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Universidad del Páıs Vasco UPV/EHU

2 Departamento de Estad́ıstica e Investigación Operativa. Universidade de Vigo

3 Unidad de Investigación, Hospital Galdakao-Usansolo

4 Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC)

5 BCAM - Basque Center for Applied Mathematics

Abstract

When developing prediction models for application in clinical practice, health practitioners

usually categorise clinical variables that are continuous in nature. Although categorisation is not

regarded as advisable from a statistical point of view, due to loss of information and power, it

is a common practice in medical research. Consequently, providing researchers with a useful and

valid categorisation method could be a relevant issue when developing prediction models. Without

recommending categorisation of continuous predictors, our aim is to propose a valid way to do it

whenever it is considered necessary by clinical researchers. This paper focuses on categorising a

continuous predictor within a logistic regression model, in such a way that the best discriminative

ability is obtained in terms of the highest area under the receiver operating characteristic curve

(AUC). The proposed methodology is validated when the optimal cut points’ location is known in

theory or in practice. In addition, the proposed method is applied to a real data set of patients

with an exacerbation of chronic obstructive pulmonary disease, in the context of the IRYSS-COPD

study where a clinical prediction rule for severe evolution was being developed. The clinical variable

PCO2 was categorised in a univariable and a multivariable setting.
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1 Introduction

Prediction models are currently relevant in a number of fields, including medicine. Decisions such as

the most appropriate treatment for a disease, or whether or not a given patient should be discharged,

etc., are based on the individual patient’s risk of suffering some unfavourable event, and such a risk

is often measured on the basis of clinical variables that are continuous in nature.

When developing prediction models, the selection of the predictors or covariates (clinical vari-

ables) to be used in the model is essential. From a statistical point of view, categorising continuous

variables is not regarded as advisable, since it may entail a loss of information and power1,2. Addi-

tionally, there are statistical modelling techniques such as generalised additive models (GAM)3,4,

which do not require any assumption of linearity between predictors and response variables, and so

allow for the relationship between the predictor and the outcome to be modelled more appropri-

ately. Yet in clinical research and, more specifically, in the development of prediction models for use

in clinical practice, both clinicians and health managers call for the categorisation of continuous

variables. Indeed, in a recent survey of the epidemiological literature, in the 86% of the papers

included in the study, the primary continuous predictor was categorised, of which the 78% used

3 to 5 categories5. In our opinion, there are several reasons for this. Firstly, in clinical practice,

the application of results obtained from techniques such as GAM is not always viable. It requires

specific software which is not always possible to use at consulting rooms or emergency departments.

On the other hand, decisions in clinical practice are often taken on the basis of an individual pa-

tient’s risk level, which is strongly related to a categorisation of that patient’s clinical variables.

Yet, despite the fact that categorisation is a common practice in clinical research, there are no

unified criteria for categorising continuous variables. Indeed, categorisation is very often based on

percentiles, even though this is known to have drawbacks6. Moreover, even when categorisation is

based on clinical criteria, it has been shown that it can vary enormously from one practitioner or

hospital (or even country) to another. For instance, a meta-analysis conducted by Lim and Kelly7

showed that reported cut-off values for partial pressure of carbon dioxide in the blood (PCO2) for

hypercapnia screening ranged from 30 to 46 mnHg.

Previous work has been done on the categorisation of continuous variables. A review of these

methods shows that these have been based: firstly, on the graphical relationship between the

predictor and the outcome; and secondly, on the minimum p-value approach8. Moreover the aim in

almost all cases has been to seek a single cut point, or, expressed in another way, to dichotomise the

continuous predictor9–11. However, the use of more than two categories may be preferable, since

this serves to reduce the loss of information and enables the relationship between the covariate

and the response variable to be retained. In the context where the outcome of interest takes
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only two possible values, the search for more than one cut point has been considered for instance

by Tsuruta and Bax12 and Barrio et al13. Tsuruta and Bax propose a parametric method for

obtaining cut points based on the overall discrimination C-index14, which is equivalent to the area

under the receiver operating characteristic curve (AUC). The authors showed the optimal location

of cut points in a case where the distribution of the predictor variable is known, and illustrated

the proposal for application to a normal distribution. Yet, in routine clinical practice and, by

extension, in medical research, variables of interest do not usually respond to either a normal or

a known distribution. On the other hand, Barrio et al proposed a method based on a graphical

display using GAM with P-spline smoothers to determine the relationship between the continuous

predictor and the outcome.

Despite the fact that both approaches have proven to be useful they suffer from the limitation of

only being applicable in a univariable setting. Accordingly, we propose in this paper a new approach

for the selection of optimal cut points that allows for more than one cut point to be selected as

well as the possibility of being used in a multivariable setting. Specifically our study has two main

aims: firstly, to propose a new approach for the selection of optimal cut points for categorising

continuous variables in logistic prediction models; and secondly, to validate the proposed approach.

Two different algorithms, called AddFor and Genetic, are proposed for the selection of the cut

points which maximise the AUC, and the performance is evaluated and compared by means of

simulations. Validation of the categorisation method is performed in two different settings: 1) under

defined theoretical conditions, where the optimal cut points are known; and, 2) under empirical

situations where the original variable is observed as categorical although an underlying continuous

latent variable is supposed.

The rest of the paper is organised as follows. Section 2 provides a description of the IRYSS-

COPD study of patients suffering from an exacerbation of chronic obstructive pulmonary disease

which motivated the development of the methodology presented in this paper. Section 3 outlines

the method proposed for categorising continuous variables in clinical prediction models where the

response variable is dichotomous. In Section 4, the validation process is described, with a com-

parison of both cut point selection algorithms in different settings, namely, under theoretical and

empirical defined conditions. Additionally, the results obtained from the validation study are re-

ported. Section 5 describes the software implementation. Section 6 describes the application of

the proposed methodology to the IRYSS-COPD study data set. Finally, the paper closes with a

discussion in Section 7 in which the findings are reviewed and conclusions are drawn.

2 The IRYSS-COPD study

Chronic obstructive pulmonary disease (COPD) is one of the most common chronic diseases, and

its prevalence is expected to increase over the next few decades15. COPD is a leading cause of
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death in developed countries, and patients with COPD generally have a substantial deterioration in

their quality of life16. Exacerbation of COPD (eCOPD) is defined as an event in the natural course

of a patient’s COPD characterised by a change in baseline dyspnea, cough, and/or sputum that

is beyond normal day-to-day variations and that may have warranted a change in medication or

treatment17. Patients often experience eCOPD, and these often require assessment in an emergency

department (ED) and hospitalisation. Exacerbations play a major role in the burden of COPD,

its evolution, and its cost18. Some exacerbations are quite severe, leading to death or the need

for invasive mechanical ventilation (IMV); others are more moderate, requiring little more than an

adjustment of the patient’s current medical therapy. Currently, ED physicians must rely largely

on experience and personal criteria for gauging how an eCOPD will evolve. Accordingly, the

development of clinical prediction rules in this context would be of great importance to help ED

physicians to make better informed decisions about treatment.

The IRYSS-COPD study (IRYSS: Red de investigación cooperativa para la Investigación en

Resultados de Salud y Servicios Sanitarios - Co-operative Health Outcomes & Health Services

Research Network) was created to address gaps for identifying eCOPD patients whose clinical

situation is appropriate for admission to the hospital, and to develop and validate severity scores

for eCOPD exacerbations19. In this study, a sample of 2487 patients with eCOPD attending the

EDs of 16 participating hospitals in Spain was collected. Information was recorded as follows: at

the date on which patients were evaluated at the ED; at the date on which the decision was made

to admit patients or discharge them home from the ED; and during follow-up after admission to

the hospital or discharge home. Data collected upon arrival in the ED included socioeconomic

data, information about the patient’s respiratory function (arterial blood gases, respiratory rate,

dyspnea), and presence of other pathologies recorded in the Charlson Comorbidity Index. The

consciousness level was measured by the Glasgow coma scale which was dichotomised as follows:

altered consciousness defined as a score of < 15 points, unaltered consciousness as a score of 15

points20. Additional data collected in the ED at the time a decision was made to admit or discharge

the patient included the patient’s symptoms, signs, and respiratory status at that moment.

One of the goals of the IRYSS-COPD study was to develop a clinical prediction rule for the short

term very severe evolution of eCOPD defined as any of the following: death, Intensive Care Unit

(ICU) admission, need for IMV, and/or cardiac arrest. After a preliminary analysis, the predictors

selected to be included in the prediction model were the Glasgow Coma scale, heart rate and the

arterial blood gas PCO2. However, the covariate PCO2 had not a linear relationship with the

outcome and hence it required to be introduced either modelled with a smooth function or in a

categorised version. The clinical researchers involved in the study claimed for a categorised version

of this predictor, but as mentioned earlier, there was not a previously fixed cut point criteria in

the literature7. The authors previously proposed the categorisation of the covariate PCO2 which

relayed on a graphical display13. However, at this time we considered developing a more general
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methodology to obtain optimal cut points to categorise the continuous predictor variable PCO2, so

that we could obtain the best categorised version to be introduced in the short term very severe

evolution of eCOPD prediction model.

3 Methods

This section describes the methodology proposed to categorise continuous predictors in logistic

regression models. Once the needed background and notation have been introduced, we describe

the proposed methodology and the two algorithms for its implementation in Section 3.1. It should

be noted that when developing the logistic regression model, the obtained AUC might be biased

upward when the same data-set is used to fit the model and to compute the AUC. Accordingly, we

considered correcting the overestimation of the AUC in the logistic model, which is explained in

detail in Section 3.2. In addition to this, in clinical practice it might be needed to select which is the

most desirable number of cut points. Therefore in Section 3.3 we present two possible approaches

to select the best number of cut points.

Suppose one has a dichotomous response variable Y , and a continuous predictorX. Furthermore,

assume that the outcome variable has been coded as 0 or 1, representing the absence or the presence

of the outcome characteristic respectively. Then, the logistic regression model for Y is written as a

linear function in the logistic transformation (logit) as it is shown in equation (1), where β0 is the

intercept and β1 is the regression coefficient for X.

logit(P (Y = 1|X)) = log
P (Y = 1|X)

1− P (Y = 1|X)
= β0 + β1X. (1)

For a binary outcome, the AUC is the most commonly used performance measure to evaluate the

discriminative ability of a prediction model. More specifically, given a sample {(xi, yi)}Ni=1, the

coefficients β0 and β1 are estimated by maximum likelihood and an iterative weighted least squares

algorithm (denote β̂0 and β̂1). More detail about estimation methods can be seen in McCullagh

and Nelder21. Let p̂i = logit−1(β̂0 + β̂1xi) be the estimated probability for subject i, then the AUC

is frequently estimated by the Mann-Whitney statistic22 which is given as:

ÂUC =
1

n0n1

∑
j∈DY =0

∑
m∈DY =1

I[p̂j , p̂m],

where DY=1 and DY=0 are the sets of subjects with Y = 1 and Y = 0, respectively, n1 and n0 are
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the sizes of these sets and I[•] is the indicator function adjusted for ties

I[p̂j , p̂m] =


1 if p̂j < p̂m

0.5 if p̂j = p̂m

0 otherwise.

3.1 Proposed methodology

Assuming that the continuous predictor X is what one wishes to categorise, our proposal consists

of categorising X such that the best predictive logistic model is obtained for Y . Specifically, given

k the number of cut points set for categorising X in k + 1 intervals, let us denote vk = (x1, . . . , xk)

the vector of k cut points ordered from smaller to larger, and Xcatk the corresponding categorised

variable taking values from 0 to k. Then, what we propose is that the vector of k cut points

vk = (x1, . . . , xk), which maximises the AUC of the logistic regression model shown in equation (2)

is thus the vector of the optimal k cut points.

P (Y = 1|Xcatk) = logit−1(β0 +

k∑
q=1

βq1{Xcatk
=q}). (2)

Estimation of the model in equation (2) as well as of the associated AUC can be done as presented

before for the model in equation (1). However, the problem now lies in looking for the vector of

the cut points which maximises the AUC. To achieve this, we propose two alternative algorithms,

respectively named AddFor and Genetic.

AddFor :

Using this algorithm, one cut point is searched for at a time. In other words, it first seeks x1 (in

a grid of size M of equally spaced values in the range of X), such that the AUC of the logistic

regression model shown in equation (2) for k = 1 will be maximised. Once x1 has been selected, it

is fixed and the algorithm proceeds to seek x2 (in the grid of size M) (x2 6= x1), so as to ensure that

the AUC of the model in (2) for k = 2 will be maximised. The process is then repeated until the

vector of k cut points, vk = (x[1], . . . , x[k]), has been obtained, with x[o] denoting the o-th ordered

cut point.

Genetic:

Using Genetic Algorithms, the most widely known type of evolutionary algorithm23, this method

simultaneously finds the vector of k cut points, vk = (x1, . . . , xk), which maximises the AUC of the

logistic regression model in equation (2). Evolutionary algorithms are inspired by the concept of

natural evolution. The underlying idea is that, given a population of individuals, environmental

pressure leads to survival of the fittest, leading in turn to a rise in the overall fitness of the pop-

ulation. In a more mathematical context, given a function to be maximised (fitness function), a

collection of heuristic rules are used to modify a population of possible solutions in such a way that
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each generation of potential solutions, tends to be, on average, better than its predecessor. The

measure whether one potential solution is better than another is the potential solution’s fitness

value. In our case, the AUC is the selected fitness function to be maximised and the optimal cut

points would be then the best possible solution.

For both algorithms, the methodology above has been presented (for ease of notation and

illustration) for the particular case of the categorisation of a continuous covariate X in a univariate

logistic regression model. Nevertheless it can be easily extended to the categorisation of a continuous

covariateX in a multiple logistic regression model. Suppose that along with the predictor variableX

we want to categorise, a set of other p predictors, Z1, . . . , Zp, are of interest. Then, the categorisation

of X in a multivariable setting including the p predictors, will be that for which the AUC of the

multiple logistic regression model in equation (3) is maximised.

P (Y = 1|(Z1, . . . , Zp, Xcatk)) = logit−1(β0 +

p∑
r=1

βrZr +

p+k∑
q=p+1

βq1{Xcatk
=q−p}). (3)

3.2 Optimism Correction for the AUC

When implementing the algorithms presented in the previous section, the obtained AUC may be

biased upward when the same data set is used to: a) fit the logistic regression model (involved in the

cut point selection process); and, b) compute the AUC24. In our setting, the aim was to look for the

vector vk that maximises the AUC of the corresponding logistic model. Thus, the overestimation

of the AUC may have an impact in the maximisation process itself and therefore on the selection of

the optimal cut points. Several approaches for correcting the bias of the estimated discriminative

ability of a predictive model have been proposed in the statistical literature25,26. In this work, the

proposal is based on the bootstrap bias correction method proposed by Steyerberg26. Moreover,

the bias correction procedure was performed at two different levels. In the first approach, the bias

correction was performed during the selection of the optimal cut points. In the second approach,

however, the bias correction procedure was applied once the optimal cut points had been selected.

Appendix A of the web supporting material shows the results of a simulation study performed to

evaluate the impact of the bias correction approaches (at first and second level) on the selection of

the optimal cut points. As can be observed on the results, both approaches provide similar results.

Hence, and due to computational cost savings, we propose to correct the AUC at the end of the cut

point selection process. Specifically, in this approach, the bootstrap bias correction method can be

described at follows:

Step 1. Categorise the predictor variable on the basis of the original sample {(xi, yi)}Ni=1 and

compute the corresponding AUC. Let’s denote this apparent AUC as ÂUCapp.
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Step 2. For b = 1, . . . , B, generate the bootstrap resample {(x∗ib, y∗ib)}
N
i=1 by drawing a random

sample of size N with replacement from the original sample, and categorise the bootstrapped

predictor {x∗ib}
N
i=1 on the basis of the optimal cut points obtained in Step 1.

Step 3. Fit the logistic regression model to the bootstrap resample with the categorised version of

the predictor and compute the corresponding AUC, ÂUC
b

boot for b = 1, . . . , B.

Step 4. Obtain the predicted probabilities for the original sample based on the fitted logistic

regression model obtained in Step 3 and compute the AUC. Let’s denote this AUC as ÂUC
b

o

for b = 1, . . . , B.

Once the above process has been completed, the optimism O of the original AUC is calculated as

follows

O =
1

B

B∑
b=1

|ÂUC
b

boot − ÂUC
b

o|

and the bias corrected AUC is then computed as ÂUCapp −O.

Finally, we would like to point out that in order to mimic the study design, it is advisable that

the resampling procedure described in Step 2 be done according to the design of the study. For

instance, for a case-control study, data should be resampled separately within cases and controls.

Moreover, if the data are clustered, the resampling units should be the clusters.

3.3 Selection of the number of cut points

To determine the optimal number of cut points we studied two possible approaches. The first

approach is based on the difference between the bias-corrected AUCs obtained for k = l and

k = l+ 1 cut points. To determine the need for an extra optimal cut point, we propose to compute

the confidence interval (CI) for this difference. Once the CI has been computed, an extra cut

point is considered to be needed as long as the CI does not contain the zero. Specifically, in this

paper bootstrap-based methods27 are proposed for constructing the CIs. The procedure can be

summarised as follows:

1. For v = 1, . . . , V , generate the bootstrap resample {(x∗iv, y∗iv)}
N
i=1 by drawing a random sample

of size N with replacement from the original sample.

2. Compute the bias corrected AUC for the categorised variable for k = l and k = l + 1 and

denote it as ÂUC
∗
l,v and ÂUC

∗
l+1,v respectively. The bias corrected AUC is computed as

explained in Section 3.2, but using for Step 1 the optimal cut points obtained for k = l and

k = l + 1 on the basis of the original sample.
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3. Compute the difference between the bias-corrected AUCs obtained for k = l + 1 and k = l

ÂUC
∗
Diff,v = ÂUC

∗
l+1,v − ÂUC

∗
l,v.

Once the above process has been completed, the (1 − α) % limits for the CI for the difference are

given by (
ÂUC

α/2

Diff , ÂUC
1−α/2
Diff

)
where ÂUC

p

Diff represents the p-percentile of the estimated ÂUC
∗
Diff,v (v = 1, . . . , V ).

The second criterion used to evaluate the need for an extra optimal cut point was the integrated

discrimination improvement (IDI) index, proposed by Pencina et al28 which in our setting can be

defined as shown in equation (1) in Pepe et al.29:

IDI = E[pl+1 − pl|Y = 1]− E[pl+1 − pl|Y = 0],

where pk = P (Y = 1|Xcatk).

The IDI is a useful measure to compare and assess the improvement in terms of risk prediction

of two predictive models. Accordingly, in our particular setting, the IDI can be a useful measure

to evaluate the improvement offered by adding an extra cut point. In particular, we propose the

criterion that an extra cut point is needed as long as an statistically significant IDI is obtained

when comparing the fitted logistic regression models obtained with k = l and k = l+ 1 cut points.

4 Validation study

This section reports the results of a simulation study conducted to analyse the empirical performance

of the methods described in Section 3 above. Validation was provided at two different levels, i.e.,

in a theoretical setting and in a backward process. Both settings are explained in detail below.

All computations were performed using the (64 bit) R 3.0.1 software package30.

4.1 Scenarios and set-up

Theoretical validation:

In the first setting, the predictor variable X was simulated from a normal distribution separately in

each of the populations defined by the outcome (Y = 0 and Y = 1), i.e., X|(Y = 0) ' N(µ0, σ0) and

X|(Y = 1) ' N(µ1, σ1). It should be noted that, when σ0 and σ1 are equal, the linear relationship

between X and the logistic function holds. Moreover it can be shown that for k cut points, the

theoretical location of the optimal cut points can be obtained12, as well as the AUC associated

with the corresponding categorical covariate. Accordingly, the aims of this simulation study were
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twofold:- a) to compare the cut points obtained with the proposed methodology and the theoretical

optimal cut points; and b) to compare the obtained bias corrected AUC and the theoretical one.

The most general results are presented in the main manuscript. Nevertheless, more specific results

for different scenarios and sample sizes are presented in the web appendixes B and C. Specifically,

in the simulations presented in this manuscript, we considered X|(Y = 0) ' N(0, 1), X|(Y =

1) ' N(1.5, 1). The simulations were done assuming the same number of individuals in Y = 0

and Y = 1 and a total sample sizes of N = 500 and N = 1000. As far as the number of cut

points is concerned, k = 1, 2 and 3 was considered. Finally, for the AddFor algorithm grid sizes

of M = 100 and M = 1000 were used. In all cases, B = 50 was considered for the AUC bias

corrected procedure. Sample sizes of N = 500 and N = 1000 were selected to ensure a requirement

commonly used on the specific framework of prediction models26. Nevertheless, the performance of

the proposed methodology was also verified for smaller sample sizes. Detailed results can be seen

in Appendix B of the supporting web material. R = 500 and R = 1000 replicates of simulated data

were performed. Both number of replicates provided similar results (not shown). Accordingly, all

results shown here are based on R = 500 replicates.

As pointed out before, under this setting (σ1 = σ0) the relationship between the predictor X

and the logit transformation of the response Y is linear. Nevertheless, the performance of the

proposed methodology when the relationship is not linear was also assessed by comparing both al-

gorithms in a controlled situation. Results are shown in Appendix C of the supporting web material.

Backward validation:

In the second setting, we envisaged simulating a continuous variable X starting from a cate-

gorical variable whose cut points had been scientifically pre-established and assuming that they

represent an underlying continuum variable. The aim was to test whether the cut points obtained

by applying the proposed methodology to the continuous variable were similar to the original cut-

points. For the purpose, we considered the data set available at the IRYSS-COPD study19. In

this data set we selected the variable forced expiratory volume in 1 second in percentage (FEV1%)

which is a clinical variable whose categorisation into four categories (mild ≥ 80, moderate [50−80),

severe [30− 50) and very severe < 30) is well established thanks to previous research in the field31.

This variable was available in the data set both in the continuous and the categorical versions for

a total number of L = 2069 patients.

To simulate the continuous covariate FEV1% we propose a bootstrap method starting from the

original categorical and continuous versions of FEV1%. Let us denote X the original continuous

FEV1% variable and Xcat the categorised variable taking values from 0 to 3, which correspond

to mild, moderate, severe and very severe categories respectively. For each l = 0, . . . , 3, consider

dls as the s-th decile of X when Xcat = l. For each u = 1, . . . , U and l = 0, . . . , 3, we generated
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the bootstrap sample {x∗iu}
Ll
i=1 by drawing a sample of size Ll with replacement from the original

sample {xi}Ll
i=1, where Ll denotes the number of individuals in the l-th category (L =

∑3
l=0 Ll). We

considered d∗ls as the average of the U bootstrap deciles of each category, i.e, d∗ls = 1
U

∑U
u=1 d

u
ls. The

continuous variableXsim was simulated assuming a uniform distribution in the interval (d∗l(s−1), d
∗
ls),

enclosed by the lower and upper limits of each category.

Additionally the dichotomous response variable Y was simulated according to the two scenarios

shown in Table 1 trying to mimic two possible real situations. In Scenario I patients are distributed

as 35%, 30%, 20% and 15% in mild, moderate, severe and very severe categories respectively. In

contrast, in Scenario II, only a 3% of patients belongs to the mild category. Additionally, the

percentage of individuals with Y = 1 (denoted as diseased), changes from Scenario I to Scenario II.

Table 1: Backward validation study: total distribution of individuals in the four categories of forced
expiratory volume in 1 second in percentage (FEV1%) and distribution of diseased individuals in
each category, under both scenarios.

Scenario I Scenario II
FEV1% [0,100] Total Diseased Total Diseased
Mild [80,100] 35% 5% 3% 0%
Moderate [50,80) 30% 20% 30% 4.5%
Severe [30,50) 20% 25% 47% 8.6%
Very severe [0,30) 15% 40% 20% 14.2%

For each of the scenarios, R = 500 replicates were conducted for total sample sizes of N = 500

and N = 1000, and B = 50 as in the previous setting and U = 10.000 bootstrap resamples were

used. Optimal cut points were sought using the Genetic and AddFor algorithms, the latter with

grid sizes of M = 100 and M = 1000.

4.2 Results

Theoretical validation:

Figure 1 depicts the boxplot of the estimated optimal cut points over 500 simulated data sets,

for each of the proposed algorithms, different sample sizes and number of cut points. As can be

observed, the cut points obtained by the Genetic or AddFor algorithms were close to the theoret-

ical optimal cut points, with both algorithms presenting a low bias. The corresponding detailed

numerical results are shown in Table 2. Under this scenario, the theoretical optimal cut points are

v1 = (0.77), v2 = (0.23, 1.27) and v3 = (−0.07, 0.75, 1.57) for k = 1, 2, 3 number of cut points

respectively. Note that the average of the estimated cut points across simulated data sets was very

similar for both algorithms with this values being very close to the theoretical optimal cut points.
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As expected, the differences with respect to the theoretical optimal cut points were smaller when

the sample size increased from 500 to 1000. For example, for k = 3 cut points, the average of the

cut points obtained with the Genetic method across all replicates were ¯̂v3 = (−0.11, 0.76, 1.63)

and ¯̂v3 = (−0.09, 0.74, 1.61) for sample sizes of 500 and 1000 respectively, while with the Addfor

algorithm and a grid of size 1000 they were ¯̂v3 = (−0.11, 0.73, 1.60) and ¯̂v3 = (−0.08, 0.74, 1.58).

It should be noted that, when the desired number of cut points was 2, the AddFor did not perform

as well as the Genetic algorithm. While the former located only one of the two optimal cut points,

the latter managed to approximate both cut points. For instance, for a sample size of 500 and

k = 2, the bias obtained for the estimated cut points were (0.00, 0.04) using the Genetic method,

and (0.11,−0.01) using the AddFor method with a grid of size 1000.

In Table 3, the average, bias and standard deviation of the bias corrected AUC values over 500

simulated data sets is given, for each of the proposed algorithms, different sample sizes and number

of cut points. Note that the AUC values obtained were almost unbiased, being the bias obtained

less or equal to 0.02 when k = 1 was chosen. Additionally, the Genetic approach generally provided

slightly higher AUC values than the AddFor algorithm. However, when the AddFor grid size was

increased from 100 to 1000, the obtained results were almost the same as those obtained with the

Genetic algorithm. For instance, for a sample size of 500 and k = 3 number of cut points, the

average of bias corrected AUCs was 0.831, 0.834 and 0.835 for the AddFor with grid sizes of 100

and 1000 and the Genetic algorithm respectively.

It should be noted that, the Genetic algorithm is computationally more expensive than the

AddFor algorithm. Detailed information about computational cost and convergence to the AUC of

the continuous variable for larger k values is given in the Appendix D of the supporting web material.

Backward validation:

The backward-validation simulation study showed that both the AddFor and Genetic methods

were able to detect the original cut points. This can be observed in Figure 2 where the boxplots

of the estimated optimal cut points based on 500 simulated data sets are depicted, for each of the

proposed methods and different sample sizes. The corresponding numerical results are shown in

Table 4 were the average of the optimal cut points together with the original cut points are shown.

Note that the cut points obtained with the Genetic method were slightly closer to the original cut

points than the ones obtained with the AddFor. For instance, under Scenario I and a sample size

of 1000, the average of the estimated optimal cut points obtained by the Genetic method were

32.03, 53.98 and 77.99 while the ones obtained with the AddFor method with a grid of size 1000

were 32.96, 56.91 and 77.17. It is worth remembering that the original three cut points were 30,

50 and 80. Table 4 also shows that under Scenario II, only 2 of the original three cut points were

detected. The percentage of patients with a FEV1% of over 80 was less than 3%, and none of them

12



was diseased. Hence, having so few individuals with values above 80, the method was not able to

detect that cut point. In this situation, the first two cut points were retained and the original cut

points of 30 and 50 were detected.
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Figure 1: Boxplot of the estimated optimal cut points based on 500 simulated data obtained

according to the theoretical optimal cut point validation study and comparison with the theoretically

optimal cut point ( v1 = (0.77), v2 = (0.23, 1.27) and v3 = (−0.07, 0.75, 1.57)). From top to

bottom: (a) for k = 1 number of cut points; (b) for k = 2 number of cut points; and (c) for k = 3

number of cut points.
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Figure 2: Boxplot of the estimated optimal cut points based on 500 simulated data sets obtained
according to the backward validation study for N = 500 and N = 1000. Top row: Scenario I.
Bottom row: Scenario II. Original cut points were 30, 50 and 80.

5 Software implementation

To provide the biomedical researchers with an easy-to-use tool for categorising continuous variables

in prediction models, the methodology described in this paper has been implemented in the R

programming language30. Specifically, an R package, called CatPredi, was created, with the Genetic

method being implemented using the R package rgenoud32. The CatPredi package can be freely

downloaded from https://sites.google.com/site/biostit/lineas-de-investigacion/software/catpredi.

By providing the dichotomous response Y , the continuous covariate which is aimed to categorise

X, a set of covariates Z (if the aim is to categorise X in a multivariable setting) and k, the number

of cut points, the user can choose which algorithm to use for categorising X. If a multivariable

setting is chosen, the set of covariates Z can be modelled considering linear or non linear effects

alternatively. In the latest, the effects are estimated using the R package mgcv4.

The main function of the CatPredi package called catpredi returns the optimal cut points

jointly with the categorised predictor variable, as well as the final model’s original and bias cor-
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Table 4: Results of the backward validation study: average of the estimated optimal cut points over
500 simulated data sets obtained together with the original cut points 30, 50 and 80 are shown.

Sample size N = 500 Sample size N = 1000 Original
AddFor AddFor

Genetic
AddFor AddFor

Genetic
cut point

M = 100 M = 1000 M = 100 M = 1000
Scenario I
1st cut point 33.72 33.99 33.93 32.67 32.96 32.03 30
2nd cut point 55.83 56.03 56.10 56.50 56.91 53.98 50
3rd cut point 75.98 75.55 79.03 77.29 77.17 77.99 80
Scenario II
1st cut point 29.23 30.16 29.89 29.35 30.23 30.05 30
2nd cut point 50.61 49.21 49.89 51.02 50.02 50.39 50

rected AUC. Additionally, it provides a graphical display of the relationship between the continuous

predictor X and the response Y , estimated on the basis of a logistic GAM using the R package mgcv4.

In this graphical display, the location of the obtained optimal cut points is also indicated. A brief

detail description of the usage and arguments of this function is given below:

catpredi(cat.var, formula, cat.points = 1, range = NULL, data,

method = c("addfor", "genetic"), correct.AUC = TRUE,

control = control.catpredi())

• cat.var: name of the covariate we want to categorise.

• formula: this argument allows the user to specify whether the continuous predictor should

be categorised in a univariable context, or in presence of other covariates or confounders, i.e

in a multiple logistic regression model. For instance, Y ∼ 1 indicates that the categorisation

should be done in a univariable setting, with Y being the response variable.

• cat.points: number of optimal cut points to look for.

• data: data set to be used for the selection of the optimal cut points.

• method: algorithm for the selection of the optimal cut points, either AddFor or Genetic.

• range: range of the covariate in which to look for the cut points.

• correct.AUC: A logical value. If TRUE the bias corrected AUC is estimated.

• control: Used to set various parameters controlling the fitting process. For instance, the grid

size used for the AddFor algorithm would be specified as control= control.catpredi(addfor.g=1000)

for grid of size 1000.
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6 Application to eCOPD data set

We applied the methodology proposed in this paper to the IRYSS-COPD study presented in Section

2. As pointed out before, preliminary analysis during the development of a prediction model for

patients with eCOPD showed that clinical variables related with short term very severe evolution

were the Glasgow coma scale (0: altered, 1:normal), the heart rate and the PCO2. Moreover, this

preliminary analysis also suggested that the relationship between the heart rate and the response

variable short term very severe evolution appeared to be linear, while the relationship between the

PCO2 and the response variable did not. This can be seen in Figure 3 were the estimated effects

of both heart rate and PCO2 based on a logistic GAM4 are depicted. For this reason clinical re-

searchers decided to introduce a categorised version of the PCO2 variable into the prediction model.

However, as there was no unified criteria between clinicians about cut off points, we developed and

applied the methodology presented in this work to obtain optimal cut points.
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Figure 3: From left to right: (a) Relationship of the predictor variable heart rate with short term

very severe evolution. (b) Estimated smooth relationship of the predictor variable partial pressure

of carbon dioxide in the blood (PCO2) with the response variable short term very severe evolution

in a univariate logistic regression model and in a multiple logistic regression model adjusted by

Glasgow and heart rate covariates, jointly with the cut points obtained with the AddFor and

Genetic methods.

As a first step, we considered categorising the PCO2 variable into 2, 3 and 4 categories in a

univariable setting. To determine the optimal number of cut points we applied the two approaches
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presented in Section 3. For all the analyses, the implemented catpredi function of the CatPredi

package was used, and both the AddFor and Genetic algorithms were applied to these data using,

by way of example, the following code:

cat.pco2 < - catpredi(formula = poor_evolution ~ 1, cat.var="pco2",

cat.points=3, data=data.copd, method="addfor",

correct.AUC = TRUE, control = controlcatpredi(addfor.g = 1000))

Table 5 shows the results obtained in the categorisation of the predictor PCO2 with the AddFor

and the Genetic algorithms. In the case of the AddFor algorithm, similar results were obtained

when grid sizes of 100 and 1000 were chosen, and so only the results for M = 1000 are reported.

For each number of cut points (k =1,2 and 3), the obtained optimal cut points together with the

bias corrected AUC are reported. Additionally, the difference of the bias corrected AUCs, as well

as the IDI indexes when compared models with 1 and 2 and 2 and 3 cut points are shown.

Table 5: Results obtained in the categorisation of the predictor variable partial pressure of carbon
dioxide in the blood of the IRYSS-COPD study in a univariable setting.

Method k cut points
Bias corrected

AUC

AUC difference
(95%CI∗)

IDI (95%CI)

1 50.1 0.674
0.022 (0.011 , 0.036) 0.016 (0.008,0.024)

Addfor
2 50.1; 62.08 0.696

M = 1000
0.016 (-0.002 , 0.045) 0.001 (-0.0003,0.002)

3 45.86; 50.1; 62.08 0.712

1 50.87 0.674
0.032 (0.010 , 0.065) 0.016 (0.008,0.025)

Genetic
2 47.74; 62.64 0.706

0.006 (-0.002 , 0.025) 0.0002 (-0.0003,0.001)
3 34.06; 47.52; 62.58 0.713

* 95% bootstrap confidence interval (CI) based on the percentile method for V = 100 number
of bootstrap resamples.
k: number of cut points; M : grid size for the AddFor algorithm;
IDI: integrated discrimination improvement; AUC: area under the ROC curve.

As can be observed, the cut points obtained with the Genetic and AddFor algorithms were quite

similar, with those obtained for k = 1 being 50.10 and 50.87, those obtained for k = 2 being (50.10,

62.08) and (47.74, 62.64) and those obtained for k = 3 being (45.86, 50.10, 62.08) and (34.06, 47.52,

20



62.58), using the AddFor with a grid of size 1000 and the Genetic algorithms respectively. If we

selected the cut points based on percentiles, the results would be: 44 for k = 1 (median), (40, 49)

for k = 2 (0.333 and 0.666 percentiles) and (38, 44 , 53) for k = 3 (quartiles). The corresponding

bias corrected AUCs for these categorical variables based on percentiles would be: 0.644 for k = 1,

0.676 for k = 2 and 0.688 for k = 3.

In the case of the Genetic algorithm, bias corrected AUCs of 0.674, 0.706 and 0.713 were

obtained for k = 1, 2 and 3 respectively. A difference (95% bootstrap CI) of 0.032 (0.010, 0.065)

was obtained between AUCs for k = 2 and k = 1 cut points and a difference of 0.006 (-0.002, 0.025)

between AUCs for k = 3 and k = 2 cut points. The IDI obtained when passed from k = 1 to k = 2

cut points was of 0.016 (p-value = 0.0002). However, when passed from k = 2 to k = 3 cut points

the IDI was of 0.0002 (p-value = 0.385).

In the case of the AddFor algorithm with a grid of size 1000, bias corrected AUCs of 0.674,

0.696 and 0.712 were obtained for k = 1, 2 and 3 respectively. A difference of 0.022 (0.011, 0.036)

was obtained between AUCs for k = 2 and k = 1 cut points and a difference of 0.016 (-0.002, 0.045)

between AUCs for k = 3 and k = 2 cut points. The IDI obtained when passed from k = 1 to k = 2

cut points was of 0.016 (p-value = 0.0002). However, when passed from k = 2 to k = 3 cut points

the IDI was of 0.0007 (p-value = 0.147).

Summarising, all the results suggested that 2 was the optimal number of cut points, being the

vector of optimal cut points v̂2 = (47.74, 62.64) or v̂2 = (50.1, 62.08) if the Genetic or AddFor

algorithm was chosen. These can be seen in Figure 3(b). In either case, no significant differences

were observed between the AUC values obtained with the categorical variable and the bias corrected

AUC yielded by the original continuous predictor (using a logistic GAM) resulting in 0.707. Con-

sequently, we obtained a categorical version of the continuous PCO2 variable whose discriminative

ability compared to the continuous original version did not decrease significantly with a 95% boot-

strap CI of (-0.03,0.02) and (-0.02,0.04) with the Genetic and AddFor algorithms respectively. In

addition, we obtained a 92% agreement between the categorical variables achieved with the AddFor

and Genetic algorithms, measured by Cohen’s weighted kappa33, with a 95% CI of (0.91, 0.93).

These results were face-validated by the clinicians involved in the IRYSS-COPD study.

Finally, we considered to categorise the predictor variable PCO2 in a multivariable setting

adjusted by the other predictor variables considered by clinicians, which were Glasgow coma scale

and heart rate. The cut points obtained for k = 2 were (47.03, 62.08) and (47.33, 62.54) with the

AddFor and Genetic algorithms respectively. In this case the effect of the other covariates in the

multiple logistic regression model did not change the optimal cut points obtained for the PCO2

covariate. This result could be explained by looking at the estimated effects shown in Figure 3(b)

where it can be observed that the shape of the relationship between the continuous predictor and

the response variable does not change from the univariable to the multivariable setting.
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7 Discussion

The disadvantages of categorising continuous variables, such as the loss of information and statistical

power, have been reported by a number of authors34,35. From a practical point of view, however,

categorisation may be useful for ease of interpretation and application, especially when the aim is to

apply the results in daily clinical practice, or even helpful in cases where outliers are present. Indeed,

in routine practice continuous clinical predictors are usually available but health professional’s

decision-making tends to be based on patient risk classification, which can be seen as a categorisation

of the original continuous predictor. Bearing this in mind, i.e., the fact that decisions are made on

the basis of the risk classification of patients, we feel that a prediction model should be in line with

the decision-making process and to incorporate categorical predictor variables into the prediction

model may be a way of doing so.

As pointed out in the introduction, previous work has been done on the categorisation of con-

tinuous variables but most of these studies have sought to dichotomise the continuous variable and

have not taken the search for more than one cut point into account. Our study indicates, however,

that the loss of information in terms of discriminative ability could be very high when a single cut

point is considered.

The methodology presented in this paper allows for the selection of more than one cut point.

The advantages that our proposal presents with respect to previously published proposals for the

selection of more than one cut point are: a) it requires no distributional assumptions and can be

used in any situation regardless of the distribution of the original continuous predictor12; and b) it

provides the objectivity afforded by an automatic method as opposed to the subjectivity of relying

on a graphical display13. Furthermore, our approach has been developed so that a continuous

predictor variable can be categorised both in a univariable or a multivariable context, depending

on what the underlying setting is for each data set (univariable or multivariable) as proposed by

Mazumdar et al36. Although in the application to the IRYSS-COPD study the cut points obtained

for the PCO2 covariate in the univariable and multivariable settings were almost the same, this

need not always be so. The cut points obtained in the multivariable setting may differ to those

obtained in the univariate model. For example, if the relationship between the continuous predictor

and the response variable is different in a univariable or a multivariable setting, then the optimal

cut points may be different. This could happen for example when confusion predictors are present

in the multiple logistic regression model. Hence, in contrast to other categorisation methods, the

proposed methodology thus enables a continuous variable to be categorised before or during the

development of a prediction model, thereby allowing for the incorporation of potential confounders.

The simulation study shows, that under the theoretical hypothesis, our approach yields the

optimal location of the cut points. Additionally, the results obtained suggest that the cut points

obtained correspond to the change at risk of having the outcome of interest. Indeed and according
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to clinicians criteria, in the application of the method to the IRYSS-COPD study, the cut points

obtained for the clinical variable PCO2, classified patients into low, moderate and high risk of short

term very severe evolution. The proposed methods thus provide a classification of patients in terms

of risk, which is precisely what is desirable in clinical practice for decision-making.

Two alternative algorithms are proposed in this paper. Despite the fact that the results are

similar, one must bear in mind that the AddFor algorithm seeks the second cut point once the first

has been fixed. Consequently, the selection of the first cut point has an influence on the consecutive

cut points, which at times may lead to a non-optimal selection of cut points. We think that this

could be solved by improving the algorithm with a backward/forward correction, adjusting the first

cut point after the second has been selected and so on, which is part of our future research. In

general, as long as it is computationally feasible, we recommend the use of the Genetic algorithm.

Note that the proposed methodology consists on categorising a continuous predictor variable X.

In practice, data may be clumped at a point or points which may lead to have ties on the data. If

this happens, we should focus on sample size, percentage of ties and more concretely on the number

of unique values the predictor variable takes. If these are a few, then the predictor variable would

be far from being a continuous variable and hence applying our methods is not advisable in such

cases. We conducted a simulation study in which we considered different levels of digits preference

for a continuous normally distributed variable in the same conditions of the theoretical validation

study and a sample size of N = 500 (data not shown). The results suggested that whenever the

number of unique values of the predictor variable are over 60 we can completely recommend the

application of the proposed methodology.

The main limitation of the proposal is that it does not include a methodology which obtains the

optimal number of cut points. The researcher must select in advance the number of cut points, or

compare the performance of the categorised variable for different number of cut points. We have

seen that the predictive ability will increase as the number of cut points increases but also, that

it converges to the theoretical predictive ability of the continuous predictor. We are aware that in

theory the optimal number of cut points for the categorisation of a continuous variable does not

exists, since above all the possible number of cut points the best option would be the continuous

variable. However, in clinical practice categorical versions of the continuous variables are usually

preferred without having always clear which is the best number of categories to be used. It is

necessary to find a balance between the clinical sense of the categories and the minimal loss of

information. Therefore, we have proposed two approaches to select the best number of cut points,

which we have applied to the IRYSS-COPD data. In our opinion, future work on the development

and validation of these naive approaches to select the optimal number of cut points is called for.

On the other hand, the proposed approach is based on the fit of a logistic regression model from

the data available. Bearing this in mind, if there are missing data on the predictor variable we aim

to categorise, these would not be taken into account in the categorisation process, since the logistic
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model would be fitted only on the complete observations. If missing data are completely at random,

its effect will be determined by the reduction in the available sample size. The simulation study

suggests that the method proposed performs satisfactorily regardless of the sample size. However,

when missing data are not at random, it is known that it has an impact on the modelling process

itself. Consequently, it will also have an impact on the selection of the optimal cut points.

Another limitation is that only one unique continuous covariate can be categorised at a time.

We are working on the extension of these methods to categorise two predictor variables at a time,

considering the influence they have on each other and with the response variable. In the meantime,

if a researcher is interested on the categorisation of two continuous variables, we recommend to

proceed as follows. Consider categorising each variable at a time in a multiple logistic regression

model in which the second variable is modelled using non linear effects. In this way, optimal cut

points for each of the continuous variables would be obtained but adjusted by the effect of the

second variable. Once cut points for both variables have been obtained, categorise and combine

them in a final model. Although this is not as categorising both variables at a time, it can be seen

as an easy to apply first approximation.

To summarise, we propose a method for categorising continuous predictors in a logistic re-

gression model which provides the optimal location of the cut points and two algorithms for its

implementation. The two algorithms have been compared and validated. The aim of this method-

ology is to provide optimal cut points but taking into account that they must be always validated

with clinical researchers. Hence, when this method was applied to a real data set, the resulting

cut points were face-validated by clinicians. Furthermore, the proposed categorical predictors were

seen to perform as successfully as the continuous variables. Finally, an R package called CatPredi

has been implemented which leads to an easy use of this methodology in practice.
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