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Abstract

This paper describes a suite of tools and a model for improving the accu-

racy of airport weather forecasts produced by numerical weather prediction

(NWP) products, by learning from the relationships between previously mod-

elled and observed data. This is based on a new machine learning methodol-

ogy that allows circular variables to be naturally incorporated into regression

trees, producing more accurate results than linear and previous circular re-

gression tree methodologies.

The software has been made publicly available as a Python package,

which contains all the necessary tools to extract historical NWP and ob-

served weather data and to generate forecasts for di↵erent weather variables

for any airport in the world. Several examples are presented where the re-

sults of the proposed model significantly improve those produced by NWP

and also by previous regression tree models.
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1. Introduction10

Modern weather forecasting relies mostly on numerical models that sim-11

ulate the evolution of the atmosphere, based on fluid dynamics and thermo-12

dynamics equations. These equations are solved for the discrete points of a13

regular grid covering the region of interest. Higher resolution models gener-14

ate more detailed forecasts, but also require large computational resources15

and longer running times. Operational models trade o↵ resolution quality for16

shorter processing times. The need for higher resolution forecasts has driven17

numerous methodologies to generate more detailed outputs, which is known18

as downscaling. Dynamic downscaling uses the output of a coarser model as19

the initial condition of a higher resolution local model, which better resolves20

sub-grid processes and topography [1]. Another approach is statistical down-21

scaling, where historical observed data are used to enhance the output of a22

numerical model. There are numerous methodologies for statistical down-23

scaling based on di↵erent principles, such as analogues [2], interpolation [3]24

or machine learning models [4, 5].25

Aviation operations are highly a↵ected by the weather and require the26

best quality meteorological information to maximise e�ciency and safety.27

The International Civil Aviation Organization (ICAO) and the World Me-28

teorological Organization (WMO) have established international standards29

to ensure high quality meteorological reports [6]. To generate these reports,30

national weather services across the world employ highly qualified personnel31

who continuously observe and forecast conditions around the airport, such32

as visibility, direction and speed of the wind or proximity of storm cells. Avi-33

ation weather forecasters rely mainly on their knowledge of the airport and34

the quality of the NWP used.35

There are a number of tools that facilitate the process of generating air-36

port weather forecasts [7, 8], being an area of active research at the moment.37

Airports usually have long and regular series of high quality historical obser-38

vation data that can be used to create statistical downscaling models to help39
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forecasters in their work. The e↵ect of non-resolved surrounding mountains,40

water bodies or local climate conditions can be incorporated by these models,41

by studying the local e↵ects produced by weather patterns in the past.42

Circular variables are present in any directional measurement or variable43

with an inherent periodicity. Weather data contain many parameters that44

are represented as circular variables, such as wind direction, geographical45

coordinates or timestamps. Most of the current regression machine learn-46

ing algorithms focus on modelling the relationships between linear variables.47

Circular variables have a di↵erent nature to linear variables, so traditional48

methodologies are not able to represent their content thoroughly, leading to49

suboptimal results in most cases. The model presented in this article builds50

upon the concept of circular regression trees introduced by Lund [9]. Our51

model is computationally more e�cient and generates contiguous splits for52

circular variables, which results in improved accuracy when compared to its53

precursor.54

Circular regression trees can better represent circular variables, as they55

consider more possibilities for splitting the space than linear regression trees56

do. Circular regression trees can define subsets of data around the origin57

0, 2⇡ radians point. For example, when predicting an event that shows a high58

correlation with the winter months in the northern hemisphere, a circular tree59

would be able to isolate the months from December to March in one group.60

On the other hand, a linear tree would most likely consider splits starting61

or ending at the beginning of the year, failing to create a group containing62

these months.63

This paper introduces AeroCirTree, a system based on the described64

circular regression tree model, which is able to generate improved airport65

weather forecasts for any airport in the world. This software presents a66

general solution where all the necessary tools required to extract historical67

weather data, train models and generate new forecasts are made available.68

This system is intended to help aviation weather forecasters to produce better69

quality reports and for machine learning researchers to build upon more70

sophisticated models.71

The paper is structured as follows: Section 2 contains the methodology72

used to create the model. Section 3 contains an introduction to the observed73

and numerical weather datasets used to develop and test the system. Sec-74

tion 4 presents results where the proposed model is compared with other75

regression tree methodologies. This section also contains a discussion of76

the results, providing the reader with deeper insight into the novelty of the77
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proposed model. Section 5 provides a high level description of the model im-78

plementation, including its key components and their functionality as well as79

examples on how to use the software. Section 6 concludes this paper, revisit-80

ing the research highlights and proposing some ideas on future developments81

to carry this work forward.82

2. Methodology83

Because of their simplicity, training speed and performance, regression84

trees are a popular and e↵ective technique for modelling linear variables.85

Classification and Regression Trees (CART) [10] is one of the most popular86

versions of regression trees.87

Linear regression trees recursively partition the space, finding the best88

split at each non-terminal node. Each split divides the space in two sets89

using a cost function, which is usually based on a metric for minimising the90

combined variance of the resulting children nodes.91

Figure 1 contains an example of a regression tree based on two linear92

variables x1 and x2. On the right side, there is a graphical representation of93

how the space is divided by creating splits on these two variables.94

Figure 1: Example of a classic linear regression tree and a representation of how the space
is divided.

Circular variables are numerical variables whose values are constrained95

into a cyclical space - for example, a variable measuring angles in radians,96

spans between 0 and 2⇡, where both values represent the same point in space.97

Although these variables can be included in a linear regression tree, they have98

to be treated as linear variables, which is an oversimplification and normally99

leads to suboptimal results [9].100
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A circular variable defines a circular space. A circular space is cyclic101

in the sense that it is not bounded; for instance, the notion of a minimum102

and maximum value does not apply. The distance between two values in the103

space becomes an ambiguous concept, as it can be measured in clockwise and104

anticlockwise directions, yielding di↵erent results. Also, this space cannot be105

split in two halves by selecting a value, as the ’<’ and ’>’ operators are not106

applicable.107

In order to split a circular variable, at least two di↵erent values need108

to be defined. These two values describe two complementary sectors, each109

containing a portion of the data. Circular regression trees use this splitting110

approach for incorporating circular variables into regression trees.111

There are many examples of circular variables. Any variable representing112

directional data or a periodic event is circular. More specifically, in the field113

of airport weather forecasting, wind direction, the time of the day or the date114

are examples of circular variables.115

Lund [9] proposes a methodology that allows circular variables to be116

incorporated into regression trees. Figure 2 contains a similar representation117

to the previous example, but considering one circular variable ↵ and a linear118

one x1. On the right side, there is a chart representing how the space is119

partitioned using polar coordinates.120

Figure 2: Example of Lund’s original proposal of circular regression tree and a represen-
tation of how the space is divided.

The methodology presented in this work builds upon the concept of cir-121

cular regression trees, presenting an alternative that improves computational122

performance and the accuracy of its results. Figure 3 shows how the space123

is partitioned using the proposed methodology.124
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Figure 3: Example of the proposed circular regression tree and a representation of how
the space is divided.

Visually comparing Figure 2 and Figure 3, it is evident that regions are125

split di↵erently. The novelty of this methodology, when compared to the orig-126

inal version proposed by Lund, is that it always generates contiguous splits.127

In doing so, we avoid an excessive fragmentation of the space, and the splits128

provide a better generalisation for its child nodes. The original methodology129

uses the ’2’ and ’/2’ operators to generate all the splits for circular variables.130

This usually generates partitions in which the subsets defined by the 2 clause131

are surrounded by the complementary /2 subset. Our methodology uses these132

operators to create just the first split of a circular variable and, after that,133

uses the ’<’ and ’>’ operators to create the subsequent splits. This change134

also results in a reduction of the search space for possible splits. The pro-135

posed algorithm for generating circular trees has, as a consequence, O(n)136

cost instead of O(n2
), when compared to Lund’s original proposal. The only137

exception is when computing the first split of a circular variable, which has138

a computational cost of O(n2
), as it has to consider all the di↵erent splits139

around the circle.140

3. Software and datasets141

AeroCirTree is a collection of Python scripts which provides the tools to142

train and test the three previously described regression tree methodologies143

using airport weather data. It uses NWP variables as the input and generates144

a more accurate value for the selected output variable by learning from the145

observed values for a certain location. Once the model has been trained, it146
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can be used to improve the accuracy of the forecasted output value provided147

by new incoming NWP data.148

It is worth noting that regression tree models are presented in this work as149

a method to statistically downscale the output of NWP for specific locations.150

They are not used to predict future values of a time-series but to improve the151

values produced by NWP. Analysis data from the NWP model and observed152

data are used to train the regression trees. These trees can account for biases153

and systematic errors of the NWP model. Trained models can be applied154

to any forecasting horizon produced by the NWP to correct systematic and155

random errors.156

The AeroCirTree software presented in this work o↵ers a general im-157

plementation of a regression tree. AeroCirTree allows its users to train158

linear regression trees as well as circular versions using non-contiguous or159

contiguous splits, as we propose. To determine which methodology is used,160

each variable in the input or output can be tagged as being either [linear,161

circular] using a configuration file. An extra tag, contiguous, which can162

be set to [true, false], indicates the split methodology applied to circular163

variables. Di↵erent values of these tags indicate di↵erent versions of regres-164

sion trees. For example, classic linear regression trees can be generated by165

tagging all their input variables as linear and contiguous=true. Lund’s166

proposal of circular tree would require the circular input variables to be167

tagged as circular and contiguous=false. Lastly, our proposed methodol-168

ogy would require the same circular input variables to be contiguous=true.169

AeroCirTreemakes use of two weather datasets. The first is the output of170

a global NWP, called the Global Forecast System model (GFS) [11], which is171

run operationally by the National Oceanic and Atmospheric Administration172

(NOAA). The second uses Meteorological Aerodrome Reports (METARs)173

[6], which contain periodic meteorological observations from airports around174

the world.175

Each of these datasets contains several variables describing di↵erent weather176

parameters, such as the temperature, humidity, wind speed or cloud cover177

at the di↵erent locations they represent. The GFS model represents data178

using a regular grid which covers the whole world with a spatial resolution179

of approximately 50 km and a temporal resolution of 3 hours. NOAA main-180

tains an Operational Model Archive and Distribution System (NOMADS) to181

publish the GFS data. This archive contains the GFS outputs for the last182

10 years.183

METARS are weather text reports that encode observed meteorological184
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parameters at airport runways using a well defined code. METARS are pro-185

duced with an hourly or half-hourly frequency and are also made publicly186

available through the WMO Global Telecommunication System (GTS). The187

National Centers for Environmental Prediction (NCEP) maintains a sys-188

tem called Meteorological Assimilation Data Ingest System (MADIS), which189

archives all the METAR reports that have been produced in the world for190

the last 10 years. Each report is uniquely identified by its header, which191

contains the International Civil Aviation Organization (ICAO) airport code192

and a UTC time stamp.193

The provided AeroCirTree software contains a command line utility that194

extracts the information from these two datasets for any given airport and195

date range. The output is presented as a convenient csv file containing196

the values of the di↵erent variables as a time series. All operations, such197

as locating the airport coordinate in the GFS grid, parsing and extracting198

METARs or homogenising variable units, are handled by the software, so the199

user can easily get a clean dataset for the desired airport. This csv file is the200

input used to train new models.201

4. Experiments and results202

The hypothesis of this study is that our proposed methodology for gener-203

ating regression trees provides better generalisation and accuracy than pre-204

vious non-contiguous circular regression trees when using circular variables205

and the equivalent classic linear methodologies.206

The next sections go through the required steps to extract the necessary207

data, train the models and generate the forecasts. The last section contains208

an analysis of the proposed model accuracy and a comparison with the results209

provided by the GFS raw output, Lund’s methodology and classic linear210

regression trees.211

4.1. Data extraction and model training212

To compare the di↵erences in performance between methodologies, we use213

weather data coming from simulated NWP and observed data from di↵erent214

airports. Regression trees are trained using NWP as input and the observed215

speed of the wind as the output variable. It is worth noting that regression216

tree models are not used to forecast wind speeds into the future. These217

models are used to statistically downscale NWP data, correcting biases and218

systematic errors.219
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We choose to forecast the observed speed of the wind at 5 di↵erent lo-220

cations in Europe. Data from the airports of Berlin Tegel (EDDT), Lon-221

don Heathrow (EGLL), Barcelona El Prat (LEBL), Paris Charles de Gaulle222

(LFPG) and Milano Malpensa (LIMC) are used to train the di↵erent models223

and to analyse the results. The models are trained using three-hourly data224

for the years 2011, 2012 and 2013, providing approximately 8760 samples per225

airport.226

Each model generates the required partitions to predict the observed wind227

speed using the following GFS parameters as input variables: relative humid-228

ity, speed and direction of the 10-meter wind as well as the time of the day229

associated with the values. Wind speed is one of the most important weather230

variables a↵ecting airport operations. This variable is also highly dependent231

on another variable, wind direction, which is circular. The reason for in-232

cluding these two variables in our experiments is that, in conjunction, they233

can represent local topography e↵ects non resolved by weather models. Sur-234

face relative humidity is used as an indicator for phenomena such as rain235

or fog conditions. Lastly, time of the day, also a circular variable, is highly236

correlated with the daily patterns of the wind.237

The stop criterium for all the considered trees is based on the number238

of elements in a node. Splits are recursively performed until the number of239

data entries in a node falls below a certain value. Then, the splitting process240

is stopped and the node is denoted as a leaf. This value receives the name241

“maximum leaf size”. Large values of “maximum leaf size” generate shallow242

trees, whereas small values generate deep trees with a larger number of nodes.243

For each airport, di↵erent versions of the model are generated using di↵erent244

maximum tree leaf sizes. The maximum leaf size values considered in this245

experiment are: 1000, 500, 250, 100 and 50. This is the content of the config246

file used to train our proposed model for the comparison defining a maximum247

leaf size of 100 (please refer to Section 5.2 for more details on how these files248

are used and defined.):249

250

{” output ” :{”name” :” metar wind spd ” ,” type ” :” l i n e a r ”} ,251

” input ” : [ { ” name” :” g f s w ind spd ” ,” type ” :” l i n e a r ”} ,252

{”name” :” g f s w i nd d i r ” ,” type ” :” c i r c u l a r ”} ,253

{”name” :” g f s r h ” ,” type ” :” l i n e a r ”} ,254

{”name” :” time ” ,” type ” :” c i r c u l a r ”} ] ,255

” cont iguous ” : t rue256
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” max l e a f s i z e ” :100}257

4.2. Experimental analysis258

Following the process described in the previous sections, data from 2011259

to 2013 is extracted for the 5 selected airports. For each airport and value260

of maximum leaf size, three di↵erent models are generated: classic linear261

regression tree (using the u, v components of the wind speed and time of the262

day), Lund’s and our proposed circular regression tree.263

To evaluate the di↵erences in accuracy between these three methodolo-264

gies, a 5-fold cross validation procedure is used. This validation process265

ensures that models are tested using data that has not been used at training266

time. In order to avoid di↵erences in the results caused by di↵erent partitions267

in the validation process, the same 5-fold partition is used to validate all the268

methodologies for the di↵erent values of the “maximum leaf size” parame-269

ter. The error in forecasting is defined as the di↵erence between the speed270

of the wind predicted by the tree, which is the mean of the target values271

contained in the corresponding leaf, and the observed METAR wind speed272

value. The Refined Index of Agreement (RIA) [12] is used to measure the273

di↵erences in accuracy between methodologies. This index provides greater274

separation when comparing models that perform relatively well and is less275

sensitive to errors concentrated in outliers when compared to other methods276

such as absolute or root mean squared error. The RIA can be expressed as277

RIA = 1�
Pn

i=1 |Pi �Oi|
2

Pn
i=1 |Oi �O|

Where Oi represents the observations and Pi the predictions produced by278

the model.279

Table 1 contains the resulting RIA values for each tree methodology as280

well as the reference value of the 10-meter wind speed produced by GFS in281

the airports previously referenced. Higher values of RIA indicate better accu-282

racy in the results. Similar results using di↵erent combinations of input and283

output variables combining linear and circular variables are made available,284

as a text file, at the main code repository.285

Looking at the RIA values contained in Table 1, it can be noted that286

the use of regression tree models significantly improves the level of accuracy287

from the output of the GFS model. The level of improvement is highly de-288

pendent on the selected airport. This may be due to the fact that each grid289
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point of the GFS model contains a representation of the weather in an area290

of approximately 50 square kilometres, and some locations and variables are291

better represented by this simplification than others. For example, airports292

surrounded by mountains will benefit more from statistical models than air-293

ports located on large plains.294

Comparing the di↵erences in accuracy between the three regression tree295

models shown in Table 1, the use of the proposed model provides better re-296

sults in most of the cases. The level of improvement also varies significantly297

between di↵erent airport locations. Results are analysed considering the case298

of shallow and deep trees. For shallow trees, the two circular models show299

very similar behaviour outperforming the linear approach. As the maximum300

leaf size parameter gets smaller, we see an improvement in accuracy for all301

three models. Deeper trees still show better results for the circular mod-302

els, but Lund’s proposal starts showing signs of premature over-fitting when303

compared to the other two models. In the case of the deepest tree (maximum304

leaf size equal to 50), all three models show a deterioration of performance,305

with Lund’s being the most noticeable case.306

In the case of Paris Charles de Gaulle (LFPG), shallow circular trees307

show an improvement of around 4 to 5% when compared to the classic linear308

tree version. This improvement is maintained by our proposed model when309

considering deeper trees. However, Lund’s model does not improve at the310

same rate. A more systematic analysis of the results of this test is o↵ered at311

the end of the section, providing the statistical significance of the di↵erences312

between methodologies.313

Figure 4 and Figure 5 show a graphical representation of the evolution314

of the RIA when predicting wind speed for the airports of London Heathrow315

(EGLL) and Barcelona El Prat (LEBL) respectively. All the regression tree316

methodologies improve their accuracy as the maximum leaf size decreases,317

showing signs of overfitting for the smallest leaf size case. The value of the318

GFS wind speed value at the closest grid point is shown as a reference to319

represent the relative improvement achieved by each model.320

As introduced in Section 2, the circular methodologies have the benefit of321

considering extra partitions for circular variables, those that cross the origin,322

when compared to linear methods. The benefits of using circular trees are323

more noticeable for the case of shallow trees, the ones with larger values of324

maximum leaf size. The first split of a circular variable normally happens at325

one of the first nodes of the tree, near the root node. Splits that happen at326

the top part of a tree have a major impact on its performance, because they327
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Figure 4: RIA values for the airport of London Heathrow (EGLL), comparing the accuracy
of the output for di↵erent maximum leaf sizes.

divide a bigger proportion of the dataset. For shallow trees, finding a good328

partition at these levels is critical, whereas deeper trees can improve poor329

partitions by creating new ones.330

Non-contiguous circular regression trees generate partitions that seem331

to provide a poorer generalisation for subsequent splits than the other two332

methodologies. The good results shown by Lund’s method for shallow trees333

quickly deteriorate for deeper trees. The proposed methodology, based on334

contiguous circular trees, achieves a similar performance to Lund’s method335

for shallow trees and also better results than the other two methodologies for336

deeper ones. Moreover, as mentioned in Section 2, the proposed methodology337

is more e�cient computationally than the non-contiguous version.338

In order to evaluate the results, the methodology proposed by Demsar339

[13] is used to assess the statistical significance of the di↵erences between340

methods. The null hypothesis of similarity is rejected for linear and both341

circular regression trees. This justifies the use of post-hoc bivariate tests,342

Nemenyi in our case, which assess the statistical di↵erence between pairs343

of algorithms. The results of these tests can be graphically expressed using344

Critical Di↵erence (CD) diagrams. The Nemenyi test pairwisely compares345

every methodology. The accuracy of any two methodologies is considered346

significantly di↵erent if the corresponding average rank di↵ers by at least the347
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Figure 5: RIA values for the airport of Barcelona El Prat (LEBL) comparing the accuracy
of the output for di↵erent maximum leaf sizes.

critical di↵erence.348

Figure 6 represents the RIA results of the Nemenyi test (↵ = 0.05) making349

use of CD diagrams for the maximum leaf sizes of 1000, 100 and 50, as they350

represent both extremes of the proposed range.351

CD diagrams connect the groups of algorithms for which no significant352

di↵erences were found, or in other words, those whose distance is less than353

the fixed critical di↵erence, shown above the graph. Note that algorithms354

ranked with lower values in CD diagrams imply higher RIA scores. These355

tests have been performed using the scmamp R package, which is publicly356

available at the Comprehensive R Archive Network (CRAN) [14].357

As can be seen in the CD diagrams in Figure 6, for shallow trees, both358

circular methodologies outperform the linear approach (maximum leaf size359

1000). As the experiment progresses into deeper trees (maximum leaf size360

100), the proposed methodology statistically outperforms the other two in the361

considered datasets. Even for the case of maximum leaf size 50, when all the362

methods show a deterioration in accuracy, the proposed methodology shows363

the best results. Lund’s methodology, on the other hand, reveals a major364

degradation in accuracy for the smallest maximum leaf size. These results365

corroborate our experimental hypothesis: the proposed circular regression366

tree is able to generate models that provide better generalizations for circular367
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Figure 6: Critical Di↵erences comparing the three methodologies for shallow and deep
trees. ↵ = 0.05

variables.368

5. Design and use of the software369

AeroCirTree is a Python 3 package implementing regression trees and370

a set of command line tools to extract weather data and train tree models371

for any airport in the world. Users will normally use the provided package372

by using three scripts, named aerocirtree extract, aerocirtree train373

and aerocirtree test, which fetch historical time-series weather data, train374

models and test results respectively, for any airport in the world.375

5.1. Implementation design376

The proposed circular regression tree has been implemented as a Python377

package. Most of its functionality is contained in two classes, called Data378

and Node. A tree is modelled as a nested structure of Node instances. Each379

Node in the tree contains an instance of the Data class, which represents the380

subset of the dataset contained in that node. The Data object is built around381

the Python Pandas DataFrame class.382

Node contains two class attributes of type Node, named left child and383

right child, defining a recursive structure. Each non-terminal node in a384
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tree contains two Node instances which constitute its left and right children.385

On the other hand, terminal nodes or leaves are characterised by having the386

contents of its children set to the None value.387

Node defines also the .Split() method which creates a split generating388

two new instances of the Node class. Each of these two new Node instances389

contains one part of the original Data and is assigned to the left child and390

right child attributes. A tree is built by recursively calling the .Split()391

method on each of the children Node until the stop criteria is satisfied. The392

stop criteria can be configured to be a minimum number of elements or393

variance value for the Data contents of a node.394

Each column of a node’s Data has to be tagged as linear or circular to395

designate the nature of the data it represents. By tagging columns, we can396

dynamically train di↵erent tree versions and compare their results. Classic397

regression trees consider all the variables as linear, whereas our proposed398

methodology allows some of the variables to be treated as circular. For399

example, by tagging all variables as linear, we will get a classic regression400

tree.401

This implementation is generic and can be applied to data from any field402

if made available in csv format.403

5.2. User guide404

AeroCirTree also provides a series of scripts to extract weather data,405

train and test regression tree models. These scripts make use of the previously406

described package to train specific models for any airport in the world.407

Here is an example that shows how to extract the data for the airport of408

London Heathrow from the 1st of January 2016 to the 1st of June 2016:409

410

$ . / a e r o c i r t r e e e x t r a c t ��a i r p o r t EGLL ��s t a r t d a t e 20160101\411

��end date 20160601412

metar press , metar rh , metar temp , metar wind spd , g f s p r e s s ,\413

g f s rh , gfs temp , g f s w ind d i r , g f s wind spd , time , date414

1025 . 0 , 7 5 . 5 , 6 . 0 , 2 . 5 7 , 1 016 , 9 2 , 3 , 2 80 , 3 , 4 5 . 0 , 0415

1024 . 0 , 8 0 . 9 2 , 5 . 0 , 4 . 1 2 , 1 016 , 9 6 , 3 , 2 90 , 3 , 9 0 . 0 , 0416

1024 . 0 , 8 0 . 9 2 , 5 . 0 , 2 . 5 7 , 1 015 , 97 , 4 , 3 00 , 3 , 1 35 . 0 , 0417

1024 . 0 , 8 6 . 9 9 , 6 . 0 , 2 . 5 7 , 1 016 , 93 , 6 , 3 40 , 3 , 1 80 . 0 , 0418

. . .419
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Note that the values of time and date are transformed to their numerical420

values as circular variables, where the origin [0-360] corresponds to 00:00421

hours and the 1st of January respectively. The output of this command can422

be redirected to a local file. These files are used as the input required to423

train tree models.424

Once a dataset is available for a given airport, a model can be trained by425

defining its input and target variables. The output variable has to be one426

of the observed variables coming from the METAR reports and the input427

variables are the GFS forecasted variables or a subset of them.428

Doing it this way, when new forecast data from the GFS is available, the429

model can be used to generate an enhanced forecast of the target variable.430

The di↵erent options to create a model are specified through a configura-431

tion file. This configuration file contains a JSON object with three fields:432

“output”, “input” and “max leaf size”. The name of the target variable pro-433

duced by the tree is specified in “output”. Input variables are listed in the434

“input” field along with a tag to treat them as either circular or linear. The435

max leaf size parameter specifies the value to control the depth of the result-436

ing tree. For example, to specify a model to forecast temperature using GFS437

relative humidity, wind direction as a circular variable and a maximum leaf438

size of 100, a file with the following content should be specified:439

440

{” output ” :{”name” :” metar temp ” ,” type ” :” l i n e a r ”} ,441

” input ” : [ { ” name” :” g f s w i nd d i r ” ,” type ” :” c i r c u l a r ”} ,442

{”name” :” g f s r h ” ,” type ” :” l i n e a r ”} ] ,443

” cont iguous ” : t rue444

” max l e a f s i z e ” :100}445

To train a model we use aerocirtree train, which receives as arguments446

the paths of a file containing the data and a configuration file. Supposing447

the output of the data extracted in the previous section has been saved448

in a file named EGLL.csv and the presented configuration file is saved as449

Model A.json, a model can be trained by running:450

451

$ . / a e r o c i r t r e e t r a i n ��data EGLL. csv ��c on f i g Model A . j son452

This command learns the specified model and saves it using a name that453

combines both input file names and using the extension .mod. The previous454

model would be saved on disk with the file name EGLL Model A.mod.455
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Finally, aerocirtree test can be used to run the model on new data.456

This script receives the path to a saved model file and input csv as arguments.457

The script returns the resulting model outputs for each line of the input file.458

For example, supposing we want to test our previouly trained model459

EGLL Model A.mod with new data contained in the file EGLL.csv, we could460

run:461

462

$ . / a e r o c i r t r e e t e s t ��data EGLL new . csv ��model EGLL\ Model\ A .mod463

This command computes the resulting temperature values for each of the464

input values at the airport of London Heathrow.465

6. Conclusions466

This work presents a software application for forecasting the weather in467

any airport of the world. It also proposes a new circular regression tree468

methodology which o↵ers better accuracy when compared to classic linear469

methods, and also better accuracy and computational e�ciency than Lund’s470

original proposal of circular regression trees.471

This software contains a library that implements a general version of472

regression trees as well as the command line tools to train, test and download473

new airport datasets. These tools have been designed so users can create474

their own forecasts and also so that they can experiment and explore the475

di↵erences between models, input variables and airports. Scripts and libraries476

are written in a simple way so users can read the code to understand what477

the program is doing and also modify parts of it. AeroCirTree comes with a478

GNU GPLv3 licence so anyone can use, modify and share this program for479

any purpose.480

The model proposed in this work is based on a new methodology to481

build a basic circular regression tree. Regression trees have evolved with the482

introduction of many di↵erent techniques that improve both their accuracy483

and e�ciency. Well known techniques that modify standard regression trees484

such as pruning, balancing, smoothing [10, 15] or random forests [16] and485

ensembles [17] can be also applied to circular regression trees and can improve486

the accuracy of results when compared to basic regression trees. Future work487

could implement the ideas presented in the referred publications o↵ering more488

advanced models.489
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Table 1: Comparison of the RIA values when forecasting the observed METAR wind speed
for the di↵erent airports using the direct output of GFS, a classic linear regression tree,
Lund’s circular tree and the proposed model.

Airport Method RIA per Max Leaf Size

1000 500 250 100 50

EDDT GFS (ref.) 0.669 0.669 0.669 0.669 0.669

Linear 0.684 0.695 0.710 0.716 0.713

Lund 0.700 0.713 0.720 0.715 0.702

AeroCirTree 0.700 0.712 0.717 0.721 0.714

EGLL GFS (ref.) 0.653 0.653 0.653 0.653 0.653

Linear 0.687 0.703 0.716 0.728 0.730

Lund 0.702 0.721 0.731 0.735 0.729

AeroCirTree 0.702 0.720 0.730 0.737 0.737

LEBL GFS (ref.) 0.362 0.362 0.362 0.362 0.362

Linear 0.591 0.601 0.607 0.613 0.607

Lund 0.602 0.608 0.615 0.606 0.590

AeroCirTree 0.601 0.607 0.619 0.619 0.606

LFPG GFS (ref.) 0.604 0.604 0.604 0.604 0.604

Linear 0.674 0.691 0.702 0.711 0.707

Lund 0.704 0.716 0.719 0.706 0.691

AeroCirTree 0.704 0.712 0.715 0.714 0.707

LIMC GFS (ref.) 0.401 0.401 0.401 0.401 0.401

Linear 0.517 0.519 0.519 0.509 0.496

Lund 0.521 0.520 0.518 0.500 0.482

AeroCirTree 0.522 0.521 0.521 0.513 0.501
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