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BIOLOGICAL AND RETROSPECTIVE PHYSICAL METHODS  
Elizabeth A. Ainsbury, Daniel Samaga, Sara Della Monaca, Maurizio Marrale, Celine Bassinet, Christopher I. 
Burbidge, Virgilio Correcher, Michael Discher, Jonathan Eakins, Paola Fattibene, İnci Güçlü, Eva Lund, Nadica 
Maltar-Strmečki, Steve McKeever, Christopher L. Rääf, Sergey Sholom, Ivan Veronese, Albrecht Wieser, 
Clemens Woda and Francois Trompier. 

Biological and physical retrospective dosimetry are recognised as key techniques to provide individual estimates of dose 

following accidental or unexpected exposures to ionising radiation. Whilst there has been a relatively large amount of 

recent development in the biological and physical procedures, statistical development of uncertainty analysis techniques 

has in many areas failed to keep pace. The aim of this paper is to review the current state of the art in uncertainty 

analysis techniques across the EURADOS Working Group 10 – Retrospective dosimetry partners, to give concrete 

examples of implementation of the techniques recommended in the international standards, and to further promote the 

use of Monte Carlo techniques to support characterization of uncertainties. It is concluded that sufficient techniques are 

available and in use by most laboratories for acute, whole body exposures to highly penetrating radiation, but that 

further work will be required to ensure that the standards are adequately applied for the more complex exposure 

scenarios. 

INTRODUCTION 

In Europe today, and indeed the whole world, the 

current state of the art of retrospective radiation 

dosimetry incorporates a number of key biological and 

physical retrospective techniques. Amongst the 

biological methods, the dicentric chromosome assay 

(DCA), which relies on the relationship between the 

frequency of dicentric chromosomes in peripheral 

blood lymphocytes and the absorbed dose (“dose”) of 

exposed persons, is recognised to be the most well-

developed of these1,2. The cytokinesis-blocked 

micronucleus (CBMN) assay is also regarded as an 

important tool for biological assessment of radiation 

dose and is growing in importance3. For longer-term 

retrospective dosimetry, fluorescence in situ 

hybridization (FISH) staining of translocations can be 

used4. In addition, new techniques for premature 

chromosome condensation and scoring offer alternative 

methodologies5 and the γ-H2AX assay allows direct 

measurement of double-strand breaks (DSB), which are 

caused almost exclusively by ionising radiation, in a 

human cell6. For physical dosimetry7, the key 

techniques are electron paramagnetic resonance (EPR) 

with bone8, teeth9, nails10,11,12 and glass13 and optically 

or thermally stimulated luminescence (OSL/TL), 

chiefly of electronic components in mobile phones14. A 

large number of studies have demonstrated the need for 

a wider range of techniques, both separately and in 

collaboration, in order that dosimetry can be carried out 

in several potential exposure scenarios15,16. Most 

importantly, the operational assays have recently been 

amalgamated into fully functional emergency response 

plans through the network: Realising the European 

network of biodosimetry, RENEB16,17. 

The European Radiation Dosimetry Group 

(EURADOS) was set up to advance the scientific 

understanding and the technical development of the 

dosimetry of ionising radiation by the stimulation of 

collaboration between laboratories in Europe. As part 

of the network, EURADOS Working Group 10 

(WG10) was formed, with the objective of establishing 

a network of European (and some non-European) 

laboratories with expertise in the area of physical and 

biological retrospective dosimetry. The aims of WG10 

include: establishing a multi-parameter approach to 

dose assessment in retrospective dosimetry (including 

emergency response); evaluating newly developed 

dosimetry methods; and establishing a common 

approach for uncertainty estimation throughout 

biological and physical methods of dosimetry. In order 

to address this last point, EURADOS WG10 task group 

10.6 was created, with a focus on uncertainties 

associated with retrospective dosimetry techniques.  

Uncertainty analysis can be defined as the method to 

quantify the degree of confidence considering the 

model outputs taking into account the model inputs 

(data and parameters)18. In classical statistics, the aim 

of uncertainty assessment is to provide a range around 

the estimated quantity, the uncertainty interval, within 

which the real value of the variable is likely. The 

uncertainty interval usuallydepends on the standard 

deviation that corresponds to the uncertainty associated 

with the estimate of the variable. The process of 

uncertainty assessment is an intrinsic part of any 

method of retrospective radiation dosimetry, however, 

it has previously been noted that estimation approaches 

vary between different dosimetry techniques and, 

furthermore, that the overall effort devoted to 

uncertainty analysis varies widely between groups of 

retrospective dosimetry practitioners19,20. The Guide to 

the Expression of Uncertainty in Measurement (GUM) 

is the standard reference for uncertainty analysis 

techniques, and most of the retrospective dosimetry 

laboratories across Europe and the world use the GUM 
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uncertainty estimation techniques21. There are several 

relevant ISO standards and guides to assist with 

implementation of GUM22,23 and the associated 

analysis techniques, e.g. for assessment of accuracy24 

and laboratory intercomparisons25.  

There are also a number of alternative techniques 

that may be employed, both for measurement and 

calculation of the quantity of interest, i.e. absorbed 

dose, for the propagation of uncertainties through this 

calculation, and for quantification of both type A 

(generally corresponding to random) and type B 

(generally systematic) uncertainty estimates. For 

example, Monte Carlo simulation, which includes auto- 

and cross-correlations among the components, can be a 

convenient means of obtaining probability distributions 

for parameter estimation in non-linear systems26,27. 

This can be combined with the use of Bayesian logical 

constructs to constrain parameter estimation to help 

improve the accuracy of dose estimates28. Bayesian 

statistics considers the uncertain parameters and 

variables at random (probabilistic variables). The 

analysis takes into account assumed prior distributions 

for each parameter (which must be chosen by the user), 

together with the experimental data to produce a 

subsequent probability density function (pdf) that 

describes the probability of the observations. In all 

cases, the appropriateness of the approach should be 

carefully evaluated29.  

The aims of EURADOS WG10 task 10.6 are thus to 

survey the different methods used to assess 

uncertainties in retrospective techniques, to compare 

and contrast the different approaches, to popularise the 

potential of Monte Carlo or Bayesian techniques, to 

identify best practice and finally to attempt to 

homogenise the approaches where possible and/or 

desirable. The survey of uncertainty assessment 

methods used by WG10 participants was carried out in 

2012. The survey participants were overwhelmingly 

supportive of the need for a review of uncertainty 

analysis techniques, inter- and intra-technique 

comparisons of methods, and organization of centrally 

administrated training once best practice has been 

identified.  

In this publication, the authors present a comparison 

of techniques of uncertainty estimation amongst 

laboratories using biological and physical retrospective 

dosimetry methods of dicentric chromosome, 

micronucleus, PCC, FISH translocation and γ-H2AX 

analysis, EPR, OSL and TL. The data were collated 

from the survey and discussions at EURADOS annual 

meetings 2012 – 2016 and from results of the RENEB 

networking project17. The similarities and differences 

in recommended uncertainty analysis methods, those 

used in practise, and also the experimental and external 

factors that influence the results, are discussed. In 

biological dosimetry, Bayesian analysis methods have 

so far only been implemented for the DCA30 and thus 

are discussed in this context. Bayesian approaches have 

been developed for application in luminescence 

retrospective dosimetry per se28, and others are widely 

used to compare retrospective archaeological and 

geological age estimates31, but have not yet been 

applied for accident reconstruction. The wider 

applications of Monte Carlo sampling are also 

discussed, with the aim of promoting the techniques for 

use within the community. Finally, areas in which 

biological and physical retrospective dosimetry 

uncertainty analysis methods may be improved are 

considered. 

DOSIMETRY METHODS 

There are a number of relevant publications including 

recent reviews of biological and physical retrospective 

dosimetry methods, thus we here only present a 

relatively high level summary in order to set the scene 

for the review of the uncertainty estimation methods 

that are currently in use. 

Biodosimetry 

The most well-established assays for biological 

dosimetry rely on assessing chromosome aberrations in 

peripheral blood lymphocytes. The rationale behind 

counting aberrations is that the number of aberrations 

induced by ionising radiation corresponds to the 

absorbed dose. The established techniques are: (1) the 

dicentric chromosome assay (DCA, which is the “gold 

standard”2; (2) Fluorescence in situ hybridization 

(FISH)4; (3) Premature chromosome condensation 

(PCC)5; (4) cytokinesis-block micronucleus assay 

(CBMN)3, and (5) counting of γ-H2AX foci which 

form at the site of double strand breaks6. 

The two main prerequisites for biodosimetry are the 

stability of aberrations with time following irradiation 

and knowledge of the background level, i.e. the number 

of aberrations in a given sample before irradiation 

occurred. DCA, PCC and CBMN show stability of 

responses for several months, as induction of these 

aberrations means the cells cannot reproduce and thus 

the cells die and these aberrations are gradually 

removed from the population of circulating 

lymphocytes, Therefore, the relative specificity to 

ionising radiation drives the accuracy of these methods. 

In contrast, γ-H2AX and FISH are not radiation 

specific, however, the individual background levels are 

becoming more well understood4,6,32. The vast majority 

of γ-H2AX aberrations disappear within approximately 

24 hours and thus this is very much a short term assay, 

however, translocations detected by FISH are stable 

over many years. All of the established methods were 

developed based on visual scoring techniques, and a 
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large amount of work has been required to ensure their 

suitability for mass casualty events17. The current status 

is promising although the need for automation and 

other more rapid strategies remains1,33,34 and there is 

also a need for development of appropriate, reliable, 

uncertainty methods.  

Dicentric chromosome assay 

As the “gold standard” of biodosimetry, the statistical 

analysis methods for the dicentric chromosome assay 

(DCA) are extremely well defined. An ISO standard 

has been created for the assay in routine35 and rapid 

assessment “triage”36 modes. The assay’s standardised 

guidance text, the International Atomic Energy 

Authority (IAEA) cytogenetics manual1, is used by 

almost all practitioners of the assay for biodosimetry 

purposes.  

In brief, the dicentric yield y (average number of 

dicentric chromosomes per cell) is modelled as a 

function of the absorbed dose D by formation of a 

linear or linear-quadratic calibration curve: 

 

                (1) 

 

The specific type (energy/LET) of radiation determines 

the type of curve, which is created by counting 

(scoring) aberrations in large numbers of cells, 

especially at low doses. For in vivo exposure cases, the 

yield of aberrations observed in the exposed sample is 

then compared to the calibration curve. Dicentrics are 

highly specific to ionising radiation, with only a few 

rarely used radiomimetic drugs able to induce them, 

thus, the lower limit of detection is approximately 100 

mGy1. Simple methods also exist to account for 

fractionation or partial-body exposures, chiefly based 

on adherence to or departure from the expected Poisson 

distribution of aberrations1.  

Micronucleus assay 

The in vitro cytokinesis-block micronucleus assay 

(CBMN) is another well-established method for 

biodosimetry3. The assay is based on assessing the 

frequency of acentric chromosome fragments 

(micronuclei, MN) and a small extent malsegregation 

of whole chromosomes in binucleated (BN) cells. MN 

are also caused by many clastogenic and aneugenic 

agents37 and thus are not specific for ionising radiation. 

Compared to the DCA, scoring of MN is simple and 

quick. Furthermore, scoring can be automated and 

international standardization is in place38.  

The reported background frequency of MN is 

variable: values ranging from 0 to 40 per 1000 BN 

have been recorded1. Consequently, the lower limit for 

dose detection by conventional CBMN is 0.2 - 0.3 Gy; 

although more detailed analysis restricted to 

centromere positive cells lowers this limit to 0.05 - 0.1 

Gy. The most important influencing factors of MN 

background are dietary factors, exposure to 

environmental clastogens and aneugens, age and 

gender1. When possible, for instance for medical 

exposure scenarios, the variability of the background 

level should be decoupled from the other parameters by 

identification of the individual background level in 

blood samples taken before irradiation39. 

Dose estimation using CBMN follows the same 

strategy as for the DCA. The absorbed dose can be 

assessed up to few months after exposure1,40,41. A 

drawback of CBMN is the natural overdispersion of 

MN data, therefore partial-body irradiation is hard to 

detect, and also the larger variation in background 

levels which means that the detection limit is generally 

greater37. 

PCC 

An important limitation of the DCA, CBMN and FISH 

assays is the prerequisite for lymphocytes to enter the 

mitotic phase, which requires culturing for 48 hours or 

more. Thus dose estimates always take several days. 

The need for metaphases induces several technical 

problems including radiation induced mitotic delay and 

cell death that can lead to non-representative cell 

samples. After high doses of ionising radiation, this can 

cause considerable underestimation of absorbed doses. 

Premature Chromosome Condensation (PCC) can be 

induced by cell fusion or chemical induction. The cell 

fusion PCC technique visualises chromosome 

aberrations in the interphase cells, which can allow 

same day biological dose assessment. Chemically 

induced PCC has been validated for triage following in 

several potential exposure scenarios1,5,40. 

PCC analysis is not a biomarker on its own, rather it 

should be combined with scoring of specific 

chromosome aberrations (e.g. fragments, rings or 

translocations). The frequency of spontaneous 

occurring PCC fragments is in the range of the 

dicentric frequency, 1 to 3 in 1000 cells.  

For dose assessment with PCC, the same tools are 

used as presented for the DCA. PCC assay is 

particularly useful for assessment of a wide range of 

doses. It is applicable as well to exposure at low doses 

(as low as 0.2 Gy for PCC fragments) as to life-

threatening high acute doses of low and high-LET 

radiations (up to 20 Gy)42. 

Fluorescence in situ hybridization 

Dicentric chromosomes, rings and MN are “unstable” 

chromosome aberrations and thus they vanish from 

peripheral blood lymphocytes pool at the rate that cell 
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renewal occurs. Fluorescence in situ hybridization 

(FISH) techniques allow identification of stable 

translocations, and have been used for many years for 

assessment of past exposures1,43.  

However, background frequencies increase 

significantly with age and vary greatly between 

individuals of the same age and dose history. No 

significant gender effects have been observed but 

smoking habit has been suggested to be of 

significance32.  

The observed number of aberrations must be 

corrected for these known confounding factors in order 

to obtain radiation-induced translocations only, before 

dose response curves are calculated as for dicentrics1. 

Note that as a consequence of stability and non-

specificity to radiation, the minimum detectable dose is 

limited as a function of time: in the region of 1.8 mGy 

per year (20 - 69 years) for acute doses, and for chronic 

exposure 15.9 mGy per year respectively42. At high 

doses, correlation of translocations and complex 

aberrations in cells is also of importance1. Although the 

biological complexity of this assay is relatively well 

understood, the uncertainty analysis techniques remain 

simplistic and more work is needed. 

γ-H2AX 

The γ-H2AX assay, commonly used for investigating 

radiosensitivity, has in recent years become a well–

established biomarker for radiation induced DNA 

double-strand breaks and thus radiation exposure6,44. 

Fluorescence microscopy or flow cytometry measure 

the formation of DNA repair-protein clusters called γ-

H2AX foci (in terms of number or intensity 

respectively) in peripheral blood lymphocytes of 

exposed persons45,46. The foci are not specific for 

radiation exposure and spontaneous frequency is very 

low. Wide use for biodosimetry purposes is limited by 

fast loss of the signal (maximal γ-H2AX level is 

reached 30 min after irradiation, tissue related the half-

life of the signal is 2h - 7h) as well as high individual 

variability42,47,48.  

Advantages of the assay are its high sensitivity and 

relatively low detection limit (as low as tens of mGy), 

the need of only a few drops of blood, absence of 

required lymphocyte cultures and the ease of 

automation. However, the absorbed dose can only be 

assessed up to approximately 1 day after exposure49. In 

addition, the influence of factors such as age, gender 

and genotypes are not yet well understood50–56. The 

relatively large uncertainties allow γ-H2AX to be used 

for biodosimetry only in extremely controlled 

scenarios57 and uncertainty assessment is carried out on 

a case-by-case basis, with the sophistication of the 

analysis varying greatly between laboratories. 

Physical retrospective dosimetry 

For the purposes of retrospective dosimetry, physical 

dosimetry methods are retrospective dose estimation 

techniques based on the quantitative evaluation of 

detectable changes induced by ionising radiation in 

inert materials or by the activation of atoms such as 

sodium or phosphorus when exposed to neutrons. They 

are usually only suitable for detection of external 

exposure and for situations of partial or localised 

exposure, they provide a useful dosimetric information 

only if the “fortuitous dosemeter” (defined as a 

material validated for dosimetry which the individual 

happens to be carrying) is by chance within the 

radiation field.  

The three physical dosimetry techniques considered 

in this review are the Electron Paramagnetic Resonance 

(EPR), the Optically Stimulated Luminescence (OSL) 

and the Thermoluminescence (TL).  

Electron paramagnetic resonance 

EPR dosimetry is based on the quantification of 

paramagnetic species (defects or free radicals) induced 

by ionising radiation. In solids, as crystalline materials, 

the radicals/defects can be trapped and are thus 

generally sufficiently stable to be measured. The EPR 

signal is a measure of the radical/defect concentration 

within the solid matrix and is usually proportional to 

the mean absorbed dose in the sample. The principle of 

EPR spectroscopy may be found in several textbooks58–

60 and a detailed description of applications in 

retrospective dosimetry is given by Trompier and 

colleagues61. In general, depending on the complexity 

of the EPR spectra, the area under the absorption curve 

or peak-to-peak amplitude of an EPR signal are used 

and considered to be proportional to the concentration 

of paramagnetic species.  

The validated assays for retrospective analysis are 

calcified tissues (tooth enamel and bone) and sugar, 

while materials such as nails, mineral glass, 

sweeteners, plastics and clothing fabrics that are 

widespread among humans are under 

investigation12,13,62–66. The ideal characteristics of a 

beneficial fortuitous dosemeter are a high radiation-

induced signal yield, the absence of endogenous 

signals, a low UV-induced signal, low detection limit, 

the linearity of the signal with dose and post-irradiation 

signal stability61. The quantity of the radiation-induced 

radicals may be correlated to a value of the absorbed 

dose either via application of a “positive control” - the 

delivery of additional radiation doses with a laboratory 

source (“additive dose” method) or via a calibration 

curve. Calibration curves may be created on an 

individual basis for each sample, or using different 

samples each irradiated at a different radiation dose, 
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i.e. always applying the same sample-specific, signal-

to-dose calibration curve. A disadvantage of the 

universal calibration curve is that it does not take into 

account the specific sensitivity of the sample. The 

curve is built using the average of the sensitivities of 

different samples. This of course affects the uncertainty 

associated with the estimated dose.  

When EPR is used for ionising radiation dosimetry, 

other confounding factors such as UV exposure or 

mechanical stress may generate additional radicals 

whose signals may overlap or mask the radiation-

induced signal. In these cases, spectral simulations or 

other numerical analysis methods are needed, in order 

to decompose the different components of the spectrum 

and extract the signal of interest.  

The average lifetimes for the radicals vary from 

minutes to billions of years. Controlling the sample 

storage condition, for example by keeping the samples 

in dark, low humidity and sometimes in a freezer, will 

save the samples from unwanted changes.  

A key advantage of EPR analysis is that it can be 

repeated as many times as needed, as the readout 

process does not alter the signal. This gives the 

possibility to estimate the effect of sample positioning, 

spectrometer reproducibility and stability which all 

play a large role in the uncertainty budget for EPR dose 

estimates. 

Optically/thermally stimulated luminescence 

Luminescence dosimetry relies on the stimulated 

emission of light from an insulator or a semiconductor 

after the absorption of energy from ionising radiation67. 

Ionising radiation transfers energy to the electrons of 

the solid, moving them to a metastable state. When the 

electrons return to the ground state, recombination 

occurs and luminescence light is emitted. This 

recombination occurs after absorption of stimulation 

energy provided by heat in the case of 

Thermoluminescence (TL) and by light for Optically 

Stimulated Luminescence (OSL).  

Crystals contain defects, which produce spatially 

localised energy levels in the energetically “forbidden” 

zone between the valance and conduction bands. 

Ionising radiation produces electron-hole pairs by 

exciting electrons beyond the potential of their parent 

molecule into a delocalised state, which is most 

commonly the conduction band. As electrons and holes 

migrate in the conduction and valence bands, most 

recombine rapidly but some become trapped in 

metastable states associated with the defects. Later, 

these can be excited by thermal or optical stimulation, 

so that electrons and holes are again able to recombine. 

Following recombination, the host molecule is excited, 

and some emit photons at visible wavelengths as they 

de-excite: this emission is termed thermally or optically 

stimulated luminescence, depending on the type of 

stimulation. 

In TL, the light yield is recorded as a glow curve, i.e. 

as a function of the stimulating temperature, whereas in 

OSL the number of emitted photons per time interval is 

recorded as a function of the optical stimulation time. 

For both stimulation modes, the area under the glow 

curve / OSL decay curve is related to the total number 

of emitted photons and thus to the absorbed dose in the 

dosemeter.  

Published results on the applications of TL and OSL 

for retrospective dosimetry have concentrated on OSL 

and TL techniques on chip cards, electronic 

components and glass from personal electronic 

devices68. For some of these methods, interlaboratory 

comparisons have been performed69. 

UNCERTAINTY ESTIMATION APPROACHES 

Biological dosimetry – dicentric assay 

Frequentist approach: Confidence limits  

Uncertainty assessment for cytogenetic dosimetry is 

widely understood as the quantification of the 

variability within the dosimetric model, e.g. as defined 

by equation (1). Thus, parameter uncertainties as well 

as biomarker variability need to be considered. Indeed, 

full uncertainty analysis for cytogenetic dosimetry 

following the GUM21 considers a long list of factors. 

For routine dosimetry, this list includes: the type and 

parameters of the dose response curve, the stochastic 

characteristics of the biological marker, inter- and 

intra-individual variability, technical noise sources and 

practical limitations (e.g. in vitro calibrated methods 

applied to in vivo data). More complex scenarios of 

exposure induce further challenges, as described by 

Vinnikov and colleagues19,70. As processing is time 

consuming and the level of experience varies between 

laboratories, the potential for standardization and 

verification of uncertainty analysis methods is very 

limited. This may explain the absence of agreement on 

some of the expected uncertainty parameters within 

this field, such as the coverage factor21.  

For the DCA, which has the most well developed set 

of uncertainty estimation methods of all the biological 

assays, uncertainties of estimated doses are generally 

assessed by the analysis of the variability of the 

dicentric yield y and the parameters of the calibration 

curve C, α, and β71–74, according to the GUM 

methodology21 (with detailed examples for several of 

the biological techniques given75). In the version of the 

IAEA manual published in 2001, which was the first 

time uncertainty analysis was discussed in detail in a 

methodological biodosimetry publication, three 
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methods of uncertainty assessment were presented, 

labelled A - C. It was reasoned that Merkle’s Approach 

“C”72 performs best for low numbers of dicentrics (as 

in low doses and/or few cells), whereas for high doses 

Savage’s Approach “A”71 is more precise. In the 

updated 2011 version of the IAEA manual1, Merkle’s 

approach is discussed in greater detail. This method of 

uncertainty assessment allows incorporation of both the 

Poisson error of the yield as well as errors in the dose 

response curve parameters. The confidence bands of 

the calibration curve follow from the insight that the 

maximum likelihood estimate of the parameter vector 

is asymptotically multivariate normal72. The upper 

limit yul and lower limit yll for the expected mean yield 

are therefore: 

 

yul/ll = C+αD+βD2     (2) 

±R√(sC
2+sα

2D2+sβ
2D4+2sC,αD+2sC,βD

2+2sα,βD
3) 

  

where sx
2 denotes the variance of x and sx,z the 

covariance of x and z, for each value of x and z in the 

equation. The regression factor R2 gives the range 

within which the true average yield is to be expected. 

This is equivalent to the confidence limit of the Chi-

squared distribution with 2 or 3 degrees of freedom for 

linear or linear-quadratic fits; i.e. for 95% confidence 

intervals, R = 2.45 at 2 degrees of freedom (df) and R = 

2.80 at df = 3, respectively.  

Finally, the calculation of confidence intervals for 

the estimated dose includes two steps:  

(1) Determination of the boundaries YU and YL of the 

dicentric yields which are consistent with the 

observed yield in the sample (95% confidence 

limits for the mean parameter of a Poisson random 

number). 

(2) Determination of the absorbed dose for which the 

upper dose response curve yul exceeds YL and the 

dose where the lower curve yll exceeds YU. 

Note that some authors reason that the combination of 

95% confidence intervals for the dicentric yield as well 

as for the confidence bands leads to a falsely large 

confidence interval for the dose, thus in case of 

combined errors 83% confidence limits of the Chi-

squared distribution are more appropriate76,77 (the 

square root of the regression factor at 1-α = 83% is R = 

1.88 (df = 2) and R = 2.24 (df = 3) respectively). 

The alternative approaches given in the IAEA 

manual: A (Savage71) and B (again Merkle72), are built 

on classical error propagation calculations for normally 

distributed random variables. They apply the Delta 

method to calculate the standard error for the estimated 

dose from the calibration curve and its parameter 

uncertainties. 

For dose estimations in more complicated scenarios, 

extensions exist including correction for protracted or 

fractioned doses and partial-body exposures. In these 

cases, in principal, after correction of the curve, 

uncertainty assessment follows the same strategy as 

above. However, in this case, either the simplified 

method C described above is used (with no parameter 

uncertainties) or equation (2) must be adjusted 

manually. Tools to apply the standard (IAEA) methods 

for automated dose estimation and uncertainty 

assessment are available, including CABAS 

(Chromosomal ABerration Calculation Software)78 and 

DoseEstimate79. 

In order to assess inhomogeneous exposures more 

realistically, Sasaki modelled the damaged cell 

population with a mixed Poisson, which can be 

numerically deconvoluted80. The resulting exposure 

profile indicates some uncertainty within the dose. 

However, this does not represent a rigorous uncertainty 

assessment.  

In addition, a correction factor for confidence 

intervals of overdispersed data (i.e. dispersion index 

σ2/y > 1) is proposed1. For those samples, the limits of 

the expected range of the yield, YU and YL, of a sample 

with mean y and variance σ2 should be adjusted as 

follows (with either YU and YL as appropriate):  

 

    
        

    

 
 
 
  

     (3) 

Probabilistic Approach: Bayesian methods 

In parallel to the classical, frequentist approach, 

Bayesian methods are becoming increasingly 

popular30,81,82. Key to the Bayesian concept is the 

application of the inversion theorem in its continious 

version, i.e.: 

 

          
             

                
  

 

(4) 

 

where D denotes the unknown parameter (absorbed 

dose) and Xobs the observation (the dicentric yield 

within the sample, y, and the calibration data). Thus, 

the posterior dose distribution (or calibrative dose 

density), P(D|Xobs), scales with the product of the 

likelihood (or predictive density) P(Xobs|D) and the 

prior P(D):  

 

P(D|Xobs) ∝ P(Xobs|D)P(D)   (5) 

 

With respect to uncertainty analysis, the Bayesian 

approach does not require additional considerations, 

since the resulting distribution P(D|Xobs) (probability 

for a dose given the data) inherently provides 

quantification of the uncertainty within the dosimetric 
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model. Consequently, Bayesian uncertainty intervals 

for the calibration parameter (the dose in this case) are 

accurate. 

Apart from the intrinsic inclusion of uncertainty 

within the posterior model, the greatest advantage 

compared to the frequentist approach is the possibility 

to include other information besides the number of 

aberrations through the chosen prior distribution(s). 

The choice of the prior could be sensitive, since well 

chosen, informative priors should guide noisy data 

towards the true dose, whereas incorrect priors may 

drive the estimate away from the true dose. Some 

authors reason that high quality prior information is 

almost always available, and thus Bayesian approaches 

are more appropriate for biological dosimetry70,81. 

Higueras and colleagues30 also showed that if an 

appropriate prior is sensely determined, the actual 

choice of prior in fact doesn’t greatly impact the 

overall dose assessment in some scenarios.  

In contrast to the frequentist approach, which relies 

on processing the information successively from the 

initial sample, to the calibration data, to a point 

estimate of the dose surrounded by a confidence 

interval; the Bayesian approach incorporates all 

decisions at the same time and the resulting equation is 

then analytically, numerically or empirically solved for 

the required components. A fully Bayesian method 

thereby also adjusts the probability density function of 

the aberrations to the specific scenario of exposure and 

simultaneously incorporates the uncertainties of the 

parameters of the dose response curve. The 

mathematical complexity of this task means that it is 

not possible to define a general Bayesian solution 

applicable to all exposure scenarios.  

Nevertheless, Di Giorgio and Zaretzky showed a 

procedure to include prior information in dose 

estimation in a Bayes-like manner83. Discretization of 

the dose range and a separated frequentist estimation of 

response curve parameters provides a straightforward 

method resulting in a Bayes-like posterior of the 

dose83. Note that this example also illustrates the 

influence of the prior on the credible intervals for the 

dose. 

For Bayesian uncertainty assessment of the dose, 

three types of solutions can be identified from within 

the literature. Firstly, analytical expressions for 

simplified scenarios: The earliest prominent example of 

such a solution is the calibrative density for a Poisson 

distributed number of aberrations linked to the 

absorbed dose via a linear dose response without 

intercept (C = β = 0) using Gamma priors for dose and 

slope84. In this case, an analytical expression is derived 

that is proportional to the posterior. The authors 

reasoned that the trivial dose response curve is 

appropriate for neutrons (high LET) at high doses, 

however, neutrons are known to imply 

overdispersion85. Brame and Groer revisited the same 

scenario in 2002, replacing the Poisson distribution by 

a negative binomial in order to jointly model the 

density of the slope and the degree of overdispersion82. 

Secondly, practical guides for specific scenarios that 

provide R code for reuse. Higueras et al.39 discussed 

the reasonable set up of Poisson and compound Poisson 

models (Neyman A, negative binomial, Hermite) for 

biodosimetry. Complete and simplified models are 

provided and three examples are given for dose 

assessments for a linear quadratic calibration curve 

(two Poisson and one negative binomial regression 

model). For each example three different priors are 

compared39. Together with Vinnikov, the same group 

of authors presented a guide for analysis of partial-

body exposure for a zero-inflated Poisson model30. 

This guide approximates credible intervals for the 

irradiated fraction of the body and the received dose 

simultaneously from:  

 

           

∝    
 
 
    

   
  

  
  
  

  

   

          

      
                       

(6) 

 

where D is the absorbed dose, F the fraction of 

irradiated body, d0 the 37% cell survival dose, n 

number of cells in patient data, n0 the number of cells 

without aberrations, and Xi is a negative binomial 

distributed random number corresponding to the 

unirradiated fraction of the cells whose mean and 

variance depends on the index i and the mean and the 

variance of the calibration curve respectively. Uniform 

priors for F and d0 and a Gamma prior for the dose are 

used30. 

Thirdly, Software packages: The Java application 

CytoBayesJ for cytogenetic radiation dosimetry81 and 

R package radir containing the models by Higueras86 

offer platform independent software solutions to 

Bayesian uncertainty assessment. CytoBayes offers 

tools for (i) distribution testing (compound Poisson 

models), (ii) posterior calculations of the number of 

aberrations (several combinations of priors and yield 

models), (iii) Bayesian-like dose assessment (Poisson 

data), (iv) full Bayesian calculation of posteriors of the 

dose (Poisson data in y = αD), as well as (v) Bayesian 

methods for detection limits81. In order to simplify the 

analysis, most scenarios include a Bayesian uncertainty 

assessment of the dicentric yield and then make a 

conventional frequentist inverse regression step due to 

mathematical complexity. 
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Ultimately, it can be concluded that the Bayesian 

methodology provides the most coherent approach, but 

at the same time it is far more technically challenging 

than the dose and uncertainty assessment methods 

currently recommended and used by most 

practitioners1. Despite recent developments, such 

methods thus remain to date an “expert” tool. 

Therefore, software solutions such as those described 

above will be required to bridge the gap between the 

necessary mathematical skills and the users. In 

particular, the potential pitfall of incorrectly chosen 

priors will need careful consideration going forward, 

since the methodological coherence of prior and 

posterior can be seen conceptually as a self-fulfilling 

prophecy that masks unexpected results. 

EPR 

Sources of uncertainty 

Uncertainties or “errors” can be classified into two 

types: type A errors can be evaluated by statistical 

methods whereas type B errors are commonly termed 

“systematic errors” and must be dealt with by other 

means. Historically uncertainties have also been 

classified as “random” or “systematic” errors, and these 

terms are still sometimes used for type A and B errors, 

respectively. However, it is important to note that the 

GUM recommends the nomenclature of “type A” or 

“type B” to classify how an error is dealt with rather 

than where it originates21.  

For EPR, determination of irradiation doses 

retrospectively is not a straightforward task. 

Uncertainties both of type A and of type B are 

introduced and must be carefully analysed and 

reported. Several technical publications have been 

produced, dedicated to the determination of 

uncertainties with EPR spectroscopy on materials such 

as tooth enamel or alanine87–90. A list of possible 

sources of uncertainties has been drafted for tooth 

enamel dosimetry in Fattibene and Callens91 and many 

issues considered in the list (effect of sample 

anisotropy, parameters of spectrum acquisition, 

spectrometer instability, sample mass, spectrum 

processing methods, uncertainty linked to the dose 

calibration curve, etc.) are valid for almost all the EPR 

dosimetry methods. As recommended by IAEA87, the 

total combined uncertainty is expressed as the 

quadratic sum of the possible source of uncertainties, 

under the assumption that these sources are 

uncorrelated. Specifically,: 

 22222

TCESFED     (7)            

where σF is the contribution from the fading 

correction; σS is the contribution from the sample 

preparation; σE the contribution from the EPR 

measurement; σT the contribution from the numerical 

treatment of spectra, and σC is the contribution from the 

calibration of EPR dose response, including differences 

in radiation sensitivity. 

The fading contribution depends on the detector 

materials used in analysis. For tooth enamel it can be 

assumed that σF doesn’t contribute to the overall 

uncertainty87, however, a sufficient delay should be 

observed after irradiation for signal stabilization due to 

recombination of short-lived species. A minimum 

delay of 48 hours is usually recommended for calcified 

tissue. This recommendation is also valid for most 

irradiated materials including sugars, for example, for 

which the stabilization delay can reach weeks92.  

EPR dosimetry is usually not performed on unstable 

species. Nevertheless, a few groups are considering the 

use of the unstable signal component in nails for 

dosimetry application10,11,93. In this case, the fading 

correction may significantly contribute to the 

uncertainty budget, because of the influence of multiple 

parameters (temperature humidity, light, etc.) which 

may be difficult to evaluate for the delay between 

irradiation and sample harvest. In addition, special 

attention must be paid to control fading during the 

storage period or at least the parameters of influence. 

Similarly, the sample preparation approach depends on 

the material used as well as on the method chosen. 

The other three factors affecting the total uncertainty 

stem from measurements and data processing. The EPR 

measurement uncertainty, σE, depends on a complex 

combination of uncertainties linked to the performance 

of EPR spectrometers per se and the experimental set-

up. Uncertainty contributions from the numerical 

treatment of spectra, σT, and contributions from the 

calibration of EPR dose response, σC, can be minimised 

through experimental validation of the method for 

different materials as has been done for tooth enamel91 

and smart phone touch screen glass13. For this reason, 

international interlaboratory comparisons of EPR dose 

reconstruction are the most useful tools for identifying 

contributing sources of uncertainties and finding the 

best solution to minimise these. 

Evaluation of uncertainties 

The uncertainty analysis approach used by several 

EURADOS partners is the standard one recommended 

for uncertainty estimation for EPR on alanine. In brief, 

this method consists of taking the mean value of 

multiple measurements as the best evaluation of the 

true value and the sample standard deviation as the 

uncertainty on the signal. A minimum of ten 

measurements is commonly used; however, some 

EURADOS WG10 members who completed the survey 

regularly perform 12 or 16 measurements (3 
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dosemeters in 4 different orientations or 4 dosemeters 

in 4 orientations). In order to measure unknown 

absorbed doses, a calibration curve is required to be 

created to describe the relationship between EPR signal 

(y) and dose (D): y=F(D). The parameters of the 

function, F, are estimated through a best-fit procedure. 

The dose-signal relation is usually linear and weighted 

regression is sometimes, but not always, applied. Thus, 

the general expression of the estimated dose ED as a 

function of the measured signal, y, is as follows: 

 

(8) 

 

where a is the calibration curve slope and b is the y-

axis offset. The combined variance u2(ED) consists of 

the variance in the measured signals u2(y), the variance 

in the y-axis offset u2(b), the variance in the slope in 

the calibration curve u2(a), the covariance of b and a 

and finally the dose dependent variance in the doses 

given to the calibration samples, u2
cal. The covariance 

term was found to be negligible in accurate EPR 

dosimetry94,95 and it is assumed that this will be the 

case for retrospective dosimetry. 

An unbiased estimate of the variance of the 

measured signals can be obtained from:  
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where Dk are the known absorbed doses given to the 

calibration samples, yk are the corresponding signal 

values and bk is in this case the zero dose for each 

calibration sample. The denominator represents the 

number of calibration points minus the two degrees of 

freedom. 

Standard regression analysis yields: 
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where:  
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and the covariance term is omitted. 

 

These principals allow deduction of chiefly type A 

uncertainties. Type B uncertainties are generally 

considered by taking into account uncertainties in 

fading, corrections for radiation energy, environmental 

factors, spectrometer variations and calibration dose. 

Note, however, that fading could be treated as a type A 

uncertainty if multiple measurements of dispersion in 

fading for a given time period – such a method is used 

for TL/OSL dosimetry, as described in the next section. 

An alternative approach relies on determination of 

the absorbed dose in alanine measurements from the 

calibration curve, by relating the amplitude of the 

EPR signal to absorbed dose. To estimate the 

uncertainty of dose, u(ED), an imperfect 

calibration curve is designed and the procedure 

described by Nagy89 is applied; in the case of a 

calibration plot based on n calibration points, the 

confidence interval for the dose value D, determined 

from m replicate measurements of the signal of a test 

sample, is calculated using the following expression: 
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where: tn-2,P is the Student coefficient for the chosen 

probability P; sfit is the standard uncertainty of the 

mean of the fit; b is the slope of the regression; D0 is 

the dose, D, value to be determined and Dmean is the 

mean of the D values of all calibration point Di. 

Performance parameters and predicted uncertainty 

In the framework of the European Research project 

Southern Urals Radiation Risk Research (SOUL, 

2005), a benchmark protocol was established between 

three EPR laboratories (HMGU, Munich, ISS, Rome, 

and IMP, Ekaterinburg) for the definition of the 

performance parameters for EPR dosimetry with tooth 

enamel and for the prediction of associated 

uncertainty96. The parameters critical dose and limit of 

detection, taken from chemical metrology97,98 were 

deemed to be most appropriate to characterise the 

uncertainty of EPR measurements.  

The definition of critical dose follows from the 

hypothesis test for 95% probability of an unirradiated 

sample and hence allows a false positive error rate, , 

of 5%. In other words, within the distribution of 

measured EPR signal amplitudes from unexposed 

samples, there is an accepted probability of 5% that the 

amplitude is larger than the critical amplitude, which is 

the decision limit below which it is assumed that the 

sample was not exposed and above which it is assumed 

that an exposure occurred. The absorbed dose value 
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corresponding to the critical amplitude on the EPR 

signal-to-dose response curve is then termed the 

critical dose. 

The definition of the limit of detection follows from 

the hypothesis test for 95% probability that the sample 

was exposed, hence allowing for a false negative error 

rate  of 5% indicating that an exposure did not occur. 

That is, within the distribution of the measured EPR 

signal amplitudes from exposed samples, there is 

probability  of 5% that the amplitude is lower than the 

critical amplitude. A graphical illustration of the 

definitions of critical amplitude and limit of detection 

is shown in Figure 1. 
 
<Figure 1 here> 

Figure 1. A graphical illustration of the definitions of critical 
amplitude (ICL) and critical dose (DCL), limit of detection of 
signal amplitude (IDL) and of absorbed dose (DDL). (Figure 
adapted from 96). 

 

The critical amplitude, ICL, and the limit of 

detection, IDL, of EPR signal intensity are calculated 

from the mean of measurements of unexposed samples 

(b0) and the estimated standard deviation of n EPR 

measurements of unexposed samples,    , and samples 

exposed to a dose DDL.     , respectively: 

 

                       (14) 

 

                         (15) 

 

The estimated standard deviation must be multiplied 

by the Student’s critical value t(1−[α or β],n−2), the (1-[α or 

β]) percentage point of Student’s t distribution with the 

single-sided confidence interval chosen according to 

the desired confidence level (1-[α or β]) and number of 

samples n. The standard deviations may be evaluated 

from the 90% prediction bands of an unweighted linear 

least-squares fit of the EPR signal-to-dose response 

curves in the case of constant uncertainty. 

Alternatively, in the case of dose dependent 

uncertainty, the values of the standard deviations may 

be predicted from an analytical model function 

formulated from the variance of EPR measurements on 

the absorbed dose. An example function of variance as 

a function of absorbed dose in tooth enamel, developed 

at the EPR laboratory of the ISS, is reported in Figure 

2. 

Following work carried out under the European 

project SOUL, the benchmark protocol has been used 

for the estimation of the performance parameters 

within several EPR dosimetry method 

intercomparisons13,99.  

<Figure 2 here> 

Figure 2. Model function of variance as a function of the EPR 

signal amplitude in tooth enamel, built at the EPR laboratory 

of the ISS. 

OSL/TL 

Evaluation of uncertainties  

In OSL and TL, there is no specific standard dedicated 

to the evaluation of uncertainties, and evaluations 

normally follow the classical GUM21 guidance.  

Uncertainty analysis is performed using the standard 

theory of error propagation. If only a single dose 

calibration point is used then the unknown absorbed 

dose, DX, is obtained through a simple comparison 

between the corresponding luminescent signal (TL or 

OSL) and the luminescent signal,     , obtained after 

exposing the same dosemeter to a calibration dose Dcal. 

If fading is an issue then either the signal or the 

measured dose can be corrected for this effect. 

Two cases will be considered here, both of which 

have been applied in the literature: 1) the fading factor 

is determined individually for the sample in question 

using the (known) time tX since irradiation and 2) the 

fading factor is calculated based on a known fading 

function, with associated uncertainties. 

In the case of 1), a possible approach would be as 

follows: after measurement of the signal IX related to 

the unknown dose DX of the incident, with a time delay 

tX since this incident, the sample is given a calibration 

dose Dcal and a corresponding signal Ical is measured 

after a time tcal. The latter procedure is then repeated 

with the same dose Dcal but this time waiting for a 

longer time interval tX (the same time delay as for the 

accidental exposure), before measuring the 

corresponding signal IX,Dcal. The fading factor is then 

directly determined by the simple relation: 

 

  
       

    
  (16) 

 

In this case, only the measurement uncertainties of 

IX,Dcal and IX are required for evaluation of the 

uncertainty in f. The unknown absorbed dose DX is then 

calculated as:  

 

   
  

      
     , (17) 

 

with IX being, as above, the signal measured after the 

unknown exposure, with a delay time tX. It is important 

to note the difference between IX and IX,Dcal. Equation 

17 can then be simplified to: 
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       (18) 

 

Therefore only the measurement uncertainties in IX 

and IX,Dcal and the uncertainty in determining Dcal are 

needed for the calculation of uncertainty in DX, which 

can be carried out using the GUM methodology as 

explained in the above sections.  

This method assumes that the uncertainties in IX and 

IX,Dcal exhaustively explain the observed deviances in 

the dose-response and fading curves. However, from 

experience, it is known that this is probably not always 

the case and the uncertainty in DX is therefore likely to 

be underestimated using the above procedure. For 

instance, an uncertainty in the time tX since the 

unknown exposure is not considered.  

In the case of 2), fading is calculated according to a 

functional relationship fitted to datasets of other 

samples. For chip cards and electronic components, 

where the effect of anomalous fading is suspected, this 

functional relationship between intensity and time since 

irradiation is well-known69,100–104: 

 

              
 

  
   (19) 

 

With IC being the signal intensity that would be 

observed after an (arbitrarily) chosen time tC after 

irradiation and  a fitting constant (in the literature, the 

common logarithm is often used and  replaced by 

g/100, with g being the percentage decrease per 

decade). If, for convenience, tC is set to tcal before 

fitting of equation (19), then the fading factor can be 

calculated as: 

 

  
     

       
         

  

    
    (20) 

 
The difference between equations (20) and (16) is 

that here the signal intensities are calculated rather than 

measured. If, again, a single calibration dose is used to 

convert signal to dose, the unknown dose DX is 

calculated according to equation (17). If uncertainties 

are assumed in , tX, tcal, IX, Ical and Dcal, then in this 

simplified case, the uncertainty in DX can be assessed 

using GUM methodology: 
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  (22) 

 

It should be emphasised that if published fading 

parameters in equation (19) are used and tC does not 

equal tcal, then equation (20) should be applied in its 

more general form, as a ratio of two calculated 

intensities with associated uncertainties. The 

calculation of the uncertainty in DX is then more 

laborious but still straightforward. Another issue is that 

if equation (19) is fitted to fading data obtained from 

averaged signals of several samples, which is 

sometimes done, then the calculated signal uncertainty 

will always be lower than the standard deviation of the 

input data, i.e. the uncertainties in the parameter  and 

IC are unlikely to describe the full variability in 

observed fading behaviour. One possibility to 

circumvent this issue is to fit the fading data of each 

sample individually, rather than to average signals and 

then to calculate average and standard deviation of the 

group of obtained parameter values. This approach has 

e.g. been pursued in the MULTIBIODOSE project49.  

For a luminescence reader with a built-in calibration 

source, the time delay tcal between irradiation with the 

calibration dose and measurement is usually known 

very accurately, therefore the uncertainty cal can be 

neglected in this case. On the other hand, an increase in 

the value of tcal leads to a reduction in the first term in 

equation (22) and thus to a reduction in the uncertainty 

of the fading factor. Furthermore, there will also be 

fading during the irradiation period itself, i.e. during 

tirr. If tcal is of the order of tirr this should be accounted 

for in evaluation of the uncertainty in Dx, for example 

(approximately) by adding tirr/2 or tirr/ln2 to the delay 

time. It is more correct, however, to make tcal >> tirr. 

It should be noted that, in general, the fading 

function that is appropriate to the materials being 

studied should be determined independently and the 

uncertainty analysis appropriate to that expression 

should then be evaluated and used. As an example, in 

case of human teeth as well as integrated circuits from 

mobile phones, the fading curves were better fitted by a 

bi-exponential decay function100,102. In contrast to 

electronic components, sensitive dosemeter materials 

with comparatively slow or no fading, such as 

household salt (NaCl)101,105 and quartz extracted from 

building materials106–108. The application of 

retrospective luminescence dosimetry in areas affected 

by fallout from the Semipalatinsk nuclear test site: an 

evaluation of potential. Health Phys 87(6):625–664), 

may have a substantial background signal if shielded 

from light during the time of storage before irradiation. 

The detection limit in such materials is related to the 

magnitude and the uncertainty in the background 

signal. The background absorbed dose in for example 

household salt may vary depending on how the salt was 

manufactured101, in what package it was kept, and how 



RETROSPECTIVE DOSIMERTY UNCERTAINTIES 

13 

and where this package was stored105. For quartz 

extracted from bricks, the background dose depends on 

the concentration of natural radionuclides in brick, 

plaster and soil in front of the building and on the age 

of the bricks (same references as above). In these cases, 

when the dose is in the region of the background dose, 

the variance in the background dose will predominate 

over the uncertainty in the dose measurement itself.  

However, for higher doses, in the region of several 100 

mGy or above, the uncertainty in background dose will 

have a lesser impact.  

Luminescence signals as recorded by photon 

counting hardware are in essence a binomial signal, 

which is supposed to approximate the Poisson-

distribution when sufficient counts are registered. In 

OSL, a background is usually subtracted from the 

measured signal, determined from a certain part of the 

OSL decay curve (often the last seconds of the 

measured signal). The background can be a 

combination of hard-to-bleach components and 

instrumental background and as such can be over-

dispersed. Detailed approaches for the calculation of 

uncertainty for the net OSL count in such a case can be 

found in the literature, e.g.109.  

If several calibration doses are used in order to 

verify the dose-response curve, or several delay times 

are used to verify the fading curve, a number of 

different methods are applied. These include 

proprietary codes or spreadsheets, software for 

luminescence data processing (e.g. Analyst110), or 

dedicated curve fitting packages (e.g. Sigmaplot111, 

Origin112). The equations chosen to approximate dose 

responses are commonly linear, saturating exponential 

(sublinear), or exponential/quadratic (superlinear) in 

form113.  

If a sample is divided into several aliquots to assess 

  , the quantities    and      could be calculated as the 

average of the luminescent signals of the different 

aliquots and their uncertainty as the weighted standard 

error of the mean. However, to avoid additional 

uncertainties due to the different aliquot sensitivities, in 

practice, a dose is usually measured for each aliquot 

individually and the obtained distribution in aliquot 

doses further analysed to obtain a best estimate and 

uncertainty for   . 

A variety of approaches has been developed for 

obtaining central measures from non-perfect data in 

this case28,114,115. Means and maximum likelihood 

estimates such as the weighted mean (weighted to 

inverse variance) are associated with well-defined 

uncertainty estimates21, which are obtained by 

propagation of uncertainties through calculation 

(internal error) or by evaluation of dispersion in the 

observed results (external error). Dispersion in 

observations is commonly observed to be greater than 

that predicted by propagation of uncertainties through 

the calculation of the central estimate, leading to the 

term “over-dispersion”. This can relate to experimental 

variables that are undefined or not included in the 

calculation, and where signal levels are low. It may 

also relate to the assumptions underlying the 

calculations themselves. The combination of data in 

GUM based approaches assumes a Gaussian 

approximation of the Poisson distribution.  

 

 

MONTE CARLO MODELLING TO SUPPORT 
UNCERTAINTY CALCULATIONS 

A key aim of the EURADOS WG 10 uncertainties task 

is to further promote the powerful Monte Carlo (MC)  

techniques for uncertainty estimation. Thus, in addition 

to the above, we present the following review of use of 

MC methods within uncertainty estimation. With the 

availability of high-power computational facilities, 

numerical simulations have become increasingly 

practical and popular for analysis of physical or 

biological systems. One method of numerical 

simulation that has widespread application in 

dosimetry, as well as in countless other physical and 

biological sciences, is the Monte Carlo method.  

MC modelling can be used to aid and analyse 

uncertainty propagation, where the goal is to determine 

how random variation, lack of knowledge, or error 

affects the sensitivity, performance, or reliability of the 

system that is being modelled. However, this inevitably 

comes at a cost: the MC method is itself prone to 

uncertainty, and can therefore also be an additional 

source of error. The current section of this paper 

focuses on two applications of the Monte Carlo method 

that are relevant to retrospective dosimetry. The first 

application discusses the use of Monte Carlo programs 

created specifically for uncertainty propagation 

analysis, giving an illustrative example of the 

technique. The second application concerns the MC 

transport of ionising radiation through matter, which is 

a common technique used to model retrospective 

dosimetry systems. In each case, the role that MC plays 

in both increasing and decreasing a user’s 

understanding of uncertainty is discussed. 

Uncertainty propagation with Monte Carlo 

Monte Carlo Simulation (MCS) provides a practical 

alternative to the GUM modelling approach. Indeed, 

the GUM method has limitations, especially in the case 

in which the model is characterised by a nonlinear 

function and the approximation of a Taylor’s series 

expansion up to first-order terms for error propagation 

is not good enough. Furthermore, the uncertainty 

distributions may be non-Gaussian and is not always 
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possible to propagate uncertainties using the GUM 

approach 21,116–120. The use of MCS for the evaluation 

of measurement uncertainty is presented by the “GUM 

Supplement”21. MCS may be applied to estimate the 

combined effects of uncertainty propagation through a 

physical system that comprises a number of individual 

components, each of which possesses outcomes and 

uncertainties expressed by independent probability 

functions. Many authors report applications of MCS for 

determination of their measurement uncertainties: 

Couto et al.116, for example, recommended its use for 

complex problems that could not be solved by the 

GUM method. Whereas GUM calculations are purely 

theoretical, MC analyses aim to perform a large series 

of simulated experiments, with estimates of 

uncertainties then derived by considering the 

distributions of their results. In most simple cases, the 

theoretical GUM results can be compared and tested 

experimentally against the MC ones. In more 

complicated situations where the GUM approach 

would be difficult or unfeasible, MC simulations may 

still easily provide reliable results. Moreover, whereas 

the GUM modelling approach may require advanced 

mathematical skills for many of its procedures, the 

MCS method can be applied more easily using readily 

available spreadsheet software, such as Microsoft(R) 

Excel(R) or Libreoffice Calc: complex uncertainty 

calculations can hence be accomplished by standard 

spreadsheet applications rather than by technically 

demanding mathematical procedures119,120. 

The MCS method for assessing uncertainty 
propagation  

MC analyses require the definition of a measurement 

model (with the corresponding functional relationship) 

that describes the measurement process in terms of the 

inputs to the measurand and the assessment of the types 

of distribution that apply to the various input 

uncertainties. The aim of the MC analysis is then to 

obtain properties of the measurand quantity, Y, such as 

expectations, variances and covariances, and coverage 

regions, by calculating an approximate numerical 

representation of the distribution function GY for Y. 

Suppose that Y is function of various independent 

variables Xi, i.e. Y=f(X)=f(X1,....,XN) with i from 1 to N; 

for the present discussion, the Xi are assumed to be 

continuous parameters, but similar techniques can be 

used for discrete variables. For each input variable Xi 

the corresponding probability density function (PDF), 

P(Xi), describing its likely values is assumed to be 

known. A value for Y may therefore be drawn by 

sampling the N input quantities Xi from their respective 

PDFs. In practice, this sampling procedure is typically 

achieved computationally using pseudo-random 

numbers that are generated algorithmically according 

to a uniform distribution between 0 and 1, and then 

suitably “transformed” to obtain the prescribed 

probability distribution. One such transformation 

makes use of the cumulative distribution function 

(CDF), C(Xi), corresponding to a given P(Xi), which is 

a monotonically increasing, normalizable function with 

a range constrained between 0 and 1; the result from 

the MC sampling of the uniform distribution may be 

identified with a value within the range of this CDF, 

which then maps uniquely to a specific outcome Xi. 

The commonest distributions, P(Xi), used in 

uncertainty calculations are Gaussian, rectangular, 

triangular, t, exponential, gamma and multivariate 

Gaussian; it is possible to sample fairly from each of 

these distributions by using a uniform distribution 

between 0 and 1 that is randomly sampled by Monte 

Carlo methods.  

Sampling once from each of the N PDFs, P(Xi), 

corresponding to the N independent input quantities Xi 

provides one value for the measurand, which may be 

labelled Y1, by using the expression of the f(X) 

function. Clearly, the value of Y1 will depend on the 

specific outcomes that were obtained during the N 

random samplings, and repeating the process is likely 

to yield a different estimate, i.e. Y2. If the MCS is 

repeated M times, requiring MN samplings overall, a 

distribution, GY, of M values for the measurand are 

generated, i.e. {Y1, Y2,…, YM}. This process is repeated 

a sufficiently large number of times (i.e. M is very 

large) in order to have significant statistics, i.e. until it 

may be assumed that the generated distribution GY 

provides a reasonable estimate of the likely distribution 

of the true measurand, Y. Since the input values are 

randomly drawn from the predefined probability 

distributions associated with each of the input 

variables, the information regarding these PDFs will be 

included implicitly in the distribution of the Y variable, 

and this allows for the propagation of distributions. 

Once the representation GY of the distribution 

function for Y has been derived, it is possible to extract 

from it values for the mean and standard deviation 

associated with Y as well as the other moments of the 

distribution function. Moreover, the distribution of 

output data can be plotted and additional information 

can be extracted from that graph, such as the coverage 

interval of the measurand for a stipulated coverage 

probability, p, even when the PDF of the measurand 

has significant asymmetry. The possibility of graphical 

representation of the distribution of the measurand 

through the MCS procedure allows for the 

individuation of possible asymmetry or deviation from 

Gaussian shape. This graphical representation favours 

the determination of a coverage interval corresponding 

to a stipulated coverage probability. 

From the above discussion, the advantages of MC 

simulation with respect to the GUM approach21 are 
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seen to be manifold. The MC technique involves 

propagation of distributions and always provides a PDF 

for the output quantity that is consistent with the PDFs 

of the various inputs, whereas the GUM modelling 

approach is not able to explicitly determine a PDF for 

the output quantity. Also, in the case in which the input 

quantities may themselves depend on other quantities, 

including corrections and correction factors for type B 

errors, MCS is able to calculate the combined standard 

uncertainty of the measurand, even if the functional 

relationships are complex or difficult to deal with 

analytically. Similarly, if two inputs are correlated via a 

bivariate distribution, MC analysis can provide a joint 

simulation if the input PDFs are defined in such a way 

to include the correlation coefficient. Additionally, the 

MCS procedure intrinsically accounts for any non-

linearity in the functional relationship, whereas GUM 

does not; in general, more accurate estimates of 

uncertainties for non-linear models are therefore 

achieved through MC calculations. 

Application of the MCS method for uncertainty 
propagation  

In order to show how the MC method is used to 

evaluate measurement uncertainties, an example 

application for electron paramagnetic resonance (EPR) 

retrospective dosimetry is reported here. Consider a 

plot of EPR signal as a function of absorbed dose, and 

assume that the data may be fitted with a calibration 

curve characterised by a quadratic trend. This 

behaviour is common for samples that present a 

background signal that is of the same shape and 

overlaps the signal induced by irradiation; in these 

cases the exposure to ionising radiation produces an 

increase of EPR intensity of these signals. An example 

of such a calibration curve is shown in Figure 3. 

<Figure 3 here> 

Figure 3: Example of quadratic calibration curve of EPR 
signal vs. absorbed dose. 

The expression for the fitting function in this case is 

of the general form: 

 

S = a + b×D + c×D2  (23) 

 

where S is the EPR signal, D is the absorbed dose 

and a, b and c are the fitting parameters of the 

calibration curve, which in this example have the 

values a = 10.4 ± 0.2, b = 1.527 ± 0.011 and c = 

0.409 ± 0.005. 

In EPR retrospective dosimetry, the general 

approach is to reconstruct the absorbed dose Dr 

deposited during an exposure from a measurement of 

the induced signal, with corrections applied to account 

for fading and other measurement conditions. Suppose 

that, as per equation (7) s is the signal measured from a 

sample, and that the corresponding standard deviation 

σED is calculated by considering the various 

contributions from the standard deviations associated 

with the fading correction (σF), the sample preparation 

process (σS), the EPR measurement (σE), and from the 

numerical treatment of spectra (σT). For the present 

example, suppose that s ± σED have the values 25.5 ± 

0.7. The reconstructed dose can be calculated by 

inverting Equation 23, i.e.: 

  

  
              

  
        (24) 

 

As can be seen, equation (24) contains a fraction and 

a square root term. The calculation of the standard 

deviation, σD, of the reconstructed dose following the 

GUM modelling approach is therefore not 

straightforward because, to take into account the 

uncertainties of the calibration curve parameters, the 

corresponding partial derivatives of the factors in 

equation (24) should be calculated. In fact, under the 

simplifying hypothesis that the covariances between 

the various fitting coefficients are negligible, this 

uncertainty becomes analogous to equation (8): 
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After the calculation of the partial derivatives and 

the substitution of the above-mentioned values, this 

approach can be shown to provide the result Dr = 

4.49 ± 0.14 Gy. 

On the other hand, this calculation can be performed 

by MCS following an easy procedure with common 

spreadsheet software. An example of this MC analysis 

is reported in Figure 4. In Figure 4, the values in the A, 

B, C and D columns are realizations of the s 

measurement and the a, b and c parameters, 

respectively. All of these quantities are assumed to be 

distributed normally around their respective average 

values with their respective standard deviations, which 

are stated at the top of Figure 4. Based on these 

distributions, trial values are drawn for each of the 

input variables (a, b, c and s), and the corresponding 

value of the dose D (column H) is then calculated using 

equation (24). In this example spreadsheet, the values 

were calculated by using a combination of the 

NORMINV (for calculating Gaussian-distributed 

values) and RAND (for generating pseudorandom 

values) functions, according to the procedure described 

in the literature120. Figure 4 lists the results from ten 

such applications of this process; for the complete 
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analysis, a total of 106 trials were performed. A 

histogram of the dose values obtained from these 106 

trials is reported in Figure 5 binned in 0.02 Gy 

increments, with the probability (y-axis) derived from a 

normalization of their respective populations. 
 

<Figure 4 here> 

Figure 4: Example of a Monte Carlo simulation for estimating 
the uncertainty of an EPR measurement, performed using a 
spreadsheet program. 

<Figure 5 here> 

 

Figure 5: Histogram of dose values obtained by means of 
Monte Carlo simulations. 

The mean value and the standard deviation of the 

results are readily calculated from the histogram 

(Figure 5), and can be shown to be equal to 4.49 Gy 

and 0.14 Gy, respectively, in this example. These 

values are consistent with those obtained by the GUM 

approach. However, as mentioned previously an 

advantage of the Monte Carlo analysis is that it also 

provides the PDF for the output quantity, which is 

dependent on the PDFs of the various inputs. Other 

moments of the distribution can also be obtained from 

this PDF, such as the skewness and the kurtosis. These 

are found to be -0.0588 and 3.0093 respectively for the 

data in the current example (Figure 5), which are 

similar to the values of 0 (skewness) and 3 (kurtosis) 

for a Gaussian distribution, as expected since the PDFs 

of the input variables were all assumed to be Gaussian-

like. 

Another application of the Monte Carlo technique is 

the uncertainty analysis for TL measurements on 

display glass of mobile phones. The absorbed dose 

measurement is influenced in this case by the presence 

of an intrinsic background signal and signal fading103. 

The intrinsic background signal can be reduced by 

etching the glass sample in concentrated HF before 

measurement but not completely eliminated104. In both 

cases (etched or unetched), the distribution of intrinsic 

background doses could be shown to approximately 

follow a log-normal distribution. From the measured 

dose D, along with its estimated uncertainty D, the 

corrected unknown absorbed dose Dcorr is then 

calculated from the expression: 

 

      
     

 
, (26) 

 

with DBG
 being the median of the intrinsic 

background dose distribution and f the fading factor. 

Analysis of the signal fading of 17 different glass 

samples for different storage times indicated that the 

variability (standard deviation) in f is approximately 

independent of the value of f itself, therefore a constant 

value for f is assumed.  

Since the calculation of uncertainty for the corrected 

dose involves the combination of Gaussian and non-

symmetrically distributed parameters, the GUM 

methodology is not directly applicable whereas with 

the MCS the simulated distribution of possible 

corrected dose values is easily obtainable, allowing the 

immediate assessment of the median and the 95% 

confidence interval. An example for two unetched glass 

samples from mobile phones is shown in Fig. 5. For the 

sample with the lower dose the uncertainty in the 

intrinsic background dose dominates, leading to a 

distribution skewed to the left whereas for the sample 

with the higher dose, the uncertainty in the fading 

dominates, leading to a distribution skewed to the right.  

 

<Figure 6here> 

Figure 6: Histogram of dose values for two display glass 
samples of irradiated mobile phones (Samsung Galaxy Y 
S5360). Nominal doses were 0.6 Gy and 1.5 Gy, reconstructed 
doses with 95% CI, 0.59 [0.18-0.83] Gy and 1.6 [1.3 -2.2] Gy, 
respectively. 

Radiation transport modelling with Monte Carlo 

There are a number of Monte Carlo radiation transport 

codes currently available, examples including the 

EGSnrc121, FLUKA122, GEANT123, MCNP124, 

PENELOPE125 and PHITS126 families of software. 

These codes are described as “general purpose”: they 

are intended, in principle, to be able to model the 

passage of any type of ionising radiation from any type 

of source through any arrangement of matter that might 

be required by their users, providing output data on 

parameters such as energy depositions and fluences at 

any location of interest in the geometry. Accordingly, 

these codes have widespread application in 

retrospective dosimetry127–133, where computer models 

of the dosimetry system in question may be created and 

interrogated to understand or improve its performance, 

limitations and uncertainties. Despite these successes, 

however, the techniques are not without drawback: 

although they may be a valuable tool in evaluating and 

handling uncertainty, they may also be a source of this.  

Statistical uncertainties with MC modelling 

It is relatively easy for the users of general purpose 

MC codes to reduce the statistical uncertainties on their 

results. Essentially, these procedures typically rely on 

increasing the number of scored histories in the regions 

of interest within the geometry. The most elementary 

such method is simply to instruct the program to 

simulate the histories of a greater number of particles, 
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though inevitably this is achieved at the expense of an 

increased CPU time. More sophisticated techniques of 

variation reduction can also often be implemented, 

such as biasing source directions, forcing particular 

interactions to occur, or artificially splitting individual 

particle histories into multiplicities for example, with 

scores then having to be weighted accordingly to 

ensure fairness and fidelity of results. Using these 

techniques, and coupled with the power of modern 

computers (especially cluster-based platforms), it is 

therefore not uncommon for simulated results to be 

associated with very small statistical uncertainties, 

sometimes a fraction of a per cent. But anecdotally, at 

least within the experience of the authors of this current 

article, such values are often then quoted in the 

scientific literature as the primary or only uncertainty 

that is provided with a particular Monte Carlo result. 

This is misleading, however, because it neglects the 

type B uncertainties that are also inevitably associated 

with the modelling, which tend to be much harder to 

quantify and may be substantially larger in magnitude. 

Paraphrasing, with Monte Carlo modelling it is often 

easy to derive highly precise results, but this does not 

necessarily mean that they are accurate; arguably, the 

important difference between these two qualities is not 

always granted enough weight. 

Known type B “systematic” uncertainties 

The MC radiation transport method simulates the 

passage of particles through a user-defined 

configuration of matter. Accordingly, the accuracy with 

which the computational model reflects physical reality 

will dictate the accuracy of its results. Clearly, then, 

there are a number of factors that could introduce 

significant uncertainty into the modelling. These might 

be classified into two broad types: uncertainties 

inherent in the Monte Carlo software; and uncertainties 

associated with the user-defined model itself. 

Type B uncertainties within the Monte Carlo 

software incorporate factors such as uncertainties in the 

underlying physics upon which it relies. These 

uncertainties include, for example, limitations and 

inaccuracies of the interaction models that might be in 

use, including any energy-dependencies that they might 

have. Although many of these uncertainties may be 

known in principle, or could be derived from the 

various references that describe the origins of the 

physical data and models underpinning the general 

purpose codes, their magnitudes may not be readily 

apparent to “casual” users of the software, with their 

combined effects even harder to quantify. Their 

contributions to the overall uncertainty budgets arising 

from the use of Monte Carlo modelling in retrospective 

dosimetry are therefore highly context dependent, and 

difficult to numerate in general. 

Type B uncertainties that originate from the users of 

codes reflect the inevitable inability of these users to 

construct a perfect model of the physical system. This 

failure might be because of factors that can only be 

known with limited resolution, and can hence only be 

input to the MC program with limited accuracy. To 

give an illustrative example, in the modelling of 

resistors in mobile phones for fortuitous dosimetry132, 

the absorbed doses received by the target will depend 

strongly on accurate knowledge of the material 

compositions and densities of the aluminium oxide 

substrate, the high-Z contact electrodes adjacent to it, 

the circuit board to which it is attached, and the screen, 

case, battery and other features that surround it, as well 

as on all of their relative locations in 3D space; the 

estimates of each of these physical parameters will be 

subject to a significant measurement uncertainty, and 

this is translated into an unavoidable inaccuracy of the 

MC model (and hence its results). 

Some type B uncertainties may be mitigated by 

performing sensitivity analyses with the model. In fact, 

investigating the likely effects of such sensitivities in 

the physical world might be the primary motivation for 

developing the Monte Carlo model in the first instance. 

For example, the impact on dosimetry of the 

measurement uncertainty on the density of a given 

object in the real world may be estimated by perturbing 

the density of that object in the model by an amount 

deemed equivalent to that uncertainty, and then 

repeating the simulation; comparison of the perturbed 

and unperturbed results provides an estimate of the 

effects of that density uncertainty. Similarly, by 

varying the concentration of crucial elements, the same 

approach may be used to estimate the impact of 

uncertainty regarding the material composition128. The 

MC method is thus seen to be a quick and effective 

means of quantifying the effects of a given uncertainty 

in a physical system. 

The above univariate sensitivity analysis may be 

generalised to account for error propagation and the 

overall uncertainty budget. Specifically, uncertainty 

propagation analyses can be achieved by repeating the 

sensitivity analysis for all parameters within the 

physical model that are associated with a significant 

type B uncertainty. In fact, this procedure may be 

applied to assess the impacts of both the physical 

uncertainties (i.e. the measurement uncertainties) and 

the code-specific ones; this latter assessment might be 

achieved by rerunning the simulation using different 

simulation parameters, for example choosing 

alternative cross-section databases or interaction 

models. Overall, the procedure therefore leads to 

distributions of perturbed data around a mean, which 

may be interrogated by standard techniques to obtain a 

handle on the overall quality of the quoted result, and 
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hence on the robustness of its predictions about the 

performance of the physical system being modelled. 

Unknown type B “systematic” uncertainties 

In addition to applying Monte Carlo techniques to 

estimate the effects of known type B uncertainties in a 

physical dosimetry system, such as uncertainties on the 

precise material composition of a dosemeter, it is also 

possible to use them to estimate the effects of unknown 

type B uncertainties. Unknown type B uncertainties 

include those factors that will affect the results 

recorded by a retrospective dosemeter, but are a 

consequence of ignorance of the values of key 

parameters rather than any imprecision in the estimates 

of them; these could include uncertainties resulting 

from incomplete knowledge of the nature of the 

exposure conditions of the dosemeter, for instance, or 

missing data on the characteristics of the source term. 

An example of this might be a situation in which it 

acknowledged that an energy-dependent correction to 

the response of a dosemeter needs to be made, but 

when the energy of the radiation source to which it was 

exposed is not known. In such cases, it might be 

appropriate to use Monte Carlo techniques to model the 

responses of the dosemeter to a range of plausible 

sources with different energies, with the subsequent 

variation in the results then used to provide a handle on 

the maximum error that is likely to be caused by the 

ignorance of the true energy of the physical exposure. 

As an illustrative case study of the application of 

MC in handling this type of uncertainty, consider the 

use of mobile phones as emergency retrospective 

dosemeters. Although phones, or more specifically 

their display screens or resistors, possess many of the 

features considered advantageous to act as reliable 

fortuitous dosemeters, for them to be useful it is 

mandatory to relate the absorbed doses they record in 

an exposure to the concurrent doses deposited in their 

owners. This can be achieved by Monte Carlo 

modelling of the phones located at various positions on 

an anthropomorphic phantom, exposing the 

configuration to various fields, and then comparing the 

doses deposited in the phones and phantom to generate 

a set of exposure- and location-dependent conversion 

factors; for some locations and exposures, phone and 

body absorbed doses may differ by a factor of ~20129. 

In the real world, however, the precise location of the 

phone relative to the body during an unplanned 

exposure may not be known in hindsight, at least not to 

those performing the dosimetry. Moreover the precise 

exposure conditions, and orientation of the individual 

relative to the source, are also unlikely to be recorded. 

Accordingly, this ignorance introduces a significant 

unknown type B uncertainty into the conversion of 

phone doses to body doses. But, this ignorance may be 

managed by the use of mean conversion factors that are 

averaged over the datasets of all of the parameters that 

are unknown. For instance, if the exposure geometry 

and radiation source were known with some degree of 

confidence, this averaging might just be over the 

conversion factor datasets generated by the Monte 

Carlo model for the different phone positions; but if 

only the source were known, then the averaging would 

be over the datasets for all phone positions and all 

exposure geometries. Use of these mean conversion 

factors is then associated with conservative 

uncertainties identified as the maximum over- and 

under-responses that are expected to arise from their 

application. These extrema may be taken from the 

envelope function of the conversion factors that were 

summed-over in the averaging process, and quantify 

the worst-case errors in the dosimetry that might be 

anticipated in adopting this conversion process due to 

the unknown type B uncertainty in the exposure 

conditions. This is an important separate topic for 

further consideration. 

BRIEF DISCUSSION AND CONCLUSIONS 

In this paper, the current state of the art in terms of 

uncertainty analysis techniques for biological 

dosimetry (with the DCA as the most well developed 

example) and physical retrospective dosimetry has 

been reviewed, with a particular emphasis on the 

potential for increased use of the more sophisticated 

Bayesian and Monte Carlo modelling methodologies to 

support uncertainty characterization.  

To survey the current situation, a questionnaire was 

compiled and sent to all members of EURADOS 

WG10 on retrospective dosimetry. The questionnaire 

was designed to gather information on current 

experience on uncertainties estimation but also to 

assess the possible needs in terms of training or 

courses. From the 28 laboratories who responded, 72% 

currently use physical retrospective dosimetry 

techniques (EPR, TL and OSL), 19% biological 

techniques (micronuclei, dicentrics, FISH, and γ-H2AX 

and 8% others techniques (UV-vis spectroscopy, 

neutron activation, etc.). 56% of the responders use 

only the classical GUM approach, 13% the approach 

described in the IAEA manual for cytogenetics, about 

18% Monte Carlo method and about 9% uses a partial 

Bayesian approach. None of the responders used a 

formal Bayesian approach. It is interesting to note that 

56% of responders use software to calculate the 

uncertainties (35% in house-developed software, 41% 

commercial software and 24% freely available 

software). 64% of responders are satisfied with their 

method, but would be interested in improving it and/or 

to evaluate and compare other approach such Bayesian 

or MC methods, whereas 24% are aware of the 
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weakness of their approach or think they may use an 

inappropriate one. 

So, in general the situation looks positive for the 

most well-established assays, with practical, accepted 

analysis techniques in place (chiefly based on GUM) 

which likely support good overall absorbed dose and 

uncertainty estimates. The exception is for the more 

complex exposure scenarios19, which are known to 

introduce additional uncertainties which should ideally 

be characterised on a case-by-case basis. The tools to 

do this are in place (for instance in the GUM21) but, in 

practice, are not often applied for biological dose 

estimation, and to date physical retrospective dosimetry 

techniques have only really been used for a set of 

“standard” scenarios. Thus there is still work to do. 

The next steps in development of uncertainty 

analysis techniques across the field of retrospective 

dosimetry will be to look at standardization of 

techniques – i.e. to evaluate which of the methods 

detailed in this work give the most accurate 

representation of uncertainty in various different 

exposure scenarios, including the more difficult cases. 

In addition, as discussed, uncertainty analysis is a 

complex field in itself and thus an “expert” level of 

knowledge is required. For example, the application of 

GUM can be very complex and long, especially when 

the different terms of uncertainties are correlated (cf. 

calculation of covariance terms). In many 

circumstances GUM also requires approximation, and 

the situation is further complicated when the 

mathematical model that fits the relation between input 

data (measurand) and output data (dose) is anything 

other than linear. The estimation of each of the 

uncertainty term may need a large amount of work 

(including experimental work). In light of this, MC or 

Bayesian approaches would be particularly efficient for 

retrospective dosimetry application. However, to date, 

only a small number of EURADOS retrospective 

dosimetry Group members use these methods, and 

further work is required. For example, for GUM the 

algebraic benefits of using the Gaussian approximation 

should be balanced against its potential divergence 

from the “true” uncertainty of the observations. 

However, the way in which the uncertainty is 

characterised at each stage in a Monte Carlo calculation 

should be appropriate to the observations and/or should 

allow for uncertainty in its own assignment28, and the 

extra analytical power provided by the use of Bayesian 

priors requires that their presence and form be carefully 

justified in order to limit the potential for 

mistakes26,31,134. In addition, it is worth noting that 

beside retrospective dosimetry, EPR has long been 

used for metrology with for instance alanine and 

recently with tartrates and formats135,136. In this field 

comparatively large amount of effort has ensured that 

the uncertainty analysis supports highly accurate 

absorbed dose determinations137. However, these 

principles are equally useful for retrospective 

dosimetry even if the intrinsic uncertainties are larger 

and thus the accuracy normally is lower in this case.  

It will thus be very important for researchers active 

in these fields to ensure that new methods are 

disseminated and that new and existing colleagues 

access appropriate training. This is something that 

EURADOS WG10 will continue to support going 

forward. 
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