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TOPOLOGY OF SPACES OF VALUATIONS AND GEOMETRY OF

SINGULARITIES

ANA BELÉN DE FELIPE

Abstract. Given an algebraic variety X defined over an algebraically closed field, we
study the space RZ(X,x) consisting of all the valuations of the function field of X which
are centered in a closed point x of X. We concentrate on its homeomorphism type. We
prove that, when x is a regular point, this homeomorphism type only depends on the
dimension of X. If x is a singular point of a normal surface, we show that it only depends
on the dual graph of a good resolution of (X,x) up to some precise equivalence. This is
done by studying the relation between RZ(X,x) and the normalized non-Archimedean
link of x in X coming from the point of view of Berkovich geometry. We prove that
their behavior is the same.

1. Introduction

In this work we suppose that X is an algebraic variety defined over an algebraically
closed field k and we fix a closed point x in X. We initiate the study of the homeomor-
phism type of the space RZ(X,x) consisting of all valuation rings of the function field
of X dominating the local ring OX,x, endowed with the topology induced by the Zariski
topology. We call RZ(X,x) the Riemann–Zariski space of X at x.

Our goal is to clarify the relation between the topological properties of this space and
the local geometry of X at x. Note that the one-dimensional case is well understood: if
X is an algebraic curve then RZ(X,x) is in bijection with the set of the local analytic
branches of X at x. However, the situation is richer in higher dimension.

As we shall explain in this introduction, similar considerations have appeared in the
context of the theory of analytic spaces as developed by Berkovich and others after [1].
Adopting this point of view one associates to X its analytification Xan. A point of Xan

is an absolute value on the residue field of a point of X, extending the trivial absolute
value of k. We may consider the subspace L(X,x) of all points in Xan which specialize
to x excepting the trivial one and then identify points defining equivalent valuations. We
obtain in this way the normalized non-Archimedean link NL(X,x) of x in X (see [5]).

We shall refer to these spaces as spaces of valuations. Note that they have different
topological properties. For instance, NL(X,x) is a compact space whereas RZ(X,x) is
not Hausdorff in general. We clarify the relation between them:

Proposition (Propositions 2.12 and 5.1). There exists a canonical continuous surjective
map from RZ(X,x) to NL(X,x). Moreover, when (X,x) is a normal surface singularity,
NL(X,x) is the largest Hausdorff quotient of RZ(X,x)
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2 ANA BELÉN DE FELIPE

We do this by first showing that NL(X,x) can be viewed as the set of normalized
semivaluations of OX,x equipped with the topology of pointwise convergence. By a semi-
valuation on a ring A we mean here a map from A to [0,+∞] verifying the standard
axioms of valuations but which may send to infinity some non-zero elements of A. We
also give a sketch of a proof that the last statement in the previous proposition may fail
in higher dimension (see Example 5.2).

We address first the regular case. Our main result in this case is the following:

Theorem A (Theorems 3.2 and 3.5). Let x ∈ X, y ∈ Y be regular closed points of
two algebraic varieties defined over the same algebraically closed field k. The following
statements are equivalent:

(1) The spaces RZ(X,x) and RZ(Y, y) are homeomorphic.
(2) The spaces NL(X,x) and NL(Y, y) are homeomorphic.
(3) The varieties X and Y have the same dimension.

Our approach is as follows. We recover the dimension of X from the Krull dimension
of RZ(X,x) and the covering dimension of NL(X,x). Then in the case of NL(X,x) we
show the uniqueness of the extension of a semivaluation of OX,x to its formal completion.
In the Riemann-Zariski setting the proof is more involved. We rely on [14, Theorem 7.1]
that allows to extend valuations to the henselization of OX,x in a canonical way.

Two consequences of this statement are particularly noteworthy. On the one hand,
this result shows that the homeomorphism type of RZ(X,x) and NL(X,x) depends only
on the dimension of the variety X. In dimension two, one can be more specific. A
topological model for NL(A2

C, 0) has already been proposed in [9, Section 3.2.3]. In
this monograph NL(A2

C, 0) is referred to as the valuative tree. This space carries a
canonical affine structure which allows one to perform convex analysis on it and which
finds interesting applications in dynamics and complex analysis in [10, 11]. More precisely
it has a rooted nonmetric R-tree structure (see Subsection 4.1). Roughly speaking, this
means that it is a topological space where any two different points are joined by a unique
real line interval. This structure was extended in [12] to the case of a regular closed point
of a surface. The homeomorphism type of an arbitrary Berkovich curve is also studied in
[15] under a countability assumption on the base field. Since NL(A2

k, 0) is homeomorphic
to the closure of the open unit ball in the Berkovich analytification of the affine line
over the discrete valued field k((t)) (see [9]), the results of [15] show that NL(A2

k, 0) is a
Ważewski universal dendrite when k is countable.

On the other hand, assuming that resolution of singularities holds, Theorem A re-
veals the self-homeomorphic structure of RZ(X,x) by considering a projective system
of non-singular varieties. This property is also observed in NL(A2

C, 0) and in the space

of real places of L(y) where L = R((tQ)) (see [9, Theorem 6.51] and [18, Corollary 21]
respectively). More precisely, we obtain:

Corollary (Corollary 3.6). Let X be an algebraic variety defined over an algebraically
closed field k of characteristic zero. If x ∈ X is a regular closed point, then for any open
subset U ⊆ RZ(X,x) there is a subset V ⊆ U such that V is homeomorphic to RZ(X,x).

Next, we consider a singular point x of a normal algebraic surface X. The dual graph
associated to a good resolution of (X,x) becomes a fundamental tool for our purpose.
Note that any two such graphs are equivalent in the following sense: they can be made
isomorphic by subdividing edges and attaching trees. A nice way to describe this equiv-
alence is by looking at the core of a graph in the sense of [23].

By a graph we mean a finite connected graph with at least one vertex. From a graph
Γ we can build in a natural way a topological space |Γ| called its topological realization.
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The core of a graph Γ which is not a tree is the subgraph of Γ obtained by repeatedly
deleting a vertex of degree one and the edge incident to it, until no vertex of degree one
remains. In other words, the core Core (Γ) of the graph Γ is the smallest subgraph of Γ
with the same homotopy type. By convention we define the core of a tree to be the empty
set and we set |∅| := ∅. We say that two graphs Γ and Γ′ are equivalent if |Core (Γ) | and
|Core (Γ′) | are homeomorphic.

Our main result in this case is the following:

Theorem B. Let x ∈ X and y ∈ Y be singular points of normal algebraic surfaces defined
over the same algebraically closed field k, and let ΓX′ and ΓY ′ be the dual graphs associated
to good resolutions πX′ : X ′ → X and πY ′ : Y ′ → Y of (X,x) and (Y, y) respectively. The
following statements are equivalent:

(1) The spaces RZ(X,x) and RZ(Y, y) are homeomorphic.
(2) The spaces NL(X,x) and NL(Y, y) are homeomorphic.
(3) The graphs ΓX′ and ΓY ′ are equivalent.

Two important ingredients of the proof of this result are the structure of the valuative
tree of [9], and the properties of the core of NL(X,x), which corresponds to what Berkovich
called the skeleton in [1].

Observe that this statement implies that the spaces of valuations RZ(X,x) and NL(X,x)
associated to any rational surface singularity (X,x) are homeomorphic to RZ(A2

k, 0) and
NL(A2

k, 0) respectively. The converse is not true, as the example of a cone over an elliptic
curve shows. See Example 5.12 for details.

In order to obtain more precise information on the singularity (X,x) it will be neces-
sary to explore finer structures of RZ(X,x). Actually both spaces of valuations are locally
ringed spaces. In [6], NL(X,x) is endowed with a natural analytic structure locally mod-
eled on affinoid spaces over k((t)). However this structure contains too much information
for our purposes since by [6, Corollary 4.14] it determines the completion of the local ring
OX,x.

Finally, Theorem B also shows that there exist normal surface singularities such that
their normalized non-Archimedean links are homotopy equivalent but not homeomorphic
(see Remark 5.13).

The rest of the paper is organized as follows. In Section 2 we introduce the spaces of
valuations we deal with in this work and discuss some of its topological features. The first
subsection is devoted to the Riemann–Zariski space and the second one to the normalized
non-Archimedean link. Section 2 ends with the study of the relationship between these
spaces. The purpose of Section 3 is to give the proof of Theorem A. Section 4 provides a
short discussion of trees and graphs, which appear as essential tools in the next section.
Finally, Section 5 contains the proof of Theorem B.

From now on we denote by X an algebraic variety defined over an algebraically closed
field k, i.e. X is an integral separated scheme of finite type over k. We denote by K its
function field and by d its dimension. We assume that d > 0.

Acknowledgements. This work has greatly benefited of many discussions with Charles
Favre and Bernard Teissier. I would like to thank them and also Johannes Nicaise and the
referee for many comments and suggestions. I am also grateful to Universidad de La La-
guna, Université de Versailles Saint-Quentin–en–Yvelines and Institut de Mathématiques
de Jussieu–Paris Rive Gauche for their hospitality.
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2. Spaces of valuations

2.1. The Riemann–Zariski space of X at x. Let X be the set of all valuations of K
extending the trivial valuation of k, equipped with the Zariski topology. Given ν ∈ X, we
denote by rk ν the rank of its value group, Rν its valuation ring, mν the maximal ideal
of Rν and kν the residue field. This topology is obtained by taking the subsets

E(A) = {ν ∈ X / A ⊂ Rν} ,

where A ranges over the family of all finite subsets of K, as a basis of open sets. If
A = {f1, . . . , fm} then we write E(A) = E(f1, . . . , fm). Classically, two valuations of K
which differ by an order-preserving group isomorphism are called equivalent and they are
identified.

The Riemann–Zariski space X of K|k was first introduced by Zariski, who established
its quasi-compactness in [27]. This result was a key point in his approach to the problem
of resolution of singularities (this turns out to be also a key result in some recent attempts
to solve this problem in positive characteristic following new strategies also using local
uniformization, see [3, 24]). However, observe that X is in general very far from being
Hausdorff: given ν ∈ X, its closure in X is the set of all valuations ν ′ in X such that
Rν′ ⊆ Rν (see [28, Ch. VI, §17, Theorem 38]).

Given a valuation ν ∈ X, by the valuative criterion of separatedness, there exists at
most one scheme-theoretic point ξ ∈ X such that Rν dominates the local ring OX,ξ , that
is OX,ξ ⊆ Rν and mν intersects OX,ξ in its maximal ideal mX,ξ. If such a point exists, it
is called the center of ν in X (we may also consider the closure of {ξ} in X as the center)
and we say that ν is centered in X. We call RZ(X) the set of all valuations ν ∈ X such
that ν is centered in X, endowed with the topology induced by the Zariski topology of X.

When X is affine, saying that ν belongs to RZ(X) is equivalent to saying that Rν

contains the ring of regular functions on X. In general, if {Ui}
m
i=1 is an open affine

covering of X, then RZ(X) is the (finite) union of the open sets E(Ai), where Ai is a
finite subset of OX(Ui) generating OX(Ui) as k-algebra. Since any basic open subset of X
is in fact quasi-compact (this follows from [28, Ch. VI, §17, Theorem 40]), we conclude that
RZ(X) is a quasi-compact open subset of X. In addition, as a consequence of the valuative
criterion of properness, it is equal to the whole Riemann–Zariski space if and only if X is
a complete variety. Finally, let us define the center map cX : RZ(X) → X, which sends
any valuation of RZ(X) to its center in X. If X is affine, then the inverse image of the
basic open set of X defined by a non-zero regular function f on X is E(f−1) ∩ RZ(X).
The center map is continuous.

A birational morphism πX′ : X ′ → X induces an isomorphism between the function
fields of X and X ′, so we can identify their Riemann–Zariski spaces. Moreover, if ν is
an element of RZ(X ′) then it also belongs to RZ(X) and πX′(cX′(ν)) = cX(ν). In the
case that πX′ is also proper, then it follows from the valuative criterion of properness
that RZ(X ′) and RZ(X) coincide. Consider the projective system consisting of all proper
birational models (X ′, πX′) over X, and endow its projective limit Z with the projective
limit topology (i.e. the coarsest topology for which all the projection maps Z → X ′ are
continuous). A fundamental theorem of Zariski states that the natural map from RZ(X)
to Z, which corresponds to sending a valuation ν to its center cX′(ν) on each model Y ,
is a homeomorphism.

Definition 2.1. Given a closed point x ∈ X, we denote by RZ(X,x) the set of all
valuations of RZ(X) whose center in X is x, equipped with the induced topology. We
call this space the Riemann–Zariski space of X at x.
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Note that RZ(X,x) is a closed subspace of RZ(X) (since it is the fiber over x of the
continuous map cX) and it is therefore itself quasi-compact. Let us first explore the case
of curves.

Remark 2.2. Suppose d = 1 and fix a closed point x ∈ X. Let x̄1, . . . , x̄m be the closed
points in the fiber over x of the normalization morphism X → X (observe that by [13,
7.8.3-(vii)], m is the number of local analytic branches of X at x). Then RZ(X,x) =⊔

1≤i≤mRZ(X, x̄i). Take i ∈ {1, . . . ,m}. Since d = 1, x̄i is a regular point of X. Then
OX,x̄i

is a regular local ring of dimension one with fraction field K and therefore a val-

uation ring of K. The space RZ(X, x̄i) is thus reduced to a unique point. From this we
deduce that RZ(X,x) is a finite set.

Recall that the Krull dimension of a topological space Z is the supremum in the
extended real line of the lengths of all chains of irreducible closed subspaces of Z. A chain

∅ ( Z0 ( . . . ( Zl ⊆ Z

is of length l. We denote by dimZ the Krull dimension of Z.

Proposition 2.3. For any closed point x ∈ X, dimRZ(X,x) = d− 1.

Proof. We have already pointed out that dimRZ(X,x) = 0 when X is a curve. Suppose
now that d > 1.

Let π : X̃ → X be the normalization of the blowing-up of X at the closed point
x ∈ X. Let us fix an irreducible component E1 of π−1(x). We call ν1 the divisorial
valuation defined by E1. Note that tr.degkkν1 = d − 1 > 0. We choose a valuation
ν1 of the residue field kν1 such that k ⊆ Rν1 and tr.degkkν1 = d − 2. If we denote by
p1 : Rν1 → kν1 the canonical projection, then p

−1
1 (Rν1) is a valuation ring ofK dominating

OX,x and contained in Rν1 . We call Rν2 this valuation ring. Using the classical notation,
we have ν2 = ν1 ◦ ν1. The valuation ν2 belongs to the closure of ν1 in RZ(X,x) and
tr.degkkν2 = tr.degkkν1 = d − 2. If d − 2 > 0, then we can repeat this construction
defining similarly ν2, p2 and ν3.

Observe that we may iterate the above construction until we have built a sequence of
composite valuations νi+1 = νi ◦ νi for 1 ≤ i ≤ d− 1 in RZ(X,x) such that

(⋆) ∅ ( {νd} ⊆ {νd−1} ⊆ . . . ⊆ {ν1} ⊆ RZ(X,x),

where the bar means closure in RZ(X,x). Since {νi} is irreducible in RZ(X,x) so is
its closure. We now observe that two different valuations have different closures. This
follows from the fact that RZ(X,x) is a Kolmogorov space. Indeed, if ν and ν ′ are two
distinct valuations of RZ(X,x), then either Rν 6⊂ Rν′ or Rν′ 6⊂ Rν . Without loss of
generality we may suppose that there exists f ∈ K such that f ∈ Rν and f /∈ Rν′ . Then
E(f) ∩ RZ(X,x) is an open set containing ν but not containing ν ′, and the T0 axiom is
satisfied. The chain (⋆) gives the inequality dim RZ(X,x) ≥ d− 1.

By [26, Proposition 7.8], the space X has Krull dimension d, so that we have the in-
equalities dim RZ(X,x) ≤ dim RZ(X) ≤ d. Since X is the closure of the trivial valuation,
it is an irreducible space and as a consequence so is RZ(X). The fact that x is a closed
point implies that RZ(X,x) is a proper closed subset of RZ(X). Therefore the Krull di-
mension of RZ(X,x) must be strictly less than the Krull dimension of RZ(X). The only
possibility is then dim RZ(X,x) = d− 1 and dim RZ(X) = d. �

2.2. The normalized non-Archimedean link of x in X. For the rest of this section
we denote by | · |0 the trivial absolute value of k. We follow the notations introduced in
[5].
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We associate to X its analytification Xan in the sense of [1], which is defined as follows.
Consider the set of all pairs (ξ, | · |) where ξ is a point of X (not necessarily closed) and
| · | is an absolute value of the residue field κ(ξ) of X at ξ extending | · |0. The space Xan

consists of this set equipped with the weakest topology such that,

• the natural projection ı : Xan → X which maps (ξ, | · |) to ξ, is continuous, and
• for any open subset U ⊆ X and any f ∈ OX(U), the map ı−1(U) → R≥0 which sends
(ξ, | · |) to |f(ξ)| is continuous, where f(ξ) denotes the residue class of f in κ(ξ).

The topological space Xan is always Hausdorff, and it is compact if and only if X is a
complete variety (see [1, Theorem 3.5.3]).

The residue field of Xan at a point x = (ξ, | · |) is the completion of κ(ξ) with respect
to the absolute value | · |. We denote it by H (x) and its valuation ring by H (x)o. The
inclusion κ(ξ) →֒H (x) induces a morphism SpecH (x)→ X. If it extends to a morphism
Spec H (x)o → X then we say that x has a center in X (it follows from the valuative
criterion of separateness that this morphism is unique whenever it exists). We denote the
image of the closed point of Spec H (x)o under this morphism by spX(x) and we call it
the center of x in X. We denote by Xi the set of points in Xan which have a center in
X and we endow it with the induced topology. By the valuative criterion of properness,
Xi and Xan coincide if and only if X is a complete variety (see [25, Proposition 1.10]).

The specialization map spX : Xi → X which sends any point of Xi to its center in
X is an anticontinuous map (i.e. the inverse image of any open subset of X is closed in
Xi). Recall that the analogous map in the Riemann–Zariski setting from RZ(X) to X is
continuous. Furthermore, for all x ∈ Xi the point spX(x) belongs to the closure of ı(x)
in X.

Let us fix a closed point x of X. As we did in the previous section, we focus on the fiber
of the specialization map above the point x. We define L(X,x) = sp−1

X (x) \ {(x, | · |0)},
which is an open subset of Xi, and we endow it with the topology induced by the topology
of Xi. The space L(X,x) was introduced in [25] (in a higher degree of generality) where
it is called the generic fiber of the formal completion of X along x (in [5] it is referred
to as the non-Archimedean link of x in X). If x is the singular locus of X, then [25,
Proposition 4.7] shows that L(X,x) is homotopy equivalent to the dual complex associated
to the exceptional divisor of a resolution of singularities of (X,x) whose exceptional divisor
has simple normal crossings. This result holds whenever the base field k is perfect.

Let πX′ : X ′ → X be a proper birational map. Let us assume that πX′ induces an
isomorphism over X \ {x}. Given a point x = (ξ, | · |) in L(X,x), we call ξ′ the generic

point of the strict transform of the subvariety {ξ} ⊆ X under πX′ . Since spX(x) = x, by

the valuative criterion of properness, we have x′ := (ξ′, | · |) ∈ X ′i and πX′(spX′(x′)) = x.
We call spX′(x′) the center of x in X ′. We obtain in this way an anticontinuous map
spX′ : L(X,x)→ X ′, x 7→ spX′(x′).

We now identify two points of the space L(X,x) if they define the same valuation.
More precisely, we consider the following action of R>0 on L(X,x): given λ ∈ R>0 and a
point (ξ, | · |) of L(X,x), we define λ · (ξ, | · |) = (ξ, | · |λ).

Definition 2.4. Given a closed point x ∈ X, the normalized non-Archimedean link of x
in X, denoted by NL(X,x), is the quotient of L(X,x) by the group action defined above,
endowed with the quotient topology.

In [6] the space NL(X,x) is introduced for an arbitrary subvariety of X and endowed
with a richer structure. This space carries a natural analytic structure locally modeled on
affinoid spaces over k((t)). However, these local k((t))-analytic structures are not canonical
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and cannot in general be glued to get a global one. We refer to [6] for details. In this
work we only concern ourselves with the topology of NL(X,x).

We start here a series of results that will allow us to describe the space NL(X,x) in
terms of normalized semivaluations and adopt an additive point of view. With different
motivations, the space of normalized semivaluations associated to a pair (X,x) was con-
sidered before in the case of the origin in the complex plane in [9] and for the germ of a
normal surface singularity in [7].

Let A be an integral domain containing the field k. A semivaluation of A is a map
ν : A → R ∪ {+∞} which satisfies ν(0) = +∞, ν|k∗ = 0 and ν(fg) = ν(f) + ν(g),
ν(f + g) ≥ min {ν(f), ν(g)} for any f, g ∈ A. Note that such a ν extends to a valuation
of the fraction field of A if and only if it takes the value +∞ only at zero. In general, the
set sν := ν−1(+∞) is a prime ideal of A and ν defines a valuation of the fraction field
κ(sν) of the integral domain A/sν .

We say that a semivaluation of A is centered if it takes values in [0,∞]. We denote by
V(A) the set of all centered semivaluations of A endowed with the topology of pointwise
convergence. This topology has for a basis of open sets finite intersections of subsets
of the form {ν ∈ V(A) / a < ν(f) < b} where a and b are nonnegative real numbers and
f belongs to A. In other words, it is the topology induced by the product topology in
[0,+∞]A =

∏
j Yj , where each Yj is a copy of [0,+∞] and the product is indexed by A.

The group R>0 now acts on V(A) by multiplication: (λ · ν)(f) = λ ν(f) for all f ∈ A.

Lemma 2.5. The space V(A) is compact.

Proof. The space [0,+∞]A is Hausdorff and quasi-compact (by Tychonoff’s Theorem).
Hence V(A) is Hausdorff, and in order to prove its quasi-compactness it suffices to show
that it is closed in [0,+∞]A. In what follows an arrow indicates convergence.

Let (νi)i∈I be a net in V(A) and ν ∈ [0,+∞]A such that νi → ν. Then we have that
νi(f) → ν(f) in [0,+∞] for any f ∈ A. It is straightforward to verify that ν(0) = +∞,
ν|k∗ = 0, and ν(fg) = ν(f) + ν(g) for any f, g ∈ A. To conclude that V(A) is closed and
end the proof, it remains to take f, g ∈ A and show that ν(f + g) ≥ min {ν(f), ν(g)}.
Denote Mi = min {νi(f), νi(g)}, i ∈ I. The map from [0,+∞] × [0,+∞] to [0,+∞]
defined by (a, b) 7→ min {a, b}, is continuous. We have (νi(f), νi(g)) → (ν(f), ν(g)), thus
Mi → min {ν(f), ν(g)}. Since νi(f + g) ≥Mi for all i ∈ I and νi(f + g)→ ν(f + g), this
yields ν(f + g) ≥ min {ν(f), ν(g)}. �

From now on we assume that A is noetherian. Let m be an ideal of A. For each
ν ∈ V(A) we set ν(m) = min {ν(f) / f ∈ m}. This minimum is well–defined. Indeed, if
{f1, . . . , fm} is a system of generators of m, then ν(m) = min {ν(fi)}

m
i=1. Furthermore,

the map from V(A) to [0,+∞] defined by ν 7→ ν(fi) is continuous, for 1 ≤ i ≤ m. Hence
we also get a continuous map from V(A) to [0,+∞] when sending ν to ν(m).

The center of ν ∈ V(A) is the prime ideal {f ∈ A / ν(f) > 0} of A. Note that it
contains the ideal sν . By the previous paragraph, the subset V(A,m) of V(A) consisting
of all semivaluations ν satisfying the condition ν(m) = 1, is closed. We endow this subset
with the induced topology and call it the space of normalized semivaluations with respect
to m. Since V(A) is compact, the space V(A,m) is also compact. In addition, every
semivaluation ν such that 0 < ν(m) < +∞ (i.e. such that m is contained in the center of
ν but not in sν) is proportional to a unique normalized semivaluation in V(A,m).
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Lemma 2.6. Let L(A,m) be the set {ν ∈ V(A) / 0 < ν(m) < +∞} equipped with the topol-
ogy induced by the topology of V(A). The map

η : L(A,m) → V(A,m)
ν 7→ ν

ν(m)

is surjective and continuous. Furthermore, it induces a homeomorphism from the quotient
of L(A,m) by the action of R>0 to V(A,m).

Proof. The continuity of η follows from the continuity of the map from V(A) to [0,+∞],
ν 7→ ν(m). Observe that η(ν) = η(ν ′) if and only if ν and ν ′ are proportional, so η
descends to the quotient. We get a map L(A,m)/R>0 → V(A,m) which is continuous
and bijective. Its inverse map is the composition of the embedding V(A,m) →֒ L(A,m)
and the quotient map L(A,m)→ L(A,m)/R>0. �

In the case of a maximal ideal, we have the following:

Lemma 2.7. Suppose that m is a maximal ideal of A. Denote by  : A→ Am the canonical
ring homomorphism. The map

̃ : V(Am,mAm) → V(A,m)
ν 7→ ν ◦ 

is a homeomorphism.

Proof. Given ν ∈ L(A,m), the inequalities 0 < ν(m) < +∞ and the maximality of m
imply that sν ( {f ∈ A / ν(f) > 0} = m. In particular, ν(g) = 0 for any g ∈ A \ m. If
ν(m) = 1, then ν ′ : Am → [0,+∞] defined by ν ′(f/g) = ν(f) belongs to V(Am,mAm)
and ν ′ ◦  = ν. Hence ̃ is surjective. It is just as straightforward to verify that ̃ is also
injective, continuous and with continuous inverse. �

The most significant example of V(A,m) for us is the valuative tree V of [9], which
corresponds to A = C[[x, y]] and m = (x, y). Let us also point out here that we may

define a different normalization on Ṽ := L(C[[x, y]], (x, y)). More precisely, we may

consider those semivaluations of Ṽ taking the value 1 on z, where z ∈ (x, y) and ordz = 1.
This subset together with the valuation ordz and equipped with the topology induced by
the topology of V(C[[x, y]]) is denoted by Vz. Recall that given a non zero f ∈ C[[x, y]],

ordz(f) is the largest power of z which divides f . Observe that ordz /∈ Ṽ because its
center is the ideal generated by z. The space Vz is called the relative valuative tree with
respect to z. Such a z gives rise to a semivaluation νz ∈ V by considering the intersection
multiplicity with {z = 0} at the origin. The map from V to Vz sending ν 6= νz to ν/ν(z)
and νz to ordz, is a homeomorphism (see [9, Lemma 3.59]).

The following is a direct consequence of the previous definitions:

Lemma 2.8. Suppose that X is an affine variety and denote by A its ring of regular
functions. The map from Xi to V(A) sending (ξ, | · |) ∈ Xi to the centered semivaluation
of A defined by f 7→ − ln |f(ξ)| is a homeomorphism.

Proof. A point x = (ξ, | · |) of Xan belongs to Xi if and only if |f(ξ)| ≤ 1 for all f ∈ A.
When this is satisfied, spX(x) = {f ∈ A / |f(ξ)| < 1}. The map in the statement is well
defined and the center of the image of x coincides with spX(x). The inverse map is defined
as follows. Given ν ∈ V(A), abusing notation, we call ν the valuation induced on κ(sν).
It is enough to consider the prime ideal sν of A and the absolute value | · | = e−ν of κ(sν).
Continuity follows directly from the definitions. �



TOPOLOGY OF SPACES OF VALUATIONS AND GEOMETRY OF SINGULARITIES 9

Let us now come back to our general setting. Let U = Spec A be an open affine
neighborhood of x in X and let m be the maximal ideal of A corresponding to the point
x. On the one hand, for any x = (ξ, | · |) ∈ L(X,x), since spX(x) = x belongs to
the closure of ξ in X, the point ξ belongs to U . Hence the homeomorphism from Ui

to V(A) of Lemma 2.8 restricts to a homeomorphism from L(X,x) to L(A,m). Then,
from the definitions of the actions of R>0 on these spaces and Lemma 2.6, we get a
homeomorphism ψ from NL(X,x) to V(A,m). On the other hand, by Lemma 2.7, we
have a homeomorphism ̃ : V(OX,x,mX,x)→ V(A,m). We conclude the following:

Proposition 2.9. The map ̃−1 ◦ ψ : NL(X,x)→ V(OX,x,mX,x) is a homeomorphism.

In what follows we will identify NL(X,x) with the space of normalized semivaluations
V(OX,x,mX,x) and use additive notation. In particular, via this identification an element
of NL(X,x) is a semivaluation ν : OX,x → [0,∞] and we are allowed to evaluate it on any
f ∈ OX,x. We will extensively use this fact throughout the rest of this article.

Finally, we compute the covering dimension of NL(X,x). Recall that the order of a
family of subsets, not all empty, of a topological space Z is the largest n (if it exists) such
that the family contains n+1 elements with non empty intersection. If such an integer n
does not exist, then the order is said to be +∞. The covering dimension of Z is the least
n such that any finite open cover of Z has a refinement of order not exceeding n, or +∞
if there is no such integer.

Remark 2.10. When d = 1, any semivaluation of NL(X,x) is in fact a valuation of the
function field K of X whose valuation ring dominates OX,x. Thus NL(X,x) is a finite
space in bijection with RZ(X,x). Since NL(X,x) is Hausdorff, it is a discrete topological
space and every open cover of the space has a refinement consisting of disjoint open sets,
so that its covering dimension is zero.

More generally, by using the dimension theory for Berkovich spaces in [1], we have:

Proposition 2.11. The covering dimension of NL(X,x) is d− 1.

Proof. Let us denote by δ the covering dimension of NL(X,x).
Step 1: δ ≤ d − 1. Every compact space is normal, that is, any two disjoint closed

subsets of the space have disjoint neighborhoods. Therefore, NL(X,x) is a normal space.
If NL(X,x) =

⋃
i≥1 Fi where each Fi is a closed subspace of covering dimension not

exceeding d− 1, then by [21, Ch. 3, Theorem 2.5] the covering dimension of NL(X,x) is
not greater than d− 1. Let us show that such a family {Fi}i≥1 exists.

Take an open affine neighborhood U = Spec A of x in X and a system of generators
{f1, . . . , fs} of the maximal ideal m corresponding to the point x. For all 1 ≤ i ≤ s, we
define Fi = {ν ∈ NL(X,x) / ν(fi) = 1}. Since all the maps ν 7→ ν(fi) are continuous,
{Fi}

s
i=1 is a family of closed subset of NL(X,x). We have NL(X,x) =

⋃s
i=1 Fi, so in order

to conclude that δ ≤ d−1 it suffices to show that Fi has covering dimension at most d−1
for all i ∈ {1, . . . , s}.

Let us take an integer i, 1 ≤ i ≤ s. The regular function fi ∈ A induces a morphism
U → Speck[t] = A1

k so that A can be regarded as a k[t]-module. We set B = A⊗k[t]k((t)).
Note that fi ⊗ 1 = 1 ⊗ t in B. Since A is a k-algebra of finite type, B is a k((t))-algebra
of finite type. We denote V = Spec B and consider its analytification V an in the sense
of Berkovich. By [1, Theorem 3.4.8(iv)], the covering dimension of V an is equal to the
dimension of V , which is d− 1. Therefore the covering dimension of any closed subspace
of V an is at most d− 1 (see [21, Ch. 3, Proposition 1.5]). To complete the proof we now
show that Fi can be identified with a closed subspace of V an.
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By our choice of notation, V an is the set of semivaluations of B which extend the
valuation ordt of k((t)), endowed with the topology of pointwise convergence. In other
words, the underlying set of V an consists of all semivaluations ν of B that are trivial on
k∗ and satisfy ν(1⊗ t) = 1. We consider the closed subspace

W =
{
ν ∈ V i / ν(fj ⊗ 1) ≥ 1 ∀j ∈ {1, . . . , s} , j 6= i

}

of V an. We claim that W is homeomorphic to Fi. Indeed, the map ϕ from W to Fi

which sends ν ∈ W to the semivaluation of A defined by g 7→ ν(g ⊗ 1) is continuous.
Furthermore, ϕ is a bijection. If ν is a semivaluation of A lying in Fi then it extends in
a unique way to a semivaluation of B. This extension is defined by ν̃(g ⊗ 1) = ν(g) and
ν̃(1 ⊗ t) = ν̃(fi ⊗ 1) = 1. Since W is quasi-compact and Fi is Hausdorff, the map ϕ is a
homeomorphism.

Step 2: δ ≥ d − 1, regular case. Assume first that the point x is regular. Since the
covering dimension is monotone on closed subspaces, it suffices to find a closed subspace
of NL(X,x) of covering dimension d − 1. Let π : X ′ → X be a proper birational map
such that X ′ is non-singular, π is an isomorphism over X \ {x} and the exceptional locus
E = supp π−1(x) is a simple normal crossings divisor. After a finite sequence of blowing-
ups centered at closed points, we may assume that there exist d irreducible components

E1, . . . , Ed of the exceptional locus such that
⋂d

i=1Ei is reduced to a point p. We denote
by b1, . . . , bd their multiplicities. Pick local coordinates (z1, . . . , zd) at the point p such
that Ei = {zi = 0}. Since the point p is regular, the completion of the local ring of X ′

at p is isomorphic as k-algebra to k[[z1, . . . , zd]]. Any β = (β1, . . . , βd) ∈ Rd
≥0 such that∑d

i=1 βibi = 1 gives rise to a valuation νβ of NL(X,x). It suffices to set νβ(0) = +∞ and

νβ(f) = min

{
d∑

i=1

βiαi / cα 6= 0

}
,

if f ∈ Am is written as
∑

α cαz
α in k[[z1, . . . , zd]]. We call ∆ the simplex

{
(y1, . . . , yd) ∈ Rd

≥0 /

d∑

i=1

yi = 1

}

and we define a map ϕ : ∆ → NL(X,x) as follows. Given y = (y1, . . . , yd) ∈ ∆, we set
ϕ(y) = νβ(y) where β(y) = (y1/b1, . . . , yd/bd). The map ϕ is injective and continuous
(see [16] for details). The fact that ∆ is quasi-compact implies that F = ϕ(∆) is quasi-
compact and thus closed in NL(X,x). Therefore ϕ yields a homeomorphism between ∆
and a closed subspace F of NL(X,x). Since ∆ has covering dimension d−1, the subspace
F has also covering dimension d− 1. This ends the proof in the regular case.

Step 3: δ ≥ d−1, general case. We now treat the general case. The completion R of the
local ring ofX at x is an integral extension of a formal power series ring A = k[[z1, . . . , zd]].
Hence we get a natural continuous map NL(X,x)→ NL(Ad

k, 0) by restriction (the passage
to formal power series is justified in Proposition 3.1, which is independent of this result).
Let us show that this map is surjective. Observe that this ends the proof since the covering
dimension of NL(Ad

k, 0) is at least d− 1 by Step 2.

Take ν ∈ NL(Ad
k, 0). We need to show that ν extends to a semivaluation of R. By

abuse of notation we also call ν the rank one valuation it induces on the fraction field
H of A/sν . Let q be a prime ideal of R such that sν = q ∩ A. Note that the extension
A/sν →֒ R/q is integral. Let ν̂ be an extension of ν to L, where L denotes the fraction
field of R/q. On the one hand, the field extension H →֒ L is algebraic so the valuation ν̂

has rank one. On the other hand, we have R/q ⊆ A/sν ⊆ Rν̂ , where the bar stands for
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the integral closure in L. Therefore ν̂ induces a centered semivaluation of R extending
ν. In addition, the fact that the prime ideal m = mν̂ ∩ R/q of R/q intersects A/sν in
its maximal ideal implies that m is itself maximal. In order to get a semivaluation in
NL(X,x) one just needs to divide ν̂ by ν̂(m). �

2.3. The canonical map from RZ(X, x) to NL(X,x). Let x ∈ X be a closed point.
The aim of this subsection is to show that there exists a natural surjective continuous
map from RZ(X,x) to NL(X,x).

Given a valuation ν ∈ RZ(X,x) of rank r ≥ 1, we consider the maximal chain of valua-
tion rings of K, Rν = Rνr ( Rνr−1 ( . . . ( Rν1 . Let us choose j to be the smallest
integer i ∈ {1, . . . , r} such that νi is centered in x. If j = 1, then we set

π(ν)(f) =
ν1(f)

ν1(mX,x)

for any non zero f ∈ OX,x. Let us now suppose r > 1 and j > 1. We define then π(ν) as
follows.

The quotient ring Rνj/mνj−1 is a valuation ring of the residue field of the valuation νj−1.
It corresponds to the rank one valuation νj−1 such that νj = νj−1 ◦ νj−1. By definition of
the integer j, its center in the ringOX,x/(OX,x∩mνj−1) is mX,x/(OX,x∩mνj−1). Therefore,
given a non zero f ∈ OX,x, by setting

π(ν)(f) =

{
νj−1(f̄) if f /∈ mνj−1

+∞ otherwise

where f̄ denotes the residue class of f in OX,x/(OX,x ∩mνj−1), we define a semivaluation
π(ν) on X centered in x. After division by a suitable constant we obtain an element of
NL(X,x) that, by abuse of notation, we will also call π(ν).

Let us introduce some notations. Given ν ∈ RZ(X,x), in the sequel we will denote by
ν∗ the valuation νj and when j > 1, by ν ′∗ the valuation νj−1 and by ν∗ the rank one
valuation νj−1.

Proposition 2.12. The map π : RZ(X,x)→ NL(X,x) is surjective and continuous.

We will make use of the following result to prove Proposition 2.12.

Lemma 2.13. Let X be an algebraic variety and Y,Z two closed subvarieties of X,
neither one containing the other. Let X ′ → X be the blowing-up of X at Y ∩ Z (defined
by the sum IY + IZ of the ideal sheaves). Then the strict transforms of Y and Z have
empty intersection.

Proof. Without loss of generality we may assume that X is affine. Suppose that IY is
generated by {fi}

n
i=1 and IZ by {gj}

m
j=1. The strict transform of Y is empty at a point x′

of X ′ where (IY + IZ) · OX′,x′ = (fi)OX′,x′ for some i. Similarly, the strict transform of
Z is empty when this ideal is generated by gj for some j. Therefore the strict transforms
of Y and Z are disjoint. �

We are now in position to prove Proposition 2.12.

Proof of Proposition 2.12. Let us denote by R the local ring of X at the point x and m

its maximal ideal. Recall that we call K its fraction field.
The map π is surjective. Recall that for any v ∈ NL(X,x), sv = v−1(+∞) is a prime

ideal of R. If this ideal is reduced to zero, then v extends in a unique way to a rank one
valuation of K and the image by π of this valuation is v. Otherwise v induces a valuation
v of the fraction field of the quotient ring R/sv whose center in this ring is the maximal
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ideal m/sv . The choice of a valuation ν ′ of K such that Rν′ dominates the localization
Rsv gives us a composite valuation ν ′ ◦ v of K with center x in X and whose image by π
is v. Therefore π is a surjective mapping.

The map π is continuous. To prove that π is continuous it suffices to show that the
inverse image of any open set of the form {v ∈ NL(X,x) / a < v(f) < b}, where a, b ∈ Q,
1 ≤ a < b and f ∈ m, is open in RZ(X,x). The openness of such a subset will follow once
we have proved that the subsets

U>α = {ν ∈ RZ(X,x) / α < π(ν)(f) ≤ +∞}

and

U<α = {ν ∈ RZ(X,x) / π(ν)(f) < α}

are open subsets of RZ(X,x) for any rational number α ≥ 1 and any non zero f ∈ m. We
shall only prove that U>α is open. The same arguments show that U<α is also open. In
order to prove that U>α is open, for any ν ∈ U>α we build an open neighborhood U of ν
in RZ(X,x) contained in U>α.

Pick α = p/q with p, q coprime integers, p ≥ q > 0 and a non zero f ∈ m. We denote
by φ : X ′ → SpecR the blowing-up of SpecR at its closed point. Let ν be a valuation in
U>α.

Case 1: π(ν)(f) = +∞. We consider the normalized blowing-up η : Y → X ′ of
(mN + (f)) · OX′ , with N > α. The composed morphism ψ = φ ◦ η : Y → X is a
proper birational morphism that is an isomorphism over X \ {x} and ψ−1(x) is purely of
codimension one. Let c : RZ(X,x) → Y be the continuous map which associates to any
valuation in RZ(X,x) its center in Y .

Observe that y = c(ν) is contained the strict transform of {f = 0}. Indeed, the hy-
pothesis on π(ν)(f) implies that the center z′ of ν ′∗ in X ′ is contained in {f = 0}. Since
ν ′∗ is not centered in the point x ∈ X, we deduce that z′ is not contained in the center
of the blowing-up η. Hence c(ν ′∗) (which is the strict transform of z′) is contained in the
strict transform of {f = 0} and therefore y is also contained in that strict transform.

Pick any irreducible component E of ψ−1(x) that contains y. Let g ∈ OX,x be such

that (g) · OY,y = m · OY,y. Then (gN ) · OY,y = (mN + (f)) · OY,y, since otherwise f would

generate (mN + (f)) · OY,y and this is impossible because the strict transform of {f = 0}
contains y. We conclude that gN divides f in OY,y. Therefore

νE(m) = νE(g) ≤
νE(f)

N
<
νE(f)

α
,

where νE denotes the divisorial valuation defined by E. This means that all the irreducible
components of ψ−1(x) containing the point y verify π(νE) ∈ U>α.

Take an open neighborhood U ⊂ Y of y which is strictly contained in EG \ (EG ∩D),
where EG is the union of all the irreducible components of ψ−1(x) containing y and D
is the union of the remaining ones. Let us prove that U = c−1(U) is an open subset of
RZ(X,x) which satisfies the desired properties.

It is an open set since U is open and c is continuous, and it contains ν by construction.
Finally we show that U is contained in U>α. Take µ ∈ U and set z = c(µ∗). The center of
µ in Y belongs to U , so that z is also in U . Since the center of µ∗ in X is the point x, there
exists E in EG such that z belongs to E. Pick g ∈ OX,x such that (g) · OY,z = m · OY,z.
We have π(νE) ∈ U>α, so νE(f

p/gq) > 0 and fp/gq belongs to mY,z (note that fp/gq is
without indeterminacy). In particular, µ∗(f

p/gq) > 0 and we deduce that π(µ)(f) > α
as required.
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Case 2: π(ν)(f) < +∞. We replace the birational morphism η : Y → X ′ above by
the normalized blowing-up of (mp + (f q)) · OX′ . Abusing notation, we denote by η this
birational morphism. Write ψ : Y → X for the composed birational morphism as before
and c : RZ(X,x)→ Y for the center map.

Denote y∗ = c(ν∗) and pick g ∈ OX,x such that (g) · OY,y∗ = m · OY,y∗ . By construction
either f q/gp or gp/f q are regular at the point y∗. Since ν ∈ U>α we deduce that f q/gp

must vanish at y∗.
We say that an irreducible component E of ψ−1(x) is nice when the image by the map

π of the divisorial valuation νE defined by E belongs to U>α. It is bad otherwise. We may
assume that y∗ belongs at least to one nice component. Otherwise it suffices to consider
the blowing-up Y ′ → Y of Y with respect to the sheaf of ideals defining y∗. The center
of ν∗ in Y ′ must be in the newly created exceptional divisor, all of whose components are
nice because f q/gp has to vanish on them.

Let EN (resp. EB) be the union of all nice (resp. bad) components containing y∗ and
D the union of the irreducible components of ψ−1(x) which do not contain y∗. We denote
by IN (resp. IB) the sheaf of ideals defining EN (resp. EB), and for any integer l ≥ 1 we
consider the normalized blowing-up φl : Yl → Y of the sheaf of ideals I lN + IB.

Claim: For l large enough, the center of ν∗ in Yl does not belong to the strict transform
of any bad component.

Proof of the claim. We fix l ≥ 1, and suppose that the center z of ν∗ in Yl belongs to the
strict transform of some bad component. This means that (I lN + IB) · OYl,z = I

l
N · OYl,z.

Denote JB = IB · OYl,z and JN = IN · OYl,z. This gives ν∗(JB) ≥ l ν∗(JN ) > 0. If ν∗ is a
rank one valuation, then l is bounded and this ends the proof. Suppose that ν∗ has rank
larger than one. Since ν ′∗ is not centered in x ∈ X, we have ν ′∗(JB) = ν ′∗(JN ) = 0. This
implies that ν∗(JB) and ν∗(JN ) belong to the convex subgroup of Φν∗ where ν∗ takes its
values. This subgroup has rank one, so we conclude again that l is bounded. �

Let us fix an l for which the claim applies. Then we consider the complement U in Yl
of the union of the strict transforms of EB and D. Let

U = {µ ∈ RZ(X,x) such that the center of µ in Yl belongs to U} .

This is an open set since U is open, and it contains ν since the center of ν is included in
the one of ν∗ which belongs to U . In order to complete the proof, we now show that U is
contained in U>α.

Take µ ∈ U and denote by z the center of µ∗ in Yl. The center of µ in Yl belongs to U ,
so that z is also in U . Since the center in X of µ∗ is the point x, we deduce that either
z belongs to the strict transform of E for some E in EN or z belongs to the exceptional
locus of φl. Suppose that the first happens. Pick g ∈ OX,x such that (g) ·OYl ,z = m ·OYl,z.
Since E is a nice component, νE(f

p/gq) > 0 and fp/gq belongs to mYl,z (note that fp/gq

is without indeterminacy). Therefore, π(µ)(f) > α as required. If z belongs to the
exceptional locus of φl, then c(µ∗) is φl(z) ∈ EN and we also have π(µ)(f) > α. �

Let πX′ : X ′ → X be a proper birational map which induces an isomorphism over
X \ {x}. The map spX′ : L(X,x) → X ′ factors through NL(X,x), so we obtain an
anticontinuous map from NL(X,x) to X ′. We call again spX′ this map and cX′ the
continuous map which associates to any point of RZ(X,x) its center in X ′.

Remark 2.14. Let πX′ : X ′ → X be as in the previous paragraph. Observe that the
equality cX′ = spX′ ◦ π does not hold in general. Indeed, consider the sequence ν1, . . . , νd
of valuations in RZ(X,x) built in the proof of Proposition 2.3. We keep the notations
introduced there and denote νd by ν. The valuation ν ∈ RZ(X,x) has rank d, hence
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tr.degkkν = 0 (Abhyankar’s inequality). As a consequence, the center of ν in any variety
dominating X by a proper birational map is a closed point. However, the center of

π(ν) = ν1
ν1(mX,x)

in X̃ is the prime divisor E1.

3. Regular case

This section is devoted to the proof of Theorem A (see Section 1). In the first subsection
we show the equivalence between assertions (2) and (3) (Theorem 3.2) and in the second
one, the equivalence between (1) and (3) (Theorem 3.5).

For the rest of this section, x ∈ X is a closed point at whichX is analytically irreducible.
We denote by R the local ring of X at x and by m its maximal ideal. By assumption the

m-adic completion R̂ of R is an integral domain. We call m̂ the maximal ideal of R̂ and

K̂ its fraction field.

3.1. Homemorphism type of NL(X,x). The key observation is the following:

Proposition 3.1. Let ı : R →֒ R̂ be the natural inclusion. The map

ı̂ : V(R̂, m̂) → NL(X,x)
ν̂ 7→ ν̂ ◦ ı

is a homeomorphism.

Proof. The map ı̂ is a continuous mapping from a quasi-compact space into a Hausdorff
space, so it is enough to prove that ı̂ is a bijection.

Take ν ∈ NL(X,x) and set Γν = ν(R)\{+∞}. Consider a nonzero f ∈ R̂ and a Cauchy
sequence (fn)

∞
n=1 in R converging to f . If the sequence (ν(fn))

∞
n=1 is not bounded above

by an element of Γν , then we set ν̂(f) = +∞. Now suppose that there exists an upper
bound in Γν for the sequence (ν(fn))

∞
n=1. Consider the subset

Λ =
{
β ∈ Γν / ∀ n ∃ n

′ > n such that ν(fn′) ≤ β
}
.

It is well known (see [28, Appendix 3]) that since R in noetherian, Γν is well ordered. By
hypothesis Λ is not empty, so we may consider the smallest element α of Λ. If α = 0 then
we deduce that ν(fn) = 0 for all n large enough and we set ν̂(f) = 0. Assume that α > 0.
Since Γν does not contain any infinite bounded sequence (see [4, Lemma 3.1]), the set
{β ∈ Γν / β < α} is finite. Let α′ ∈ Γν be the immediate predecessor of α. By definition
of α, the element α′ does not belong to Λ. Hence ν(fn) > α′ for all n large enough, that
is, ν(fn) ≥ α for n ≫ 0. We deduce that ν(fn) = α for all n large enough and we set
ν̂(f) = α.

The definition of ν̂ does not depend on the choice of the Cauchy sequence. Moreover,
if (ν(fn))

∞
n=1 is not bounded then it tends to infinity. It is straightforward to verify that

ν̂(f) = lim
n→+∞

ν(fn) defines a semivaluation of V(R̂, m̂) such that ı̂(ν̂) = ν. In order to

end the proof we need to show the uniqueness of ν̂.

Take µ̂ ∈ V(R̂, m̂) such that ı̂(µ̂) = ν. For any f ∈ R̂ we can find a Cauchy sequence
(fn)

∞
n=1 in R converging to f such that f − fn ∈ m̂n for any n ≥ 1. Since µ̂(m̂) = 1, then

for any n we have the inequalities µ̂(f − fn) ≥ n and

µ̂(f) ≥ min {µ̂(f − fn), µ̂(fn)} ≥ min {n, ν(fn)} .

If µ̂(f) = α ∈ R then it follows that ν(fn) = α for every n > α. Suppose now that
µ̂(f) = +∞. If the sequence (ν(fn))

∞
n=1 is bounded above then there exists β such that

µ̂(f − fn) = min {µ̂(f), ν(fn)} = ν(fn) ≤ β for all n ≥ 1, which is a contradiction. Hence

µ̂(f) = ν̂(f) for all f ∈ R̂. �
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We are now in position to prove:

Theorem 3.2. Let X,Y be two algebraic varieties defined over the same algebraically
closed field k. For all regular closed points x ∈ X, y ∈ Y , the spaces NL(X,x) and
NL(Y, y) are homeomorphic if and only if X and Y have the same dimension.

Proof. It follows from Proposition 2.11 that X and Y have the same dimension whenever
NL(X,x) and NL(Y, y) are homeomorphic. Conversely, under our assumptions on the
points x and y, if X and Y have the same dimension then the formal completions of

the local rings OX,x and OY,y are isomorphic as k-algebras. Hence V(ÔX,x, m̂X,x) and

V(ÔY,y, m̂Y,y) are naturally homeomorphic. Proposition 3.1 implies that NL(X,x) and
NL(Y, y) are homeomorphic. �

3.2. Homeomorphism type of RZ(X, x). We now turn to the case of Riemann–
Zariski spaces. One should note that, unlike the case of NL(X,x), extending a valuation

of RZ(X,x) to a valuation of K̂ whose valuation ring dominates R̂ can not be done in
general in an unique way. The approach which led to the proof of Theorem 3.2 seems
difficult to carry out successfully in this setting. Instead, we focus on the extension of a

valuation to the henselization R̃ of R. We are assuming that R̂ is an integral domain, so

R̃ is also an integral domain. We call K̃ the fraction field of R̃.
Since R is a local noetherian domain which is excellent we are under the hypothesis of

the following theorem:

Theorem 3.3 ([14], Theorem 7.1). Let A be a local noetherian excellent domain with
fraction field K and ν a valuation of K whose valuation ring dominates A. Let Ae be
a local étale A-algebra contained in the henselization of A. There exists a unique prime
ideal H of Ae such that H ∩ A = (0) and ν extends to a valuation νe of the fraction
field L of Ae/H whose valuation ring dominates that ring. Furthermore, νe is the unique
extension of ν to L with this property, its group of values is the same as the one of ν, and
H is a minimal prime of Ae.

Take a valuation ν ∈ RZ(X,x). Let us apply the previous result to ν. Consider a local

étale R-algebra Re contained in R̃. Since R̂ is a domain, so is Re and we denote by Ke its
fraction field. Since the zero-ideal is the unique minimal prime of Re, the last assertion
of Theorem 3.3 implies that H = (0). We conclude that ν extends in a unique way to a
valuation νe of Ke whose valuation ring dominates Re. Moreover, νe has the same value
group as ν.

We denote by R̃Z(X,x) the set of all valuations of K̃ whose valuation ring dominates

R̃, endowed with the topology induced by the Zariski topology.

Proposition 3.4. Let ρ : K →֒ K̃ be the natural inclusion. The map

ρ̃ : R̃Z(X,x) → RZ(X,x)
ν̃ 7→ ν̃ ◦ ρ

is a homeomorphism.

Proof. The map ρ̃ is clearly a continuous map because the valuation ring of ρ̃(ν̃) equals

K ∩Rν̃ for any ν̃ ∈ R̃Z(X,x). Let us now show that ρ̃ is bijective.

Given ν ∈ RZ(X,x), there exists a unique ν̃ ∈ R̃Z(X,x) such that ρ̃(ν̃) = ν. To see

this, take a nonzero f ∈ R̃. Since R̃ is the inductive limit of the system of equiresidual
local étale R-algebras, there exists such a R-algebra, say Re, such that f ∈ Re. We
define ν̃(f) = νe(f), where νe is the valuation of the fraction field of Re whose existence
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Theorem 3.3 guarantees. Since Re is a localization of a finite R-algebra, Re is exce-
llent (excellence is preserved by localization and any finitely generated algebra over an

excellent ring is excellent). If Re →֒ Re′ then we deduce that νe
′
(g) = νe(g) for all g in

Re. Therefore ν̃ is well defined and gives rise to a valuation of R̃Z(X,x). The uniqueness
of ν̃ follows directly from Theorem 3.3.

In order to complete the proof we need to show that ρ̃ is an open map. One only needs

to check that ρ̃(E(f)) is open in RZ(X,x) for every f ∈ K̃. Recall that E(f) is the set

of all µ ∈ R̃Z(X,x) such that f ∈ Rµ.

Pick an element f ∈ K̃. Since K →֒ K̃ is an algebraic field extension, we can consider
the minimal polynomial p(t) = tn + an−1t

n−1 + . . . + a0 ∈ K[t] of f . The set V of
all valuations ν ∈ RZ(X,x) such that ai ∈ Rν for all i ∈ {0, . . . , n− 1} is contained in

ρ̃(E(f)). Indeed, given ν ∈ V , if ν̃ is its extension to R̃Z(X,x) then we have the inclusions
R[a0, . . . , an−1] ⊆ Rν ⊆ Rν̃ . Since f is integral over R[a0, . . . , an−1] this yields f ∈ Rν̃ ,

that is, ν ∈ ρ̃(E(f)). Conversely, ρ̃(E(f)) ⊆ V . To see this, let us take µ ∈ R̃Z(X,x)
such that f ∈ Rµ and show that ρ̃(µ) ∈ V . We need to prove that ai ∈ Rµ for all
i ∈ {0, . . . , n− 1}.

Let L = K(f, α1, . . . , αn−1) be the splitting field of p(t) and µ an extension of ρ̃(µ) to L.
The coefficients of p(t) are symmetric polynomials functions of the roots f, α1, . . . , αn−1,
therefore to conclude that ai ∈ Rµ for any i ∈ {0, . . . , n− 1} is sufficient to verify that
αj ∈ Rµ for all j ∈ {1, . . . , n − 1}.

According to [28, Ch. VI §7, Corollary 3] every extension of µ to the field L can be
written as µ ◦ σ for σ in the Galois group Gal(L|K). The uniqueness of the extension to

K̃ implies the uniqueness of the extension to the subfield K(f), so µ(σ(f)) = µ(f) for
every σ ∈ Gal(L|K) and µ(αj) ≥ 0 for all j ∈ {1, . . . , n}. �

We now prove the second main result of this section.

Theorem 3.5. Let X,Y be two algebraic varieties defined over the same algebraically
closed field k. For all x ∈ X, y ∈ Y regular closed points, the spaces RZ(X,x) and
RZ(Y, y) are homeomorphic if and only if X and Y have the same dimension.

Proof. If RZ(X,x) and RZ(Y, y) are homeomorphic then it follows by Proposition 2.3 that
X and Y have the same dimension. Let us now prove the converse.

Under our assumptions on the points x and y, if X and Y have the same dimension
then the henselizations of OX,x and OY,y are isomorphic as k-algebras. We have then a

natural homeomorphism between R̃Z(X,x) and R̃Z(Y, y). To end the proof it suffices to
apply Proposition 3.4. �

When we can freely make use of the existence of resolutions of singularities, Theorem 3.5
allows us to show that, in the regular case, the Riemann–Zariski space of X at x has a
property with the flavour of self-similarity in fractals. More precisely, following [2] we say
that a topological space Z is a self-homeomorphic space if for any non empty open subset
U ⊆ Z there is a subset V ⊆ U such that V is homeomorphic to Z.

Corollary 3.6. Let X be an algebraic variety defined over an algebraically closed field
k of characteristic zero. If x ∈ X is a regular closed point, then RZ(X,x) is self-
homeomorphic.

Proof. Suppose that X has dimension d > 1 (otherwise the result is clear). Theorem 3.5
implies that RZ(X,x) is homeomorphic to the Riemann–Zariski space of the d-dimensional
affine space over k at the origin. Therefore it suffices to show that Z = RZ(Ad

k, 0) is self-
homeomorphic.
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To see this, take an open subset U of Z. Without loss of generality we may assume
that U is a basic open subset, that is, U = {ν ∈ Z / f1/g1, . . . , fm/gm ∈ Rν} where fi
and gi are polynomials in k[x1, . . . , xd] and gi 6= 0 for all i = 1, . . . ,m. We need to show
that there exists V ⊆ U homeomorphic to Z. Let ψ : Y → X be the blowing-up of Ad

k
with respect to the ideal (x1, . . . , xd) ·

∏
1≤i≤m(fi, gi) of k[x1, . . . , xd]. Pick a resolution of

singularities π′ : X ′ → Y and denote π = ψ ◦ π′. We choose a closed point x′ ∈ π−1(0) in
an affine chart W ⊆ X ′ such that fi/gi ∈ OX′(W ) for all i = 1, . . . ,m. By construction
RZ(X ′, x′) ⊆ U . Since x′ is regular, using again Theorem 3.5 we see that RZ(X ′, x′) is
homeomorphic to Z. Hence it suffices to take V = RZ(X ′, x′) to complete the proof. �

4. Graphic tools

This section provides a short introduction to trees and graphs. They are both important
tools in the treatment of the two-dimensional normal case.

4.1. Trees. For us a tree is a rooted non-metric R-tree in the sense of [9]. We refer for
details to Sections 3.1 and 7.2 in loc. cit. The fact that the last condition in the following
definition must be explicitly stated was remarked in [20, Definition 3.1].

A tree is a pair (T ,≤) consisting of a set T and a partial order ≤ on T such that,

• there exists a unique smallest element τ0 in T (called the root of T );
• if τ ∈ T , then {σ ∈ T / σ ≤ τ} is isomorphic (as ordered set) to a real interval;
• every totally ordered convex subset of T is isomorphic (as ordered set) to a real interval;
• every non-empty subset of T admits an infimum in T ;

In what follows, if (T ,≤) is a tree then T is assumed to be equipped with the weak
tree topology, described as follows. Given two elements τ, τ ′ in T , we denote by τ ∧ τ ′ the
infimum of {τ, τ ′} and we call the subset

[τ, τ ′] =
{
σ ∈ T / τ ∧ τ ′ ≤ σ ≤ τ

}
∪
{
σ ∈ T / τ ∧ τ ′ ≤ σ ≤ τ ′

}

a segment. If τ ∈ T , we define an equivalence relation on the set T \{τ} by setting τ ′ ≡τ τ
′′

if and only if [τ, τ ′] ∩ [τ, τ ′′] 6= {τ}. The equivalence classes are called the tangent vectors
at τ and each of them determines an open subset of T , Uτ (τ

′) = {σ ∈ T \ {τ} : σ ≡τ τ
′}.

The weak tree topology is the topology generated by all these subsets when τ ranges over
T . Thus an open subset of T is a union of finite intersections of subsets of the form
Uτ (τ

′).
We shall use several times the following lemma whose proof is a direct verification from

the definitions.

Lemma 4.1. Let (T ,≤) be a tree with root τ0 and let τ ′0 ∈ T . Given τ, τ ′ ∈ T , define
τ ≤′ τ ′ if and only if [τ ′0, τ ] ⊆ [τ ′0, τ

′]. Then (T ,≤′) is a tree with root τ ′0 and segments
in (T ,≤) coincide with segments in (T ,≤′). In particular the weak tree topologies on T
induced by ≤ and ≤′ coincide.

Given two different points τ, τ ′ of a tree (T ,≤), for any σ ∈ [τ, τ ′] \ {τ, τ ′}, Uσ(τ) and
Uσ(τ

′) are disjoint open neighborhoods of τ and τ ′, thus T is Hausdorff. Furthermore,
the segment [τ, τ ′] endowed with the topology induced from that of T is homeomorphic
to [0, 1] endowed with the induced topology from that of R. Therefore any tree is arcwise
connected. Moreover it is uniquely arcwise connected :

Lemma 4.2. Let (T ,≤) be a tree and let τ and τ ′ be two different points of T . The
image of any injective continuous mapping γ : [0, 1] → T with γ(0) = τ and γ(1) = τ ′ is
the segment [τ, τ ′].
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Proof. Consider γ([0, 1]) equipped with the induced topology from that of T . Since
[0, 1] → γ([0, 1]) is a homeomorphism, if we have [τ, τ ′] ⊆ γ([0, 1]) then the inverse im-
age of [τ, τ ′] under γ is a connected subset of [0, 1] containing 0 and 1. Hence we have
[τ, τ ′] = γ([0, 1]) as desired. Let us therefore show that [τ, τ ′] ⊆ γ([0, 1]).

By choosing a different partial ordering on T , we can assume without loss of generality
that τ is the root of T (see Lemma 4.1). In view of [9, Corollary 7.9], the mapping f
which sends t ∈ [0, 1] to γ(t) ∧ τ ′ ∈ [τ, τ ′] is continuous. Take σ ∈ [τ, τ ′] different from τ
and τ ′. Define Σ to be the set of all t ∈ [0, 1] such that f(t) = σ. On the one hand, Σ is
nonempty thanks to the Intermediate Value Theorem. On the other hand, Σ is closed, so
s = inf Σ belongs to Σ. In order to complete the proof it suffices to show that γ(s) = σ.

We proceed now by contradiction. Suppose that γ(s) 6= σ. The basic open subset
Uσ(γ(s)) of T is mapped to σ by f , hence U = Uσ(γ(s)) ∩ γ([0, 1]) is an open subset
of γ([0, 1]) containing γ(s) such that f(U) = {σ}. It follows that there exists an open
neighborhood of s in [0, 1] whose image by f is reduced to σ, contradicting the minimality
of s. �

More generally, in the sequel we will say that a topological space Z is a tree if there
exists a partial order ≤ on Z such that (Z,≤) is a tree and the weak tree topology
coincides with the topology of Z.

Corollary 4.3. Any arcwise connected subspace of a tree is a tree.

Proof. Let (T ,≤) be a tree and S ⊆ T an arcwise connected subspace of T . As previously
noted, we can assume that the root τ0 of T belongs to S. Since S is arcwise connected, by
Lemma 4.2, the segment [τ0, σ] of T is contained in S for any σ ∈ S. It is straightforward
to deduce from this that S together with the restriction of the partial ordering ≤ satisfies
the axioms of a tree and that the weak tree topology it carries coincides with the topology
induced from that of (T ,≤). �

Let us go back to the valuative tree V of Subsection 2.2. It is shown in [9, Section 3.2]
(see also [20]) that V is a tree with the partial ordering ≤ defined by ν ≤ ν ′ if and only
if ν(f) ≤ ν ′(f) for all f ∈ C[[x, y]]. The proof relies on the encoding of valuations by key
polynomials (see [9, Ch. 2]). This structure was extended in [12] to the case of a regular
closed point of a surface. In turn, the relative valuative tree Vz is also a tree. We refer to
[9, Section 3.9] for details.

4.2. Graphs. There are several definitions of a graph. Here we have adopted the view
point of [22]. A graph Γ consists of two sets V (Γ) 6= ∅ and E(Γ), whose elements are
respectively called the vertices and the edges of Γ, and two maps,

• E(Γ)→ E(Γ), e 7→ ē, such that e 6= ē and ¯̄e = e;
• E(Γ)→ V (Γ), e 7→ ι(e).

Therefore any edge e ∈ E(Γ) comes with a reverse edge ē. For any edge e we call ι(e)
and ι(ē) the endpoints of e. We also say that e is incident to ι(e) and ι(ē), or e joins ι(e)
to ι(ē). Two vertices are adjacent if there exists an edge incident to both (a vertex may
be adjacent to itself).

Given u, v ∈ V (Γ), a path of length n ≥ 1 joining u to v is a sequence of vertices and
edges of Γ of the form u = v0, e1, v1, e2, . . . , en, vn = v where vi−1 = ι(ei) and vi = ι(ēi)
for i = 1, . . . , n. If ei 6= ēi+1 for i = 1, . . . , n− 1, then the path is reduced. By convention
we shall call a path of length zero any sequence of the form u, where u is a vertex of Γ.
A path of length zero is always reduced. A graph is connected if any two vertices can be
joined by a path. Throughout this section by graph we mean a connected graph which is
in addition finite, which means that its sets of vertices and edges are both finite.
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A graph Γ is a combinatorial object, however it can also be considered as a finite
one-dimensional CW-complex. In order to do this, we endow V (Γ) and E(Γ) with the
discrete topology and the unit interval [0, 1] with the topology induced from that of R.
The topological space |Γ|, which we call the topological realization of Γ, is the quotient
space of the disjoint union V (Γ) ⊔ (E(Γ) × [0, 1]) under the identifications (e, 0) ∼ ι(e)
and (e, t) ∼ (ē, 1− t) for any e ∈ E(Γ) and t ∈ [0, 1]. Let us denote by q the quotient map
and, for any e ∈ E(Γ), call |e| = q({e}× [0, 1]) an edge of |Γ|. Then |e| = |ē| and any edge
of |Γ| is homeomorphic either to [0, 1] or the unit circle S1. The degree of a vertex v of a
graph Γ is the number of edges e of Γ such that ι(e) = v.

A morphism from a graph Γ to a graph Γ′ is a mapping γ from V (Γ) ∪ E(Γ) to
V (Γ′) ∪ E(Γ′) which sends vertices to vertices and edges to edges in such a way that

γ(ē) = γ(e) and γ(ι(e)) = ι(γ(e)) for any e ∈ E(Γ). Note that this implies that γ(ι(ē)) =

ι(γ(e)) for any e ∈ E(Γ). An isomorphism of graphs is a bijective morphism of graphs.
We say that a graph Γ is a subgraph of Γ′ if V (Γ) ⊆ V (Γ′), E(Γ) ⊆ E(Γ′) and the inclusion
V (Γ) ∪ E(Γ) →֒ V (Γ′) ∪ E(Γ′) is a morphism. If this is verified, then we have a natural
closed embedding |Γ| →֒ |Γ′|.

A graph Γ is a tree if given any two vertices u, v of Γ there exists a unique reduced
path joining u to v. The topological realization of Γ is then a tree in the sense introduced
before. More precisely, the choice of a vertex of Γ determines a unique tree structure on
|Γ|:

Let us choose a vertex of Γ and call it v0. Take a point p = q((e, t)) = q((ē, 1 − t))
of |Γ|, p 6= v0. There exists a unique edge b ∈ {e, ē} for which we can find a reduced
path v0, e1, v1, . . . , vn−1 = ι(b), en = b, vn = ι(b̄). We may assume that b = e. Since
Γ is a tree, we have in addition that any two vertices in the path are different, so it
induces an injective continuous mapping αp : [0, 1] → |Γ| such that αp(0) = v0 and
αp(1) = p. We set αv0(u) = v0 for all u ∈ [0, 1]. It suffices to declare p ≤ p′ if and only if
αp([0, 1]) ⊆ αp′([0, 1]).

Given a graph Γ which is not a tree, following the notations of [23] we associate to Γ
its core (see also the definition of the skeleton of a quasipolyhedron given in [1, p. 76]).

Definition 4.4. Let Γ be a graph. If Γ is not a tree, then its core is the subgraph of Γ
obtained by repeatedly deleting a vertex of degree one and the edges incident to it (which
are exactly two, one being the reverse of the other) until no more vertices of degree one
remain. We denote the core of Γ by Core (Γ). By convention we define the core of a tree
to be the empty set and we set |∅| := ∅.

We have the following topological characterization:

Lemma 4.5. Let Γ be a graph. The complement of |Core (Γ) | in |Γ| is the set of points
p ∈ |Γ| which admit an open neighborhood U ( |Γ| whose closure U in |Γ| is a tree and
whose boundary is reduced to a vertex of Γ.

Proof. Take p ∈ |Γ|. Let us suppose first that U ( |Γ| is an open neighborhood of p
verifying the hypothesis of the Lemma. Note that U = U ⊔ {v} for some v ∈ V (Γ).
Since the boundary of U is reduced to v, if q({e} × (a, b)) is contained in U for some
0 ≤ a < b ≤ 1 and e ∈ E(Γ), then |e| is entirely contained in U . From this and the
fact that a tree is connected it follows that there exists a subgraph Γ′ of Γ such that
U = |Γ′|. The graph Γ′ is clearly a tree. Moreover, recall that if u ∈ V (Γ) belongs to U
then |e| ⊆ U for any edge e of Γ such that ι(e) = u and ι(ē) 6= v. Therefore we have that
E(Γ′) ∩ E(Core (Γ)) = ∅ and V (Γ′) ∩ V (Core (Γ)) is either empty or equal to {v}, which
implies that p does not belong to the topological realization of Core (Γ).
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Assume now that p /∈ |Core (Γ) |. Consider e ∈ E(Γ) \ E(Core (Γ)) such that p ∈ |e|.
There exists a unique subgraph Γ′ of Γ such that e ∈ E(Γ′), the graph Γ′ has a unique
vertex v′ of degree one which is in addition an endpoint of e, and Core (Γ) = Core (Γ′). We
may suppose that v′ = ι(ē). We can find a unique path v0, e1, v1, . . . , vn, en = e, vn = v′

in Γ′ of length n ≥ 1 where v0 ∈ V (Core (Γ)) and vi, ei /∈ E(Core (Γ)) for 1 ≤ i ≤ n. The
connected component of |Γ| \ {v0} which contains |e| is an open neighborhood of p, its
closure is a tree and its boundary is the point v0. �

We may thus think of Γ as its core with some disjoint trees attached to it. Observe also
that |Γ| admits a deformation retraction to |Core (Γ) |. We introduce now the equivalence
relation in the set of graphs on which the characterization given in Theorem B relies.

Definition 4.6. Two graphs Γ and Γ′ are equivalent if |Core (Γ) | is homeomorphic to
|Core (Γ′) |.

Example 4.7. Note that this equivalence relation is stricter than the homotopy equiva-
lence. The three graphs consisting of two triangles sharing a vertex, two triangles sharing
a side, and a line segment with a triangle attached to each endpoint, have all homotopy
equivalent topological realizations but they are pairwise non-equivalent.

The equivalence relation of Definition 4.6 may also be stated in terms of elementary
modifications of graphs.

Definition 4.8. We define two kinds of elementary modifications in a fixed graph Γ:

• An expansion at a vertex u ∈ V (Γ), that is, adding a new vertex v to V (Γ) and two
edges e, ē to E(Γ) such that ι(e) = u and ι(ē) = v.
• A subdivision of an edge e ∈ E(Γ), which consists of the addition of a new vertex v to
V (Γ), the addition of new edges e′, e′′ (and their reverses) to E(Γ) joining ι(e) to v and
v to ι(ē) respectively, and the deletion of e and ē.

Observe that the subdivision of an edge is an operation on a graph whose result is
still a graph but which does not induce a morphism. These modifications encode the
blowing-up centered at a point of a simple normal crossings divisor E on a non singular
surface Y .

More precisely, suppose that the irreducible components of E are smooth and the
intersection of any two of them is at most a point. To such a divisor E we attach a
graph ΓE, its dual graph, whose vertices are in bijection with the irreducible components
of E and where two vertices are adjacent if and only if the corresponding irreducible
components of E intersect. Observe that ΓE has no loops (ι(e) 6= ι(ē) for any edge e) and
no multiple edges (if two different edges e, e′ have the same endpoints then e′ = ē).

Let π : Y ′ → Y be the blowing-up of Y centered at a point p of E. Denote by E′

the total transform of E under π. If p is a free point, that is, p belongs to a single
irreducible component D of E, then the dual graph ΓE′ is the result of the expansion
of ΓE at the vertex associated to D. We may define and embedding |ΓE | →֒ |ΓE′ | and
a natural continuous retraction |ΓE′ | → |ΓE |. Otherwise, p is the intersection of two
irreducible components of E and it is called a satellite point. Then ΓE′ is obtained from
ΓE by subdividing any of the edges of ΓE associated to p. We have that |ΓE | is naturally
homeomorphic to |ΓE′ |.

We also consider any isomorphism of graphs as an elementary modification. The fol-
lowing result will be useful in Section 5.
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Proposition 4.9. Let Γ and Γ′ be two graphs. The following are equivalent:

(1) The graphs Γ and Γ′ are equivalent.
(2) There exist two finite sequences of elementary modifications

Γ = Γ0 → Γ1 → . . .→ Γn and Γ′ = Γ′
0 → Γ′

1 → . . .→ Γ′
m

such that Γn and Γ′
m are isomorphic.

Proof. Let Γ → ∆ be an elementary modification. Then Core (Γ) = ∅ if and only if
Core (∆) = ∅. In addition, if Core (Γ) 6= ∅ then the topological realizations of Core (Γ)
and Core (∆) are homeomorphic. Hence Γ and ∆ are equivalent graphs. From this
observations we deduce that (2) implies (1). Let us now show the converse.

Suppose that Γ and Γ′ are equivalent but not isomorphic. If Core (Γ) and Core (Γ′)
are both the empty set, then it suffices to consider expansions at vertices to prove the
result. Otherwise, observe that Γ (resp. Γ′) is obtained from Core (Γ) (resp. Core (Γ′))
either after a finite number of expansions at vertices or after an isomorphism of graphs.
Therefore we may restrict ourselves to the case Γ = Core (Γ) and Γ′ = Core (Γ′). We now
observe that the topological realizations of any two graphs are homeomorphic if and only
if they have isomorphic subdivisions. Since |Γ| and |Γ′| are homeomorphic, this ends the
proof. �

5. Normal surface singularity case

In this section we study the homeomorphism type of RZ(X,x) and NL(X,x) when
(X,x) is a normal surface singularity.

5.1. Largest Hausdorff quotient of RZ(X, x). Let us denote by H the largest Haus-
dorff quotient of RZ(X,x) and by q : RZ(X,x)→ H the quotient map. If f is a continu-
ous map from RZ(X,x) to a Hausdorff topological space Z, then by definition of the pair

(H, q), we have a unique continuous map f̃ from H to Z such that f̃ ◦ q = f . Observe
also that, since q is a continuous surjective map and RZ(X,x) is quasi-compact, H is
quasi-compact. Therefore, H is compact.

The purpose of this subsection is to prove the following:

Proposition 5.1. Let x be a normal point of a surface X and let π be the map from
RZ(X,x) to NL(X,x) defined in Subsection 2.3. With the previous notations, the map
π̃ : H→ NL(X,x) is a homeomorphism.

Proof. The map π̃ is a continuous surjective map from a quasi-compact space to a Haus-
dorff space. Hence to establish the result it is enough to show that π̃ is injective. Suppose
that π(ν) = π(ν ′) = v for some ν, ν ′ ∈ RZ(X,x). Let us prove that q(ν) = q(ν ′).

If v is a valuation of K then by construction ν and ν ′ are both in the closure of v in
RZ(X,x). Hence ν and ν ′ cannot be separated by disjoint open sets and as a consequence
they have the same the image under any continuous map to a Hausdorff space. We
conclude that q(ν) = q(ν ′).

We assume now that sv = v−1(+∞) is not reduced to zero. By the hypothesis on
the dimension, the valuations ν and ν ′ have necessarily rank two. Write ν = ν1 ◦ ν and
ν ′ = ν ′1 ◦ ν

′. Then we have that sv = OX,x ∩mν1 = OX,x ∩mν′1
( mX,x. The localization

(OX,x)sv is a local ring of dimension one with fraction field K. The fact that OX,x is

integrally closed implies that (OX,x)sv is also integrally closed, and therefore a valuation

ring of K. Since it is dominated by Rν1 and Rν′1
, we must have (OX,x)sv = Rν1 = Rν′1

,

that is, ν1 = ν ′1. So we conclude that there exists µ ∈ RZ(X) \ RZ(X,x) such that

ν = µ ◦ ν and ν ′ = µ ◦ ν ′. Now it suffices to observe that π(ν) = π(ν ′) means that the
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valuations ν and ν ′ are the same when restricted to the subring OX,x/(OX,x ∩mµ) of the

residue field kµ. Thus ν = ν ′ and then ν = ν ′. �

We give next a sketch of a proof that the map π̃ may not be injective in higher dimen-
sion. The following example was designed in collaboration with Charles Favre.

Example 5.2. Consider R = C[x1, x2, x3](x1,x2,x3) and denote by K its fraction field. Let

0 be the origin in A3
C = Spec C[x1, x2, x3]. Recall that by the order of a polynomial at

xi we refer to the largest power of xi which divides the polynomial. We define a rank two
valuation ν2 of K by setting

ν2(f) = (ν1(f), ordx2f1(0, x2, x3)) ∈ Z2
lex

for any nonzero f ∈ C[x1, x2, x3], where ν1(f) = ordx1f and f1 = x
−ν1(f)
1 f . Similarly, we

define ν ′1(f) = ordx2f , f2 = x
−ν′1(f)
2 f and

ν ′2(f) = (ν ′1(f), ordx1f2(x1, 0, x3)) ∈ Z2
lex.

Observe that ν2 and ν
′
2 both have center in R the prime ideal (x1, x2)R, and residue fields

isomorphic to C(x3). Let us denote ν the x3-adic valuation of C(x3). Then we get two
valuations of K of rank three, say ν = ν2 ◦ ν and ν ′ = ν ′2 ◦ ν, whose center in R is the
maximal ideal of R. We have ν, ν ′ ∈ RZ(A3

C,0) and by construction π(ν) = π(ν ′). Indeed,
their image by π is the semivaluation of R which maps f ∈ R to infinity if f ∈ (x1, x2)R,
and otherwise to ordx3f(0, 0, x3).

Let ψ : Y → A3
C be the blowing-up of A3

C centered at the line {x1 = x2 = 0} and let E
be the exceptional locus of ψ with its reduced structure. Both centers cY (ν) and cY (ν

′)
are closed points of Y . Indeed cY (ν) = ψ−1(0) ∩ γ and cY (ν

′) = ψ−1(0) ∩ γ′, where the
curves γ and γ′ are the centers of ν2 and ν ′2 in Y respectively. Let us explain briefly
how the fact that γ ∩ γ′ = ∅ should imply that ν and ν ′ are not identified in the largest
Hausdorff quotient H of RZ(A3

C,0). Since this is not essential to this article, we shall
only give a sketch of the proof, leaving the details to the interested reader.

Following [6] we consider NL(Y,E), which is the following topological space: take
sp−1

Y (E) \ (Y i ∩ ı−1(E)) with the topology induced from the topology of Y i, and then
its quotient space under the standard action of R>0. The space of germs of formal curves
centered at a point in E is naturally included in NL(Y,E).

Generalizing the construction of the map π in Subsection 2.3, one can build a continuous
map f : RZ(A3

C,0) → NL(Y,E). One then checks that ν (resp. ν ′) is mapped under f
to the formal germ of curve associated to γ (resp. γ′) at the point cY (ν) (resp. cY (ν

′)).
This implies that f(ν) 6= f(ν ′), and since NL(Y,E) is Hausdorff, we conclude that the
valuations ν and ν ′ give rise to different points in H.

The previous example suggests the following question.

Question 5.3. Is the space NL(X,x) the largest Hausdorff quotient of the projective
limit lim

←−p
p−1(x), where p : Y → X ranges over all proper birational morphisms that are

isomorphisms over X \ {x}?

5.2. The core of NL(X,x). Throughout this subsection we suppose that X is a normal
algebraic surface and x is the only singular point of X.

We say that a proper birational map πX′ : X ′ → X is a good resolution if X ′ is smooth
and the exceptional locus EX′ = π−1

X′ (x)red is a divisor with normal crossing singularities
such that its irreducible components are smooth and the intersection of any two of them
is at most a point.
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Since a good resolution πX′ : X ′ → X is proper and induces an isomorphism from
the open subset X ′ \ EX′ to the open subset X \ {x}, recall that any semivaluation of
NL(X,x) admits a center in X ′. Moreover, the map spX′ : NL(X,x) → X ′ which sends
any semivaluation to its center in X ′ is anticontinuous.

To any good resolution we attach a graph, its dual graph, which is the dual graph ΓEX′

of EX′ (for the definition, see Subsection 4.2). We denote ΓEX′ by ΓX′ .
The topological realization of any dual graph ΓX′ can be embedded into NL(X,x) as

a closed subspace by generalizing the construction given in the Step 2 of the proof of
Proposition 2.11. We call iX′ : |ΓX′ | →֒ NL(X,x) this embedding and ΣX′ the image of
|ΓX′ | under iX′ . Furthermore, we may define a natural continuous retraction map rX′ :
NL(X,x) → ΣX′ . One can show that there is actually a strong deformation retraction
from NL(X,x) onto ΣX′ , see [1, 6, 25]. Keeping the notations introduced in the proof
cited above, the retraction rX′ is defined as follows:

Given ν ∈ NL(X,x), if ν ∈ ΣX′ then we set rX′(ν) = ν. Suppose that ν does not
belong to ΣX′ and denote p = spX′(ν). Observe that p is a closed point of X ′. If
p is the intersection of two irreducible components E1 and E2 of EX′ , we take local
coordinates (z1, z2) at p such that E1 = {z1 = 0} and E2 = {z2 = 0} and we map ν to the
unique valuation νt := ν(t/b1,(1−t)/b2) ∈ ΣX′ such that νt(z1) = ν(z1) and νt(z2) = ν(z2).
Otherwise the point p belongs to a single irreducible component E of EX′ and we map ν
to the normalized divisorial valuation defined by E.

If πX′′ : X ′′ → X is a good resolution which dominates πX′ : X ′ → X, then πX′′

is obtained by composing πX′ with a finite sequence of point blowing-ups. Then |ΓX′ |
embeds in |ΓX′′ | and we have a natural continuous retraction |ΓX′′ | → |ΓX′ | (see the
discussion before Proposition 4.9). We have that ΣX′ ⊆ ΣX′′ and the restriction rX′,X′′ of
rX′ to ΣX′′ is the natural continuous retraction we may consider from ΣX′′ to ΣX′ . One
can also show that these maps are compatible (i.e. rX′ = rX′,X′′ ◦ rX′′) and the induced
continuous mapping NL(X,x)→ lim←−ΣX′ is a homeomorphism. For details, see [16].

The following proposition is a consequence of results of [9] (see also [6, Proposition 9.5
(i)] and the tree structure of Berkovich discs in [1, Chapter 4]).

Proposition 5.4. Let πX′ : X ′ → X be a good resolution and let E be an irreducible
component of the exceptional locus EX′ . For any closed point p ∈ E which is a regular
point of EX′ , the closure of U(p) = sp−1

X′ (p) in NL(X,x) is a tree whose boundary is
reduced to the normalized divisorial valuation νE associated to E.

Proof. The closure U(p) of U(p) in NL(X,x) equals U(p)
⊔
{νE} and the boundary of

U(p) is reduced to the semivaluation νE . We now prove that U(p) is a tree.
First of all observe that we are not assuming that πX′ factors through the normalized

blowing-up of x ∈ X, so we could have some embedded components. Therefore we write
the pull-back of the coherent sheaf of ideals m of OX defining the point x as OX′(−C)⊗OX′

I, where C is a divisor on X ′ with supp C = EX′ and I is a coherent sheaf of ideals in
OX′ with finite co-support. Choose local coordinates (z, z′) at p such that E = {z = 0}.
The ideal Ip of OX′,p is either a primary ideal or the ring OX′,p.

Suppose that Ip is a primary ideal of OX′,p. Then mX,xOX′,p = (z)bE · Ip. Hence in the
open subset U(p) the normalization ν(mX,x) = 1 translates into ν(z)bE + ν(Ip) = 1. We

denote by Îp the extension of Ip in k[[z, z′]]. Passing to the completion, we can identify
U(p) with the subspace of V(k[[z, z′]]) consisting of all semivaluations ν : k[[z, z′]] →
[0,+∞] whose restriction to k∗ is trivial, which are centered in the maximal ideal (z, z′)

and such that ν(z)bE + ν(Îp) = 1. If ν(z) = 0 for some ν ∈ U(p), since there exists
n ≥ 1 such that zn ∈ Ip we would get 0 = ν(zn) ≥ ν(Ip) = 1, which is a contradiction.
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Therefore ν(z) > 0 for all ν ∈ U(p) and we have a well defined map ϕ from U(p) to the
relative valuative tree Vz. It suffices to define ϕ(νE) = ordz and

ϕ(ν) =
bE ν

1− ν(Îp)
=

ν

ν(z)

for any ν ∈ U(p). In the case where Ip is the ring OX′,p, we have ν(Ip) = 0 and we may

consider ϕ : U(p)→ Vz defined exactly as before. We claim that ϕ is a homeomorphism.
Indeed, the map from Vz to U(p) which sends ordz to νE and ν ∈ Vz \ {ordz} to

ν
ν(mX,x)

is the inverse map of ϕ. Since NL(X,x) and Vz are both endowed with the topology of
pointwise convergence, it is straightforward to verify that they are both continuous maps.

According to [9, Proposition 3.6.1], Vz is a tree rooted at ordz. From this fact and the
existence of ϕ we deduce that U(p) is a tree (rooted at νE) and this finishes the proof. �

The key observation is the following:

Proposition 5.5. Let πX′ : X ′ → X be a good resolution. Any fiber r−1
X′ (ν) of the natural

retraction rX′ : NL(X,x)→ ΣX′ is a tree whose boundary is reduced to the semivaluation
ν.

Proof. Let ν be a semivaluation in ΣX′ . Assume first that ν is the image under iX′ of a
vertex of ΓX′ and denote by E the irreducible component of the exceptional locus EX′

which determines ν. Consider the set F of all closed points p ∈ E which are not singular
points of EX′ . Then r−1

X′ (ν) = {ν}
⊔

p∈F U(p), where U(p) is the open subset of NL(X,x)

of semivaluations whose center in X ′ is p. By Proposition 5.4, r−1
X′ (ν) is the union of the

trees U(p) = U(p) ⊔ {ν}, glued along their root ν = νE. In fact, the fiber of rX′ above ν
is itself a tree, as we explain next.

Take µ, µ′ ∈ r−1
X′ (ν). Abusing notation, we declare µ ≤ µ′ if there exists p ∈ F such

that µ, µ′ ∈ U(p) and µ ≤ µ′ in U(p). This defines a tree structure on r−1
X′ (ν). Moreover,

the topology of r−1
X′ (ν) as subspace of NL(X,x) coincides with the weak tree topology

induced by ≤.
Suppose now that ν = iX′(z) where z belongs to the interior of an edge |e| of |ΓX′ |.

Assume first that z corresponds to an irrational number in the real interval (0, 1). Then
ν is a quasi-monomial valuation of rational rank two. In particular, ν is not divisorial.
As a consequence, r−1

X′,X′′(ν) is reduced to ν and r−1
X′ (ν) = r−1

X′′(ν) for any good resolution

πX′′ : X ′′ → X dominating πX′ . Since an element of NL(X,x) is determined by its images
by the retraction maps, we conclude that r−1

X′ (ν) = {ν}. The statement is true in this
case.

Finally, if z corresponds to a rational number in (0, 1) then ν is a quasi-monomial
valuation of rational rank one. This means that ν is a divisorial valuation. Hence there
exists a finite sequence of blowing-up of points π : X ′′ → X ′ such that πX′′ = πX′ ◦ π
is a good resolution and spX′′(ν) is a prime divisor. Indeed, it is enough to blow-up
recursively the center of ν. Observe that all the centers of blowing-up are satellite points
(see Section 4.2). Otherwise |e| viewed in |ΓX′′ | would not be homeomorphic to (0, 1).
We have that r−1

X′′(ν) = r−1
X′ (ν), and thus we have reduced the problem to the first case

we treated above. �

Corollary 5.6. The normalized non-Archimedean link NL(X,x) is a tree if and only if
the dual graph associated to any good resolution is a tree.

Proof. Let πX′ : X ′ → X be a good resolution. Since ΣX′ ⊆ NL(X,x) is arcwise con-
nected, if NL(X,x) is a tree then ΣX′ is also a tree by Corollary 4.3. Let us now show
the converse.
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Assume that the dual graph associated to any good resolution is a tree. Take a dual
graph ΓX′ and choose a tree structure (|ΓX′ |,≤) of |ΓX′ |. Proposition 5.5 allow us to equip
NL(X,x) with a tree structure as follows. Given two semivaluations ν, ν ′ in NL(X,x) we
declare ν ≤ ν ′ if and only if one of the following conditions is satisfied,

• ν, ν ′ ∈ ΣX′ and i−1
X′ (ν) ≤ i

−1
X′ (ν ′) in |ΓX′ |;

• ν ∈ ΣX′ , ν ′ /∈ ΣX′ and i−1
X′ (ν) ≤ i

−1
X′ (rX′(ν ′)) in |ΓX′ |;

• ν, ν ′ /∈ ΣX′ , rX′(ν) = rX′(ν ′) and ν ≤ ν ′ in r−1
X′ (µ) where µ = rX′(ν) (recall that r−1

X′ (µ)
is a tree rooted at µ by Proposition 5.5).

One can verify that (NL(X,x),≤) satisfies the four axioms of a tree and that the usual
topology of NL(X,x) is the weak tree topology induced by ≤. �

We define the core of NL(X,x) in a way analogous what to we did for graphs (see the
topological characterization given in Lemma 4.5). In [1, p. 76] the core is referred to as
the skeleton.

Definition 5.7. The core of the normalized non-Archimedean link NL(X,x) of x in X
is the set of all semivaluations in NL(X,x) which do not admit a proper open neighbor-
hood whose closure is a tree and whose boundary is reduced to a single semivaluation of
NL(X,x). We denote it Core (NL(X,x)).

Observe that by definition Core (NL(X,x)) is empty if and only if NL(X,x) is a tree.

Lemma 5.8. If πX′ : X ′ → X is a good resolution, then Core (NL(X,x)) ⊆ ΣX′.

Proof. Take ν ∈ NL(X,x) and suppose that ν /∈ ΣX′ . Then rX′(ν) is different from ν.
Set µ = rX′(ν). In view of Proposition 5.5, r−1

X′ (µ) \ {µ} is an open neighborhood of ν

such that its closure r−1
X′ (µ) is a tree and its boundary is reduced to µ. This means that

ν /∈ Core (NL(X,x)). �

However one can be more specific:

Proposition 5.9. Let πX′ : X ′ → X be a good resolution. The core of NL(X,x) and
iX′(|Core (ΓX′) |) coincide as subspaces of NL(X,x).

Proof. If NL(X,x) is a tree, then Core (NL(X,x)) = |Core (ΓX′) | = ∅ by Corollary 5.6
and the result follows. Assume now that NL(X,x) is not a tree. Observe that under this
assumption |ΓX′ | is not a tree (see Corollary 5.6).

Take ν ∈ NL(X,x) and suppose first that ν ∈ Core (NL(X,x)). We know by Lemma 5.8
that ν ∈ ΣX′ . We proceed by contradiction. Suppose ν /∈ iX′(|Core (ΓX′) |). According
to Lemma 4.5 there exists an open neighborhood W ( |ΓX′ | of i−1

X′ (ν) such that its
closure in |ΓX′ | is a tree and its boundary is reduced to a vertex v′ of ΓX′ . Since the
retraction rX′ is continuous, U = r−1

X′ (iX′(W )) ( NL(X,x) is an open neighborhood of

ν. The closure U of U in NL(X,x) equals {ν ′}
⊔
U , where ν ′ ∈ ΣX′ corresponds to the

vertex v′. Imitating the proof of Corollary 5.6, we see that U in NL(X,x) inherits a
natural tree structure from that of the closure of W and r−1

X′ (µ) for any µ ∈ W . Hence
ν does not belong to the core of NL(X,x) and we get a contradiction. This proves that
Core (NL(X,x)) ⊆ iX′(|Core (ΓX′) |).

In order to finish the proof it suffices to check that ν /∈ iX′(|Core (ΓX′) |) when ν ∈ ΣX′

and ν /∈ Core (NL(X,x)). Suppose that ν satisfies these two conditions. Take a proper
open subset U of NL(X,x) which contains ν and such that its closure U in NL(X,x) is a
tree and its boundary is reduced to a semivaluation ν ′. Since ν ∈ ΣX′ , W = U ∩ΣX′ is a
non-empty open subset of ΣX′ . IfW = ΣX′ then ΣX′ ⊆ U and by Corollary 4.3, ΓX′ would
be a tree. ThusW ( ΣX′ . Let us denote Z the closure ofW in ΣX′ . The connectedness of
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ΣX′ implies thatW is not closed. We have W ( Z ⊆ U ∩ΣX′ = (U ∩ΣX′)
⊔
({ν ′}∩ΣX′).

We deduce from this that ν ′ must belong to ΣX′ and Z = U ∩ ΣX′ =W
⊔
{ν ′}.

By enlarging U slightly if necessary, we may choose ν ′ such that v′ = i−1
X′ (ν ′) is a vertex

of ΓX′ . If Z is a tree (as subspace of ΣX′) then from Lemma 4.5 it would follow that
ν /∈ iX′(|Core (ΓX′) |) and this would end the proof. Let us prove that Z is a tree.

The subspace topology that Z inherits from ΣX′ is the same as the one it inherits from
U . Since U is a tree, if Z is arcwise connected then Corollary 4.3 holds and Z is also a
tree. Therefore it suffices to take p ∈ i−1

X′ (W ) arbitrary and show that there exists a path

γ in i−1
X′ (Z) from p to v′. Suppose first that p belongs to the interior of an edge |e| of

|ΓX′ |. The only boundary point of Z is ν ′ so that |e| is entirely contained in i−1
X′ (Z). If

the edge e is incident to v′ then it is easy to define such a path γ. Otherwise it suffices to
join either ι(e) or ι(ē) to v′ by a path in i−1

X′ (Z). Hence we can concentrate on the case
when p is a vertex of ΓX′ . Suppose that p ∈ V (ΓX′). Since the boundary of Z is reduced
to ν ′, the set

⋃
ι(e)=p |e| must be contained in i−1

X′ (Z). Note that in particular any vertex

of ΓX′ adjacent to p is also in i−1
X′ (Z). If p is adjacent to v′ then the edge of ΓX′ joining

p to v′ induces the desired path. Otherwise the problem is reduced to finding a path in
i−1
X′ (Z) from a vertex adjacent to p to v′. The graph ΓX′ is finite and connected, so the
existence of such a path γ is guaranteed. This shows that Z is tree and enables us to
complete the proof. �

5.3. Homeomorphism type of RZ(X, x) and NL(X,x). The purpose of this sub-
section is to give the proof of Theorem B (see Section 1), which is the main result of
this section. We start by presenting some lemmas needed for the proof. We end this
subsection with an example and a remark.

In what follows we shall assume that X and Y are algebraic surfaces defined over the
same algebraically closed field k. Recall that, given two regular closed points x ∈ X and
y ∈ Y , the choice of an isomorphism between the henselizations of the local rings OX,x

and OY,y gives us a homeomorphism between RZ(X,x) and RZ(Y, y) (see Theorem 3.5).

Lemma 5.10. Suppose that X and Y are non singular. Let E,D be prime divisors
in X and Y respectively and let x ∈ E and y ∈ D be two regular closed points. Let

σ : ÕY,y → ÕX,x be an isomorphism between the henselizations of the local rings which
sends an equation of D to an equation of E. For any valuation ν ∈ RZ(X,x), Rν ⊆ RνE
if and only if Rϕ(ν) ⊆ RνD , where ϕ : RZ(X,x) → RZ(Y, y) denotes the homeomorphism
induced by σ.

Proof. Let us first consider an arbitrary algebraic variety X defined over k and x ∈ X
a regular closed point. Keeping the notations of the proof of Proposition 3.4, given ν in

RZ(X,x), the valuation ν and its extension ν̃ ∈ R̃Z(X,x) have the same value group Φ.
Assume that Φ has rank greater than one. Then the center q in OX,x of the rank one

valuation with which ν is composite coincides with q̃∩OX,x, where q̃ is the center in ÕX,x

of the rank one valuation with which ν̃ is composite. Moreover, q = mX,x if and only

if q̃ is the maximal ideal of ÕX,x. Recall that any prime ideal of height one of a UFD
is principal. In particular when dimOX,x = 2, we deduce that if q is generated by an

element f ∈ OX,x then q̃ is generated by an element f̃ ∈ ÕX,x dividing f in ÕX,x.
By hypothesis, we can pick local coordinates (u, v) at x and (u′, v′) at y such that

E = {u = 0}, D = {u′ = 0} and σ(u′) = u. Let us take a valuation ν ∈ RZ(X,x) and
suppose that Rν ⊆ RνE holds. Then rk ν = 2 (note that ν 6= νE) and hence rk ϕ(ν) = 2.
We consider µ ∈ RZ(Y ) such that Rϕ(ν) ( Rµ. Let us show that µ = νD. The converse
is proved in an analogous way.



TOPOLOGY OF SPACES OF VALUATIONS AND GEOMETRY OF SINGULARITIES 27

Denote by ϕ̃(ν) the extension of ϕ(ν) to R̃Z(Y, y). Applying the remarks made at the

beginning of the proof to ν, we can write the center in ÕY,y of the rank one valuation with

which ϕ̃(ν) is composite as ã = (σ−1(ũ))ÕY,y, for some ũ ∈ ÕX,x dividing u in ÕX,x. In

addition, ϕ̃(ν) is not centered in the maximal ideal m̃Y,y. Taking into account again the
remarks made at the beginning we see that the center of µ in OY,y is a = ã∩OY,y ( mY,y.

Since σ−1(ũ) divides σ−1(u) in ÕY,y and u′ = σ−1(u), we deduce that u′ belongs to a. It
suffices now to observe that a is a principal ideal and u′ is irreducible in order to conclude
that µ = νD. �

We might state the following lemma in terms of nets in RZ(X), but for our purposes it
suffices to deal with sequences. Note that as a direct consequence of the definition of the
topology of the Riemann–Zariski space, a sequence of valuations (νn)

∞
n=1 converges to a

valuation ν (we write νn → ν) if and only if for any f ∈ Rν there exists n0 ≥ 1 such that
f ∈

⋂
n≥n0

Rνn .

Lemma 5.11. Suppose that the surface X is non singular. Let E be a prime divisor in
X and let (νn)

∞
n=1 be a sequence of valuations in RZ(X). If the center xn of νn in X

belongs to E for every n and xi 6= xj for i 6= j, then (νn)
∞
n=1 is convergent. In addition,

the set of all limits of the sequence (νn)
∞
n=1 is the closure of the divisorial valuation νE

associated to E.

Proof. A sequence (νn)
∞
n=1 satisfying the hypothesis of the lemma converges to the divi-

sorial valuation νE. Indeed, given any f in the function field of X with νE(f) ≥ 0, for
n large enough, xn is not a pole of f and thus νn(f) ≥ 0. This means that νn → νE.
It follows from simple topological considerations that if ν is a valuation of RZ(X) in the
closure of νE, ν 6= νE, then νn → ν. We will proceed by contradiction to prove the
converse.

Take (νn)
∞
n=1 satisfying the assumptions about the sequence of centers and suppose

that νn → ν where ν ∈ RZ(X) is not in the closure of νE . We denote by x the center
of ν in X. Note that the continuity of the map which sends a valuation of RZ(X) to its
center in X implies that xn → x in X. Moreover, x must be a closed point of E. To see
this, observe that either x is a closed point of X or the generic point ξ of a prime divisor
D, D 6= E, of X. Consider the open subset U = X \ E of X. By hypothesis xn /∈ U for
all n ≥ 1. If x is a closed point of X and x /∈ E then U is an open neighborhood of x in
X and this contradicts xn → x. If x = ξ then xn → y for all y ∈ {ξ} = D. Take a closed
point y ∈ D \E, then U is an open neighborhood of y in X and this contradicts xn → y.

Since ν does not belong to the closure of νE in RZ(X), it satisfies either rk ν = 1 or
Rν ( Rν1 for some rank one valuation ν1 ∈ RZ(X), ν1 6= νE . Let us now study both
possibilities.

Suppose that ν is a rank one valuation. Pick local coordinates (u, v) at x such that
E = {u = 0} and a rational function f on X regular at x. Since the value group of ν
is archimedean, we can find a positive integer m such that ν(fm/u) ≥ 0. On the other
hand, the hypothesis made on the sequence of centers implies that, for n large enough, f
is a unit of OX,xn and therefore νn(f

m/u) = −νn(u) < 0. We see that (νn)
∞
n=1 does not

converge to ν.
Now suppose that ν is a rank two valuation composite with a rank one valuation ν1

different from νE . Consider a finite composition π : X ′ → X of point blow ups above x
such that the center C of ν1 in X

′ and the strict transform of E are disjoint. The sequence
(π−1(xn))

∞
n=1 of centers in X ′ does not converge to the center of ν in X ′, because this
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center is a closed point of C. Hence we conclude that (νn)
∞
n=1 does not converge to ν and

this ends the proof. �

We are now in position to prove Theorem B.

Proof of (1)⇒ (2). Assume that RZ(X,x) and RZ(Y, y) are homeomorphic. By Proposi-
tion 5.1, NL(X,x) and NL(Y, y) are also homeomorphic. �

Proof of (2)⇒ (3). Suppose that NL(X,x) and NL(Y, y) are homeomorphic. If NL(X,x)
is a tree then NL(Y, y) must also be a tree. According to Corollary 5.6, ΓX′ and ΓY ′

are both trees and thus they are equivalent graphs. Suppose that both normalized non-
Archimedean links are not trees. The definition of the core is purely topological, so that
we have a natural homeomorphism between the cores of NL(X,x) and NL(Y, y) when
equipped with their respective induced topologies. Since neither ΓX′ nor ΓY ′ are trees
(again by Corollary 5.6) we can consider their cores. By Proposition 5.9, we conclude that
|Core (ΓX′) | and |Core (ΓY ′) | are homeomorphic. Therefore ΓX′ and ΓY ′ are equivalent
graphs. �

Proof of (3)⇒ (1). Suppose that ΓX′ and ΓY ′ are equivalent graphs. Our goal is to
construct a homeomorphism ϕ from RZ(X,x) to RZ(Y, y). We begin by the case where
there exists an isomorphism of graphs τ : ΓX′ → ΓY ′ . In Step 1 we assume that both
exceptional loci, E := EX′ and D := EY ′ , are irreducible; while in Step 2 we treat the
case of any two isomorphic graphs. Next we address the general case.

Step 1. Let us assume first that E and D are both irreducible. Note that the sets
underlying E and D have both the same cardinality as the field k. Indeed, since E is
a proper normal curve over k, we have a finite flat surjective morphism from E to P1

k
of degree n = [L : k(t)] where L denotes the function field of E, and thus an injection
E →֒ P1

k × {1, . . . , n}. The cardinality of E is bounded by the cardinalities of P1
k and

P1
k × {1, . . . , n}, which both equal the cardinality of the field k.
We define a bijective map ϕ : RZ(X,x)→ RZ(Y, y) as follows. The divisorial valuation

associated to E is sent to the divisorial valuation associated to D, that is, ϕ(νE) =
νD. We choose a bijection σ between the closed points of E and those of D and, for
every closed point z ∈ E an isomorphism between the henselizations of the local rings

σz : ÕY ′,σ(z) → ÕX′,z which maps the local equation of D to that of E. A valuation
ν ∈ RZ(X ′, z) is sent by ϕ to its image in RZ(Y ′, σ(z)) by the homeomorphism induced
by σz (see Theorem 3.5). Let us prove that ϕ is continuous. Observe that by construction,
ϕ−1 will be also continuous.

According to [8, Theorem 3.1], RZ(X,x) is a Fréchet–Urysohn space. Thus the conti-
nuity of ϕ will follow if, for every sequence of valuations (νn)

∞
n=1 in RZ(X,x) converging

to a valuation ν ∈ RZ(X,x), we can extract a subsequence such that (ϕ(νγ(n)))
∞
n=1 con-

verges to ϕ(ν). For any positive integer n, we denote by xn the center of νn in X ′. Note
that the sequence (xn)

∞
n=1 converges to the center x′ of ν in X ′.

First suppose that there exist z ∈ E and n0 ≥ 1 such that xn = z for n ≥ n0. If
z is a closed point of E, then the sequence (xn)

∞
n=1 has z as unique limit and therefore

x′ = z. We have that (νn)
∞
n=n0

⊆ RZ(X ′, z) and ν ∈ RZ(X ′, z). This yields ϕ(νn)→ ϕ(ν)
because ϕ restricted to RZ(X ′, z) is continuous. Suppose now that z is the generic point
of E, that is, νn = νE for all n ≥ n0. If moreover x′ is the generic point of E then ν = νE
and it is clear that ϕ(νn)→ ϕ(ν). Otherwise x′ is a closed point of E and we are then in
the situation Rν ( RνE . If this is the case, then Lemma 5.10 implies that Rϕ(ν) ( RνD .
Since (ϕ(νn))

∞
n=1 converges to νD, it also converges to any valuation in the closure of νD,
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so ϕ(νn) → ϕ(ν). This ends the proof in the case where the sequence of centers (xn)
∞
n=1

is stationary.
Suppose now that sequence of centers does not stabilize and we can extract a subse-

quence (νγ(n))
∞
n=1 of valuations where all the centers are different. Then (νγ(n))

∞
n=1 satisfies

the assumptions of Lemma 5.11. Since this sequence also converges to ν, the valuation ν
is in the closure of νE, and by Lemma 5.10, ϕ(ν) is in the closure of νD. Observe that
by construction the centers of (ϕ(ν)γ(n))

∞
n=1 are also pairwise distinct. Applying again

Lemma 5.11 to the sequence (ϕ(νγ(n)))
∞
n=1 we conclude that ϕ(νγ(n))→ ϕ(ν).

If the sequence of centers does not stabilize but we are not in the previous situation,
then there exists a finite number of different points z1, . . . , zl of E (l ≥ 2) such that xn ∈
{z1, . . . , zl} for all n large enough and each zi is visited by the sequence infinitely many
times. Since xn → x′, we deduce that l = 2, one element of {z1, z2} is the generic point
of E and the other one is x′ (which must be a closed point of E). Hence we can extract
a subsequence (νγ(n))

∞
n=1 of valuations in RZ(X ′, x′) which converges to ν ∈ RZ(X ′, x′).

The continuity of ϕ restricted to RZ(X ′, x′) implies that ϕ(νγ(n))→ ϕ(ν). This ends the
proof of the continuity of ϕ and the proof of Step 1.

Step 2. Suppose now that E and D both have m ≥ 2 irreducible components and that
there exists a graph isomorphism τ : ΓX′ → ΓY ′ . Let E1, . . . , Em be an enumeration of
the irreducible components of E. Then the isomorphism τ determines an enumeration
D1, . . . ,Dm of the irreducible components of D. We fix a bijection σi between the closed
points of Ei and those of Di, for 1 ≤ i ≤ m. We do this in such a way that σi(Ei ∩Ej) =
σj(Ei ∩ Ej) = Di ∩ Dj , for any i 6= j such that Ei ∩ Ej 6= ∅. We call σ the bijection
induced by σ1, . . . , σm between the closed points of E and those of D. For any closed
point z of E, we choose an isomorphism between the henselizations of the local rings

σz : ÕY ′,σ(z) → ÕX′,z that sends the local equation of every Di passing through σ(z) to
the local equation of the corresponding component Ei in E. We define a bijection ϕ from
RZ(X,x) to RZ(Y, y) exactly as we did before. That is, by means of the homeomorphism
at the level of valuation spaces determined by each σz and setting ϕ(νEi

) = νDi
for

1 ≤ i ≤ m.
In order to check the continuity of ϕ we follow the same idea as in Step 1. Let us take

a sequence of valuations (νn)
∞
n=1 in RZ(X,x) converging to a valuation ν ∈ RZ(X,x). We

denote by x′ the center of ν in X ′ and by xn the center of νn in X ′ for any n ≥ 1. We
distinguish again three possibilities for the sequence (xn)

∞
n=1 of centers. In fact, we can

find i ∈ {1, . . . ,m} such that one of the following situations holds,

• There exists z ∈ Ei and n0 ≥ 1 such that xn = z for n ≥ n0.
• We can extract a subsequence of valuations where all the centers in X ′ are different
and belong to Ei.
• We can extract a subsequence of valuations where all the centers in X ′ are equal to x′

which is in addition a closed point of Ei.

It suffices now to repeat the same arguments used in the proof of the case of one prime
divisor in each good resolution to show that there exists a subsequence (νγ(n))

∞
n=1 such

that (ϕ(νγ(n)))
∞
n=1 converges to ϕ(ν).

Step 3. If ΓX′ and ΓY ′ are not isomorphic then by Proposition 4.9 there exist two
isomorphic graphs Γn and Γ′

m such that ΓX′ = Γ0 → Γ1 → . . . → Γn and ΓY ′ = Γ′
0 →

Γ′
1 → . . . → Γ′

m, where each arrow denotes an elementary modification. Let us suppose
that one of these sequences is an isomorphism of graphs, for instance the first one. Then
the second sequence transforms ΓY ′ into a graph isomorphic to ΓX′ . Recall that an
elementary modification encodes the blowing-up at a closed point of a simple normal
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crossings divisor on a non singular surface. Then, to Γ′
0 → Γ′

1 we can associate a blowing-
up ϕ1 : Y

′
1 → Y ′ centered at a closed point of D; to Γ′

1 → Γ′
2, a blowing-up ϕ2 : Y ′

2 → Y ′
1

centered at a closed point of ϕ−1
1 (D); and so on, in such a way that πY ′ ◦ ϕ1 ◦ . . . ◦ ϕm

is a good resolution of (Y, y) with dual graph isomorphic to ΓX′ . We are now in the case
treated above. If neither ΓX′ → Γn nor ΓY ′ → Γ′

m are isomorphisms of graphs, we just
need to do the previous construction starting from both good resolutions. �

Example 5.12. Let (X,x) be a rational surface singularity and let (Y, y) be a germ of a
cone over an elliptic curve, where X and Y are defined over the same algebraically closed
field k. Then the dual graphs associated to the minimal embedded resolutions of (X,x)
and (Y, y) are both trees. In particular, Theorem B implies that RZ(X,x), RZ(Y, y),
and RZ(A2

k, 0) are homeomorphic. Similarly, NL(X,x), NL(Y, y), and NL(A2
k, 0) are

homeomorphic.

Finally, we observe that the homotopy type of NL(X,x) does not determine its home-
omorphism type.

Remark 5.13. The homotopy type of NL(X,x) is known to be that of the dual complex
associated to a log-resolution of the pair (X,x) (see [6, 25]). The equivalence relation
that we have defined in the set of graphs is stricter than the homotopy equivalence (see
Example 4.7). We may consider two finite connected graphs Γ and Γ′ with no vertices
of degree one, such that the topological realizations of Γ and Γ′ are homotopy equivalent
but not homeomorphic. By [17, Theorem 2], any finite simplicial complex of dimension
one can be obtained as the dual graph associated to a good resolution of an isolated
surface singularity. Since Γ and Γ′ are not equivalent, Theorem B also shows that there
exist normal surface singularities such that their normalized non-Archimedean links are
homotopy equivalent but not homeomorphic.
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