what
as we will see in Theorem is the case, then H 13 : L*(i) = L?. On the other hand,
taking I, = (0, €) with € arbitrary small, we obtain

1 1/2 1/2 5 ‘ 1/8 8 1/8 c
— — N > —
V(Ig)/jglv (V )IgldX— 5/4 . |X & |dx 51/8.
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Therefore, b € BMO, and hence, by Bloom’s theorem, [b, H] : L*(u) /> L.

On the other hand, set y = |x|~"/> and A = 1. Then again y, A € A,. Define
v = (u/A)"* = |x|~'/* and let b = v. Then, arguing exactly as above, we obtain that
b € BMO, (and hence, [b, H] : L*(u) — L?) and b € BMO, ..

In view of the preceding examples it is natural to wonder whether » € BMO 1
characterizes the two weighted L? boundedness. We end up the section presentingv a
result obtained in [105] in which we provide a quantitative version of and we
see as well that b € BMO . actually characterizes the two weighted L” boundedness
for pairs of A, weights. We would like to observe as well that the necessity condition
that we provide is the weakest known up until now (see [149, 82} [65]]) and the most
general since it allows to deal with two weight estimates.

1
| Theorem 5.15. Letu, A € A, 1<p<oco. Further, let v = <§>" and m € N.

(i) If b € BMO, i, then for every w-Calderon-Zygmund operator T on R" with @
satisfying the Dini condition,

m_Hmax{L;}

m m -1
1T vy < bW, (14141, ) N gy 510

(ii)) Let Ty, be an operator defined by

Tf(x) = / K(x, )/ )dy forall x & supp /. (5.11)
.

with K(x,y) = Q<ﬂ> L whereQ isa measurable function on S"~!, which

Ix=yl /) lx=yl"’
does not change sign and is not equivalent to zero on some open subset from S"~1.
If there is ¢ > 0 such that for every bounded measurable set E C R",

”(TQ)ZI(}(E)” ey S CM(E)I/p,

then b € BMO, /.

At this point some remarks are in order.

Remark 5.1. 'We would like to stress the fact that in (ii) of Theorem [5.15} no size
and regularity assumptions on € are imposed. Now we present a class of operators
satisfying both parts of the theorem. Assume that

Q(y/lyl)d
|y|"

9

Tof(o) = P-V-/ flx—y)
RH
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where Q is continuous on $"~!, not identically zero and / -1 Qdo = 0. Assuming
additionally that

w(8) = sup [Q(8) - QO]

|0-0'|<5

satisfies the Dini condition, we obtain that 7, satisfies both parts of Theorem

Arguing as in [31,[70}149], Theoremcan be used to provide a weak factoriza-
tion result for Hardy spaces. For example, following ideas by Holmes, Lacey and Wick
[70], one can characterize the weighted Hardy space H!(v) but in terms of a single
singular integral, in the spirit of A. Uchiyama [149]. To be more precise, under the
hypotheses and notation of Theorem5.15|and for the class of operators T, described
in Remark[5.1] we have

||f||H1(v) = inf{ 2 ”gi”LP’(A‘*P’)”hi”LP(M) Cf= 2 (gi(TQ)hi - h[(TQ)*gi) }
i=1 i=1

This can be proved exactly as Corollary 1.4 in [70].

Comparing both parts of Theorem for the class of operators presented in
Remark we have that the LP(u) — L?(A) boundedness of (Ty,);' is equivalent to
the restricted L?(4) — L?(A) boundedness. It is interesting that BMO,,;» does not
appear in this statement, though it plays a crucial role in the proof.

Theorem[5.15/answers as well the following question: what is the relation between
the boundedness properties of commutators of different order? Again, if T, is a sin-
gular integral as in Remark|5.1/and w € A, then Theorem implies immediately
that for every fixed k,m € N, k # m,

(T LP(w) — L*(w) & (Ty); : LP(w) - L*(w). (5.12)

Again, BMO is fundamental in this result even though it does not show up in the
statement.

However, in the case of different weights, an analogue of (5.12) is not true in any
direction, as it readily follows from the examples we presented before the statement
of Theorem

The rest of the section is devoted to establish Theorem For the sake of clarity
we will split the proof in two subsections.
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Proof of Theorem - Part (i)

The proof of this result in the case m = 1 was provided in [106]. Here we present the
argument provided in [105] which obviously contains the case m = 1.

Assuming by now that b € L" We rely upon the following sparse bound obtained
in Theorem 4.3 namely, there exist 3" dyadic lattices &, and sparse families S; C 9,
such that

3" m
T fOl < cuer DD (’") D 1b(x) = bo|"™* (i / |b—bQ|"|f|>zQ<x>.
Jj=1 k=0 k Qe€s; 10l 0

Hence it suffices to provide suitable estimates for

AP F) = Y 1b(x) = byl <|El|/ |b—bQ|k|f|> Zo(x).
(o)

Qes
where S is a sparse family from some dyadic lattice 9.
We start observing that, by duality,
m m— 1
AT Fllpy < sup Y (/ 184116 — byl ") — / b= bolIfI.  (5.13)
lgll, =1 5§ \J 0 101 Jo

We observe that assuming that b € BMOn, where 7 is a weight to be chosen later,
using Lemma [1.5| we obtain

|6(x) = bol <2 Ibllemo, D, Nexp(X):
PeS, PcO

Hence,

ok L gk
Q;(;(/Qmub bl >|Q|/Q'b bol“I/|
. 1 m—k
<cllbtgo, ¥ (157 Lisi( 3 wew)”) (5.1)

PeS, PCO

X<|13I/Q< > npxp>k|f|>|Q|-

PeS, PCO
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Now we notice that since the cubes from S are dyadic, for every / € N,

I
< 2 HPXP) B Z 77P177P2 rlplzplnpzﬂ“'ﬂp[

PeS, PcO P,P,,....PCQO, P.eS
< I Z NpMp, ---Np Xp-
PCP_,C+CP CO, PeS
Therefore,
I
[ 3 ma) <t X agnnngllgPl
o PeS, PCO P,CP,_,C--CP,CO, P,€S
Further,
> Np M, - Np Al p | P

PCP_,C--CP,CO, PES

= Z Nptp, ---Np_, Z |h|p,/’7~
B

P_C~CPCO. PES PCP_,.PES

< D npH, / As(lhln.
P_,C--CP,CO,PES P

- Z Mp ML, ---Np_, (Ag,ﬂlhl)PI_l |})l—1|’

P_,C--CP,CO, PES

where Ag,h = Ag(h)n and As(h) = Y ,cs hox,- Iterating this argument, we con-

clude that
!
i
L 3 mea) s [

PeS, PCO

where A’ denotes the operator A, iterated / times. From this we obtain that the
P S

right- hand side of (5.14) is controlled by

1 k / m—k >
b — [ A% A A
cllbllgyo, QZ€5-<|Q|/Q M(Ifl)) <|Q| , gl ) 10|

= clIbllgy, / Ag(A (1£D) AL (gl ).
Rn
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Using that the operator A; is self-adjoint, we proceed as follows:
k m—k _ _ k 5 m—k—1
/R As (45, (D) A, 1814 = /R As(AG, (7D)As (A gl D)
— (A ( Ak m—k—1 _ ( Ak+1 m—k—1
= /R As(As(A%, (17 D)n) A% (gl b = /R As (A5 (D) AT gl
R /R Ag(Agn(lfl))lgM.

Combining the obtained estimates with (5.13)) yields
145" F sy S 1BNGy0, 1A s (A%, (1S D) sy (5.15)

max 1,L
Using now the well known estimate || Al 5., S [w], { "7, we obtain
p

HAS(A™ (Dl S [ALL e '}nAm (DI
s\A4g, Le(y)y ~ A, Lr(2)
= uﬁj"{ "_}IIA (A5 LD o)
pS ([i]Ap[/ln”]A,,)max{ " l}HAm 1(|f|)||Lpu,7,,)

S ([ALy, [AnP1 [An*P1, oo LA™, T

Hence, setting # = v!/™, where v = (1/1)"/? and applying (5.15), we obtain

m—1 . . max{l T}
||Abm’kf”Lp(/1) S IIbII'.!’Movl/m ([’”Ap[ﬂ]Ap H[AI_ZMZ]AP> 1 2o
i=1

By Holder’s inequality;,

m—1

Ay, H = ([l [1)y)T =,

i=1
which, along with the previous estimate, yields

m—“max{l L}
2 P

VAT sy S Wbl (1314, L1, ) 1 2oy

Finally we observe that similar arguments to the ones used to obtain the preceding
estimate yield that if 5 € BMO,/, then b € L . Therefore the proof of part (i) is
complete.
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Proof of Theorem - Part (ii)

Prior to presenting the proof of Part (ii) we need a technical lemma. We start noticing
that that, by Chebyshev’s inequality,

up,(/:0) < 7o 0 <4< 1) (5.16)

We remit to Subsection for the definition and some properties of @,(f; Q).

F. John [83] and J. Stromberg [147] established that the converse estimate holds
as well for 1 < % providing an alternative characterization of BMO in terms of local
mean oscillations.

Arguing analogously, for every weight #,

Slép@(f;Q)% < /lllf”BMO 0<A<1).

In our next lemma we will show that assuming n € A_, the full analogue of the
John-Stromberg result holds for 4 <55 ~. This fact is a consequence of Theorem.

Lemma53. Letn € A_.Then

[ 1
I/ lawo, < esup @30, 25 (0< 4 < 555). (517)

where ¢ depends only on #.

Proof. Due to the fact that @,(f; Q) is non-increasing in 4, it is enough to prove
5.17) for A = —. Let Q be an arbitrary cube. Then, by Theorem

2+2

/lf—fQ|dx < 2/|f—mf<Q)|dxs4 > @ (f1P)IP]
0 0 2

PeS,PCO
P
< 4<supa) L (f; P)%) Z n(P).
2 (P) PES,PCO

Using that S is sparse and arguing as in the proof of (3.12) since # is an A weight
we obtain

> a(P) < clnl,_n(Q).

PeS,PCO

which, along with the previous estimate, completes the proof. |
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With the preceding lemma at our disposal, we observe that, since u, 4 € A, imply
by Hélder’s inequality that v!/™ € A,, in order to establish part (ii) in Theorem
it suffices to show that there exists ¢ > 0 such that for all O,

@_1_(b:0) < (v, (5.18)

The proof of is based on the following auxiliary statement.

Proposition 5.1.  There exist 0 < g,,&, < 1 and k, > 1 depending only on € and n
such that the following holds. For every cube QO C R”, there exist measurable sets
ECQ,F Cky0and G C E X F with |G| > &|Q|* such that
(©) @_1_(b;0) < [b(x) = b(y)| for all (x, y) € E X F;
on+:
(i) Q(ﬁ) and b(x) — b(y) do not change sign in E X F;

(iii) |Q<

22| 2 g forall (x.3) € G.

Let us show first how to prove using this proposition. Combining properties
(i) and (iii) yields
°(+=0)
lx — vl

diam Q for all (x, y) € G, we obtain
dt=

|x — yl
By property (ii), (b(x) - b(y))mQ <ﬁ> does not change sign in E X F. Hence, taking
°(+=)

lx — vl

/(b(x)—b(y))mQ< x_y> D
F |x =yl / |x=yl"

dxdy.

& (b;0)"G| < - // 16(x) — b(3)|"
72 g Mg

ko+1
2

From this, and using also that |x — y| <

dxdy
|x = yl"

. - 1 (ko+1 " m
@ 500161 < —(=7—n) IQI//GIb(X)—b(y)I

also into account that |G| > &,|Q|?, we obtain

. 1 ky+ 1 n
L (h;O)" £ — —
@_1 (b:0) gog()( 2 ﬁ) 01/ /»

1 rko+1 n
- %(02 ﬁ)@/E

Observing that (T,)}" is represented as

dydx
|x — y|"

|b(x) = b(»)|™

dy

|x — y|

(To), f(x) = /

RH

(b(x) — b()"Q ( Al ) )

(x & supp f),
|x — ¥l
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the latter estimate can be written as

o, .07 <5 [ Tl (5.19)

where ¢ depends only on Q and n.

By Holder’s inequality,

1 1 1/p L 1/17’
@/EKTQ)ZI(}(F)WX < @ (/E |(TQ)Zn()(F)|p/ldx> (/QA p1> _

Using the main assumption on T, along with the facts that F' C k,Q and u € A, and
taking into account that A, weights are doubling, we obtain

1/p
< |(TQ)Z’()(F)|”MX> < cu(F)'? < cp(0)'”,
E

which, along with the previous estimate and (5.19), implies

1 r sy N\
01 jon2(b; Q)" < — — [ A .
1 (b 0) c<|Q|/Qu> <|Q|/Q )

Now we observe that combined with Hélder’s inequality yields

1 /> < <L / 1/m>’"”<i / A>
<|Q|/Q“ =\1a1 /," o1 /, '

Therefore, taking r = mp + 1, we obtain
m /p A\ WP
1) ()
10| 10|

| =

m

)
gl

@y jpna(b; Q)" < C<|

< c <
|
which proves (5.18).

We devote the rest of the subsection to the proof of Proposition We proceed

Q

Vv

Q

|H
ro\ztc\a

as follows. Let & C S"~! be an open set such that Q does not change sign and not
equivalent to zero there. Then there exists a point §, € X of approximate continuity
(see, e.g., [54, p. 46] for this notion) of Q and such that |[€(6,)| = 2¢, for some ¢, > 0.
By the definition of approximate continuity, for every € > 0,

. o{f € B,o)n S 1Q0) - Q0| < €}
lim

=1,
-0 c{B(6,,6)n S}
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where B(6,,0) denotes the open ball centered at 6, of radius 4, and o denotes the
surface measure on S"~!. Therefore, for every 0 < @ < 1, one can find 6, > 0 such
that

B(6y,6,)NnS"'cX

and

c{0 € B(0,,5,)NS"" : |QO)| > ey} > (1 —a)s{B(b,,35,)NS""}. (5.20)

Let Q C R” be an arbitrary cube. Take the smallest » > 0 such that QO C B(x,, r).
Let 0 € B(0,,6,/2)nS" ! and let y = x,+ RO, where R > 0 will be chosen later. Our

goal is to choose R such that the estimate )ﬁ —90‘ < 6, willhold for all x € B(x,, r).

Write x € B(x,,r) as x = x, + yv, where v € S"land 0 < y < r. We have

- —(R—-|x—y)o
X=Y _py ( |x ﬂ).
|x — yl |x — yl

Further,
yv—(R—|x—-y|o < Y IR — |x — yll

|x — | T x =yl |x -yl
2
Y < 2y < 2r'
|x — y| R-—y R—r

For every R > m;ﬂ we have R2—r < %” and therefore,
—-r

a

xX—y 2r

-0, <10-6,+ <$é6,.
|x _ J’| of = | 0| R—r a
Hence, setting
o, G+6)r (4+0,)2r
F, = {x0+R9 10 € B6,6,/2)nS" T <RK< 5—},
we obtain that
r_ﬂeB@ﬁQny*cz(mweQxﬂy (5.21)
X=)
Also, it follows easily from the definition of 7, that
10|

F,Ck(,,nQ and |[F,|> Pns— (5.22)

a
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By (5.21 Q(

) does not change sign on OXF,. Let us show now that choosing

[x—=yl

a small enough, we obtain that |Q< >‘ < g, on a small subset of Q X F,. Set

-yl
= {6 € B(0,,6,)nS"" : |Q0)| < &y}

and
X—=Yy

|x — |

{(xy)eQxF eN}.

Let us estimate |G,|. For x € Q denote

Qa(x)={yef’ Iz:;l eN}.

Notice that by (5.20),
o(N) < ac(B(8,,5,)nS" ") < cnaés_l.

Next, for all (x,y) € O X F, we have |x — y| < c}’mi, and hence,

|Qa(x)|§|{s9:OSSSC:,&L,HGN}‘ ”lQI o(N) < B.a |Q|.

Therefore,

2
|ga|=/|g @ldx < a2k
(0]

a

Combining this with the second part of (5.22), we obtain that there exists o, < 1
depending only on n such that

|G, | < |, 11O (5.23)

2n+5

By the definition of @, ;,u2(b; Q), there exists a subset £ C Q with |€] = 2n1+2 |O|
such that for every x € &,

@1 om2(b; Q) < |b(x) — my(F, )| (5.24)

Next, there exist subsets E C £ and F C F, suchthat |E| = ! |Q|and |F| = %|T‘a0|,

%o T on+3
and, moreover,

|b(x) — m,(F, )| < [b(x) — b(y) (5.25)
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forall x € E,y € F and b(x) — b(y) does not change sign in E X F.Indeed, take E as
a subset of either

E ={xe&:bx) > mb(T’aO)} or E,={xeé& :bx) < mb(T’aO)}

with |E;| > %lé’l, and the corresponding F will be either {y € F, : b(y) < my(F, )}

with |F| = %lFa0| or its complement.

Combining (5.24) and (5.25) yields property (i) of Proposition|5.1} Also, since €2 ( ﬁ )
does not change sign on QX ¥, , we have that property (ii) holds as well. Next, setting

G=(ExXF)\ Q%, we obtain, by the second part of and , that

1
| > —|F, 1101 = wl0P,

%' = n+5

|G| > |E||F| - |G,

where v, depends only on © and n, and, moreover, property (iii) follows from the
definition of G, . Finally, notice that by the first part of , F cF, Ck,Q with
ko = k(8,,,n). Therefore, Propositionis completely proved.

5.3 Quantitative Coifman-Fefferman estimates

As we showed in Section , R. Coifman and C. Fefferman [27]] proved that for
every Calderon-Zygmund operator 7', every w € A and 0 < p < oo we have that

/ ITf(X)I”W(X)dXSC/ |M f(0)|Pw(x)dx,
R" R"

providing a way to establish the boundedness of T on L”(w) with w € A,. This
estimate is in the spirit of the so called Calderén principle, which says that for every
singular operator there exists a maximal operator that controls it in some sense. As
we will see in the subsequent sections this philosophy also applies for several other
operators.

5.3.1 Rough singular integrals

The first result that we establish in this section is a quantitative version of the Coifman-
Fefferman’s inequality, for 1 < p < 0.
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| Theorem 5.16. Let T be either T, with Q € L* satisfying /Sﬂ_l Q=0.Letp €
[1,00) and let w € A, then

”Tf”LP(w) < cpT[w ”Mf”LP(w) (5.26)

for any smooth function such that the left-hand side is finite.

It is interesting to note that we avoid the use of the good-4 method, which we
actually do not know if it works in this case. Indeed, we combine the sparse formula
in Theorem [4.4]together with a Carleson embedding type argument in the case p = 1
and the technique of principal cubes introduced in [117] for the case p > 1.

A natural question is whether estimate holds as well for 0 < p < 1. Indeed,
this is true in this range and it follows from the case p = 1 by means of an extrapola-
tion theorem for A_ weights from [36] [43] as stated in the next Corollary. However
the estimates in that Corollary are not quantitative since it is not clear how to obtain
a precise control on the constants from the extrapolation method. On the other hand,
the method is very flexible allowing many other spaces and further extensions.

Corollary 5.1. Let T be as in Theorem Let p,q € (0, 00) and w € A_,. There is
a constant ¢ depending on the A constant such that:

a) Scalar context.
”Tf”LP(w) <c ||Mf”u(w) (5.27)
and
||Tf||moo(w) <c ||Mf||uvoo(w)’ (5.28)

for any smooth function such that the left-hand side is finite.
b) Vector-valued extension.

|(Zrse)”

(5.29)

Lr(w) — “ < Z(Mf )q>

Lr(w)

and
(5.30)

Lo w)’

(S 08) e el S’

for any smooth vector function such that the left-hand side is finite.

Another interesting consequence from (5.27) is that we can extend the conjecture
formulated by E. Sawyer [143] for the Hilbert transform to rough singular integrals.
E. Sawyer proved for the maximal function in the real line that if u, v € A, then

|52, < €l (5:31)
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and posed the question whether a similar estimate with M replaced by the Hilbert
transform would hold or not. A positive answer to this question was given in [37]]
where a more general version of this problem was obtained for Calderén-Zygmund
operators and the maximal function in higher dimensions. Furthermore, the main re-
sult of [37] also solved and extended conjectures proposed by Muckenhoupt-Wheeden
in [117] enlarging the class of weights for which this estimate holds, namely u € A,,
and v € A, or uv € A_,. Some related results were also provided in [119], and the
case of the commutator is studied in [11]].

Very recently, a conjecture extending the one proposed by Sawyer and raised in
[37], has been solved by K. Li, S. Ombrosi and C. Pérez [110]]. This new recent result
extends the class of weights for which Sawyer’s inequality holds and it is the
following.

| Theorem 5.17. Letu € A, andv € A_,. Then there is a finite constant ¢ depending
on the A, constant of u and the A_, constant v such that

HM(fv)

||Ll°°(uu NI L1y (5.32)

Using this result we have the following.

| Theorem 5.18. Let T be as in Theorem Letu € A, and suppose that v is a
weight such that for some 5 > 0, v° € A_. Then, there is a constant ¢ such that

s AT (5:33
L1 (up) L °°(uu)
Hence, ifu € A; and v € A, then there is a constant c such that
T(fv)
< c £ 121 (5.34)
19 L1 up)

Proof.  The proof of is a corollary of (actually the range p € (0, 1) is the
relevant one) after applying [36, Thm. 1.1] or the more general case [43, Thm. 2.1].
On the other hand, combining with (which we recall that it follows from

(5.26)), the inequality holds. |

We end this section presenting a proof of Theorem

Proof of Theorem m

We are going to prove Theorem for p =1and p > 1 separately.
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We deal with the case of p = 1 first. Since w € A_, we can use the reverse Holder
inequality (Lemma . Hence if s = 1 + ——, then

Tplwlay,

101 Jo 101 Jo

Thus we have that 5" ~ [w], and w € L; (R"). Now we let gz = wy, where
Qg is the cube centered at 0 with sidelength R. Then g, € L*(R") and hence if f is
smooth [(T f, gg)| < oo by Holder’s inequality and the boundedness of T in any L?,
q € (1, 00). Taking into account these facts, and after applying first Theorem we
have

|(Tf,gR)| S CT S’ Z |Q|<f>Q<gR>s,Q'

Qes

<cps Z |OI(f)o(w), 0

Qes

<2er[wly D)o w(Q).

Qes

We are now in position to apply Lemma hence

(TS, gl < ep [Wh 1M £l

To conclude we just let R — oo recalling that by assumption the left-hand side is
finite, namely [|T f|;1(,, < 0. All in all, we have proved

T f iy < erlwly 1M £l -

Now for p > 1. Observe that C is dense in L? (w), for w € A_,. Moreover, given
g € C, we have that gwy, .z € L”, where Xw<r -= {x  w(x) £ R}. By the sparse
domination formula in Theorem[4.4] we get

(T fgwx,er)| < ers’ D (1 Dollgwl)5l0l.

Qes

Then, Holder’s inequality yields
1 L 1y 4
(gl < (gl w)s (w7
Let
1 o 1 .
8p7,[w],_ 4p
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Then it is easy to check that

s—1 1
<l+ .
r—1 AL

sr<1+i<p', and(s—l)r'=s+
2p r
Combining the arguments above we obtain

(T gwier)] < cprlwls, X (1S Dollal )5 (whg *10]

Qes

= p’T[w]Aoo z<|f|>Q($/Q|glsrwdx>;w(Q)

Q€S
1 -
<c,rlwly_ Z<|f|>F<m/F|gl”wdx> Z w(Q)
FeFr Q€S
©(Q)=F

< cprlwl [ M(f)M()wdx
Rn

2
< cprlwly IM Sl Lo 181 Ly w)s

F is the family of the principal cubes in the usual sense, namely,

whith 7, := {maximal cubes in S} and

Fryp o= U chy(F), chp(F)_{Q € F maximal s.t. 7(Q) > 27(F)}

FeF,
1

where 7(Q) = (|f|)Q<$ fQ |g|"wdx>” and also 7(Q) is the minimal principal
cube which contains Q. Since we have assumed that ||T f| ;,,, is finite, then we have
that (|T f|, |g|w) is also finite, by dominated convergence theorem. Thus, we con-
clude that

KT f,gw)l < ¢, [l IMf 1l o8N Lo -

Finally by taking the supremum over ||g||,,,, = 1 we complete the proof. |

5.3.2 A-Hoérmander operators

Now we turn our attention to A-H6rmander operators and their commutators. We
start presenting the following quantitative Coifman-Fefferman inequality in the range
1 <p<oco.
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| Theorem 5.19. Let B be a Young function such that B € Y(p,,p,). If T is a B-
Hormander operator, then for any 1 < p < co and any weight w € A_,

IT £l oy < €acrlola I Mpf | 1o (5.35)

If additionally b € BMO, m is a non-negative integer and A is a Young function,
such that A='\(O)B~'()C~'(t) < t with C(t) = e fort > 1, then forany1 < p < o0
and any weight w € A,

177 s < Camer 1Mo T 1M (530

Proof. We omit the proof of the case m = 0 since it suffices to repeat the same
proof that we provide here for the case m > 0 with the obvious modifications. Let
then m > 0. Using Theorem suffices to control each A’Z:Z(b, f). We observe
that taking into account Lemma [3.7|and Holder inequality, without loss of generality,
assuming f,g > 0,

/ Ale(b, fgwdx = Y / |b(x) = bo|"™"g()w(x)dxw(Q)II(b = bo)" |50

& w(Q)
< DN =bgY" ™l v 118l g 1yrrn 0w (@ = bo)" Il

pL pL%,
Qes

Ll o

—h
< ¢, [l 16l D 18l 2og yronoll /4. ow(O)
Qes

Now we observe that

Z ”g”L(log L)m—h(w),Q”f”A,Q w(Q)

Q€S
< Z ||g||L(10gL)"'”'(w),F”f”A’F Z w(Q)
FeF Q€S.z(0)=F

< Cn[w]AW Z ||g||L(1ogL)m-h(w),F||f||A,Fw(F)
FeF

<ol | LM s
R"

< c"[w]/\oo (MAf)(Mz_hHg)de
RVI

where F is the family of the principal cubes in the usual sense, namely,

F=up

k=0 7:‘k
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with 7, :={maximal cubes in S} and

Frgr -= FngChF(F)’ chy(F) = {0 ¢ F maximal s.t. 7(Q) > 27(F)}

where 7(Q) = |8l Laog Lyr-#(w).0ll f | 4.0 @and 7(Q) is the minimal principal cube which
contains Q.

At this point we observe that

/ (M )Y M™ " gywdx < 1My o | Mgl
R}'I

—h
<c,p" +1”MAf”Lp(w)”g”Lp’(w)

and combining estimates
m,h -
/ AB,S(b’ fgwdx < Cn[w]Aum h+l||MAf”Lp(w)||g”Lp’(w)-
Rn

Hence taking supremum on ||g||;»,, = 1 we end the proof. |

We would like to point out that Theorem was proved in [[114] for operators
satisfying an A-Hormander condition. Later on in [113, Theorem 3.3] a suitable ver-
sion of this estimate for commutators was also obtained. Theorem improves the
results in [114,[113] in two directions. It provides quantitative estimates for the range
1 < p < o0 and in the case m > 0 the class of operators considered is also wider. This
estimate can be extended to the full range 0 < p < oo using the extrapolation argu-
ment obtained in [36] (see also [39]) but without a precise control of the dependence
on the A, constant.

Related to the sharpness of the preceding result, in [115] it was established that
L"-Hoérmander condition is not enough for a convolution type operator to have a full
weight theory. In the following Theorem we extend that result to a certain family of
A-Hormander operators.

| Theorem 5.20. Letl <r < o0,1 <p <+ and:i, <y < 1. Let A be a Young
function such that there exists ¢, > 0 such that
1

-1 ~ L
AT (1) ~ o0 fort>c,,

where @ is a positive function such that for every s € (0, 1), there exists ¢, > 0 such
that for everyt > c,, 0 < @(t) < k,t°. Then there exists an operator T satisfying an
A-Hormander condition such that

T ||Lp(w)_>Lp,oo(w) = o0,
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where w(x) = |x|™"".

From this result, the an extrapolation theorem for A weights, it also follows, us-
ing ideas in [115] that the Coifman-Fefferman estimate(5.35| does not hold for maximal
operators that are not large enough.

| Theorem 5.21. Let1 < r < 0. Let A be a Young function satisfying the same con-
ditions as in Theorem|[5.20, Then, there exists an operator T satisfying an A-Hormander
condition such that for each 1 < q < r' and B(t) < ct4, the following estimate

”Tf”Ln(w) < C”MBf”Ln(w)a (5.37)

where w € A, does not hold for any 0 < p < oo and any constant ¢ depending on w.

We end this section providing proofs of Theorems and

Proof of Theorem W

We are going to follow the scheme of the proof of [115, Theorem 3.2]. We consider
the kernel that appears in [114, Theorem 5]

1
(1 —logt)

k() =A™ ( 1+ﬁ> Xo,)(D).

We observe that K(x) = k(]x|) € L'(R"). Indeed, since the convexity of A allows us
to use Jensen inequality we have that

1 e -(1+p)
Al —— A_l -n (] £ d
| B, 1)| Jg» 1] < 0g |x|> Xo.n(lxD) ) dx
1 e —(14p)
TR CHCTI NG

1 e —-(1+p)
< —— [x]|™" <log—> dx <c, .
| B0, D] Jixj<1 |x| ’

~(145)
-1 -n e -1
/Rn A (lxl <log m) Z(o,l)(|x|)> dx < A7 (c,,) |BO, )]

Then
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and hence K(x) € L'. Now we define K (x) = K(x —#) with |5| = 4, and we consider
the operator

Tf(x)=Kx* f(x)= / K(x=n=yf»dy. (5.38)
Ry

Since K € L' we have that T : L9 — L7 for every 1 < g < co. We observe now that
the kernel K satisfies an A-Hérmander condition [114, Theorem 5].

Let us assume that 7' maps L?(w) into L”*(w). We define
_nn "
fx)y=Ix+n| » )({|x+;7|<1}(x) € L"(R")

with y; € (0, 1) to be chosen. If |x + 7| < 1 then 3 < |x| < 5 and therefore

sup Fw {x € R" : |Tf(x)| > A}
>0

| (5.39)
<c | f()|wx)dx | < c— | f(x)]|dx | < o0
Rﬂ 3"]/ Rﬂ
Let us choose 0 < s < min { #, %} We know that g(u) < xu’ for every u > c,.

1

Let us choose ¢, € (0, 1) such that for each t € (0,¢,) we have that o™

max{c,, c,}. Then, for r € (0,¢,)

k(t)t‘”—f”:A—l( 1 1 )f%"
(1 —logt)'*?

1 t——+n

tr (1 —logt)# @ (;)

m(1-logt)!+7
1 1 _un
— P

K o 1 S
s(1—logt) ™~ (W)

1 ypn
L1 Z10g p(s3) s Ly
K K

N N

2

(5.40)

both A(t) and k(¢) are decreasing in (0, #,) as well, note that in the case of A, that
monotonicity follows from the fact that s < %. Let us call 6, = %to. We observe that

Actually we can choose 0 < t, < f, such that the preceding estimate holds and
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for |x| < 6,
_nn _nn
Tf(x)=/ Kx—=n=yly+nl »dy= Kx—=ylyl »dy
ln+yl<1 [yl<1
_nn 3 _nn
= [ kax-sibr Fayzk(3m) [ b
lyl<l Iyl<l

rin

e .

> k (§|x|) B2 s el (221
2 2—# K 2

N

where the last step follows from (5.40). Now taking into account that A() is decreasing
in (0, 7,) we have that

sup Yw{x e R" : |Tf(x)| > A1}
>0

3
> supxl”w{lxl <0y : clh <£|> > /1}
>0 K 2

3
> c sup /lpw{lxl <0y - h<ﬂ> >/1}
A>h(ty) 2

> c sup h(t)’w { |x| < —}
0<t<t 3
|
=c sup (1 —log t)(1+ﬂ)<s—;)17 t—y1n+pns/ |x|—yndy
0<t<t, |y|<%

=~ sup (1 -_ log t)(1+ﬂ)(%_p) t_71"+pns+n—yn

0<t<t

At this point we we observe that
—yn+pns+n—yn<0 < l+ps<y +v.
Hence, choosing y, =1 — % we have that, since s < #

D D )4 )4
+y=1l-—+y>1-—+==14-—2>1+ps.
nTr r'2 Y r2 2r ps

In other words
—yn+pns+n—yn<O0.

That inequality combined with (5.41) yields

sup Pw {x € R" : |Tf(x)] > A} = c.
>0

This contradicts (5.39) and ends the proof of the theorem.
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Proof of Theorem ﬂ

Assume that with M with B(t) < ct? for every t > ¢ and 1 < g < 7" holds for
every operator in the conditions of theorem[5.21} Arguing as in the proof of Theorem
3.1 in [115], it suffices to disprove the estimate for some 0 < p, < 0. Let us choose
q < py < r'. Assume that for every w € A; C A we have that || T f|| ne, <
cl[Mpf |l 170 () Then we observe that

||Tf||LP0-°°(w) < c”MBf”LPOm(w) < c”qu”Lf’(),oo(w) < c”f”LPo-m(wy

and this in particular holds for the weight w(x) = |x|™ withy € <’;—‘,’, 1) contradict-
ing Theorem 5.20}






6 | Fefferman-Stein type estimates
and A — A, estimates

The first and paradigmatic example of the so called Fefferman-Stein estimates was
precisely provided by C. Fefferman and E. M. Stein in [57]]. In that work they proved

that there exists a constant ¢ > 0 such that for every weight w the following inequality
holds

”Mf”u(w) < C”f”u(Mw) l<p<oo.

From this kind of estimate it is possible to derive the quantitative dependence on the
A, constant of the maximal function. Indeed, if w € A, since Mw < [w], w(x) we
have that

1

”Mf”Lp(w) < cn,p[w];l”f”LP(w)

This kind of estimate can be generalized to a wider class of operators. The idea is to
obtain inequalities that fit in the following pattern

/ |Gf(xX)|Pw(x)dx < c/ | f ()P Nw(x)dx l<p<o

where N is a suitable maximal operator and ¢ > 0 is a constant independent of w.
For instance, if T' is a Calderéon-Zygmund operator it was proved in [34], and further
refined in [104] to the quantitative version that we state here, that

1
IT ey < oV I a1 <P < 0. (6.1)

From this result it is possible to derive a quantitative A, — A estimate. Indeed, using
the reverse Holder inequality (Lemma we have that choosing r = 1 + .

Tn[w]A

©

M.w <2Mw <2[w], w
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and also that ' ~ [w] A Then

1 1

UT f oy < epp'Teol}y Tl 1 o (6:2)

Even though that provides sharp weighted inequalities, the maximal operator
in the right hand side is not the best possible. In [[123] it was established that

”Tf”Lp(w) < C&”f”LP(M

Later on a more general and quantitative version of this estimate was obtained in [78]].

Log Lyp—1+5 (W)

| Theorem 6.1. Let T an w-Calderén-Zygmund operator and A a Young function.
Then for every weight w,

NT 11l Loy < cncTP,||MZ||Lp’(R")||f||Lp(MA(wl/p)p) 1 <p<oo.

In particular for every € > 0 we have that

1
1\7
I F Wiy < arp'p (2 )" 1 I<p<o.

£ L(log L)p—1+£ w)

6.1 Estimates for rough singular integrals

Relying upon the sparse control for rough singular integrals, it is possible to provide
the corresponding counterparts to the estimates presented in the introduction of this
chapter. The results in this section were obtained in [111]]. Let us consider first the
case Q € L®(S" ).

| Theorem 6.2. Let1 < p < co and let A be a Young function. Let T, be a rough
singular integral with Q € L*(S"!) and /Lm(gﬂ_l) Q = 0. Then, for any f € C*(R"),

1T Nl Loy < €all Q@ ooty @V NIM gl o 1LF N oo yuoryisoy- (6.3)

From the preceding theorem, by using in below, we obtain the following
result.

Corollary 6.1. Inthe conditions of Theorem , if we choose A(t) = 1P (1 +log*t
with 6 € (0, 1], we have that

)p—1+5

1\
”Tf”u(w) < Cn”Qlle(gn—l)(P,)zpz(g)p ”f”Lp(M (6.4)

The inequality above is sharp in the sense that 6 = 0 is false.

Lilog Lyp=1+5 W)
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We can also derive an improvement of some results obtained in [131]] concerning
the A, constant.

Corollary 6.2. In the conditions of Theorem if 1 < r < oo and we choose A(t) =
"7 in (6.3) then

1
”Tf”LP(w) < Cn”Q”Lm(gn—l)P(P,)z(",)"' ||f||Lp(M,(w))~ (6.5)

If, moreover, w € A, then

1
”Tf”u(w) < Cn||Q||Lm(gn-l)p(p/)Z[MJ]z/w||f||Lp(Mw). (6.6)

Furthermore, if w € A, then
1 1
IT 1 oy < €ll Rl sy p (P[], (W]} < Crp(p'[w]y,- (6.7)

Now we turn our attention to the case Q € L¢'log L(S"™!). First we present a
result for certain sparse operators.

| Theorem 6.3. Letr > 1, w a weight and S a sparse family. Let A be a Young
function such that Ae B,. For f > 0, set

A, () = D () oxo®).

Qes

Then for p > r, the following estimate holds

2r

1
Ay s UM < (=2 ) UM AL 1S N

Bearing in mind the sparse control that we have at our disposal for T, with Q €
L%'log L(S"") the counterpart of Theorem for that kind of operators follows
from the preceding Theorem. The result we obtain can be stated as follows.

| Theorem 6.4. Givenl < g < o0, let Q € L% log L(S"™") have zero average and w
be a weight. Let A be a Young function such that A € B,. Then forp > ¢/,

ITa(O N Loy < Cnpgll €l Lariog s 1M all Ly 1 W ocar, )

forany f € C®(R").

Asinthe case Q € L*(S"!) the preceding result immediately yields the following
Corollary.
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Corollary 6.3.  Let the hypotheses be the same as that in Theorem[6.4] Then for p > ¢/,
we have
1T f o) < Cupg [1€2[[ 7. log L(S"™1) 1Al Lo(M 1+ ) (6.8)

Moreover, when A(t) = #”", we obtain the following estimate:

Corollary 6.4. In the conditions ofTheorem if 1 < r < o0, and we choose A(t) =
17 in (6.8), then for p > ¢’

1
||TQ(f)||LP(w) S Cn,p,q”gzllL’lv1 logL(S”")(r,)p, ”f”LP(M,w)’

which immediately implies
1 1

”Tg(f)”Lp(w) < Cn,p,q”Q”LqJ lOgL(S"_l)[w]zl[w]f\w||f”L1’(w)’ p>q.

We end this section providing proofs of the preceding results.

Proofs of Theorem H and Corollaries and

We begin with the proof of (6.3). We follow ideas from [126] 103} [104] [78] combined
with the pointwise estimate in Theorem[4.4] Since T is essentially a self-dual operator,
if we call A,(1) = A(#'/?) then, by duality, it suffices to prove the following estimate

Tf f
M, w

P

2
< @) NI Ml
LP'(Mpr)

(6.9)

L
Let us denote v := M a,w. We compute the norm of the left-hand side by duality.
Indeed, by the duality of C*(R") in weighted L? spaces we have that

LY (w)  NAllpe=1 heCrR")

‘ i
1721 Lo ()=1

v
We define operators S(h) and R(h) as in Lemma (observe that, since h € C,
then h € L (R")). Then, using Theorem 4.1 and the first property of the operator R
in Lemma [3.4 we have that

‘/nT(f)hdx‘ SCTS,SI;PQ;g(/Qlfl)(ﬁ/QhS)l/S
seat s T ()i [)" e

QeS

= sup ( / Tf(x)h(x)dx|= sup / T f()h(x)dx|.
n Rﬂ
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with 1 < 5 < oo to be chosen. Hence, it suffices to control

%(/Qlfl)(ﬁfguzm”s

for every sparse family S. To do this we are going to use the reverse Holder inequality,

namely, Lemma We choose s = 1 + ——— . [Rh]A so that s’ ~ [RhA] , < c,p'. Then, by

reverse Holder inequality, we get

QZ€5</'f'><|Q| /(Rms)”ssz;gﬂﬂ@ mn=23 & [ iriirno)

Q€S
(6.11)
Using Lemma [3.12] with ¥(#) = r and the weight w = Rh, we have that
/ F1IRR(Q) < ¢,[RRLy_IIM fllpsmn < 6,0 IM e (6.12)
Hes |Q|

From this point, by Holder’s inequality and the second property of the operator R in
Lemma/3.4]

1

1
_/ ; M
”Mf”Ll(Rh) (/ (M f)? (U)l_p ) < (Rh)pU> <2 H—f (6.13)
R" U LY w
Hence, combining estimates (6.10), (6.11), (6.12), and (6.13), we have that
T M

17 My . (6.14)

Ul Ul w

Let us recover the initial notation for v := M A, W- To end the proof of (6.3), we have
to prove that

/

< cl| Ml (6.15)

LY (w)

» LP’(Mpr)

which in turn is equivalent to prove that
”M(fw)”Lp’((Mpr)l—p’) < cl|Mgll v ”f”Lp’(w)
but this inequality was obtained in [78} pp. 618-619]. So this ends the proof of (6.3).

If we choose A(f) = t*(1 + log™ t)»~!*% with 6 > 0, since we know that

1
1 v
IM il < c,p’ (5) ,



126 QUANTITATIVE WEIGHTED ESTIMATES FOR SINGULAR INTEGRALS AND COMMUTATORS

this yields (6.4), which was stated to be sharp in [78]. If we choose A(f) = " we know
that, taking into account (2.4), M; < M|, ,,. Now recalling and applying for
A(t) = t"", we obtain . If we assume that w € A, choosing r = 1+ T"[;]A in
we have that ' ~ [w], and it readily follows from the reverse Holder irioequality
(Lemma [3.5) that M,w < 2Mw for every x € R". This yields (6.6). Furthermore, if
w € A,, from and the definition of the A, constant, we obtain . This finishes

the proofs of Theorem [6.2|and Corollaries and |
Proof of Theorem H

The proof we are going to provide relies upon ideas in [6]. Take B(f) = £ , it is

easy to check B(r) € B,,,. Observe that for any weight w and Young function A such
that A € B, we have

—_ 1/r . 1 — 1/r
sup 401, o M, 1)1y < sup inf (M, 1) (M ) P15, < 1.

Letuscallv =M 4, W. Now we have,

A, s(f)”Lp(w) = sup /-A s(f)w”g

lel, »=
= swp Y (i p>Q/wpg
lell, =1 e

ol 1
<4 sup I/ U"|| o "Ill’; lwrll4ollglli0lQl
B,0 NG

||g||L,/ =1 Q€S

<8 sup ISV lgllsolEol

liell, »=1 pes

<8 sup /Mg(f’vf’)%Mg(g)

llgll, =1

_ 1
< cn”M/i”Ll” (ﬂp/r(B))’ ”f”Lp(U)’

where in the last step, we have used the Holder’s inequality and Lemma ??. A direct

oo Lezgyy
— 2 dt 2r
A
.ot p—r

1

2r
145Dl < €057 ) IM a1 s (6.16)

calculation yields

Altogether, we obtain



6. FEFFERMAN-STEIN TYPE ESTIMATES AND A; — A ESTIMATES 127

6.2 The case of commutators

Now we turn our attention to commutators. In this case we may wonder if a similar
result holds as well. A natural way to prove that kind of estimates should be via con-
jugation method, but, actually, that is not the case since that method relies upon the
fact that if w € A, then we™ € A for b € BMO and « small enough and that fact
does not necessarily hold for A, weights. Hence we need a direct argument. The first
result in that direction was the following estimate provided by C. Pérez in [126]

I Wiy < €sllBlgrao 1 s, wsinsssir (6.17)

Later on C. Ortiz-Caraballo [121}[120] proved the following estimate

1
m+—
P

m+1
”Tbmf”LP(w) < cn,ch”b”gMO (PP/) (",) ”f”LP(M,w) r>1.

Later on a quantitative version of was provided in [[129, Theorem 1]. The afore-
mentioned estimates were proved to hold for Calderén-Zygmund operators satisfying
a log-Dini condition. The first result we present in this section extends [129, Theorem
1] to operators satisfying a Dini condition and also improves the dependence on p'.

| Theorem 6.5. Let T a w-Calderén-Zygmund operator and b, € OsCeyp s fori =
1,2,...,m with % =" L. For every weight w we have that for each p € (1, c0)

i=1 s;

1
||T5f||Lp(w) < cn,m,scT”b” (PP,) ’ ( ) ”f”LP(M

6.18
o s L)(l+%)p—l+5 w) ( )
where 6 € (0, 1) and also,
- m+1 m+L/
1T/ N oy < Comer Bl (22")" ()7 NS W ioat, o) (6.19)

foreachr > 1. Nowifw € A, then

+7

- m+1 m
IT5f W Loy < CnmerllBll (pp)" [, ?

and furthermore if w € A, then

1 Loty

T. < Z 7\ m+1 » m+,%
I bf”Lp(w) = Cn,mCT” | (pp) [w]A] [w]Am ”f”Lp(w)-

In the case of commutators with rough singular integrals we recall that the pro-
blem of determining the dependence on the A, constant was considered for first in
[131] Lemma 3.6]. Here we extend that result to the case of symbol-multilinear com-
mutators.
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| Theorem 6.6. Let Q € L®(S"") such that /S”—l Q = 0andb, € BMO fori =
1,2, ..., m. For every weight w we have that for each p € (1, )

w)

> 4l 1 (p=1\7"
”(Tg)gf”u(w) < cn,m,s”Q”Loo(sn—l)”b” (P,) ’ PHS <T> ”f”Lp(M

(+Dyp-146

(6.20)

L(log L)

where 6 € (0,1) and also,

m+2

- m+i/
”(Tg)i,f”Lp(w) < Cn,m”Q”Loo(sn—l)”b” (p’) Pm+1 ("’) ! ”f”LP(Mrw) (6.21)

foreachr > 1. Now ifw € A_ then

m+2

- m+l,
1T N oy < Cnmll Rl Loogern 181 (p) " " ], " S N oot

and furthermore if w € A, then
1 1
-2 m+2 1 > m+-;
”(Tg)gf”Lp(w) < cn,m”Q”Lw(gn—l)”b” (p’) P [w]z] [w]Amp ”f”Lp(w)

To prove the preceding results we will need the following technical Lemma.

Lemma 6.1. Let w > 0 be a weight. Let s > 1 and 0 < 6 < 1. Then for every

p € (1, c0) we have that

M L f =
L(log L)s 1 -1
(log L) < cp <P S/ , (6.22)
v , 0 W | ¥ (w)
LP (v)
where v = ML(logL)(”%)”’”‘sw'

The rest of the section will be devoted to presenting a proof of the preceding
Lemma first to continue and end up providing proofs for Theorems|6.5/and

Proof of Lemma

The proof of Lemmal6.1]follows the scheme of the proof of the two weights inequality
that appears in [126, Theorem 2]. Actually we will obtain a quantitative version of that
estimate. For that purpose we need have at our disposal precise estimates of certain
inverse functions that we present in the following lemmas.
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Lemma6.2. Letp>0,A,(t) =t (1 + log" (t))p and X (1) = m. Then
1 p
_— <X ((A@)<Lt.
(Y 1<

Proof.  Observe that

t (1+1log*(n)"
(1+1og* (¢ (1+1og" (t))p))p
The upper bound is straightforward since

(1+1log* (t))p < (1+1log* (7 (1 +1log* (t))p))p-

X, (A1) =

Now we prove the lower bound. It suffices to prove that
1 +log* (7) S|
1+1log" (¢t (1 +1log*(®)") 1+ p

If 0 < t < 1 there’s nothing to prove since log" (r) = log* (¢ (1 +log* (1))") = 0.
Suppose now that r > 1. Then we have that

1 +log" (1) B 1 +log (¢)

1+log* (1 (1+1log*(n)") 1+1log(t(1+1log(»))

B 1 + log () S 1 + log (?)

" 14log(t)+plog(1 +log(r)) ~ 1+1log(t) + p(1 +1log ()

1
1+ P
|
Lemma 6.3. Letp > 1, A (1) = t(l +log® (t))p and Xp(t) = _— ' _ with

(140e' ()

1, = p’. Then
P -
(1-2) r< A&, <t +plog)Y .
Proof.  Observe first that

A (X, () =t <1+10g+<i>> = 1O(t)’
1 +log* (%)

p

1 +log*
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We begin studying the lower bound.
If € (0, 1) then
A (X, (1) = 1Dty =1

and there’s nothing to prove.
Iftre [1,7,] then
A (X, 0) = 1Dy =1t (1 +log" (1)) > 1

Now if t > 1 it’s easy to check that — L >1.Then

)

t

1+log| ———;

(o))

1 +log (%)

p

A (X, 1) =t

Now we observe that

1

<1+10g(i>>p 1 +log(t) — plog (1 + log (%))
1+10g<ti> 1+10g<tl>

Let us choose ¢ = e* and t, = e’ . Then

1 +log

ei
1+/1—plog<1+10g(yp)> A, —plog (1+4—24,)

=1+
1+log<e%> I+24-4,

Now we minimize g,(4). It's easy to check that g, reaches its minimum when 4 =

=1+g,(d)

%
et 4 /1p — 1. We observe that

and since 7, = p*
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and we obtain the desired lower bound. To finish the proof we focus on the bound. If
t € (0,1), then Ap(Xp(t)) = t and there’s nothing to prove. If t € [1, tp] then we have
that

A (X, @) =1(1+1logr)’ <1(1+logt,)” =1(1+ plogp)’.

Finally if t € (t p oo) then it’s easy to check that
A X, 0) <t(L+1og(t,)) .
|

Finally, with the precise control of the inverses at our disposal we are ready to
give the proof of Lemma

Proof. Proving (6.22) is equivalent to prove that

M \7 M 1-p <7 141 P p—1 J
. LlogL% (pr> < L(logL)(H—‘l‘)p_H&w) =cC, <p S> 5 an |f|

Using now the notation of Lemma we can write A1 (7) = t(1+log* t)% and X (1) =

L and we have that

(1+log* 1)
AT 2 X1 (1)

We observe now that

p—1+6

1
! rr L’(1+10g+t) v

Xl(t)= 1= N w-t!’

(1+log"t)*  (1+1loghe)s" »

p

= ! (H—l) — (t (1 + lOg"‘ t)1+6(p/_1)>1)
(L+loghe)V /"

Using again the notation of Lemmal6.2]

N

= F() - Fy(0)7

t
(1+1log* t)<1+%>”_1+5.

F,() = X(l )

+% p—1+6

(n=

From that lemma it readily follows that
(l+%)p—l+6
p

1 = 1

F (1) > N GOD (6.23)
1 <1+§>p+5 <1+;>p—1+5



132 QUANTITATIVE WEIGHTED ESTIMATES FOR SINGULAR INTEGRALS AND COMMUTATORS

Analogously, following the notation of Lemma [6.3]

14+6(p'=1)
Fy() = Az =1 (1+loghs) ™

From that lemma it follows that

1+5(p' —1)

i, e—1 I3 ~_ i,
FE,(t)r z( ; ) leé(p,_l)(t)p. (6.24)

Taking into account (6.23) and (6.24) we obtain the following estimate

(1+%)p—|+5
e— 1
=

- LA 1 g i Lo
O (6 )pa) T zal | A0

t>0.

Using now generalized Hélder inequality (Lemma [2.3) and taking into account that,
since 6 € (0, 1),

1
1+5(p' = 1) (l+§)p71+5 1
/

(¢) 7 @p+d) +  <ep'ts

1

and also that ||w|ly, = [|w?| if ¥ is a Young function, we have that

p
W(L1/p)

1
1+1 >
S c s - ’ w
Lilog L)%,Q p ||f||X1+5(,,/_1)(L1’ ),.0 ” ||A(1+%)p—l+§(L)’Q

1

and consequently

1 1 1
- 1+- =
< s [\4 o ’ [w .
L(lOgL)% <pr> sCp X1+5(pr_])(LP )(f) L(log L)(l+%)p—1+5 (LU)I’

Using this estimate we have that

V4 1-p'
» M ‘w> dx
/R’l ML(lOgL)% <fw/’> < L(logL)(H%)piHb
(1+l) l 14 l_p/
S - Cp : MXH&(]J’—I)(LPI)(f)ML(logL)(H%)p’”‘s (w)p <ML(10gL)(H%)pil+§w> dx

AV '
- (Cp " ) /R" MXHE(p/—l)(Lp,)(f)p dx

(78, Lemma 2.1] yields

/ v -1 I% , 1%
</ MXH&(p’—l)(L”/)f(x)p dx) <c (p 5 ) (/ |f 17 (x)dx> ,
R~ R

/
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since

e Xl+5(p’—1)(tp,) dt '% _(d+ @ - 1)5) ’ 1 '%
</1 ) = (e (140 10)+ )

and 0 < 6 < 1 allows us to write

(1+ (' = Do) . 1 \7 _ (p=1\7
( > log (1+(p 1)5)+—(p,_1)5> $c< > > :

Consequently we have that

1

1 L (p— 1\~
M ( wp> <ot (2L .
H L(ogL)s f LP’(UHH’) p 5 ”f”Lp (RM).

This concludes the proof of the lemma. |

Proof of Theorem H

Proof. We start pointing out that the A andthe A,—A_, estimates are a direct conse-
quence of (6.19) withr = 1 +- ]
Ax

the definition of A,. Let us denote by now indistinctively v = M

combined with the reverse Holder inequality and

1 wor M w.
Llog L)(1+§)p—1+6 r

3| —

Ifx =cp () p1+§ (%)p , by duality, it suffices to show that

t

v

f

w

<k

L’ ’
LY () 7 w)

where Tt is the adjoint of T;. Using duality we can find a non-negative function g €
L?(v) w1th gl oy =1 such that

T!f
L =/ gudx = T f|gdx = 1.
U R7 U R”7 b

LY (v)

Since TB’ is a commutator as well we can use apply Theorem Then we have that

3 m
I<c,er ) ) D /|b(x) bol,, |Q|/f|b

j=1 h=0 c€C,(b) Q€S
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And it suffices to control each term

I(c,8) = /b(X) o8 /f b—
& | Ql |Q| |

Let us consider now the Rubio the Francia algorithm R given in[3.4 Now we observe
that taking into account the first property of R,

b b R
IQI/l() ol 8 <75 /“x) ol Re

2 b, R
< (Hn ,||) IRgll, ozt
O

ieo’

(6.25)
SCexpLs

Arguing as in (??) we have that if we cally = ), , %, since [Rg], < c,p’ then

1

IR gog 10 < — < ! /R 1>_
(log L) ,0 |Q|

by Lemma (3.5 we have that

and choosing a =
[Rg]A

1
1 1/ 1+ >_
—|— [ Rg™ §2[Rg] yTV Rgdx.
ay(IQI 0 "IQI

Tew 31
R 1 L, (p)T" / K
| g”L(logLF"G”’ o T ™ 10l Jo ¢

which combined with leads to

1 / Zieo’ l 1_ /
— [ |b(x)=b ,S||hx3 s R 6.26
l@éum ol & (IHbm>m |Q|Qg (6.26)

This yields

i€c’

On the other hand we have that

o / fb=bol, <2<]‘[||bnoscex,,v)||f|| gty (62

ieo

Combining (6.26) and (6.27), since [Rg],_ < ¢,p’, we obtain

16.8) < ¢, IBIGHZ="= Y 11,

s Re(0) (6.28)
0es e

g L)~
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Now using Lemma [3.12| with W(¢) = tlog(e + t)z"e” 5

M
L(log L)~'€° 5i

> 170, et REQ) S (R,

Q€S

LiRe) (6.29)

<ec,p ||M 1
I’lp ” L(log L)ZIEO' si Ll(Rg)

We observe that

o f
L(log L)ZIEO‘ 5i

|

L'(Rg)

( / M, zla,xf(xY“v(x)l‘p/dx)p ( / Rg(x)pv(x)dx>” (6:30)
og L)=1€ 5i R

L(]og L)Z'e” si f

<2

U
LY (v)

Combining (6.28)), (6.29) and (6.30) we have that

M Sics +
L(log L)='® 5i

M
L(log L)% f

- 1 1
< ¢, b))

LY (v) LY (v)

- 1 . /l
1(0,8) < ¢, IBlI(p) &= =

v

And this yields
thf 7 1+2
— < GBI

v

M
L(log L)% f
LY (v) LY (v)

Now in the case v = M,w we have that, since M <M n, by [120}
L(og L) 5 Llog L

Proposicion 4.5.1]
M, me
H (log L) < cnpm+1(rl)

LY (M,w)

m+L,H f
P —_—

w e w)

and we are done.

In the case v = ML(l (+1)e1es w, to end the proof it suffices to establish the
og S

following estimate.

ML(logL)%f < cp1+§ p—1
v - o

LY (v)

'ﬁl._.

[

W LY (w)
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We prove that estimate in Lemma so this ends the proof. |

Proof of Theorem .

As in the case of Theorem|[6.5] the A and the A| — A estimates are a direct conse-
quence of (6.21) combined with the Reverse Holder inequality.

Let us establish then (6.20) and (6.21). The proof follows the same scheme as the

proof of Theorem (6.5 Let us denote indistinctly v = M, w or ML(l (s
og s

duality, it suffices to prove (6.20) and (6.21) it suffices to show that

,w. By

9

s
1%

e

1

2 1 +—

< cn,m||Q||L°°(§H)||b||BMo(P,)m+ pmr (",)m v’
LY (v)

Y w)’

We can calculate the norm by duality. Then,

Iz

M,w
Now we consider the same Rubio de Francia algorithm R given in Lemma [3.4] Using
Theorem [4.5 and the first property of R,

, = sup
L' (Maw) 8l Lo, w=1

/ T; f (x)h(x)d x
Rn

3" m
< C,,,mS’||Q||Loo(§n-') Z Z Z Brlly,s,s(b’ /> Rh)

Jj=1 h=0 c€Cy(b)

/ T; f (x)h(x)d x
Rn

where

BT'ZS’S(b,f,g) = Z<|b - bQ|,,/ f>1,Q<g|b - bQ|a>S’Q|Q|

Qes

and it suffices to obtain estimates for each I, = BT’f’s’ sj(b’ f, o).

1

7, [Rh]
we have that s = 2——®Mas 410 4 also that su’ = 2(14+7 [Rh], )~ [RhA]
2¢,[Rh), T T142r,[RA, - n Ao/~ Ay

Now we recall that for every 0 < ¢ < oo it is a known fact (see for example [64,
Corollary 3.1.8]) that

Now we choose u, s > 1 such that su = 1+

. For instance, choosing u = 1+

(L / |b(x) — bgl’dx> <T@ e 2 Bllgwo
101 /,
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For t > 1 we have that (tF(t))% eitlon < ¢,t. Taking into account the choice of u and
s, the preceding estimate, the reverse Holder inequality (Lemma3.5), and the fact that
[Rh], <I[Rh],, < c,p', we have that

1

1 s
I < ;9, <@/Q|b(x)—bQ|6|Rh(x)| dx)

1 su’ su/
Sc,,Hnb,-nBMoQ% <@ /Q |b(x) = bo 2 dx> (RAY g 0l | giog 15 1O
€9

©

/ |b(x) = bo |y f1dy
0

i€o
1
1 su'm slm
<c, [Tb:Memo D, I1 <— / |b(x) — by dx) (RRY,, o1 | 1og 1y 1O
i€c Q€sS,; i€o |Q| o
< ¢, (s/my |15l Y (RA) o1l f | Lgog Ly 1O
QeSj
< ¢, LRATY NBI Y 11 f I aog 1y 0 RA(Q)
Q€s;
< Cn @RI D 1S Nl Lgog 1y 0 RI(Q).
0€s;

From this point arguing analogously as in the proof Theorem|6.5] the same argument
used to control (6.29) in the particular case of s, = 1 for every i € {1,...,m} yields
the following estimate

U L mtl o ymt L
Ia S cn,m”b”(p) P (r) ’ w Ll”(w)'
in the case v = M, w and
- -1 1yf
I < b \m+1_m+1 p_ e )
- <l || | L

in the case v = M w. Taking into account that by the choice of s we

L(log L)(l+%)p—l+5
have that s" ~ [Rh], < c,p’ and combining the estimates for each I, leads to the
desired estimate. |

1 1

6.3 Ag (ASP)7 estimates

Using an extrapolation argument due to J. Duandikoetxea [51, Corollary 4.3] it is
possible to derive the following result from the estimates in the preceding sections.
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| Theorem 6.7. Let T a Calderén-Zygmund operator or a rough singular integral
with Q € L*(S"™"). Then, if m is a non-negative integer and 1 < g < p < oo then

1
”Tbmf“LP(w) S cn,p,q,T[w]rX: ”f”LP(w)

In [100] K. Moen and A. K. Lerner established the following estimate for Calderén-
Zygmund operators

”Tf”LP(w) < Cup,T <[LU] 1 .t [wl p] 1—7 1—) ”f”LP(w)

Ap I(Aexp) =1 Ap res (Aexp) —1

where
[W] go 400 = SUP(LU>“ (w'" )“(’ “(w)é exp((logw™),)

Estimates in terms of that klnd of one supremum mixed estimates were introduced in
[77].

Also in [100] the following result, that has been recently proved in [107], was
conjectured.

| Theorem6.8. Letl <g<pandw € A, IfT is an w-Calderon-Zygmund operator
or a Rough singular integral with Q € L®(S"") then

”Tf”Ll’(w) S cn,p,q[w] ”f”LP(w)

(Aexp 7

The preceding result was extended in [140] to the case of commutators. Here we
provide a further extension for iterated commutators. We also observe that the same
argument works both for T" being a Calderén-Zygmund operator or a rough singular
integral. The precise statement of the result is the following.

| Theorem 6.9. Let T be a Calderén-Zygmund operator or a rough singular integral
withQ € L®(S" ). Let b € BMO and m a positive integer. Then foreveryl < g < p <
)

”Tbmf”LP(w) < Cn,p,ch[w]er[w]Al .t ”f”Lp(w) (6.31)
q

7 (AGN) P

Proof. Assume that T is a rough singular integral with Q € L*(S""!). Calculating
the norm by duality and denoting by (7,")' the adjoint of 7," we have that

WT," fll Loy = sup ‘/T’"(f)gw’ sup

gl =1

/ (Tb"’)t(gw)f‘ .

gl =1
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Taking into account that (Tb’”)’ is a commutator too we can use the sparse domination
obtained in Theorem [4.3 so we have that

3" m
‘/(Tbm)t(gw)f‘ <t 120 oy D, D, < >BT"1”uhS(b,gw, )

j=1 h=0

where

BF ! (b, gw, ) = Y (|b=bo|"™" gw), o{ f1b = bol"), 01Ol

Qes

and then the question reduces to control each BPT;hS(b, gw, f). We begin observing
that, arguing as before, choosing 1 < s < p’ and for 5, > 1 to be chosen, taking into
account Lemma

BF " (b,gw, f)= Y (|b=bo|"™" gw), o(f1b = bol"}, 0|0

Qes

< @) 1o D Vus, (&) o |b = bo| ") ouw(©)

Qes

< @), 10 L1 Y (f Vusy 0(8) 1o uA(Q).

Qes

We note that we can choose us, as close to 1 as we want so let us rename us, = r.
- _r_ . ,
Now denoting B(#) = ¢« and arguing as in [[107, Theorem 3.1] we have that

T Dholeiou@ =il ;s (Z<f wpol0l)

o=}

X ( Z<<g> )" exp((log w>Q>|Q|)

Qes

< M, roo
c,y P” ”L,,/,[LU]A;(AZp)i ”f”Lp(w)”g”Lp (w)

The last step follows from the sparsity of S and the Carleson embedding theorem
(Theorem [3.3). Indeed,

2 exp({log w)o)|0 = ¥ inf Mywyp)(2)|0] < ¢ Y inf M(wyp)(2)| Eq|

QOCR QCR QcR

= / My(wyg) < c,w(R).
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Where M, f(x) = sup,,, exp({log w),) is an operator that was proved to be bounded

on L! in [77]. Then using Theorem with p = p?l yields the desired conclusion.
Collecting all the estimates

h —h
Brr{ir’s(b,gw, < Cm’p”Q”Loo(gn—l)[w]Z [W]A%(AEXP)L ||f||Lp(w)”g||Lp’(w)~
0 p/
q o0

Consequently choosing the worst dependence on the A, constant, namely [w]} we

control every BF;’T;}}S uniformly and consequently T;".

We end the proof of Theorem [6.9|observing that in the case of T being a Calderén-
Zygmund operator, the corresponding sparse estimate can be reduced to the case we
have just presented just using Holder inequality. |

We end this section observing that for vector valued extensions exactly the same
proof that we have just presented combined with the corresponding sparse control
yields the following result.

| Theorem 6.10. LetT be a Calderén-Zygmund operator or a rough singular integral
with Q € L*(S"!). Let b € BMO and m non negative integer. Then for every 1 < r <
p<ooandeveryl < g < oo

m < m .
T, N S Cupraerlily_L0) oMl

r



7 | Weighted endpoint estimates

Given T a Calderon-Zygmund operator and provided that w € A,, it is a well known
fact

w{x eR" : |Tf(x)|>A}) < CT,w/ @w(x)dx A>0.
RN

The preceding estimate can be obtained in several ways. For instance, relying upon
and taking into account that the Hardy-Littlewood maximal function is of weak
type (1, 1) if and only if w € A, (see [63]), or combining the following consequence
of the good-4 estimate between M and M?* (see [58, 86, 124])

supruw ({x €R" : My())(x) > 1}) < ¢, suprw ({x € R : MI(H(x) > 1})

>0 >0

where w € A, and 6 > 0 and (3.11).

A much more precise approach was provided by A.K. Lerner, S. Ombrosi and C.
Pérez in [104] to derive the following quantitative estimate

w(lx €R" 1 [TF()| > A1) < eplw], log (e + [w /'f(x)' wxdx  (7.1)

and raised the so called A, conjecture, that is, whether the logarithmic factor is super-
fluous or not in the preceding estimate. That conjecture found a negative answer in
the work of F. Nazarov, A. Reznikov, V. Vasyunin and A. Volberg [118]. It was estab-
lished there that the logarithmic factor cannot be completely removed. Furthermore,
very recently A K. Lerner, F. Nazarov and S. Ombrosi [102] have established that
is fully sharp.

We recall that C. Fefferman and E.M. Stein [57] proved the following estimate for
the maximal function. For every weight w

I/ ;x)l Mwx)dx  A>0.

w({xeR": Mf(x)>/1}§cn/
R"
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By analogy, B. Muckenhoupt and E. Wheeden raised the following conjecture for the
Hilbert transform.

w{xeR": Hf(x)> A} <c, @Mw(x)dx A>0.

R"
Since the A, conjecture is not true, the definition of A, weights does not allow ei-
ther the Muckenhoupt-Wheeden conjecture to hold. However, the Muckenhoupt-
Wheeden conjecture was directly disproved earlier than the A, conjecture by M. C.
Reguera and C. Thiele [138]]. Being that conjecture disproved, it made sense to won-
der whether it would be possible or not to balance the estimate replacing M by a
larger maximal operator M. Curiously the first result in the scale of Orlicz maximal
operators had been established almost 20 years earlier by C. Pérez [123]] for Calderén-
Zygmund operators and was the following.

|.f ()]

w({x eR" : [Tf(x)| > 4}) <cp, 1
-

M o e w(x)dx € > 0. (7.2)
In the last years there have been some insightful works about this question. In [78],
it was established that ¢, -, ~ cn’Té. Later on, C. Domingo-Salazar, M. T. Lacey and
G. Rey [47] provided a very beautiful argument based in the sparse domination of T’
that allowed them to obtain the following bound

w(lx € R ¢ [T > A}) < c”/ AS)

1 ML(loglogL)lJrE w(x)dx e>0. (73)
Rn

Also a quite interesting negative result was obtained by M. Caldarelli, A. K. Lerner
and S. Ombrosi [[17]. They proved that if ¥ is a Young function such that

. Y(r)
im =
—oo tloglog(e® + 1)

then the following estimate does not hold
" |.f ()]
w{xeR": |Hf(x)|>A})<c TM\I,(L)w(x)dx (7.4)
Rﬂ

for any constant ¢ > 0 independent of w. Their approach relied upon a very precise
control of the weights built by M. C. Reguera and C. Thiele combined with a suitable
extrapolation argument.

The estimates available for Calderén-Zygmund operators appear summarized in
Figure[7.1] The red area depicts the scale of Young functions for which the Muckenhoupt-
Wheeden type estimate has been disproved whilst the green area stands for the scales
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Lloglog L L(log L)* .

L L(loglog L)1*¢ £>0

Figure 7.1: Known endpoint results for Calderén-Zygmund operators.

of Young functions for which the inequality holds. We would like to point out that it
still remains an open question whether the estimate holds or not in the case W(t) =
tloglog(e® +1t). The available techniques do not seem to be precise enough to provide
an answer in that case.

7.1 Endpointestimates for A-Hormander and Calderon-
Zygmund operators

As we stated in the previous section, C. Domingo-Salazar, M. T. Lacey and G. Rey [47]
established the best known two weights endpoint estimate for Calderén-Zygmund
operators, namely (7.3). Actually they obtained that estimate as a Corollary of a more
general result in terms of sparse operators which can be stated as follows.

| Theorem 7.1. Let S be a sparse family and w a weight. Then

_ / N0
c, = — <
? Ji t*log(e+1)

The preceding result combined with the sparse domination result allows to derive

w{x eR" : |[Asf(x)| > 4}) < c,,cq,/ @Mw(mw(x)dx
R

where

the following Corollary.
Corollary 7.1.  Let T a w-Calderén-Zygmund operator. Then

w{x eR" : |Tf(x)] > A}) < cncTc(p/ @M(p(mw(x)dx
R

o -1
c,6 = / g()—(t)dt < 0.
¢ . t2log(e +1)

where

If we choose
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« @(t) = tlog(e + t)* with € > 0 then
1 |/ ()|
w{x eR": |Tf(x)] > 41}) < cnch/ TML(IOgL)Ew(x)dx. (7.5)
Rn

« @(t) = tlog(e + log(e + 1))!*¢ with € > 0 then

, I x
w({xeR" : |Tf(x)|>A}) < CuCr QML(IOgIOgL)HE w(x)dx. (7.6)
Rn
Furthermore, if w € A, then
" |/ ()]
w({x eR" : |Tf(x)| > A}) < c,cplogle + [w]Am) TMw(x)dx, (7.7)
R"

and if additionally w € A, then

O odx. (78)

w({x e R" 1 [Tf(x)| > 4}) < ¢,erlwly, log(e + [w]Am)/ 2
Rn

Proof.  'We observe that to obtain and in both cases @(#) = tL(¢). It was
established in [47] that L(f) < @~!(r). Consequently, since we know that

t<o gl () <2

then

c=/ —dth/ — dts/ dt
¢ . t*log(e+1) . t@~i() loge + 1) . tL(t)log(e + 1)

and it is an straightforward computation to recover (7.5) and (7.6). Now we focus on
the rest of the estimates. Using that log? < t; fort > 1 and a > 0, we obtain

c

aE

ML(log Ly w(x) < —M . W(X).

Next, by Lemma forr, =1+ L M, w(x) £ 2Mw(x). Hence, if « is such

Ty [W]Aoo

that ea =

, then

Tn ono

1 Coi .
EML(logL)f w(x) < ?[w]Ame(x)

This estimate with € = 1/log(e+[w],_), gives (7.7). We end the proof observing that
follows from just taking into account the definition of A,. |
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We would like to observe that was established first in [78], where it was
also established that it is possible to recover and , estimates that had been
essentially obtained first in [104], from (7.5), as we have just shown in the proof of
the preceding Corollary.

The technique used in [47] was based in ideas that somehow follow the philosophy
of good-4 inequalities. The argument provided in [47] was generalized in [106] and
that generalization was exploited in [81]] to provide the following results.

| Theorem 7.2. Let A be a Young function. Assume that A is submultiplicative, namely,
A(xy) < A(x)A(). Let S be a sparse family. Then we have that for every weight w > 0,
and every Young function ¢,

|f ()]
A

w({xeR" 1 A,¢f(x)>1}) < CnK(p/ A ( ) M w(x)dx,
Rn

where

/ * @~ (nA(log(e + 1)?)
K, = > dt
| t log(e +1)3

The preceding theorem combined with the sparse domination for A-Hérmander
operators yields the following Corollary.

Corollary 7.2. Let A € Y(p,, p;) a Young function and 7" an A-Hérmander operator.
Assume that A is submultiplicative, namely, that A(xy) < A(x)A(y). Then we have
that for every weight w > 0 and every Young function ¢,

w{xeR" : |Tfx)|>A)< CnCTK(p/ A <|f;x)|> M ,w(x)dx,
Rn

where

/°° @~ (1) A(log(e + 1)%)
K, = > dt
| t"log(e + 1)3

To establish Theorem [7.2f we will rely upon a key lemma that was obtained in
[106] as a generalization of ideas in [47]. We start fixing some notation. Assume that
¥ is a Young function satisfying

Y1) < AGP() (1> 0,Ay > 1) (7.9)

Given a dyadic lattice & and k € N, denote

Fo={0eD : 47 <|fllgp <4}
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We would like to point out that the following lemma in the case W(f) = t was
proved in [47]. Our extension to any Young function satisfying (7.9), obtained in [106]],
relies on similar ideas.

Lemma 7.1. Suppose that the family F, is (1 — j)—sparse. Let w be a weight and

4
let E be an arbitrary measurable set with w(E) < oo. Then, for every Young function

vy,

4A
/ 2 ;{Q wdx<2kw(E) —“’k / Y| £ 1) My wdx.
A= P (2A?) Jre

Proof. By Fatou’s lemma, one can assume that the family 7, is finite. Split 7, into
the layers 7, ,, v =0,1, ..., where F, ; is the family of the maximal cubes in 7, and
Fi.v+1 is the family of the maximal cubes in 7, \ U,_, F.-

Denote E, = QO \ UQ’EFMH Q' for each Q € T, ,. Then the sets E,, are pairwise
disjoint for Q € F,.

For v > 0 and Q € ¥, , denote

A= | o

Ql erk’v+2k ’Q/CQ

Observe that
2k_1

o\40= U Eo-

I=0 Q'€F},.0'CO

Using the disjointness of the sets E,, we obtain

2k—1
2 w(EN(@\ 4,0) < 2 2 > D wENE)
Q€F, v=0 Q€Fy, I=0 Q'eF, .,
0'co
< 2° ) w(En Ey) < 2*w(E). (7.10)
Q€F;
Now, let us show that
2Ay
1< — ‘P(4k|f(x)|)dx (Q € S)). (7.11)

10|
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Fix a cube Q € F . Since 47k < I/ g0 DY and by ,

1 AW/
1< — [ pu-t! < — [ wd*I1r). 7.12
<|Q| . ( Ifl)_lQI . @D (7.12)

On the other hand, for any P € F, we have || f|ly p < 47%, and hence, by ,

1
— [ wE <.
IAGUIE

Using also that, by the sparseness condition, |Q \ E,| < *|Q|, we obtain
4

1 1 1
— [ wu = — [ Wk — /‘1‘4"
0] /Q Cava)) o1 /r, @D+ ol ,, v Cava))

E5k,v+1
1 IO\ Eol 1 1
<— [ yur +—s—/lp4’< + —,
19l JE, @170 O] 19l J, @b 2Ay

which, along with (7.12), proves .

Applying the sparseness assumption again, we obtain |A,(Q)| < (1/ 2A.{,)2k |0|.
From this and from Hélder’s inequality (2.8),

MDD < Ao lvolivlyo = 5
0] aw@Rrele T G101/ 14D

IA

lwlly o

2

T

Combining this with yields

WAQ) < —2r / W )Mo wdx
T RA) e T

Hence, by the disjointness of the sets E,,

3 w(A,(Q) < / W) Moy 0 x
0eF, ‘ T Y (2AYY) Jre o ’

which, along with , completes the proof. |

Another result that will be needed to establish Theorem|[7.2]is the following gen-
eralization of the Fefferman-Stein inequality.
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Lemma 7.2. Let ®@ be a Young function. For an arbitrary weight w,

w({x€R" : Mgf(x)> 4}) 53"/ @(@) Muw(x)dx.

Rn

Proof. By the Calderén-Zygmund decomposition adapted to M, ;;Z (see [39] p. 237]),
there exists a family of disjoint cubes {Q,} such that

{xeR" : M7 f(x)> A} =y,0,
and 4 < || fll¢ o, <2"4. Since || flle, > 4 implies /Q_ ®(| f|/4) > |O,| we have that

w({x €R": M7 f(x)> A}) = ) w(Q)

<ZwQ,,/ db(lf(x)l//l)dxs/ O(| f () /HMw(x)dx.
i o, R”

Now we observe that by the convexity of ® and Lemma|[2.4] there exist 3" dyadic

lattices 2 such that
3"

My f(x) <3" Y M7 f(x).

j=1

Combining this estimate with the previous one completes the proof. |

We end this section providing a proof of Theorem[7.2]

Proof of Theorem

Let
E= {xe R™ : Ag,f(x)> 4, M,f(x) < %}

By homogeneity, taking into account Lemma 7.2} it suffices to prove that
w(E) SCK'(p/ A(lf)) M, wdx. (7.13)
Rn
Let us denote S, = {Q €S 1 4 < Ifllap < 4"‘} and set

TS = Y I laoxo®).

0€S,
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If ENQ # ¢ for some Q € S then we have that || f|| , , < i so necessarily

AS’Af(x)=Zka(x) x € E.
k=1

Since A is submultiplicative it satisfies with A, = A(4). Using Lemma [7.1] with
F, = S, combined with the fact that T} f(x) < 47* 2oc s, Xo(x) we have that

4—k+1A(4k)

5 ((2A )2k>

/ T, fwdx <27*w(E) + ¢ / A(lf)M ,wdx. (7.14)
E R~

Taking that estimate into account,

1 1 ©
w(E) < Z/.AS’Afwdxs Zkz/EkaLde

47% A(4%)

1
< Jw(B)+c ; T @) e A(f DM wdx.
Now we observe that
22" 1
/ ——dt>c. (7.15)
k-1 tlog(e + 1)

()

Taking this into account, since is non-decreasing,

o]

A / 47+ A@h
7! 22k - pok-1 tlog(e+t) = (22k)

k=1 @ @
zk
- CA(4) /2 1 th(4k—1)
4 Sl i logle+1) A

<c

dt

Al & /zzk Alog(e + 1)?)
1 J 22! t5_1 (t) log(e + 1) log(e + 1)?
0 -1 2
<ec / @~ (1)A(log(e + 1) )dt
1 ?log(e + 1)3

This yields that that (7.13) holds with «,, = [ £-@Alset? 7,

7 log(e+1)?
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7.2 An A,—A_ endpoint estimate for rough singular
integrals

As we noted in Section rough singular integrals were proved to be of weak type
(1, 1) in full generality by A. Seeger [145]]. In the weighted setting a first partial result
for Q € L*(S') was obtained by A. Vargas [150]. Later D. Fan and S. Sato [55} [56]
established the result for Q € L*(S" ') and n > 2.

The rest of this section is devoted to present a result from a joint work with K.
Li, C. Pérez and L. Roncal [111]. In that result we provide a quantitative A, — A
endpoint estimate for rough singular integrals with Q € L®(S"!). The dependence
obtained on the A, and the A constants is better than the dependences that appear
implicit in all the works mentioned above. The precise statement is the following.

| Theorem 7.3. LetQ € L®(S"") such that /S,,_] Q=0.Letw € A,. Then
N7 1ty 1o ) < ”Q”L‘X’(S”—l)[w]Al[w]Aw 10:‘:’2([00],40c + D).

Proof. Let us call T, = T. To study the weighted weak (1, 1) bound, one needs to
estimate the constant in the following inequality:

supaw({x € R" : |[To(f/H)(X)| > a}) < C, Il f Nl 1)

a>0

To this end, we need to use some estimates obtained by Seeger [145]. Denote
K;(x) = K(x)(dQR7H [x]) — 2772 |x|)),

where ¢ € C*((0, 00)) satisfying ¢(f) = 1 whent < 1 and ¢(¢) = O when t > 2. Then
it is obvious that

suppK; C {x : 2772 < |x| <27}, (7.16)
and
0 4
sup sup "t (—) K;(r0)| £ Cy 1Rl - (7.17)
0</<N or ’

Given a > 0, without loss of generality we assume f > 0 and we form the Calder6n-
Zygmund decomposition of f at height a/||Q||, ~. In this way, there is a collection of

non-overlapping dyadic cubes {Q} such that f = g+ b, where ”Qﬁ <{(f)p < ”élnla

and, for the good part,
2"a

0<g< ,
12| ;
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whereas, for the bad part,

and moreover,
2n+l

Ll

suppby C Q, and ||byll: < 10|
Then
w{x € R : [Tof ()] > a})

<w({xgE: Mgl > 5} ) +w({xg E: Tabol > 5 })
+ w(E)
=: I+ 11+ w(E),

where E := U,30 and we have

w(E)_ZngQQl)slel 23" ]Al ”L /flnfw(x)

" 1€ || -
< 3"Mwly, - 1121y

151

It remains to estimate I and I1. For I, by Chebyshev inequality, estimate (6.5) in
Corollary [6.2] the fact that |g(x)| < 2"a/||Q||,«, and an argument in [123] pp. 302-

303] (see also [22, p. 282]), we have

r<cpan [ TemPu)dy
R\ E

< a (e, 111 L po () (! / lgWI™ M, (W fmr\p)(¥) dy
Rn

1
< a0, 1Rl Lo po (P )P (Y0 —— / lgWIM, (w e\ p)(y) dy
Rn

Qll,e
< % (Po(py)?)" (™! / TOIM ey
o

¢, 12l

IA

(Po(pp)?)™ ™ [ g 1S N 1)
Gl

IA

]Al(log([w]Aw + 1))2||f||L1(w),
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— 1 andr=1+—L , the
log([w] 4 +1) TaWwla,

exponent from the optimal reverse Hélder property as in Lemma [3.5] To estimate 11,

where in the last step, we have chosen p, = 1 +

by the decomposition of the kernel, for x ¢ E we have

T(b)(x) = ) K, * ( > Bj_s>(x) =Y YK, % B ()= ) ) K, * B_(x).

JjEZ SeEZ SEZ jEZ s>0 jeZ

To proceed our argument, we need to use an auxiliary operator I (for the precise
definition, we refer the reader to [145] pp. 97-98], we are following the same notation

therein). Since we have checked that K; satisfies (7.16) and (7.17), then it was shown
by Seeger [145] that when N is sufficiently large (but depends only on dimension),

then there exists € > 0 such that
2

PR DI
J

<c,27a Y lbgll, (7.18)
0

L2
and

||(Kj ~T%) % bQ||L1 < ¢,27 byl 1. (7.19)

Indeed, inequalities (7.18) and (7.19) are contained essentially in [145, Lemma 2.1] and
[145] Lemma 2.2], respectively. The latter implies immediately that

DK =T B || <l =27 Y 1Bl (7.20)
J 0

L!

where b, are the bad functions from the Calderon-Zygmund decomposition of f

)

described above. Let

Eyi={x¢E:| YK B,
J

Then for any a > 0, we have, by (7.18) and (7.20),

s cn”Q” X ~_s€ —s€
|E5| < 2207 Y |Ibglln < ¢,27 Y 10l (7.21)
o) o

(04
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On the other hand, taking into account (7.16), it is easy to check that

Z ”KJ * Bj_s”Ll(w)

J
SZ Z //|K,~(X—Y)|IbQ(y)|dyLU(x)dx

Jj 0:2(Q)=2s
<lQll ), D / b 27Mw(x)dx dy
i 0:2(Q)=2-s [x—y|<2/ (7‘22)
<lQl.) X /|bQ(y)| i,nf/ 27"w(x)dx dy
7 0:6(Q)=2i V€O Jx-y|<e,2i

<11 2 lIbol s inf Muw
o

<c,a ) |0linf Mw.
) (0]

Now we are in the position to use interpolation with change of measure. We follow
the strategy of [55]]. By [55, Lemma 6], (7.21)) and (7.22)) imply

/ min(w(x), u)dx < c, Z 0| min(2™, inf Mw). (7.23)
E; o
Since, for A > 0,
/ min(A, u)u‘“rgﬂ = I A°,
o u  0(1-0)

then we get
/ wx)’dx = (1 - 6) / / min(w(x),u)u—”"@dx
ES Es Jo u
<c,0(1-0) Z |0 / min(u2_”,iréf Muw)u=**du
0 0

< ¢, 27" P Q1 / | fOI(Mw)dx.

Rescaling the weight w we obtain

w(E?) < ¢, 277 Q]|, / | fOI(M, jpw)dx. (7.24)

To get a better constant than [55]], in the last step, we shall split the summation in two
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terms. For s, which will be determined later, we have

w({x¢E: |;;Kj*3j_s| >al)
§w<{x¢E : |SZOZKJ.*BJ._S|>%}>

s=1 j

+w<{x¢E D i ZKI*BJ_S|>%}>

s=so+1 j

S0
2
< 2 Z Il Z K; % B;_ (|l 1w
s=1 J

ad 1-6
+ Yy w({x EE:|Y K +B,_|> Mz—“—weﬂ—a)ﬂ}) — [T +1V,
J

s=sy+1

where for the second term in the first inequality we turned a into ce(1—8)275¢0-9/3¢,
with ¢ > 0 an absolute constant such that ce(1 — 6) Zszl 2-5¢(1-0)/3 = 1. The estimate
of I'11 is easy,

III S Socn”Q”Lwa_l Z ||bQ”L1 lgf Mw S SOCn”Q”Lm(X_l[LU]Al ”f”Ll(w)
o

To estimate IV, by (7.24), we have

o0

c
n —spe(1-0)/3~7—2se(1-6)/3
Vs ¥ gt ||Q||Lw/|f(x>l<MueW>dx
s=sp+1
o0 C
Z nD=soe(1=0)p=2(s=s0)e(1-0)/3y 1 / M, ,w)d
st ae(l —0) 2z s e -
S=5

c
n —spe(1-0)
Ss@a—ops 19l / | £ ()M, jpw)dx

By the reverse Holder inequality, one can take
cn[w]Am
C l4clwl,

Then
(Ml/ow)(x) < C[w]Al w(x).

Since € is an absolute constant, finally, we can take

Sy += c1-9) log,([w],_+ 1) = [w],_log,([w],_+ D).
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Then altogether,

w({xeE :|§6;Kj*3j_s|>a}>

< Cna_l[w]Al[w]Aoo 10g2([LU]A°o + 1)||Q||L°°”f”Ll(w)'

7.3 Endpoint estimates for commutators

As we pointed out in Section commutators of singular integrals with symbol in
BMO are not of weak type (1, 1). This fact was established by C. Pérez in [124]. In that
paper also a suitable replacement for that estimate was provided. The result obtained
in that work was the following. Given a Calderén-Zygmund operator 7', a positive
integer m and b € BMO then

b m
<|| IIBM(t)If(X)I> w(x)dx

w{x eR" : |T)"f(x)| > 1}) < CT,w/ o}

Rn

where w € A, and @, (t) = tlog(e + 1)".

Later on, in the spirit of the two weight estimates for Calderéon-Zygmund op-
erators obtained in [123], C. Pérez and G. Pradolini [128] proved the following two
weights estimate. For any weight w > 0,

1611 gpo! S/ O
w({x € R" : [T, f(x)| > 1}) < cm,T’g/ o, <%> M | og pymeew(X)d x
RI‘I

(7.25)
where € > 0 and ¢, = co when € — 0.

C. Ortiz-Caraballo [121] [120], obtained another estimate that is less precise in
terms of the maximal operator in the right hand side of the inequality but sharp in

bl A f
(I)m<” ||BI:IOI I)dex

the rest of the parameters, namely for 1 < p,r < oo

r

w({xeR": |Tbmf(x)| > 1)) < C(pp')(m+1)p(’,/)(m+1)p—1/

Rn

And that estimate is sharp on p and r. It was also established in [120] that if w € A,,

b m
w({x €R" ¢ [T f(0)] > 1)) < c[w]* log(e+[w], )" / ®, (M) wdx.

Rn
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In the rest of the section we will provide improvements of the preceding estimates
in several directions. We will prove that it is possible to obtain a quantitative version
of result and we will show that m of the logarithms present in the A; — A
estimate are superfluous.

7.3.1 A classical approach for Calderén-Zygmund operators

In this section we establish the following result

| Theorem 7.4. Let T an w-Calderén-Zygmund operator and b, € OsCeypps fori =

1,...,m with % = Z:":l sl, For every weight w we have that

w({xer o 1] > 4}) < =2 / ; <"B”|f(x)|> M, rw(xdx
1 R7 s L(log L)s

1
6;+ A

for every e € (0, 1) where Q1) =11+ log*(2))?, p > 0.

The preceding theorem is a quantitative version of (7.25). The result we present
here improves [129, Theorem 2] in two directions. In that work our techniques only
allowed us to deal with w-Calderén-Zygmund operators with w(f) = c® and to obtain
a Em% blow up whilst the approach we follow here allows also to consider operators
satisfying just a Dini condition and a more precise control of the blow up. Even though
the preceding result provides a better dependence on € than [129, Theorem 2] it is not
the best possible result as we will see in Subsection

The approach in this section is, not surprisingly, based in Calderén-Zygmund de-
composition. The bad part turns out to have a good behavior in terms of the weight.
Is in the good part, which is the one that we deal with optimizing the strong type
estimate in Theorem[6.5 where we get the worst blow in € and the worst dependence
on the weight. Taking that into account, it is clear that any improvement of Theorem
[6.5] would lead to an improvement of the estimates obtained using this approach.

The next two subsubsections are devoted to establish Theorem [7.4 We will con-
sider the cases m = 1 and m > 1 separately.

7.3.1.1 Casem=1

By homogeneity we shall suppose that ||b|| Osepys = 1- We consider the Calderén-
Zygmund decomposition of f at height A. That decomposition allows us to obtain a
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family of dyadic cubes {Q;} which are pairwise disjoint such that

PP /|f|szu.
0.1/,

J

e=Jo,
J

As usual, we write f = g + h where g, the “good” part of f, is defined as

(x) = f(x) x € QF
: fo, x €0,

Let us denote

and verifies that |g(x)| < 2"4 ae. and h = Zhj where h; = (f - fQj> Xo, and
fQ. =

1
J |Q]|
where 0= 5\/;Qj and Q = Uj Q;. Using that decomposition we can write

fQ, f(x)dx. We denote w*(x) = w(X) Yrma(X) and w;(x) = w(x))(Rn\Qj

w{x €R" : [[b,TIf(0)| > 4}) < w({xe R\ O : |[b,Tlg(x)] > %}) + w(@)
+w({xeR\Q 1 |6, TIh) >§})
— T+ II+111

To end the proof we have to estimate I, 11 and I11. Let us begin with 1. If p > 0,

Chebyschev’s inequality gives

w <{x ER'\Q : |[bTlg(x)| > %}) < %/R b, T1g(x) P 0* (x)dx.

Letus choose 1 + —— <p<1l+ ——<yb=¢€— (1+l>(p— 1). For that choice
3(1+4) 2(1+4) s

of p and 6, is easy to cfleck that
1 1\
(pp')<1+s)” <p_> < csL and (1 + l)p— I+06= 1 +e.
0 et s s
Using now Theorem [6.5] we have that
o).

2 fa

+1)p (141 p—1 v .
sc (p')( ) p< )p <T> /Rn lg(x)lpML(logL)(”%)”*”‘Sw (x)dx

|[b, T1g(x)[Pw" (x)dx
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1 2 .
<% / M, 1w ()
<e-L 1 [ lseoim “(0)d
<c Y g(x g 1)+ W (X)X

1 1

<c—-= (/ |f ()| M +Ew(x)dx+/|g( M LW (X)dX>

g3t A RM\Q ogL)s ogL)s
and it suffices to estimate last integral. Indeed,

[ econnt,, o< Bl / M
< T 10/l / Oy ing M, (@)

=3 / 70 i8f M, @ <e T / FOIM, w0y

< / SDIM, ).
Q

Summarizing, we obtain that

L[ o,

I'<c— 0w Ly
8;+1 R7 A L(log L)'s

w(y)dy.
For 11 we have the following standard estimate
IT=w) < / wx)dx = Y |5y/nQ;| ——— /
; Vi, Z |5\f 0l
< Z (5\/2)" 10,1 inf Mu(z) s 5\/2 Z — / f()dy gngj Mu(z)

s(S\/— / Mw(y)f(y)dy<<5\/_ ) %Mw( dy

Rn

w(x)d X

To estimate I 11 we split the operator as follows

[b,Th = Z b, Tlh, = Z (bT(h;) — T(bh)))

—2(1) by )T(h)—ZT((b be >h>
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Then we continue with

IIISLU({xGIR”\fZ .
+w<{xeR”\fz :

=A+B

; (bGx) = bo, ) Thy()| > %})
(fp-o] m)0] - 4})

To estimate A we use standard computations based on the smoothness property of
the kernel K and the cancellation of each 4,

<< / . ; 16(x) = b, | |Th,(x)| w(x)dx

< %Z/ ) |b(X)—b|LU(X)/ |h,(») )K(x,y)—K(x,ij) dydx
J "\Q; 0;

= 52/ lh,(y)I/ K (xy) = K(x, x| [b(x) = bg, |w,(x)dxdy
A £ "o, j ,

y—X
< 12 / ] / \ Q,,+y|b(x) b, lw;(x)dxdy
"\Q;

Jj X—X

4

c d ‘y—xQ
=7 Z / 7, Z/ —m|b(X) Qj|wj(x)dxdy

(=1 J24100)<lx-xg, 1<25+11(Q)) ‘x ~xo

% </ |h, <y>|dy> / |6(x) = by |w;(x)dx
P )2k+1Q | 241,

We now fix one term of the sum. Using generalized Holder inequality, Lemmal[2.3] we
have

o

277k
DT / |b6(x) = bg, |w;(x)dx
|2k+1Q.‘ 2k Q; /

k=0

Z ‘2k+1Q ) /zmg 15(x) = byenig, [w;(x)d x

3 - rk /
+ byenip — by W (x)dx
Z |2k+lQ | 2k+1Qj| 210, le J( )
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—yk
< e bzk“Qj ”eXPU’ZkHQJ ”wj”LIOgL%,Z’”"Qj

s T
[\®]

+ ) 27Kk + 1D)||b inf Mw,
; (k4 Dllbllox, . inf Muw,(2)

—rk .
2 ”b”OscexpLx zlég‘l MLlogLi w; (Z)

M

<
1

8 T

+ ) 277Kk + 1)||b inf Mw,
; (k4 Dllbllo, . inf Muw,(2)

¢ (}25/ M, () 22 k4 1nf Muw, (2)22 Tk (k + 1)>
< Czléle MLIOgLY w;(z)
Consequently,
A< %Z / IR Wldy inf M, @0)0)
<< Z / et WD,y
( / DM, w0y + Z / L;(w,-)(ynfgjldy)

%( / DI, |, )(y)dy+2 / SOy inf M, G, )(z)dy>

/ lfDIM 1 (w)(y)dy

~

»m

To end the proof we estimate B. We observe that (7.5) yields

B:w*({xeR" : Zj:T([b—ij] h) )
et f S (o)

<c——2 / [6G) = bo,| |10 = fo, | Migog () (x)dlx

)

P | (M o 1y (W) (X)d x
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11 Z .

S CE; j Zlggl ML(log L)e(wj)(Z) A/Qj ‘b(X) B be‘ |f(x>| dx
11 Z .

e > zlég,- M 10 1 (W;)(2) /Q, )b(x) B be) |fo) dx
1

== (B, +B,).

€
For B,

B,=< Z i M 01 (10)(2) / |b(x) — by, | ( fo, |dx

|Q I / |b(x) j) dX/ |f(J’)|ML(1OgL)E(wj)(y)dx
9;

< Z Wl /Q My )02

J
<3 [ M) 00
J J

|f ()]
<c —ML(log L)t W(x)dx.

- A
Rn
For B, we use the generalized Hélder inequality Lemma [2.3]and we obtain

B, = %Zzlég ML(logL)s(wj)(Z)/ ‘b(x) — ij| | f(x)| dx
i 0,

. 1
<c Z Zléléfj Mo L)e(wj)(z); ’Qj‘ 16l 0se, . ||f||L(log DL, (7.26)

. 1
=c¢ ; zléléfj Mg L)E(wj)(z); ) Log )0,

Now we see that

1
L(log L)s ,0;

219
1 . U |/ ()]
Sz'Qf'L‘i%{” @/Q,q’%< P )"}
1 | f ()] _ |f ()]
—z'Qf'@*@/Qq’%( z )"")"Qf”/g,q’%( ok
/ / <| <>|>
| f(x)|dx + 1 p < dx.

(7.27)
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Consequently

; | /()]
B <c ;Zlélgfj ML(IOgL)g(wj)(z) /Q,. (Df <T> dx
s¢ Z/ @, (lfi)m) M 1og 1) (W;)(x)d x
it 7

<ec / o, <|f ;x)|> Mg 1y (W)(X)dx.
a

s

7.3.1.2 Casem>1

Let us assume that the desired inequality holds for / < m — 1 symbols. By homo-
i = 1. Using the Calder6n-
Zygmund decomposition with the same notation used in the case m = 1 we can write

geneity we may assume that ||b|| Osepyyy = " = 16]] ose

w({xeR" : |T3f(x)|>/1})§w({xeR”\f2 : |T3g(x)|>%}>+w(f2)

+w<{xGIR"\Q | Tyh(x)| >§})
I+ II+111

We consider now each term separately. To estimate I we use Chebyschev’s inequality
for p > 1 that will be chosen appropriately,

n o A 2P *
w({x € R"\Q : |Tze(x)| > 5}) < E/R | T38(x)|Pw*(x)dx.

Let us choose, as we did in the case m = 1, psuch that | + —— <p <1 + ——

3(1+4) (1+1)2

and 6 = € — (1 + %) (p — 1). For this choice of p and 6 we have that
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Using now Theorem 6.5/ and the choice of 6 and p we have that

—/I 380 w* (x)dx

<c (pp)( < > /Ig( WM o 1y (H+ )P LW (X)dx

p
<et2 / EOPM 1w (x)dx
2 Llog L)

Arguing as in the case m = 1 we obtain that

Lo L [ O

= %n —+s
et Jre A L(log L)’s

w(y)dy.

For 11, as in the case m = 1, we have the following estimate

113" MM w(y)dy
re A
It remains to estimate /1. Following the computations of page 684 of [132] we can

write

T;f(x) = (b)(x) = 4)) ... (b, (x) = 4,)T f(x)
+(—1)'”T (b = 4D - (b = 2,)f) (x)

+Z Z( 1)””<b(x) ) / (b(y)—1>6, K(x,y)f(y)dy.

i=1 oc€C;(b)

(7.28)

Now we work on the last double summation. We observe that for each term we can
write

(b0 -7) /R (b0)=7)  KGen)fOdy

_ /R (b =7) (1660 = b+ [b0) = 7] ) Kx)f 0y

#o

= /R n (b(y)—/_{)dz > (bx) - b)), (b<y>—Z)T, K(x,»)f()dy

j=0 7€C;(o)

#o
=Y X [ @@=b0), (b0)=7)  KGf0)dy

Jj=0 7&C;(c) /R

-3 3 #((-7),..)

j=0 7€C;(o)
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=T((b1—Al)...(bm—/lm)f)(x)+#za Y T;((b—Z)G,UT,f).

j=1 TECJ(G)

Plugging this into the double summation of (7.28), since 7 U7’ U ¢’ = b we can write,

m—1

> Y (b -7) /R (b0)=7) KGenfdy

i=1 6eC,(b)
m—1
T ((by =20 by = A ) @+ Y, X e, To((6-7) /)
i=1 c€C;(b) °
where c, is a constant that counts the number of repetitions of each 7. Summarizing

T3 f(x) = (by(x) = 4y) ... (b, (x) — 4,)T f (x)
+¢.T ((by = 4) ... (b — A,) ) ()

+mz_'i > caTa((b(y)—Z)glf>(x)

i=1 6eC;(b)

Using this for each /; and summing on j,

ZTm (x) = Z(b (x) = A1) . (b(x) = A,)Th;(x)

+ Z T ((by = 4) .. (b, = ADh;) (x)
J

+ Zmz_i 2 T ((b—ZL h,)(X)

i i=l ceC,(b)
Then we can estimate 111 as follows

111

(fre )

+w<{R"\ﬁ: DT (b = (B)g)) - by = (b)), )| >

+w<{|R"\Q : Zml C6T3<(b_b;j)o’hj> > })

i=1 ceC"

i

ol

). (b, = (b,)o )Thy| >

o~

)

AN
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=L +L,+L,

To estimate L, we denote w; = Xrnsy/no, W and B(x) = [], |bl.(x) — (bl.)

Then
L,<t /
A Jrn\@

¢ / B() | Th,()| w(x)dx =
A Rn\fz

/ ~B(x)w(x)( / I OIIK G ) - K, xQ,.>|dy> dx
J "\Q2

E _c/ |h (y)l/ B(x)w;(x)|K(x,y) — K(x, xQ)ldxdy
A
j "\54/nQ;

Q,“

D (By(xX) = (b))g) -+ (b (x) = (b,) )T h,(x)

Jj

w(x)dx

IA
SN

A standard computation using the smoothness condition of K yields that the latter
is bounded by

Xo, |

|

c

<] il 2‘/ B)w,(x) ——————dxdy
; ’I/Q,- T A S0y sl 12110, T lx = xg I

(7.29)
Z ¢ Z 27k —
< - E éj |hj(y)| k W -/|;c—ij|52k+ll(Qj) B(X)wJ(X)dXdy -

Let us estimate the inner sum. We have that calling B, ,(x) = [],c,

2k
S FTCT oy "I
o~k
Z Q2 11(Q,)y /2k+1Q ] |b (x) — | w;(x)dx
- 2 m /me (‘b () = b’)zk“Qj‘ + ‘(bi>2k+le - (bi)QjD wj(x)dx

2k
2 ongyy DIPIEIC <H\ g, = ")QJD o

2k+lQ 1=0 O'GC"' i€o’

m 2—ky
= ; 2 Z (1;[ |(bi)2k+1Q, B (bi)Q, >m /ZkHQj B, y(0w;(x)dx

bi(x) - (bi)2k+le ‘
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m 2—ky
< Zk: Z Z (H b ||oscme,> m /2k+le B, (x)w;(x)dx

=0 6€C,(b) \ i€0c’

Applying Corollary [2.1 we have that

1
(2k+1l(Qj))n /2k+1Qj (11;! ‘bi(x) - (bi)2k+le‘) wj(X)dx
‘ (H Ib ”O“”P”" > zeiZErfl‘Qj ML(log D W (@)

i€o

Then for each y € Q;

2k
£33 (M0honsn ) ., Bio

1=0 ceCi(b) \ i€c’
m
1
IO PIPIRIN I
k 1=0 o-eC,(b) s€o’ expL’s
x| [T1edo inf M L (w))(x)
( i€o l SCeVpLL' Z€2k+1Qj Llog L)Elea s !

s M L(logL)S )(y)z 2k = m L(logL)s( j)(y)'

Continuing the computation in we have that by standard estimates,

D —ke /
B (x)dxd
Z / |h (y)|2(2k+ll(Q ) NE—— (w;(x)dxdy
STm A /_Ih,(y)IML(logL)g(w,)(y)dy

7’" If(y)IML(1 Lt @(»)dy.

Summarizing

Cm
L < 7 /Q,- |f(y)|ML(logL)§(w)(J/)dy-

We shall work now on L,. Using (7.5) we obtain

L= w({w : cmT(Z(b1 —(bl)Qj)...(bm—(b,,,)Ql_)hj> >

J

N>

)
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IA

N
oM | —

/ Z[(b1(x) - (bl)Qj) e (b (x) = (bm)Qj)hj] ML(log L) w(x)dx
R |5

I\
>0

oM | —

J

/ Y [(bl(x) — (b)) .- (b, () = (b, )| ‘ M gog 1y B(X)dx
R~ i

cl
< e ; /Q,- B(x) ‘f(x) - fQj) M og 1y W (x)d X

1
< %; Z 1an M | og 1y W;(2) </ B(x)|f(x)|dx+/

9; 9;

B(x)lfledx>

cl
Ae
J

08 Mg 110,2) / BEIf(0ldx
9;

cl .
+ 1e Z zlégj M og 1y w;(2) /Q,- B(x)| fo,ldx

1
=z (Lzl + Lzz)

We estimate first L,, as follows

c .
- inf M, L)fw-(z)/ B(x)|fo ldx
1 ;zer (log J 0, J

=N inf M W, L/B d / d
i;;ggj e 10,3 | 157 5 (x)dx ) | (x)ldx

Using Corrollary 2.1 with g = 1 and f; = |b,. - (bi)Qj ‘, we obtain the following
estimate

< cl||B|| = c. (7.30)
exp L%,0;

|Q1|/B(x)dx<cHHb— o,

Then

1
%Z;ég M 110 1) w;(2) (@/ B(x)dx) (/Q/ |f(x)|dx>

: % 2225 M og 1y w;(2) (/ If(X)IdX>
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c
<2 Z, /Q SOOI M oy 110, ()
< %/ |f(x)|ML(logL)fwj(x)dx-
Rn

Let us estimate now L,,. Using generalized H6lder inequality (Lemma similarly

as we did in
La =73 ; inf ML(IogL)fw (Z)/ B(x)| f(x)|dx

c
< 3
<~ E mf ML(logL) w;(2)|0; ”lf”L(logL)%,Qj

since ||Z|| = 1. Also the same computation used in based on properties of the
Calder6n-Zygmund cubes Q; yields

| e
RNy i ( : )

J

Hence

1
L(log L)>.Q,

<c Z 1nf ML(logL)fw (z)2/ (lfix”)
o,
<c Z/ <|f(X)|>ML(logL)fwj(x)dx

< c/n q)f <|f;x)|> M | og 1y W(X)dX.

Putting L,, and L,, together we have that

L<ed / o, <|fi>C)|> Mo 1y 0(x)dx

£

C .
Ly <2 2 inf Mo, 1w, (IO, I£
| J

To conclude the proof we are left with estimating L, as follows

L3=w<{R”\Q: mz_‘i 3 chg(Z(b—Z)a,hj)

i=1 6€C,(b) j

)
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,E Y cGT3<Z (b—Z)G,f;(Q/)

i=1 ¢€C,(b) j

m—1
<c w<{R”\fz: T;,(Z(b—}:) f)(Q,>
i=1 ¢€C,(b) J o' !
m—1
1
< -
- ¢ . Z <8Zi€6 %+1

)
£

i=1 c€Ci(b) j
o [0l
x [ oy 1 (1612 (b b, ) ) M L (w0,)(x)dx
R (T CE R I E N T e
J
Since we are assuming that ”blHOscmle = ||b2||0scmLs2 = = ||bk”0scexpLsm = 1, for

each o C b we have that ||| = 1. Then,

i=1 c€Ci(b) j €0 5

| /()]

J

sz"e“ $+1 z€Q;  L(logL)

FACY)
X /Q’q’zf@ﬁ( ; (b(x)—bQ/)G,) dx]

J

m—1
s¢ Z [; inf M Sieo L1e(W;)(2)
. j 1

Let us consider now

(1) = o7 (1) = log(1 + 17

t
log(e + t)“
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Then
o 1 EX t -
o' 0] o5 = ———[]1oett+07 < =0 .0
i€o log(e + )< i ieo log(e + 1) si i
and also we know that
O, =t (1+log"t)", @) =¢" - 1.
Taking that into account, Lemma [2.3| gives
|/ ()]
/CDZIEM;< = (b= by, ) | ) dx
0, i
/cm('f(x)l)d +Z/ exp ‘b(x)— . |>—1>dx
o, °
|.f ()]
< [ o (L) ax+c 3100
! 0ol e (7.31)
<[ o dx + bllocse |IBlloe,e = 1]
/Q, () a e X101y (100,
S/ d)1<|f(x)|>dx+cm|Qj|
o, ° A

m—
‘ t M W)z
; Z Z < ?+1 ZEQ L(log L)ZIEG’ §+6( J)( )

eck j

/o5 (lf(X)l (b =16, >dx>
0. S e
m—1
L /)l
= Cm Z ! ; Yieo s_li+1 Zngf/ ML(IOgL) Zieo! % H(w )( )// % < A >d
= Cn ‘1+1 Zzigcgj ML(IogL)s“(w )¢ )/ > <|f(x>|>
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1 |/ ()|
< Cm 14 ;/Q ML(logL)%ﬂ(wj)(x)q)é < 7 >dx

J

<ert [ M l(wj)(x)qn('f(x)')dx
3 A\

+1 Jga  LlogL)»™*

For L, arguing in the same way we have that

m—1

I .
F2s s Z 2 Z <z1ég,- M o 1yt 0D
Es i=1 c€C" j ’
o)
x /Q_q’z,-e,,f;—,. L (b = b, ) ) ax

The same computation used to obtain (7.31) yields

/o, £,
/qu)zeg,%"( 7 <b(x)—ij>U>dx$/Qj<I>%( ] )dx+cm|Qj|,

Now we see that using Jensen’s inequality,

|fo,] 1f1o,
/Q(I>1( 1 )dxle,-l‘Di< p )

S|Q,.|L/ (Dl<|f(x)|>dx=/ q)i<|f(x)l>dx_
01 Jo, *\ 2 o \ 4
Hence

| /ol
O = (b(x)—b, dxs/
Ai Ztea si < A < QJ)6> Q

J

CI)é <|f(_/1x)|> dx +cm|Q;|

and we finish the estimate arguing as we did for L. |

7.3.2 A sparse domination approach

In this section we present an endpoint estimate for A-Hormander operators. In this
case we are going to restrict ourselves to the case of iterated commutators with just
one symbol. The approach that we present here appeared first for commutators of
Calder6n-Zygmund operators in [106] and was pushed even further in [81]]. The main
result of this section is borrowed precisely from [81]].
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| Theorem 7.5. Let b € BMO and m be a positive integer. Let A,, ..., A, be Young
1
functions, such that A, € Y(p,, p,) and A;l(t)Aal(t)Cj_](t) < t with C_‘j(t) = ¢’ for
t > 1. Let T be a A,-Hérmander operator. Assume that each A; is submultiplicative,
namely, that A;(xy) < A;(x)A;(y). Then we have that for every weight w, and every
family of Young functions ¢, ..., @,,
w({xeR" : T]f(x)]> i})

m

7.32
<c,cr Z <K¢h /Rn A, (CT”b”BMolf(—;)l) Mq)m_ho(phw(x)dx) , (732)

h=0
where @ () = tlog(e +1)/,0 < j < m,

o1 4(m—h)
oo @, 0@~ (DA, (log(e+1) )
Xy, + ¢, fl 12 log(e+1)3m=h+1 dt 0<h< m,

on = ) poo @5 0A(oge+t?) 3
/1 2 log(e+t)3 h m

It is clear that from the preceding result it is possible to derive, as a particular case,
the corresponding estimates for commutators of Calderéon-Zygmund operators.

Corollary 7.3. Let T be a w-Calderén-Zygmund operator with o satistfying a Dini
condition. Let m be a non-negative integer and b € BMO. Then we have that for
every weight w and every € > 0,

w({xeR":|T)"f| > 4})
1 WALV
< Cn,chg /n CI)m <_ 1 ML(logL)"'(loglogL)1+£ wdx (7'33)

| /11611
< cnchl/ D, (%) M gog yredx
? E JRrn

where @, (1) = tlog(e+1)" and c¢; = Cx +||T|| ;22 2+ ||@ ]| pyyy- If additionally w € A,
then

w({xeR":|T)"f| > i})

< ¢pmerlwly 10g<e+[w]%)/ o, (IfIIIZIIBMO> Muwds. (7.34)
R7
Furthermore if w € A,
w({xER” ST S >/1})
< cymerlwly [wly logle + [wl], ) /Rn D, (%) odx. (7.35)
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Proof. Since T is an w-Calderén-Zygmund operator, we know that it satisfies an
L>-Hérmander with H_, < ¢, (|l@llpy; + cx) condition, then Ay(f) = 1. Let us call
®,(r) = tlog(e + t)/. We are going to apply Theorem With A1) = @,(1), so we
have to make suitable choices for each ¢, to obtain the desired estimate for each term

K, / A, (If(x)|> Mg o, wW(X)dX.
h Rr A, m—h h

We consider three cases. Let us assume first that 0 < A& < m. Then

K = + c ® qDZIO(I);ll_h(t)Ah(log(e + t)4(m_h))
op — “nmh n | 12 log(e + t)3(m—h)+1
< + /°° @, (1) log(e + log(e + ®,,_,(1))*"=)"

o c
woem D, () logle + D,,_, (1) ~"M
- /oo qo;l(t) log(e + log(e + @,,_,(1))*m=)h
~ an m n

' I 1®,,_,(1)log(e + ®@,,_, (1) -

<d ' /oo (p;ll(t) log(e + log(e + q)m_h(t))4(m_h))hdt
~ “Ynm,h n | tz log(e + I) .

@ (Hdt

If we choose ¢, (1) = tlog(e + 1) log(e + log(e + 1))!*¢, € > 0, then

. /oo log(e + log(e + (I)m_h(t))4(m—h))h
K a
op ~ Fnmp T Cy . tlog(e + t)?log(e + log(e + t))!+¢

S, .ntc /00 di
e "Ji tlog(e +1)log(e + log(e + 1))+
<

oM | —

and we observe that also

D, 00, <Stlog(e+1)"log(e + log(e + H)'*e. (7.36)

ThenforO < h<m

Ky, /Rn A, <|f§x)|> Mg o, w(x)dx

1 |/ ()]
<c-—- / (I)m < 2 ML(lOg Lym(log log L)!+ LU(X)dx

£

For the case h = 0, arguing as in the first case, we obtain
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© g lo® (1) Ay(log(e + 1)*")
Koy = Oyt Cy / dt
0 | 12 log(e + t)3m+!

-1
® @y @)
Sa,,+ cn/ B
' . t*log(e+1)
So it suffices to choose @,(t) = 7 log(e + log(e + 1))'™* and have that Ky, < é and
@, 0@, S @,(t) log(e + )™ = tlog(e + 1)" log(e + log(e + 1)) *<. (7.37)

Consequently

|.f ()] 1 [ /()]
K(po/ AO < ) MCDMO(pOw(x)dx < CE TML(logL)m(loglogL)1+6 w(x)dx.
R~ R~

To end the proof we consider 2 = m. We observe that

/°° @, () A, (log(e +1)*)
K, = dt
Pm | 2log(e + 1t)?
© -1 (1)log(e + log(e + 1)2)md
= t
/1 1?log(e + 1)

and taking ¢, (t) = tlog(e + )" log(e + log(e + 1))'*¢, we obtain Ky, < é and since

®y(1) =1
Ky / A, <|f ;x”) My, o,y W(x)dx
R7

1 |.f (ol
= C; / (I)m < y) ML(logL)m(log]Og L)l+e LU(x)dx

Collecting the preceding estimates

w({xeR"|T]'f| > i}) < c,er Z <K%/ A, <|§|> M¢mh0(pthx>
Rn

h=0
1 |/
< Cn,chg / (I)m (7 ML(log Ly"(loglog L)!+¢ wdx.
Rl’l

Now we observe that since 7log(e + 1)" log(e + log(e + 1))!*¢ < ctlog(e + 1)"*¢ for
t > 1 we also have that

w({xeR" : T)'f(x) > 4}) < Cn,mcré/ ®, <|fE1X)|> M 1o pynee W(X)dx.
R}’l
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Now we turn our attention now to the remaining estimates. Assume that w € A_..
To prove (7.34) we argue as in [[78, Corollary 1.4]. Since log(t) < %, for every t > 1
we have that

1 1
gML(log Lym+e w<lc g —am+€ M1+(m+£)aw_
Taking (m+&)a = — where 7, is chosen as in Lemma [3.5|we have that, precisely,
n Ao

using Lemma

11 1 . .

— My roao = < (o7l )" My, 1w < e, —[wly* Mw.

wnlwlg g, ™

1

———— we have that
log(e+[w]A°°)

Finally choosing € =

1 | R m
EML(log Ly < cmg[w]A: Muw < ¢, log(e + [w]Aw)[w]Awa.

This estimate combined with (7.33) yields (7.34). We end the proof noting that (7.35)
follows from (7.34) and the definition of w € A,. |

As we see, the estimates in the Corollary allow us to improve the results in the
previous section in two directions. We are able to prove that the estimate holds with
a smaller maximal operator in the right hand side of the estimate and that the blow
in € is just linear. Now we provide a proof of Theorem|7.5]

Proof of Theorem

Taking into account Theorem [4.1]it suffices to obtain an endpoint estimate for each

A ) = Y, (66 = bo| " || £ [b = bol"|, , 7o)
Q€S ’

We shall consider two cases.

Assume first that 2 = m. Then we have that

AT (b, )X) = D NF1b = bol" 5o xo™) < b0 X 1 1La, 0o

ges Qes

and it suffices to use Theorem namely we have that

w({x ER" 1 Y (£ lls, 020(0) > ,1}) <cx, / A, ('f(x)|> M, w(x)dx
Oes " " R~ A "
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where

/°° @, (A, (log(e + t)z)dt

) t* log(e + 1)

Now we consider the case 0 < A < m. Using generalized Holder inequality if 2 > 0
we have that

Ab, £)x) < bl o D 16GE) = bo ™11 f 11, 040 (0) = T £ (x)

Qes

We define
={x 1 |T)f(x)] > 38, M, f(x) <1/4}.

By the Fefferman-Stein inequality (Lemma7.2) and by homogeneity, it suffices to as-
sume that ||b|| 55,0 = 1 and to show that

w(E) < CC(D/ Ah (lfl) M((Dm-h"‘ﬂh)(L)Lde.
er

Let
S, ={QeS : 4" <”f||AQ<4k}
and for Q € S,, set

k
F(Q) = {x €0 : |b(x) = by|"" > (%) }

If ENQ # @ for some Q € S, then ||f||Ath < 1/4. Therefore, for x € E,

ITFGOI D D 166 = bo|" "1 £ 114, 040(%)

k=1 Q€S;
< DB/ Y M la, 0200+ D0 D 15G) = bol™ "N f 11, 05,0/ )
k=1 Q€S k=1 Q€S
=T, /() + T, f ().

Let E,={x€ E : T.f(x)>4},i=1,2. Then
w(E) < w(E,) + w(E,). (7.38)

Using (7.14) (with any Young function y,,)

3/8)FA, (4%
/(Tlf)wde(ZGM) Ji(E) + e A, ZM/ 4,(1/ DM, wdsx.
E,
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This estimate, combined with w(E,) < i /El(T1 fwdx, implies

— (3/8)FA,(4*
w(E) < c Ay Z (L_)l—h()

A,(If DM, wdx.
P l//h (22k) R Yh

Now we observe that using (7.15)

(/84,45 _ < @)
3, CLR A =22 __1h

P _—1 22k - 22k)4k

0 k
<y A4 /22 L
e~ ——1 (224) 4k Joot tlog(e + 1)

<o / v, (t)Ah(log(e+t)2)dt
! ?log(e + 1)3

Ap(0) -

We observe that since =~ is not decreasing,

A, (log(e + 1)) - Ayllog(e + 1)3m=hy) - Anlog(e + Fy4m=h)y
lOg(e + t)z - log(e + t)3(m—h) - log(e + t)3(m—h)

9

oo Wy, (DA, (log(e+n*m=h)
12 log(e+1)3(m=h)

we have that ¢ fl dt, and choosing y,, = ®,,_,0¢,,

w(E)) < CKh/ Ah(lfI)M@m—h“Pthx
Rn

Now we focus on the estimate of w(E,). Arguing as in the proof of (7.11), for Q € S,
we can define pairwise disjoint subsets E, C O and prove that

1< [ A& fdx.
=101 /,, R@5 fDdx

Hence,

m—nh k
w(E)<cZ Z 4k<|Q|/Fk(Q)|b—bQ| wdx)/E A, | fhdx.  (7.39)

k=1 Q€S; [

Now we apply twice the generalized Holder inequality (2.8). First we obtain the fol-
lowing inequality
1

—h
101 /o0 el wdx < clltozn @ llog 10 (7.40)
k
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_ —h
Now we define ®,,_,(t) =tlog(e +1)"",and ¥,,_, as

o =~
" @, 0P, L, (1)

Since @, (t)/t and @ are strictly increasing functions, ¥,,_,, is strictly increasing too.
Hence, a direct application of (2.9) yields

IA

2”){Fk(Q)||\P,Q||w||(q)m7ho(ph),Q (7.41)
2

1l op .0
YL (10I/IF Q)] Frnern@

|lwy F,.(Q) ”L(log Lymh.Q

Now we observe that Theorem [1.1] assures that |F,(Q)| < «,|Q|, where o, =

k
@3/2)m-h
min(1,e~ 2% *!). That fact together with (7.40) and (7.41) yields

1 - n
— |b—bol/wdx £ ————|[Wll@ op )0
|Q| Fk(Q) Q ‘P;ll_h(l/ak) ( m—h (ph) Q

From this estimate combined with (7.39) it follows that

w(E,) < Z (1/ ak 2 lwll,_ hO(ph)Q/E A, (4*| fDdx
—h

Q€S o]

i <§ Y. h(l/ak) h4k >/Rn Ah(lfl)M(‘Dm—hOcoh)(L)w(x)dx-

Now we observe that we can choose c, , , such that for every k > ¢, , we have that
k=1

@B/2m=h
a# =e 2. ' > max{e? 4%}. We note that
k—1
L
@ 1
[ —;
1 tlog(e +1)
@]
Taking this into account, if -=(m-nh) logd_since A is submultiplicative and A0 g

log(3/2)’
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non-decreasing, we obtain

S A, (4 o 1 AMH
<& pmt
Zl h(l/ak) 4k Xy p, Z lPr_nl—h(l/ak) 4k

kzcnmh
<a, +c2& / 1 A,dogle +1)/?)
" h(t) tlog(e +1) log(e+1)!/#
<yt / 2 oq)ml_h(t) 1 Ayogle+n*"™")
e ! o' (1) tlogle+1) log(e + 1)4m=

N /oo (p;lod);ll_h(t)Ah(log(e + t)4(m—h))
~qa c
e 1 12log(e + t)3m=+1

7.4 Endpoint estimates for vector valued extensions

Relying upon the results we have established in the preceding sections for sparse
operators together with the sparse control that we have for Tq and (T,fi)q we can
obtain the corresponding endpoint estimates for those operators. We sumarize all the
results in the following Theorem.

| Theorem 7.6. Let T be a w-Calderén-Zygmund operator with w satisfying a Dini
condition. Let 1 < q < oo and let m be a non-negative integer and b € BMO. Then we
have that for every weight w and every € > 0,

w<{x eR" 1 (T)) f(x) > A})

1 | /1,118l 300
< cn,mCTZ/ o, <—ﬂ ML(logL)m(loglogL)wa(x)dx

| £1,116115
< cn,,,cTl / @, <—‘1 - BM°> Mg s W(X)d X
mry [

where ®@,,(1) = tlog(e + 1)" and c; = Cyg + | T|| 1o 12 + || @]l py

If additionally w € A, then

w<{xe R (1), f(x) > /1})

b
< Cumerlwl] log (e +[wl,_ / D, (lfl ol llBMO)Mw(x)dx.



180 QUANTITATIVE WEIGHTED ESTIMATES FOR SINGULAR INTEGRALS AND COMMUTATORS

Furthermore ifw € A,

w({xer: @M, 1> 4})

b m
< Cn,mCT[w]Al[w]'Zoo log(e + [W]Am)/ D, <w> w(x)dx.
Rn

Proof. It suffices to combine the proofs in the preceding sections and the correspond-
ing sparse domination results. |



8 | Local decay estimates revisited

Calderoén principle states that for each singular operator there exists a maximal op-
erator that “controls” it. A paradigmatic example of that principle is the Coifman-
Fefferman estimate that we presented in Subsection [3.3.1.1] namely, for each 0 < p <
oo and every w € A, there exists ¢ = ¢, , , > 0 such that

”T*f”Lp(w) < c”Mf”Ll’(w)'

where T* stands for the maximal Calderén-Zygmund operator. In order to obtain such
an estimate as we showed in Subsection [3.3.1.1| a basic step consists in establishing
the following estimate

Hx€Q : T°f(x) > 24, Mf(x) < Ay} < cy (O]
where each Q is a Whitney cube and f is supported on Q.

In [14] , trying to obtain a quantitative weighted estimate for Calderon-Zygmund
operators by means of the good-A technique, S. Buckley obtained an exponential de-
cay in # that reads as follows.

Hxe€eQ : T"f(x)>24, Mf(x) <Ay} <ce 7 |0Q].
Later on, Karagulyan [87]] provided an improved version of the former estimate, namely,

HxeQ : T f(x) > tM f(x)}| < ce™™|Q].

This inequality was later generalized for several operators by C. Ortiz-Caraballo, C.
Pérez and E. Rela in [122]. Our purpose in this section is to extend their results to some
new operators, such as vector valued commutators or A-Hormander operators as well
as reproving the results in that work relying upon the sparse domination results that
we have obtained. We will end this section proving that the subexponential decay for
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[b, T] where T is a Calderén-Zygmund is sharp, and providing an alternative proof
of Theorem [4.2|based on that sharpness.

The proof of the corresponding exponential decay for each operator can be re-
duced to proof the corresponding exponential decay for its sparse counterpart. We
provide the estimates for sparse operators in the following Theorem.

| Theorem 8.1. Let Q, be a cube and f a function supported in Q. Then
1 If1 £r < oo then

[{xe 0y A5lf1> M@} < e 10| (8.1)

2. If A is a Young function and F° C D(Q,) then

<ce |yl (82)

{X €0, : Z | f 1l 430x0(%) > tMAf(x)}

PeF

3. If A and B Young functions such that A~'(t)B~'(t1)C~'(t) < t with C(t) = e m
is a positive integer, by, ..., b, € BMO and F C D(Q,), then for every c € C,(b)

{x €Q, : B;’Ff(x) > tMAf(X)}‘ < ce’“(ﬂ?”:. ||2,-HBMO‘>W ol

where

By plb. 1)) = X, [6G) = bl ||/ b =g,

Q€eF

Proof. First we observe that if P is an arbitrary cube such that P N Q # @ and
| P| ~ |Q| for some cube Q € S, then

xeP : Z Xr(x) >t
ReS, RCO

Indeed we observe that actually

xXeEP . 2 Yr(x) > 1
ReS, RCO

B30 )(Q(x)

< ce ™|P|. (8.3)

IA
— =
!
m
Q
x
m
'(/3 .o
Pl
N
(<)
=
Ra)
Vv
——
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Now we observe that in [122] Theorem 2.1], it was established that

{xEQ: Z )(R(x)>t} < ce™™|0]

ReS, RCO

so recalling now that |P| ~ |Q|, leads to (8.3). Armed with this estimate, we are in
the position to prove the estimates in the statement of the theorem.

We establish first (8.1). Assume that supp f C Q,, for some arbitrary cube Q,. It’s
clear that Q,, can be covered by c, pairwise disjoint cubes in D, such that |Q,| ~ |Q, |
and Q N Q; # @. Let us denote by {Q;} that family of cubes. Then we have that

r=3 rz.
=1

Hence

(xeo, : Aylfl> s} <Y
j=1

{x €0, : AYlfrgl> fo(x)}

We shall assume that each O ; ES. Indeed, if that was not the case we can add those

cubes to the family and call S the resulting family. We check that as follows. Let
R € S. We observe first that if R C 0, for some j or RN Q= @ for every j, then R
satisfies the same Carleson that it satisfied with respect to the family S. In the case
that R=0 j for some j, we have that

Y = Y Y IPls; Y IRI<0)

PCO;, PeS ReS  PCR.PeS ReS
R maximal in Q ; R maximal in Q j

and finally in the case that R contains some Q;

Y opi= Y |P|+Z|P|s<%+cn)|P|.

RCO, Ped RCP, ReS o,cP

Since every A-Carleson family is %—sparse, the preceding estimates yield that Sisa
n
14+n

-sparse family. Now we observe that

Cn

A% S 20,10 = <Z (ﬁ / |fo,|> mx)) > 1M f(x)
Pes P

ZPES (ﬁ /p |f)(Qj|> xp(x)
= MGy

> 1"
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Now we split the sparse operator as follows

Zg(ﬁ/PVZQj') Xp(x)
Pe

_ 1 ' N ,
= Z <|P|/P|f)(Q,|> )(P(X)-l- Z <|P|/P|f)(Q,|> )(P(x).

PES, PSO; PeS, P2Q;
Now we observe that trivially

ZPES,Png <ﬁ Ip |f|> xp(X) 3
M f(x) -

xp(X)
PeS, PCO;

On the other hand, since supp f C Q i and since Q, N Q ;F @ we have that for every
x € Q,, since 5Qj D 0,

S res. a0, (75 1o 171) 600 ) (& /o1r1)
M f(x)y  pediroo, (lslT,l fSQ/_ |f|>

(% /o, 111)

= 1 rXP(x)

(520 e
o \ 1Pl )"

r)(P(x)

|
™M

PeS, P2
b 1 2nr
< 5nr — — 5nr 2nr !/
- ; 2nrk onr | ( )

Combining those estimates and taking into account (8.3),

{er0 : Aglf;(Qj|>th(x)}‘§ x€eQ, : Z xp(x)>1" —c,,
pco,
< Cle_cztrlQol

and we are done.

To prove (8.2), assume that supp /' C Q,. Then

ZQGP ||f||B,3Q)(Q(x)
M S e
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and since 7 C D(Q,) direct application of yields (8.2).

Now we turn our attention to (3). We can assume without loss of generality that
16;llgmo = 1 for every i. First we observe that

o’ fio’
Ib(x)_bSQla’ San Z (H ”bl”BMO) |b(x)_bQ|chn2 Z |b(x)_bQ|V
j=0 veC;(a’) \ iev Jj=0 veC;(c")

and also that by generalized Holder inequality,

b — b3Q|gf||B,3Q <c <H ”bi”BMO> ||f||A,3Q = C||f||A,3Q-

i€o

Then we have that

e, _.(b,
R

Soer (Z% Bceyon 160 = bol, ) 1/ as0z0®

< S . > — =1
=|)* € M,f ¢

Lemmaprovides sparse families 7, containing 7 such that for every Q € F,,
1
1b,(x) = (b)gl < ¢, Z (m/ |b;(x) — (b,‘)Pldx> xp(X).
PEF;,PCO P
Since b, € BMO with ||;||gpo = 1 then we have that for every O € F,
1
|b;(x) = (b)ol < ¢, Z <m/ |b(x) — bPldx> xp(x) < ¢, Z xp(X).
PEF,PCO P PEF;.PCQy
Then we have that

S oer (Z5% Brecyion 1569 = bol, ) 1 L4z 2000
M, f

fio’

< 22 2 11 Y w®|fx®
o

eFr |\ j=0 VECj(o") i€ev Pefi’Png
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Now we observe that

s:Oﬁ
i=1

is a sparse family such that F, f’l, ..., F_CS.Hence

m

YIS Y T el

Q€eF | j=0 veC;(c") iev \ PeF,,PCO,

sZ(ﬁﬁ > H< D xp(X))>)(Q(X)

Qes \ j=0 veC;(d’) iev PeS,PCO,
fio’+1
<cu| X ap
PeSs

and then, using again (8.3,

fio’+1
A
1< er():(Z)(P(x)) >Z

Pes
INE L\
B’ A\t +1
= {x €0y 1 Y xp(x) > <_> H} < cel2) |0
¢
Pes
as we wanted to prove. |

Remark 8.1. Arguing as in the proof of it is possible to remove the localization
condition of the sparse family in the rest of the statements of Theorem however
we chose to restrict ourselves to the localized version since it will be enough for our
purposes.

As a direct consequence of the sparse domination results and the preceding esti-
mates we have the following Theorem.

| Theorem 8.2. Let Q be a cube. Then:
1. If T is a B-Hormander operator such that B € Y(p,, p,) and supp f C Q, then

[{x€ 0yt ITFI> M, f(0}| < ce™ 710y, (3.4)
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2. If A and B are Young functions such that A~ (t)B~'()C~!(t) < t with C(t) =
e’l/m, T is a B-Hérmander operator with B € Y(p,, p,), m is a positive integer,
b,,...,b, € BMO and supp(f) C Q, then

1
‘{x €Q, : T;f(x)> tMAf(x)}‘ < Ce—a<n’m=1 Hb"llBMO) 1Ol (8.5)
3. If1 < g < oo andsupp |f]|, C Q, then:

< 7" |Qy (8.6)

{xeo, : M >masflm |

4. If T is a w-Calderon-Zygmund operator 1 < q < oo and supp | f|, C Q, then

{xe0, : T7(), > M(f1)0) || < ce10, . (8.7)

5. If T is a w-Calderon-Zygmund operator m is a positive integer, b, b,, ..., b
BMO, 1 < g < o0 and supp | f|, C Q, then

S

m

{x €0, : @q F() > tM g 1y f(x)}‘ < ce'“<_cmrzl—ub,-uwo> 10,]. (88)

Proof.
« To prove (8.4) we observe that it suffices to apply (4.7) combined with (8.1) in
Theorem 8.1

+ To settle we observe that can be established with b, instead of b .
That estimate combined with Theorem 8.1] yields (8.5).

. is a straightforward consequence of the combination of the sparse domi-
nation and in Theorem8.1]

. is analogous to (8.4), since the proof of the sparse control for that operator
is analogous to the one for the scalar case. The same occurs to[8.8/and (8.5).

Now we turn our attention to the sharpness of the preceding estimates for com-
mutators of Calderén-Zygmund operators. The subgaussian decay obtained in that
case is actually sharp.

| Theorem 8.3. There exists a Calderon-Zygmund operator T, a symbol b € BM O
a function f and a cube Q such that

ﬁl{x €0 : |[LTI ()] > IMPf(x)}] > ¢ eV Tlowo

for some constant ¢ > 0 and for everyt > t,,.
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Proof. Let us choose b(x) = log |x|, T = H the Hilbert transform. O = (0, 1) and
f = xo- Then we have that taking into account

l{x €O, 1) : |[b, H]f(x)| > tM*f(x)}]|
={xe€ 1) |[bHIfX)] >t} Zce Ve 1>,

This ends the end of the proof. |

As we announced at the beginning of the section, relying upon the preceding
result we are in the position to provide the second proof of Theorem that we
announced in Section [4.2]

Proof.  Assume that (4.9) holds. Then, for some ¢ > 1

[{(xe 0 b.TIWI > M )}

N
{x €0 : Y Y MMy rprp(x) > §M2f<x>}| :

j=1 P€S;

<

It will be enough for our purposes to work on each term of the inner sum, namely
to control

{x €0 2 NN L1og .pXp(X) > fMZf(X)}

pes i

Now, recalling that M2 f ~ M LiogrSs 1s not hard to see that essentially the same
argument we used to prove (8.1) yields that

1

10|

< ce™™,

{X €0: Z I/l L1og .p2p(X) > szf(x)}

PES;

Hence, combining the preceding estimates we arrive to
ﬁ ){x €0 : |[bTIf(x)| > tMZf(x)}) <ce ™ >0

which is a contradiction with Theorem |



9 | Open questions

This chapter is devoted to provide a list of open questions that naturally arise from
this dissertation.

1. Very recently A. K. Lerner proved [98] that
”MOTQ”LZ(W) < C,,,Q[w]ﬁz

where Q € L*(S"!). Bearing in mind that the dependence on the A, constant
of M is linear it seems reasonable to consider the preceding estimate as a lead
to think that

||TQ||L2(w) < cn,Q[w]A2

should be true. Taking that into account one may ask the following question.
Would it be possible to replace s > 1 by 1 in the sparse domination results
for both rough singular integrals with Q € L* and their commutators? That
kind of improvement would lead to a proof of the linear dependence on the A,
constant and would allow to apply essentially the same arguments provided in
Chapter 7| to derive better endpoint estimates for those operators.

2. In Theorems [5.3| and [5.4| some strong type (p, p) estimates are provided for A-
Hoérmander operators. However, those estimates do not seem to be completely
satisfactory. If we assume that A(f) = "', then we know that if T is an A-

o then T 1 LP(w) — LP(w) and we can even

provide the possibly sharp dependence on [w] 4, Then a natural question is

the following. Would it be possible to define some bumped A, type class that

Hoérmander operator and w € A

fits to A-H6rmander operators as well as the A, , class does for t"-Hormander
operators and that also allows to recover the A, /r class when A(t) = 1"'?

3. Sparse domination estimates are provided for several vector valued extensions.
Would it be possible to obtain any analogue result for vector valued extensions
of rough singular integrals and their commutators?
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4. The endpoint estimates provided that rely on the sparse domination are only

obtained for the iterated commutator. It should be possible to prove analogous
estimates for symbol multilinear commutators.

On the Muckenhoupt-Wheeden conjecture in the case of T being a Calderén-
Zygmund operator after [47,[17,138]] essentially the only open question is whether
the following estimate

w({xeR" : Tf(x)|>1}) < C/ lf(t—X)lML(loglogL)w(x)dx
-

is true or not for every weight w > 0 with ¢ > 0 independent of w. However
in the case of commutators no negative result has been obtained. The natural
conjecture, by analogy with [17] is the following. Does

w(lx €R" : |[B,TI/ )] > 1) < c/

PACI R
s < t L(log L)(log log L)w(x)dx
Rn

hold for every weight w with constant ¢ > 0 not depending on w?
Following ideas in [68]] it seems to be possible to disprove a partial dyadic ana-
logue, namely, there exists a sparse family S such that

K ('f(tx)|> M, w(x)dx

w({x e R 1 [Cof(X)]>1}) < C/

R
does not hold for every weight w with ¢ > 0 independent of w where
1
Cof ()= )0 Y b)) = / | W)y o)
Q€S Qes [0 Qo

and @ is a Young function such that

B @) _
im =
1—oo tlog(e + 1) log(log(e® + 1))

6. Regarding the A, conjecture, it was recently proved [102] that the dependence

on the A, constant [w] A, log(e + [w] Al) is sharp. What about the case of the
commutator? Is [w]?41 log(e + [w],,) sharp for the commutator or the sparse
operators that control it?
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