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Abstract

In the last decade, many works in combinatorial optimisation have shown that, due
to the advances in multi-objective optimisation, the algorithms from this field could
be used for solving single-objective problems as well. In this sense, a number of pa-
pers have proposed multi-objectivising single-objective problems in order to use multi-
objective algorithms in their optimisation. In this paper, we follow up this idea by
presenting a methodology for multi-objectivising combinatorial optimisation prob-
lems based on elementary landscape decompositions of their objective function. Under
this framework, each of the elementary landscapes obtained from the decomposition
is considered as an independent objective function to optimise. In order to illus-
trate this general methodology, we consider four problems from different domains:
the quadratic assignment problem and the linear ordering problem (permutation do-
main), the 0-1 unconstrained quadratic optimisation problem (binary domain), and
the frequency assignment problem (integer domain). We implemented two widely
known multi-objective algorithms, NSGA-II and SPEA2, and compared their perfor-
mance with that of a single-objective GA. The experiments conducted on a large bench-
mark of instances of the four problems show that the multi-objective algorithms clearly
outperform the single-objective approaches. Furthermore, a discussion on the results
suggests that the multi-objective space generated by this decomposition enhances the
exploration ability, thus permitting NSGA-II and SPEA?2 to obtain better results in the
majority of the tested instances.
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1 Introduction

A combinatorial optimisation problem consists of finding an optimal solution of a func-
tion,
fr X — R
. — f(@)

such that the search space X is a finite or countable infinite set. Usually f is considered
as a single-objective function. However, in many real-world problems, the optimisation
process may involve multiple objectives (functions) simultaneously. These problems
are known as multi-objective optimisation problems (MOPs). Formally, MOPs can be
formulated as (Zhang and Li, 2007):

maximize F(z) = (fi(z),...,fm(z)), z€X

where F' : X — R™ consists of m real-valued objective (fitness) functions and R™
denotes the objective space.

During the last few decades, multi-objective evolutionary algorithms (MOEAs),
such as Non-Dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002), Strength
Pareto Evolutionary Algorithm 2 (SPEA2) (Zitzler et al., 2001) or Multi-objective Evolu-
tionary Algorithm based on Decomposition (MOEA /D) (Zhang and Li, 2007), have shown
their competitiveness when solving MOPs. Considering the unique ability of this type
of algorithms to enhance the diversity of the population, the authors have claimed
that multi-objective algorithms might be helpful for single-objective optimisation as
well (Abbass and Deb, 2003). In fact, according to a recent survey on MOEAs for
single-objective optimisation (Segura et al., 2013), a number of papers (Knowles et al.,
2001; Scharnow et al., 2005; Neumann and Wegener, 2006) have proposed transforming
single-objective problems into MOPs by modifying their fitness function. This proce-
dure, known as multi-objectivisation, was used for the first time by Knowles et al. (2001).
The authors distinguished between two types of schemes: decomposition and aggrega-
tion. Under the first scheme, the original function f can be decomposed by defining
new functions on the solution x (or on subsets of parameters of x). The second scheme,
instead, considers some additional objectives that are used in combination with the
original function f. In both cases, the multi-objectivisation scheme should guarantee
that the optimal solutions in the original problem are in the Pareto set in the multi-
objectivised version. Papers on this topic (Knowles et al., 2001; Handl et al., 2008) have
demonstrated, for local search algorithms, that the multi-objectivisation techniques are
able to find monotonically increasing paths towards global optimal solutions that are
not available under the original single-objective problem. Unfortunately, prior to this
paper, a general methodology to multi-objectivise efficiently combinatorial optimisa-
tion problems did not exist, and therefore, in each case, practitioners had to develop
ad-hoc solutions. To this end, Knowles et al. (2001) pointed out that the objectives de-
fined in the new space, need to be as independent as possible.

Following up this idea, in this paper, we extend the work in Ceberio et al.
(2015a) and present a general methodology to multi-objectivise single-objective prob-
lems based on the decomposition of the original objective function. Particularly, we
propose using elementary landscape decomposition techniques in order to decompose the
objective function f as a sum of a set of elementary landscapes (functions).

In landscape theory, elementary landscapes (Stadler, 1996) are a class of landscapes
whose main characteristic is that they can be modelled using the Grover’s wave equa-
tion (Grover, 1992) (see Eq. (1) at Section 2). Among its multiple properties, it is possible
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to compute the average value of the objective function in the neighbourhood of a solu-
tion using a closed form expression. Moreover, it also allows one to compute landscape
ruggedness measures such as the autocorrelation coefficient with a closed form expres-
sion (Angel and Zissimopoulos, 2000, 2001; Chicano et al., 2012).

In most of the combinatorial optimisation problems, we do not know a neighbour-
hood system that is able to produce an elementary landscape. However, Stadler (1996)
showed that, for any fitness landscape, if the neighbourhood system holds certain sym-
metry and regularity properties, then it is possible to decompose f as a sum of elemen-
tary landscapes and, thus, express f as

flx) = Z fi(z)

where m is the number of landscapes in the decomposition, and f; is the function re-
lated to the ¢-th landscape. For instance, works on elementary landscape decomposi-
tion have shown that the landscape associated to the MAX-k-SAT under the Hamming
neighbourhood can be decomposed as a sum of k elementary landscapes (Sutton et al.,
2009), and have proved that the subset sum problem under the same neighbourhood
can be decomposed as a sum of two elementary landscapes (Chicano et al., 2011b).

In order to illustrate the multi-objectivisation scheme proposed in this paper and
show its general applicability, we choose an elementary landscape decomposition of
three problems from different domains: the General Quadratic Assignment Problem
(QAP) (Chicano et al., 2011b) (permutation problem), the 0-1 Unconstrained Quadratic
Optimisation (UQO) (Chicano and Alba, 2013) (binary problem), and the Frequency
Assignment Problem (FAP) (Chicano et al., 2011c) (integer sequence of limited cardi-
nality). For the first decomposition, we distinguish two problems as cases of study for
which the decomposition is valid: the classical QAP and the Linear Ordering Problem
(LOP) (Marti and Reinelt, 2011; Ceberio et al., 2014b).

According to Chicano et al. (2011b), under the interchange neighbourhood, the ob-
jective function of the general QAP can be defined as the sum of, at most, three elemen-
tary landscapes. Nevertheless, when translating this decomposition to the particular
context of each instance, depending on its characteristics, the decomposition can be re-
duced as some components turn out to be constant. As a result, the classical QAP and
LOP can be reformulated as a two or three-objective problem, one objective for each
non-constant elementary landscape. Similarly, UQO and FAP can be reformulated as
two-objective problems when considering the respective elementary landscape decom-
positions under the Hamming neighbourhood.

In general, an arbitrary landscape is not elementary. However, there are a few
landscapes, such as that produced by the symmetric traveling salesman problem under
the interchange neighbourhood!, that are elementary (Whitley et al., 2008). In these
cases, the proposed multi-objectivisation scheme is not applicable, however, it must be
noted that this does not occur for the majority of the landscapes.

For the sake of demonstrating the validity of the proposed methodology, we ran
two MOEAs, NSGA-II and SPEA?2, on the four multi-objectivised problems, and com-
pared their performances with that of a single-objective GA (SGA) on the native, single-
objective, problems. The experiments conducted on large benchmarks of instances
confirmed that the multi-objective approaches are preferred to the single-objective

IThe interchange neighbourhood considers that two solutions (permutations) are neighbours if one is ob-
tained by interchanging two elements in the other.
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approach. A posterior analysis of the experimental results suggests that the multi-
objective space defined by the elementary landscape decomposition provides a frame-
work that permits NSGA-II and SPEA2 to diversify the search and, in almost all the
cases, to obtain better global results.

The remainder of the paper is organised as follows: in Section 2, the theory on
elementary landscape decomposition is introduced. With illustrative purposes, the de-
composition for the general formulation of the QAP is also summarised. Section 3
is devoted to describing the multi-objectivisation proposed for each of the problems:
QAP, LOP, UQO and FAP. Next, Section 4 introduces a broad experimental study on
the four problems. Then, in order to explain the success of the proposed methodology,
a discussion is introduced in Section 5. Finally, general conclusions and ideas for future
work are presented in Section 6.

2 Elementary Landscape Decomposition

In combinatorial optimisation, a fitness landscape is a triple (X, N, f) where X denotes
the search space of solutions, f : X — R defines the objective (fitness) function, and the
neighbourhood operator N assigns a set of neighbouring solutions N(z) € X to each
solution z € X.

In 1992, Grover (1992) demonstrated that some fitness landscapes arising from cer-
tain classes of combinatorial optimisation problems could be modelled using the so-
called Grover’s wave equation:

avg {f(y)} = f(z) +

where f denotes the average fitness value of all the solutions in the search space, | N ()]
is the size of the neighbourhood, and k is a constant value. Furthermore, Grover proved
that, if a landscape satisfies Eq. (1), then all the local maxima solutions are greater than
f and all the local minima are lower than f. This class of landscapes was called elemen-
tary landscapes by Stadler (2002). According to Stadler, being A the Laplacian matrix
associated to X and N, alandscape (X, N, f) is elementary if the function f is an eigen-
vector of A with an eigenvalue A > 0.

In general, an arbitrary landscape is not elementary, however, Stadler (1996)
showed that any landscape can be decomposed as a sum of elementary landscapes
if the neighbourhood system considered is regular (|N(z)| = d > 0, for all z € X) and
symmetric (for all z,y € X,y € N(z) <= = € N(y)). As the author stated, we know
that, if a square matrix @ (with real entries) of size | X| is symmetric, then there exists
an orthogonal basis in the vector space RI¥| which is composed of eigenvectors of Q.
Thus, every vector of RI*! can be written as the weighted sum of the vectors in the
orthogonal basis. Since the Laplacian matrix A is a symmetric square matrix with real
entries, then it can be deduced that there exists an orthogonal basis of eigenvectors as-
sociated to it. As a consequence, f can be decomposed as the weighted sum of a set of
elementary functions.

For instance, Rockmore et al. (2002) showed that the landscape produced by the
general formulation of the QAP (see Eq. (4)) under the interchange neighbourhood can
be written as a sum of three elementary landscapes and, later, Chicano et al. (2011b)
gave the exact expression of this decomposition. Since this point is an essential part
of this work, in what follows, we provide a general overview of the decomposition for
the QAP summarised from Chicano et al. (2011b) (which is also valid for the LOP). As
regards the UQO and FAP, for the sake of brevity, the respective decompositions have
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been omitted, and we recommend the interested readers to address the original works
by Chicano and Alba (2013) and Chicano et al. (2011c).

2.1 Elementary Landscape Decomposition for the Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) (Koopmans and Beckmann, 1955) is the
problem of allocating a set of facilities to a set of locations, with a cost function asso-
ciated to the distance and flow between the facilities. The objective is to assign each
facility to a location, such that the total cost is minimised. Specifically, we are given
two real-valued matrices D = [d; j]nxn and H = [hy ;] xn, Where d; ; stands for the
distance between location ¢ and location j, and hj,; denotes the flow between facility
k and facility I. Given n facilities, a solution of the QAP is encoded as a permutation
o = (c(1)...0(n)) where o(i) (: = 1,...,n) represents the facility that is allocated to
the i-th location. The objective (fitness) value of any given permutation is calculated by
the following function:

F0) =D dijhogyei) 2

i=1 j=1

Since the QAP belongs to the class of permutation problems, in the rest of this
section, we will adopt the mathematical notation used for the symmetric group. Instead
of x and X, we will use, from now on, o and 7 to denote solutions, and S,, to denote
the search space.

In order to analyse the elementary components of the fitness function of the QAP, it
is useful to separate the instance-related part and the problem-related part. Therefore,
we start the decomposition procedure by rewriting the fitness function of the QAP as:

fo)y=>" > diihp,a04 (05 ) ©

i,j=1p,q=1

where 07 (i) denotes the Kronecker’s delta and returns 1 if 0(i) = p, and 0 otherwise.
At this point, we extend the decomposition of f to a more general function g, in which
the instance-related part of Eq. (3), the product d; ;h, 4, is replaced with a new vari-
able 1);j,4. Alternatively, the problem-related part ¢” (1)53 (j) s rewritten as the param-
eterised function ¢(; j)(p.q) (o). Thus, the generalised QAP function is defined as:

90) = > Yijpeliif ) () 4)

%,J,p,q=1

where Eq. (3) is a particular case in which v;pq = di jhp 4.

No neigbourhood structure that produces an elementary landscape for the func-
tion g is known. However, under the interchange neighbourhood (regular and symmet-
ric), there exists an orthogonal basis of functions that permits us to decompose g. To this
end, Chicano et al. (2011b) focused exclusively on the decomposition of the problem-
related part, since any result on ¢(; j)(,,q) can be extended to any linear combination of
it, and subsequently to g.

First, we distinguish two cases of the function ¢ under the interchange neighbor-
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hood: 1) i = j Ap=gand 2)i# j Ap# q> So, we rewrite Eq. (4) as follows:

n n
9(0) = Y umpinmm (@) + Y. Vil ma (o) ©®)
i,p=1 i,7,p,q=1
1F 5 pFq

When i = j A p = g, we see that the function ¢ is elementary and complies with Eq. (1)
(with & = n) by demonstrating that the equation below holds for two constants a and
b:

avg {p(m)} = ap(o) +b (6)

rEN(0)

Nonetheless, it is not elementary when i # j Ap # g. In order to decompose it as a sum
of elementary functions, Chicano et al. (2011b) introduced a set of auxiliary functions
(see Eq. (8)) that provide the required orthogonal basis in the decomposition. Particu-
larly, the authors prove that the right-hand term ¢(; ;)(,,4) (see Eq. (5)) can be decom-
posed as the sum of three elementary functions. Note that, in the QAP (and also in the
LOP), the diagonal values of D = [d; j]nxn and H = [hy ]nxn are 0, and, so, the first
summing term in Eq. (5) (related to );;p,) can be discarded. Then, the fitness function
of the general QAP, g, is finally decomposed as follows:

Q. (o)
g(0) = Z %MM

2n
i, j,p,g=1
i £ 5P Fq
n QQ' ) (0) n Q3, ] (O’)
(4,5) (p,9) (4,5)(p,q)
iipg — e g — XD (7
+ Z Yijpq 2(n — 2) + Z Yijpq n(n — 2) (7)
i, 3,p,qg=1 iJ,p,qg=1
i£jp#q i£jp#q
where Q%m)(p,q), Q?i’j) o) and Q?i,j)(p,q) stand for the elementary functions, and are
defined as
a ifo(i)=pAo(j)=q
. B ito(i)=qho(j)=p
Wipwa(o) =1 7 ifo(i) =pPo()) = ®)
¢ ifo(l)=q@Do(j)=p
¢ ifo(i) #pana(yj) #p.q

where 1 <14,j,p,g <n,a,B,7,¢¢ € Rand m = 1,2, 3. The operator P stands for the
exclusive OR operation. The sets of parameters for each elementary function are:

m| o B 4 e ¢
1 n—3 1—n -2 0 -1
2 n—3 n-—3 0 0 1
3 | 2n—-3 1 n—-2 0 -1

3 Multi-objectivisation

As stated in the introduction, in this paper, we propose using elementary landscape
decompositions as a general scheme to multi-objectivise single-objective problems. In
the following lines, we characterize the solutions in the Pareto Set, and later, we present
the multi-objective versions of the problems considered in this paper.

2Note that o vectors are permutations of size n, and, thus, the casesof ¢ ,i = jAp # gandi # jAp =g,
are zero.
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We use ¢* to denote the global optimal solution for the objective function f. We say
that a solution o dominates a solution o’ (denoted as ¢ < y) when there is no objective
in the MOP for which ¢ has a worse value than ¢’, and there is at least one objective
function for which o has a better value than ¢’. Otherwise, o and ¢’ are non-dominated
solutions. The set that contains all non-dominated solutions is called Pareto Set (and is
denoted as P).

So, every global optimal solution ¢* is in P. This is proved by contradiction as-
suming that o* ¢ P. Then, there exists 0 € P such that ¢ < ¢*. From the definition
of P, this implies that f;(¢) < fi(c*) fori = 1,...,m and there exists j € {1,...,m}
such that f;(o) < f;(c*). Thus, 1", fi(0) < 37", fi(c*) which contradicts that o* is
a global optima. So o* € P.

Note that, in the case that there exists a unique global optimum solution, then
Vo #o0* € P,3i € {1,...,m} such that f;(c) < fi(c*).

In what follows, we present the multi-objectivised forms of the QAP, LOP, UQO
and FAP based on the respective elementary landscape decompositions proposed in
the literature.

3.1 The classical Quadratic Assignment Problem

The decomposition proposed in Eq. (7) for the function g corresponds to the general
case of the QAP. Nonetheless, we are interested in the classical definition of the QAP,
where ¥;jpq = d;i jhpq. As a result, the classical QAP is multi-objectivised into these
three functions, each of them based on one elementary landscape:

n

1
Qi j)(p,) (0)

hlo)= D7 dighp,—0%— ©)
i,J,pq=1
L#F 5P Fq
- Qi) .0 (9)
f2(0) = ‘ Z ) di,jhp,qw (10)
i,4,p,q =
1#F 5P Fq
n Qg, ) (0’)
_ o (4,5)(p,9)
f3(o) = ‘ Z 1 dwhp,qm (11)
i,4,p,q =
1#F 5P Fq

It is worth noticing that, when the entries in D = [d; ;],,x, are symmetric with re-
spect to the main diagonal (this occurs in the majority of the instances in the literature),
then f; is constant, and, thus, the multi-objective formulation is simplified to two objec-
tives. Specifically, the equality d; ;h, ; = d; ;h, , permits to group summing terms in f;
(by extracting common factors) in three groups under the coefficients (a+4), (y+¢) and
2¢, respectively. Taking into account the parameters of the first elementary function Q!
(a=n-3,=1-n,v=-2,e=0and ( = —1),ie, (a+8) = (y+e€) =2 = -2,
then, any term in the sum is multiplied by the same coefficient, —2, regardless of o.
This implies that f; is constant for any o € S,, whenever the entries in D = [d; ;]nxn
are symmetric.

The time complexity of calculating the decomposition of any solution in the search
space is in general O(n*). However, when the matrix D = [d; j]nx» iS symmetric,
then the decomposition can be efficiently computed in O(n?). Note that in the single-
objective case it is O(n?).

Evolutionary Computation Volume x, Number x 7
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3.1.1 The Linear Ordering Problem

As explained in the introduction, the decomposition of the general QAP is also valid for
the Linear Ordering Problem (LOP) (Marti and Reinelt, 2011; Ceberio et al., 2014b) since
this problem is a particular case of the previous one. In the LOP, we are given a matrix
B = [bii]nxn of numerical entries, and the task consists of finding a simultaneous
permutation o of the rows and columns of B, such that the sum of the entries above the
main diagonal is maximised. The equation below formalises the LOP function:

n—1 n
FO) =" boiyor (12)
i=1 j=i+1

where o (i) denotes the index of the row (and column) ranked at position i in the solu-
tion o.
The LOP can be seen as a particular case of the general QAP in which:

e matrix B corresponds to matrix H.
e the entries in D = [d; ;] x» above the main diagonal are 1, and the rest 0.

e the diagonal values in D = [d; j]nxn and H = [hy ], xr are 0.

As a result, the LOP is multi-objectivised as

S Qi) pua (0)
HCENEDY 1 by g — (13)
i, 4,p,q =
1>5,pFq
fs(o) = Z ) MW (14)
i, J,p,q =
i>5,pFq

As can be appreciated, f; has been omitted from the multi-objectivisation. In this case,
due to the description of the matrix D, and taking into account the parameter set as-
signed to Q? (0« = B =n—3,7 =€ = 0and ( = 1), f» turns out constant for any
solution o € S,,. A detailed proof of this result can be found in Appendix A. As for the
QAP, based on the characteristics of the problems, the decomposition can be efficiently
computed in O(n?), and the single-objective case in O(n?).

3.2 The 0-1 Unconstrained Quadratic Optimisation Problem

In the 0-1 Unconstrained Quadratic Optimisation Problem (from now on UQO), we are
given a matrix Q = [gx,i]nxn» Of numerical entries, and the problem consists of finding
the solution = € {0, 1}" (a binary vector) that maximizes the following function:

F@)=>23" g 2()z()) (15)
i=1 j=1

According to Chicano and Alba (2013), the fitness landscape produced by UQO under
the Hamming neighbourhood can be decomposed as a sum of two subfunctions. As a

8 Evolutionary Computation Volume x, Number x



Multi-objectivising Combinatorial Optimisation Problems by means of ELD

result, the UQO is multi-objectivised as:

n

filo) = =3 Yo ui(1 - 2a(0) 16
P =1 3 (- 20e) - 2()) 7)
i,j=1
1#]

where v; = 2?21 (¢i,; + gjs). The time complexity of computing the decomposition is
equal to the single-objective case, O(n?).

3.3 The Frequency Assignment Problem

The Frequency Assignment Problem (FAP) is the problem of assigning r channels to
n transceivers, such that the interference costs derived from the assignment of the
channels to transceivers is minimized (Aardal et al., 2007). In general, the interfer-
ences are produced between transceivers that are close to each other, and thus, in such
cases it is desirable to assign channels that are far from each other in the frequency
band. Formally, in the general form of the problem, we are given an array of weights
W = [wl K 1), «nxrxr Of numerical entries, where each element wp ‘4 stands for the cost
of assigning channel p to transceiver ¢ and channel ¢ to transceiver j (Chicano et al.,

2011a). The problem consists of finding the vector of integers x of size n that minimizes

the objective function:
7) =33 i (18)
i=1 j=1

As for UQO, the landscape produced under the Hamming neighbourhood can be de-
composed as a sum of two subfunctions. Then, the FAP is multi-objectivised as:

Z Z wp’q p’jqr NED (19)

i,j=1 pq=1
i# ]
B -=p S Y el@ed S,
i,j=1 pq=1 i=1 p=1
i# ]

where ¢}/ (x) is defined as:

o 1fx() pAx(j) =q
o (@) =4 -1 ifxz(i) =p@Dz()) =4 (21)

0 otherwise

The time complexity of computing the decomposition is O(n*), while in the single-
objective case it is O(n?).

4 Experimental Study

In the previous section, we presented multi-objectivised versions for the four prob-
lems (with two or three objectives, depending on the case). In what follows, in or-
der to evaluate whether optimising in the described multi-objective spaces is preferred

Evolutionary Computation Volume x, Number x 9
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to optimising the single-objective (native) functions, we compare the performance of
NSGA-II (Deb et al., 2002) and SPEA2 (Zitzler et al., 2001) on the multi-objectivised for-
mulations, with a single-objective GA (SGA) that optimises the native versions of the
problems.

4.1 The algorithms: SGA, NSGA-II and SPEA2

The SGA is the reference algorithm used to compare the multi-objective approaches
in this experimental study. Following a standard design, at every generation, SGA
evolves a population of candidate solutions of the problem by performing selection,
mating and update operations. Particularly, it implements a binary tournament selec-
tion algorithm to form the mating pool of solutions. Regarding the crossover opera-
tor, in the QAP and LOP, the one proposed by Lim et al. (2000) for permutations has
been considered, and the single-point crossover for the UQO and FAP. Similarly, the
exchange mutation operator was used for the QAP and LOP, two bit-flip for the UQO,
and two transceiver mutation for the FAP. All the operators have been selected with-
out performing previous experiments. Next, the offspring and parent populations are
combined in the ensuing iteration population, where only the fittest solutions survive.

The first MOEA described in this work is the Non-Dominated Sorting Algorithm
IT (NSGA-II) (Deb et al., 2002) which is one of the most referenced algorithms for multi-
objective optimisation. Presented as an improvement of NSGA, at every generation ¢,
NSGA-II combines the parent and offspring populations in a new population F;, and
ranks the solutions according to a fast non-dominance sorting algorithm. This algorithm
is an iterative scheme that, at each step, finds the set of non-dominated solutions in
the population P;, also known as the front, and moves them into the next generation
population P,y ;. If the size of the front is smaller than the available space in P41, all
the members of the front are chosen. The remaining members of the new population
will be chosen from the subsequent non-dominated fronts. This procedure continues
until no more fronts can be accommodated. In general, the last front accommodated
will be partially chosen, since, presumably, it will be larger than the empty space in
Pi11. In order to choose the solutions that will survive from that last front, NSGA-
II implements the crowded-comparison operator which, based on a density estimation
metric called crowding distance, selects the solutions that are spread out in that front.

The second MOEA included is the Strength Pareto Evolutionary Algorithm 2
(SPEA2) (Zitzler et al., 2001). The design of SPEA2 is proposed on the basis of two
goals:

¢ to minimise the distance to the optimal front.
e to maximise the diversity of the generated solutions.

In order to find a trade-off between both goals, SPEA2, in addition to the regular
population, uses an external population called archive to store all the non-dominated so-
lutions found so far. Starting with an initial population and an empty archive, SPEA2
iterates according to the following steps. At the beginning, all the non-dominated solu-
tions in the population are copied to the archive, removing any duplicity. If the size of
the update exceeds the predefined size of the archive, the most representative solutions
of the front are selected by performing a clustering technique. Then, all the solutions in
the population and archive are assigned a fitness value as follows:

e every solution ¢ in the archive is assigned a strength value which describes the
number of solutions in the population that it dominates or are equal to it in terms
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Table 1: Parameter settings for the SGA, NSGA-II and SPEA2.

Algorithm | Pop. Size Sel. Size Off. Size  crossover ratio mutation ratio

SGA 8n 8n 8n 1.0 1.0
NSGA-II 8n 8n 8n 1.0 1.0
SPEA2 8n in 4n 1.0 1.0

of objective values, divided by the population size plus one. This strength value is
also the fitness value for the solutions in the archive.

o the fitness value of all the solutions in the population is calculated by summing the
strength values of all archive members that dominate it.

If the solutions in the current generation do not dominate each other, then very little
information is obtained from the dominance relation. In this sense, SPEA2 incorporates
a density value to the solutions in the population, which is calculated as the inverse of
the distance to the k-th nearest neighbours. Afterwards, the mating pool is obtained
from the union of the population and the archive by means of binary tournaments. For
a more detailed description, the interested reader is referred to Zitzler et al. (2001).

Since it is the aim of this experimental study to evaluate the benefits of optimising
in the multi-objective space rather than in the single-objective space, the same crossover
and mutation operators as in SGA were implemented for NSGA-II and SPEA2.

4.2 Settings

In Table 1, the population, selection and offspring sizes for the three algorithms are
detailed. These parameters have been set taking into account the recommendations in
the original works and some preliminary experiments.

With respect to the stopping criterion, a number of solution evaluations have been
set: for the QAP and LOP each of the algorithms performs 1000n? solution evaluations,
and 100n? in the case of the UQO and FAP3.

The three algorithms, NSGA-II, SPEA2 and SGA, have been implemented in C++,
using, in some cases, parts of the original source codes of the algorithms downloaded
from the web-pages of the authors®. The experimentation was performed on a cluster
of 20 nodes, each of them equipped with two Intel Xeon X5650 CPUs and 48GB of
memory.

4.3 Experimental Benchmarks

The experimental framework proposed in this work consists of the following bench-
marks:

e 288 QAP instances selected from different sources: 188 instances have been ob-
tained from the QAP Library (Burkard et al., 1997), and 100 extra instances from
the T'aizzeyy benchmark (Drezner et al., 2005). The size of the instances ranges
from 5 to 175.

e For the LOP, we used 176 instances downloaded from the LOLIB benchmark. In
this case, the size of the instances ranges between 44 and 163.

3Due to the limited computation capabilities available and the size of FAP and UQO instances, a lower
number of solutions evaluations have been considered.

ANSGA-II: http://www.egr.msu.edu/~kdeb/codes.shtml and SPEA2: http://www.tik.ee.
ethz.ch/sop/pisa/selectors/spea2/?page=speal.php
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o Asregards the UQO, 50 instances proposed in Beasley (1998) and 45 instances used
in Glover et al. (1998) have been collected. The size of the instances ranges between
50 and 1000.

¢ Finally, we generated 45 instances for the FAP. The number of transceivers consid-
ered are 25, 50 and 75 (with a different set of frequencies to allocate in each case).
These instances have been generated as follows:

- the w}’! parameters that make up instances have been sampled uniformly at
random from the range [n,n?], and then weighted with the distance factor

between frequencies

lp—ql+1°
— following a realistic scenario, the instances hold the equality v}/ = w{} =
WP = ?P ’ '
4 G

4.4 Experiments & Results

Each algorithm - instance pair was run 30 times, and the average values of the best fit-
ness function obtained in each run were computed for comparison. In Table 2, we
show for each multi-objective approach the number of instances on each benchmark
for which the obtained average values outperformed those of SGA (see Avg. columns).
Alternatively, we also computed the number of instances for which SGA was the best
performing algorithm (see SGA column).

In order to assess whether the differences observed are statistically significant, we
performed a statistical test on the results obtained by each pair of algorithms (SPEA2-
SGA and NSGA-II-SGA) on each instance, i.e., the data for each test is built up with
60 objective values (30 repetitions x 2 algorithms). As the distribution of the results
does not fit a Gaussian distribution, we have used non-parametric tests to perform the
comparison. Moreover, due to the nature of the results, it is quite frequent to have repe-
titions in the samples. This means that ranking-based tests, which assume the continu-
ity of the results (i.e., that there are no repetitions in the samples), are not appropriate.
For these reasons, we apply a permutation test (Good, 2013) whose assumption is that,
under the null hypothesis, the results of the compared algorithms are exchangeable. To
this end, we computed the average values of the results obtained by each algorithm
and calculated the absolute difference Dy between them. Then, we shuffled the 60 ob-
jective values between the two algorithms 100000 times, and calculated the absolute
difference between average values in each case. Finally, the p-value was calculated as
the proportion of times for which the difference of average values was greater than D;°.
A level of significance o = 0.05 has been set in all cases. Since the analysis corresponds
to a multiple hypothesis testing scenario (one per instance), the p-values have been cor-
rected with the method of Finner (1999). From this analysis, we counted the number of
instances for which NSGA-II and SPEA2 perform significantly better than SGA in each
benchmark. The results have been summarised in Table 2, Stat columns.

According to the average values obtained in the QAP, NSGA-II was better than
SGA in 224/265 instances (84.5%), SPEA2 in 241/265 (90.9%), and the single-objective
option (SGA) was better than the multi-objective approaches in 15/265 (5.2%)°. Note
that, in 23 instances (values within parenthesis), the three algorithms obtained equal

5The statistical tests in this work have been carried out with the scmamp package for R (Calvo and Santafe,
2016), and following the guidelines included in the documentation of the package.

6Instances, source-codes and raw results can be downloaded from https://github.com/sgpceurj/
ECJ_Multiobjectivisation.git.
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Table 2: Summary of the number of instances for which NSGA-II and SPEA2 outper-
form SGA and vice versa. Values in Avg. and Stat columns correspond to the com-
parisons with average fitness values obtained throughout 30 repetitions, and statistical
tests respectively. The numbers within parenthesis denote the number of instances in
which the three algorithms reached the best known result. Such cases were discarded
from the analysis since they are not useful for comparison purposes.

Benchmarks Instances NSGA-IL \ SPEA2 SGA
Avg. Stat | Avg. Stat | Avg.  Stat
Burkard 8 7 2 7 2 1 1
Christofides 14 11 0 14 8 0 0
Drezner 12 8 2 11 9 1 0
Elshafei 1 1 0, 1 1 0 0
Eschermann 5 (20) 3 0 3 0 2 0
Hadley 5 4 0 3 0 0 0
Krarup 3 2 0 3 2 0 0
Li 18 15 3 : 16 11 1 1
QAP  Nugent 18 (1) 17 0, 18 11 0 0
Roucairol 4 3 21 4 4 0 0
Scriabin 4 3 0! 4 4 0 0
Skorin 13 8 0, 13 8 0 0
Steinberg 3 3 0, 3 3 0 0
Taillard 52 (2) 47 10 + 51 40 1 0
Taixxeyy 100 89 451 85 32 9 2
Thonemann 3 1 0 3 2 0 0
Wilhelm 2 2 0, 2 1 0 0
Total Instances 265 (23) 224 64 | 241 138 15 4
ATP 7 7 31 7 6 0 0
ECON 15 15 7' 15 14 0 0
Christof & Reinelt 6 6 0, 6 6 0 0
LOP 1/0 Matrices 50 43 13 1 49 41 0 0
Laguna et al. 50 49 40 1+ 50 50 0 0
Mitchell & Borchers 15 13 9 ! 12 10 1 0
Goemans & Hall 7 (1) 3 0 : 4 2 2 0
Stanford GraphBase 25 13 0 7 5 11 0
Total Instances 175 (1) 149 72 1 150 134 14 0
UQO Beasley 43 (7) 35 2 : 39 14 1 0
Glover 30 (15) 23 2, 23 9 4 0
Total Instances 73 (22) 58 4, 62 23 5 0
FAP Artificial benchmark 45 25 01 45 44 0 0
Total Instances 45 25 0' 45 44 0 0
Summary 558 (46) | 456 140 | 498 339 | 34 4
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solutions. Taking into account that such cases are not useful to compare the perfor-
mance of the algorithms, they have not been considered hereinafter. According to the
statistical analysis, NSGA-II performs significantly better than SGA in 64 /265 instances
(24.1%), and SPEA?2 in 144/265 (54.3%).

The conducted experiments on the LOP point out that NSGA-II obtained better
results than SGA in 149 instances out of 175 (85.1%), SPEA2 in 150/175 (85.7%), and
SGA is better than both algorithms in 14/175 (8%). According to the statistical analysis,
NSGA-II performs significantly better than SGA in 72/175 (41.1%) instances and SPEA2
in 134/175 (76.5%) instances.

As regards the UQO and FAP problems, a similar trend can be observed in the re-
sults. In the UQO, NSGA-II and SPEA2 beat SGA in 58/73 (79.4%) and 62/73 (84.9%)
respectively, while SGA was the preferred approach in 5/73 (6.8%). In the FAP, NSGA-
IT did not show such competitive behaviour as it beat SGA only in 25 out of 45 instances
(55.5%). However, SPEA2 obtained better results than SGA in 44 instances out of 45.
Finally, according to the statistical analysis, NSGA-II did perform significantly better
than SGA in 4/53 of the UQO instances, and in 0 instances of the FAP. SPEA2 outper-
formed SGA in 23/73 (31.5%) and 44/45 (97.7%) instances respectively.

In summary, we observed that NSGA-II and SPEA?2 obtained better average results
than SGA in 81.7% and 89.2% of the instances respectively, while SGA was preferred
to multi-objective approaches in 6.0%. The statistical analysis confirmed those results,
with SGA being significantly preferred to either NSGA-II or SPEA2 in only in 4 com-
parisons (among all the pairwise comparisons).

In order to illustrate the differences among the algorithms, and also with respect
to the best known solutions, in Fig.1, we present, as scatter plots, the best fitness results
of each run obtained by the three algorithms on three instances of each problem’. Par-
ticularly, the relative deviations to the best known values obtained across 30 repetitions
have been computed.

The plots show that, on the one hand, the variance of SGA is systematically larger
than that of NSGA-II and SPEA2. Additionally, it can be seen that multi-objective algo-
rithms are able to obtain lower deviations to the best known solutions, which demon-
strates a better performance of these algorithms. It is worth mentioning that all the
deviations reported in Fig. 1 are relatively small as they are below 0.1.

5 Discussion

The experimental study above supported the validity of using elementary landscape
decomposition as a general method to multi-objectivise single-objective problems suc-
cessfully. In fact, NSGA-II and SPEA2 outperformed SGA in 81.7% and 89.2% of the
instances respectively. The observed result poses the following question: why does
the decomposition in elementary landscapes provide a suitable framework to multi-
objectivise problems?

Itis a question which is difficult to answer, however, there are two characteristics in
the methodology presented in the work that, in our opinion, are involved in the success
of the proposed multi-objectivisation: 1) the suitability of the elementary landscape
decomposition, and 2) the diversification of the search.

As noted in the introduction, according to Knowles et al. (2001), the success
of multi-objectivising single-objective problems lies in the intuition that the multi-
objective space opens up monotonically increasing paths to the global optimum that

’The plots of the remaining instances can be found in the online repository as supplementary material
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Figure 1: Scatter plots of the results obtained in three instances for each problem. In
each plot, the best results obtained by NSGA-II, SPEA2 and SGA across 30 repetitions
are illustrated. Particularly, the normalized deviations of the results obtained with re-
spect to the best known solutions are illustrated. The lower the deviation, the better.

are not available under the original space®. Nevertheless, in order to develop success-
ful multi-objective isolations, although no guidelines are available, some general hints

8The work by Knowles et al. (2001) is focused on local search algorithms. Nonetheless, correlations on
the performance of local search algorithms and population-based EAs when using genetic operators that are
somehow related with the neighborhoods systems have been reported frequently in the literature (see for
instance, Ceberio et al. (2014a)).
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are given. In general, most of the decompositions proposed for multi-objectivisation
are ad-hoc for each problem, and consider using expertise on the problem. How-
ever, Knowles et al. (2001) noted that it is essential to separate out the conflicting aspects
of the problem, i.e., to find objectives that are as independent as possible. This way, the
different solutions on the Pareto Front correspond to solutions that are more or less
good for different objectives. At this point, the proposed decomposition fits with the
idea suggested by Knowles et al. (2001), as the elementary landscape decomposition
of a given landscape (X, f, V) is the weighted sum of elementary functions (eigenvec-
tors) of the Laplacian matrix A that describes the neighborhood structure (X, N), and
the eigenvectors that correspond to the same orthogonal basis associated to A.

Another interesting aspect to discuss is that of diversity. In single-objective optimi-
sation, there is one objective value to consider and use as a reference. However, once the
problem is efficiently multi-objectivised, the solutions are selected considering multi-
ple objective values, which intrinsically diversifies the search as it enables the selection
of solutions that are competitive for different objectives. Additionally, MOEAs incor-
porate schemes to diversify solutions regarding their genotypic characteristics (and not
objective values). Plots in Fig. 2 illustrate the solutions found throughout the optimisa-
tion process of a specific QAP (tai40b) instance by SGA, NSGA-II and SPEA2. z- and
y-axis correspond to the two objectives into which the QAP is multi-objectivised (f; is
constant). As can be seen, the multi-objective approaches clearly diversify the search
compared with the single-objective case. This behavior can be extended to the other
problems and instances considered in this paper.

6 Conclusions and Future Work

In this paper, we presented a general methodology to multi-objectivise single-objective
problems based on an elementary landscape decomposition of the fitness function. In
order to illustrate this procedure, we considered the decomposition of four problems
from different domains, and, based on the analysis of the elementary functions, we
transformed the classical QAP, LOP, UQO and FAP into multi-objective problems. In
order to study the validity of the proposed multi-objectivisation scheme, we compared
the performance of NSGA-II and SPEA2 on the multi-objective problems, with a genetic
algorithm, SGA, for the single-objective version.

Experiments on a large set of instances showed that SPEA2 and NSGA-II outper-
form SGA for a large majority of the evaluated instances. In fact, the statistical test
concluded that SPEA? is the best algorithm followed by NSGA-II, SGA being the least
competitive approach.

The methodology presented here could also be applied to other problems for
which a decomposition is already known (see Table 3). Note that the listed decompo-
sitions are applicable to a larger number of problems. For instance, the decomposition
proposed for 0-1 Unconstrained Quadratic Optimisation Problem is equally applicable
to special cases of this problem, such as maximum clique, maximum cut, maximum
independent set, and many others (Glover et al., 2002).

As this work has been the first attempt to multi-objectivise combinatorial problems
by means of elementary landscape decompositions, there are many research issues,
both theoretical and practical, that could be investigated in future works:

o A first issue is the choice of the neighbourhood to carry out the elementary land-
scape decomposition. For instance, in the literature related to the QAP it has been
reported that the interchange neighbourhood performs for local search algorithms
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Figure 2: All the solutions observed in the execution of 10 repetitions of SGA, NSGA-II
and SPEA2 on tai40b. The circle size indicates the generation at which the solution was
observed (the later the generation, the larger the circle). Each run is presented using a
different colour.

the best. So, is the elementary landscape decomposition based on that neighbour-
hood the most appropriate multi-objectivisation of that problem? Intuition sug-
gests that it is. The literature presents a number of problems for which an elemen-
tary landscape decomposition has been reported (see Table 3), unfortunately, we
did not find two decompositions for the same problem to be able to answer that
question.

In the same line, in the case of the LOP, a large number of papers in the literature
have reported that the insert neighbourhood is the most appropriate neighbour-
hood to use in local search algorithms (Ceberio et al., 2014b). However, in this
paper, we used the interchange neighbourhood. Thus, would the decomposition
based on the insert neighbourhood provide a better multi-objectivisation than the
one used in this work? In this sense, developing an elementary landscape decom-
position for the LOP based on the insert neighbourhood is an interesting line for
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Table 3: Relation of elementary landscape decompositions reported in the literature. (*)
The elementary landscape decomposition of the LOP to two components is introduced
in this paper.

Problem Neighborhood Comp. Reference

Quadratic Assignment interchange 3 Chicano et al. (2010)
Linear Ordering interchange 2 *

DNA Fragment Assembly interchange 3 Chicano et al. (2010)
Subset Sum bit-flip 2 Chicano et al. (2011b)
Max k-sat bit-flip k Rana et al. (1998)

Test Suite Minimization bit-flip n+1 Chicano et al. (2011a)
NK-landscapes bit-flip E+1 Sutton et al. (2009)

0-1 Unconstrained Quadratic Opt. bit-flip 2 Chicano and Alba (2013)
General Frequency Assignment Hamming 2 Chicano et al. (2011c)

future research.

e Elaborating the previous questions, should the multi-objective optimisation algo-
rithm consider operators (mutation, crossover...) that are in correspondence with
the neighbourhood used in the decomposition (Ceberio et al., 2015b)? This requires
extensive research work that is beyond the scope of this paper.

e Results in Fig. 1 showed that the differences with respect to the best known solu-
tions are relatively small, and therefore, another research line for future work could
be using the approach proposed in this work as a basis to develop algorithms ca-
pable of beating state-of-the-art algorithms.

7 Appendix A: Proof of simplification of f> in the LOP

As commented previously in Section 3.1.1, the LOP can be seen as a particular case of
the general QAP in which, (i) matrix B corresponds to matrix H, (ii) the entries in D
above the main diagonal are 1, and the rest 0, (iii) and diagonal values in D and in H
are 0. Due to such restrictions, the multi-objectivisation of the LOP is simplified. In the
following lines, we prove that f; is constant for any o € S,,.

The f5 function can be expressed as follows:

n Q2A ) (O’)
_ o (4,9) (p,q)
fa(o) = . Z di,jbp,q 2(n — 2) (22)
i, 4, p,q=1
i#FjpFaq
is simplified due to the values in D, as
f2 (O’) — i b Q%iaj)(PvQ) (U) — i i b 9(22'«1)(1’7‘1) (U) (23)
o P9 2(n —2) — P 2(n - 2)
i,5,p,q=1 7 pg=1
i>4,pFq P #4q

For each pair (4, j) that holds ¢ > j, there are n(n — 1) coefficients Q%i’j) (p.q) (), from
which there is one « case, one §, 2(n — 2) v, 2(n — 2) eand (n — 2)(n — 3) ¢ (see Eq. 8),

with values a = 8 = (n — 3), v = e = 0 and ¢ = 1. Since y and ¢ equal to 0, so f2(c) can
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be rewritten as follows:

n

fo(o) = 2(n1_ o) Z <(” = 3)(bo(i) o) + oo + D bp,q) (24)

p,qA{o(i),0(45)}

fa2(o0) = ﬁ <(n —3) ZZ bij + W Z bi,j) (25)

ij=1 ij=1

2(0) = 10— > biy (26)
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