
Learning to classify software defects from crowds:

a novel approach

Jerónimo Hernández-González1, Daniel Rodriguez2, Iñaki Inza1,
Rachel Harrison3, Jose A. Lozano1,4

1Department of Computer Science and Artificial Intelligence,
University of the Basque Country UPV/EHU, Donostia, Spain

2Department of Computer Science, University of Alcala, Madrid, Spain

3Department of Computering, Oxford Brookes University, Oxford, UK

4Basque Center for Applied Mathematics BCAM, Bilbao, Spain

Abstract

In software engineering, associating each reported defect with a cate-
gory allows, among many other things, for the appropriate allocation of
resources. Although this classification task can be automated using stan-
dard machine learning techniques, the categorization of defects for model
training requires expert knowledge, which is not always available. To cir-
cumvent this dependency, we propose to apply the learning from crowds
paradigm, where training categories are obtained from multiple non-expert
annotators (and so may be incomplete, noisy or erroneous) and, dealing
with this subjective class information, classifiers are efficiently learnt. To
illustrate our proposal, we present two real applications of the IBM’s or-
thogonal defect classification working on the issue tracking systems from
two different real domains. Bayesian network classifiers learnt using two
state-of-the-art methodologies from data labeled by a crowd of annotators
are used to predict the category (impact) of reported software defects.
The considered methodologies show enhanced performance regarding the
straightforward solution (majority voting) according to different metrics.
This shows the possibilities of using non-expert knowledge aggregation
techniques when expert knowledge is unavailable.

Keywords: Learning from crowds, Orthogonal defect classification,
Missing ground truth, Bayesian network classifiers

1 Introduction

Defect classification is an important task during software maintenance [1] which
can be used to facilitate defect prioritization, faster and cheaper defect res-
olution, and analysis of module and component quality [2, 3, 4, 5]. It is a
time-consuming task which has been traditionally performed manually by de-
veloper team members with expert knowledge of the task. Recently, machine

1

learning (ML) techniques, such as supervised classification, have been applied
to the classification of defects [6].

Given a classification task of interest, standard supervised classification tech-
niques infer, from a set of previously labeled examples (certainly categorized
defects in our case), the mapping between examples and categories. Classifiers
can thus be trained to anticipate the category of new unlabeled examples (i.e.,
new defects). In this paradigm, each training example describes a specific case
(defect) by means of a set of features and is provided together with its real
category. In software engineering, obtaining the real category of a large set of
previous defects, as required by standard ML techniques, is a difficult task which
needs to be carried out by a domain expert. This fact usually prevents managers
from advocating ML techniques to automate the classification of defects in their
projects. In the first place, every developer team does not necessarily include an
expert on defect classification. And, even when an expert is available, a careful
categorization (one by one) of defects may be impractical.

In this paper, we address the following research question: can we learn to
classify defects without the labeling of a domain expert? Although no expert
knowledge is available in our scenario, we do have access to a pool of computer
scientists who may have partial knowledge about the task. In contrast to the
concept of “expert”, the term novice is used throughout the rest of the paper
to refer to annotators without expert knowledge who provide partially reliable
categorizations (possibly inaccurate and/or biased annotations). Certainly, the
use of a single novice for labeling a whole dataset of defects is risky. The output
of a learning process where the class information is only provided by such an
annotator will likely be a classifier which reproduces their unreliable labeling
behavior; that is, an inaccurate classifier. A key study of sources of error [7]
showed that a straightforward solution for dealing with the problem of learning
from a single novice annotator is to take into account the opinion (labeling) of
a set of novices. This is the fundamental idea behind the learning from crowds
paradigm [8, 9], which inspires the solution proposed in this paper.

For this work, two different groups of 5 novice annotators have labeled the
defects reported in two real domains, the Compendium and Mozilla open-source
projects. Although our approach could be applied to any classification problem
in software engineering, we have selected, without loss of generality, to categorize
defects based on their impact as defined by the Orthogonal Defect Classification
(ODC) taxonomy [10]. The 13-category ODC taxonomy allows developers to
separate defects depending on their impact on the customer. It is particularly
suitable for open-source projects, where users are also commonly developers,
as the impact classification will, in theory, find the defects that impact user
experience the most. Thus, novices are asked to associate each defect (training
example) with an impact (category). Apart from the problem of the reliability
of the annotators, this application faces the issue of processing the text in which
the defect has been reported, mainly written in natural language. However, this
work has been carried out to illustrate the applicability of the learning from
crowds paradigm to real defect classification domains in the absence of expert
supervision. Thus, the natural language processing (NLP) challenge is beyond

2

the scope of this paper; standard techniques have been applied to deal with it.
Keeping in line with this scenario, the research question could be rephrased

as: can we learn a classification model of software defects using the impact cate-
gories provided by a set of novice annotators? Addressing the research question,
the main contribution of this paper is an in-depth analysis of two real appli-
cations (the Compendium and Mozilla projects). In order to carry out the
analysis, two learning from crowds state-of-the-art techniques have been ap-
plied. On the one hand, a K-means based approach [11], which assumes the
existence of common tendencies of category-confusion among the annotators,
tries to find out which distributions of labels are usually associated with ev-
ery category. On the other hand, an adaptation to defect classification of an
Expectation-Maximization (EM) based technique [9], which follows the popular
Dawid-Skene [12] strategy to infer a classification model, has been also used.
This technique (i) models the subjective point of view of the different novices
(reflected in significant rates of disagreement as observed in Section 3.1), (ii)
estimates their reliability individually and (iii) takes it into account to learn the
resulting classifiers.

The rest of the paper is organized as follows. In the next section, background
definitions and related work are described. Next, the real domains on which the
empirical studied is carried out and the applied methodology are presented. The
experimental work is explained and discussed in Section 4. The paper concludes
with conclusions and future work.

2 Background

According to the IEEE Standard 1044-1993 [13], a defect is “an imperfection
or deficiency in a work product where that work product does not meet its re-
quirements or specifications and needs to be either repaired or replaced”. In
practice for each defect a report is usually generated through an issue track-
ing system. A defect report is a description of the issue which can be used to
replicate and fix the problem. An issue tracking or bug reporting system is
typically used by software project managers for reporting and tracking defects
as well as proposing new functionalities, other project management tasks and
infrastructure decisions and code reviews. Open source issue tracking systems
include Bugzilla, Launchpad, GitHub and RedMine. Tickets are used to orga-
nize the information. Each ticket maintains data such as an identifier, summary,
description, opening/closing/modification dates, reporter, priority, severity, en-
vironment, current status, etc.

The classification of software defects aims to capture the semantics of the
reports of each type of defect. Software defect classification provides extra
information about defects and so is valuable for many tasks such as prioritizing
software defects, improvement of defect prediction, assignment of defects to
developers, defect resolution, identifying the quality of components, etc. One
of the most popular defect classification taxonomies is IBM’s ODC, although
it has been criticized due to a variety of drawbacks such as being neither fully

3

orthogonal nor consistent in the terminology [14]. It is said to be difficult to
apply in practice [15], and complicated to customise to specific contexts [16, 17].
In a controlled experiment with students, Falessi et al. [18] also reported that
there is affinity between some ODC defect types and previous training is needed
to apply it. Nevertheless, IBM and other organizations have applied ODC to
improve software development processes [19, 20, 21, 22].

ODC consists of four steps: (i) classify the data; (ii) validate; (iii) assess the
ODC attributes and defect trend analysis; and (iv) act to implement the actions.
When a defect is reported following the ODC process, three attributes have to
be added: (i) ODC activity, such as design review, unit test, etc.; (ii) ODC
trigger, which is the environment or condition that led to the failure; and (iii)
ODC defect impact, which relates the impact of the software defect to customer
satisfaction. As opposed to the goal of reducing the total number of defects,
ODC impact can be used with severity to focus quality improvement effort on
reducing the defects that most significantly impact customer satisfaction.

2.1 Related Work

There is a large amount of literature related to defect classification start-
ing with the seminal work by Endres [2], and followed by other studies such as
those by [23], [24] or [25]. Multiple models, variations and customisation of the
initial taxonomies have been proposed (e.g., [26], [3], etc.). The IEEE Standard
Classification for Software Anomalies [13] defines both the terminology and the
process to deal with defects. Thus, reports can refer to errors (human mis-
takes), defects (deficiencies in a product), faults (issues in software) or failures
(issue preventing normal use). It also defines the classification process and the
attributes to report. In addition to ODC [10], another popular approach was
developed by HP [15], where sources of defects are classified according to three
axes: origin, type and modes. Defect classification approaches and challenges
have been discussed previously [4]. Recently, a comprehensive taxonomy was
proposed [27].

Typically, developers manually classify defects into the ODC categories based
on the reported descriptions using, for example, root-cause defect analysis (RCA)
[28, 29]. The automation of software engineering problems by means of machine
learning techniques is increasingly being explored. The differentiation between
defects and requirements, the importance of which has been noted [30], has al-
ready been solved making use of the reported data. Additionally, the problem
of duplicate report recovery has been addressed by means of unsupervised learn-
ing techniques [31, 32]. The classification of reports during enhancement work
or other activities, reaching 77% and 82% of accuracy, has been reported [33].
Recently, Zhou et al. [34] combined text mining on the defect descriptions with
structured data (e.g., priority and severity) to identify corrective bugs.

Related to our work, Thung et al. [6] classify defects into three super-
categories (control and data flow, structural, and non-functional) which cover
all the ODC defect types. As opposed to our approach, they rely on ex-

4

pert knowledge to obtain the ground truth. Also, Huang et al. propose Au-
toODC [35], an automatic defect classification approach based on ODC to auto-
matically categorize reports taking advantage of extra expert knowledge. Rel-
evant words/phrases of the reports are identified and selected by experts to be
used as predictive variables. In this way, accuracy gains of up to 10 percentage
points are obtained. Whereas our methodology aims to obtain defect categories
when experts are unavailable, AutoODC uses extra expert knowledge to enhance
the set of descriptive variables.

3 Materials and Methods

3.1 Datasets

The first dataset used in this paper is composed of reports collected from the
Compendium project1, a software tool for mapping information, ideas and ar-
guments. The issue tracking system, implemented in Bugzilla, collects support
issues, feature requests and bug reports from the Compendium community.

The collected dataset comprises all the entries available in August 2014. For
each of the 846 obtained defects, only the informative fields have been consid-
ered: severity, summary and description. Severity is a 3-value variable (Bug,
Support or Feature), and both summary and description are text fields. Five
novice annotators were asked to annotate the impact of each example, according
to the descriptions of the corresponding 13-category ODC standard [10]. We
found that only 9 out of the original 13 categories were used by the annotators
to label the defects of the dataset. Moreover, we found high variability among
annotators: some categories were assigned to less than 10 reports whereas the
usability impact, for instance, was consistently assigned to about a third of the
collected defects.

Rather than solve the classification task at hand, this paper aims to point
out the viability of a learning from crowds approach when no expert supervi-
sion is available in software engineering classification problems. Dealing with the
original annotations would require supplementary machine learning techniques,
which are not necessarily related to the crowd learning paradigm, in order to
learn from such a highly unbalanced multi-class dataset. Including these tech-
niques would make it difficult to interpret the results and assess the contribution
of the learning from crowds approach. Therefore, for the sake of simplicity, the
dataset has been pre-processed to reduce the number of categories: the three
majority categories (Installability, Requirements and Usability) have been main-
tained while the other annotations have been grouped in a new label, Other.
The result is a dataset with four categories moderately balanced which aligns
with the essence of crowd labeling: a large number of disagreements among
annotators can be resolved by our techniques to learn trustworthy classifiers.

The second dataset has been collected from the Mozilla project, a popular
open-source application which started back in the late 90s with the Netscape

1http://compendium.open.ac.uk/bugzilla/

5

Table 1: No. of examples assigned by each annotator to the different labels
(defect impacts).

Impact
Annotator

Impact
Annotator

L1 L2 L3 L4 L5 L1 L2 L3 L4 L5

Installability 92 82 86 87 87 Installability 158 108 73 115 158

Requirements 192 236 139 239 242 Maintenance 2 140 184 36 62

Usability 392 267 473 279 353 Reliability 130 159 201 375 130

Other 170 261 148 241 164 Other 308 191 140 72 248

Compendium dataset Mozilla dataset

Table 2: Agreement on the assigned categories. Each cell shows the number of
examples assigned to a certain category (defect impact) —row— by a subset
of annotators of certain size —column. The last column shows the number of
examples where a majority of annotators (3 or more) agree on the assignment
of a certain category.

Impact
Annotator

Impact
Annotator

2 3 4 5 ≥ 3 2 3 4 5 ≥ 3

Installability 6 6 20 59 85 Installability 64 32 16 52 100

Requirements 65 73 100 37 210 Maintenance 45 18 4 0 22

Usability 50 71 129 96 296 Reliability 66 64 40 52 156

Other 0 13 121 0 134 Other 4 36 105 0 141

Compendium dataset Mozilla dataset

browser. Nowadays, it is a suite of tools that includes the Firefox browser and
the Thunderbird e-mail client. This second dataset, which contains 598 defects,
has undergone a similar pre-processing step to reduce the number of labels. In
this case, only the Installability, Maintenance and Reliability defect impacts
are kept from the 10 defect impacts originally labeled by the annotators. In
the same way as the first dataset, the other defect impacts are replaced by the
category Other.

Both the original and processed datasets of both domains are publicly avail-
able [36]. Table 1 shows the number of examples that each annotator assigned
to each class label for both datasets. Although for Installability reports of the
Compendium project the number of examples assigned by the different annota-
tors is almost the same, the variability is considerable in the other categories.
In some cases, such as the Maintenance reports of the Mozilla project, it is
extreme. Indeed, a similar number of annotations does not imply consensus.
Table 2 shows the assignment of examples to labels based on the consensus
among annotators: each cell shows the number of examples assigned to a class
label by a certain number of annotators. The last column shows the number of
examples in which the consensus label is supported by a majority of annotators
(three or more in our case). This can be seen as an estimation of the class
distribution of the respective systems. It can be observed that the annotations
for the Compendium dataset are more stable, resulting in the agreement of a
larger number of annotators than in the case of the Mozilla dataset.

6

In Table 3, examples of real defect reports and labelings are shown for both
studied systems. In some cases, the description of the defect is clear and the
agreement among annotators is high. This behavior is mainly observed with
installability defects, which are usually identified easily by annotators, as also
reflected in Table 2. However, annotators do not usually show agreement in
other categories or their vote is not unanimous. As shown in Table 2, both
systems contain examples where annotators have reported two, three and even
four different categories for the same defect report. Maybe due to lack of ex-
pertise or incomplete report description, the information provided by this type
of defect for the learning process is certainly limited.

3.2 Learning from crowds

In software engineering, crowdsourcing usually refers to outsourcing software de-
velopment to an undefined network of developers through web platforms [37, 38].
Crowdsourcing is a way of addressing a problem collaboratively and has be-
come an important technique for dealing with software requirements, design,
development, testing and decision making. In machine learning, learning from
crowds [8, 9] is a weakly supervised classification problem [39] where the exam-
ples provided for model training are unreliably categorized by a set of annota-
tors of questionable trustfulness and the ground truth is unavailable. Although
such labeling usually shows disagreements among annotators (see Figure 1 for a
graphical representation), competitive classifiers can be learnt from their com-
bination. Snow et al. [40] measured the contribution of the non-expert annota-
tors: they suggest that the combination of four non-expert annotations matches
the knowledge of a domain expert. Global behaviors, those owed to the whole
crowd, have been explored by Zhang et al. [11]. Other approaches try to model
instance difficulty [41] or bias [42]. However, estimating the reliability of the
individual annotators is the most common practice [8, 9, 41, 42]. Hence, the
contribution of each annotator is balanced based on their reliability in order
to carry out an informed aggregation of information. In this work, we use a
learning from crowds approach to learn from the labelings of a set of novices
and, thus, overcome the lack of the real (expert) categorization of the training
set of defects.

Formally, the objective in standard supervised classification is to learn from
a set of previous examples a classification model that anticipates the class label
(category) of new unclassified examples. A problem is described by a set of n
predictive variables (X1, . . . , Xn) and a class variable C. Each variable has a set
of possible values, with C specifically representing the set of values (class labels
or categories) that the class variable can take. Thus, the dataset provided for
learning the classifier D = {(x1, c1), (x2, c2), . . . , (xN , cN)} is composed of N
examples, where each example is a (n + 1)-tuple (independent and identically
distributed sampled from some unknown underlying probability distribution)
that assigns a value xi

j to each predictive variable Xj and a label ci to the

class variable C. In this context, the provided class labels ci are considered
completely reliable (ground truth). A classifier which maps examples (x) to

7

T
ab

le
3:

E
x
am

p
le

s
of

d
ef

ec
ts

an
d

th
e

co
rr

es
p

o
n

d
in

g
la

b
el

in
g
s

p
ro

v
id

ed
b
y

th
e

a
n

n
o
ta

to
rs

.
S
u
m

m
a
ry

D
e
sc

ri
p
ti

o
n

L
1

L
2

L
3

L
4

L
5

E
rr

o
r

L
a
u
n
ch

in
g

C
o
m

p
e
n
d
iu

m
L

D
a
ft

e
r

in
st

a
ll

H
i

te
a
m

,
E

rr
o
r

m
e
ss

a
g
e

la
u
n
ch

in
g

C
o
m

p
e
n
d
iu

m
L

D
a
ft

e
r

in
i-

ti
a
l

in
st

a
ll
:

J
a
v
a

V
ir

tu
a
l

M
a
ch

in
e

L
a
u
n
ch

e
r

C
o
u
ld

n
o
t

fi
n
d

th
e

m
a
in

c
la

ss
:

c
o
m

.c
o
m

p
e
n
d
iu

m
.P

ro
je

c
tC

o
m

p
e
n
d
iu

m
.

P
ro

g
ra

m
w

il
l

e
x
it

.
I

h
a
v
e

ru
n

th
ro

u
g
h

th
e

su
g
g
e
st

io
n

o
n

th
e

fo
ru

m
s

o
f

a
d
d
in

g
th

e
p
a
th

to
ja

v
a
w

in
th

e
.b

a
t,

a
n
d

v
e
ri

fi
e
d

th
e

p
a
th

th
ro

u
g
h

a
c
o
m

m
a
n
d

p
ro

m
p
t

is
su

c
c
e
ss

fu
l,

sa
m

e
e
rr

o
r.

A
n
y

o
th

e
r

ti
p
s?

R
e
g
a
rd

s,
E

ri
c

In
st

a
ll
a
b
il
it

y
O

th
e
r

In
st

a
ll
a
b
il
it

y
In

st
a
ll
a
b
il
it

y
In

st
a
ll
a
b
il
it

y

S
p

e
ll

C
h
e
ck

e
r

A
d
d

a
sp

e
ll
in

g
ch

e
ck

e
r

to
C

o
m

p
e
n
d
iu

m
w

it
h

th
e

a
b
il
it

y
to

sw
it

ch
o
n

a
n
d

o
ff

a
u
to

-s
p

e
ll

ch
e
ck

in
g
.

R
e
q
u
ir

e
m

e
n
ts

R
e
q
u
ir

e
m

e
n
ts

R
e
q
u
ir

e
m

e
n
ts

R
e
q
u
ir

e
m

e
n
ts

R
e
q
u
ir

e
m

e
n
ts

C
a
n

sm
a
ll

ic
o
n
s

a
ls

o
w

o
rk

w
it

h
im

-
a
g
e
s?

M
a
k
e

sm
a
ll

im
a
g
e
s?

R
ig

h
t

n
o
w

w
h
e
n

y
o
u

ch
o
o
se

sm
a
ll

ic
o
n
s,

it
sh

ri
n
k
s

th
e

n
o
rm

a
l

C
o
m

p
e
n
d
iu

m
ic

o
n
s

b
u
t

n
o
t

a
n
y

re
fe

re
n
c
e

n
o
d
e

im
a
g
e
s,

so
th

e
y

st
a
y

re
a
ll
y

b
ig

.
C

a
n

w
e

a
d
d

a
n

o
p
ti

o
n

to
sh

ri
n
k

th
o
se

p
ro

p
o
r-

ti
o
n
a
ll
y

a
s

w
e
ll
?

R
e
q
u
ir

e
m

e
n
ts

R
e
q
u
ir

e
m

e
n
ts

U
sa

b
il
it

y
R

e
q
u
ir

e
m

e
n
ts

O
th

e
r

T
e
x
t

fi
n
d
/
re

p
la

c
e

G
lo

b
a
l

se
a
rc

h
/
fi
n
d
/
re

p
la

c
e

fu
n
c
ti

o
n
a
li

ty
.

M
a
y
b

e
c
o
u
p
le

d
w

it
h

e
x
is

ti
n
g

se
a
rc

h
p
a
ra

m
e
te

rs
.

A
b
il
it

y
to

ch
a
n
g
e

te
x
t

in
fo

u
n
d

n
o
d
e
s

w
it

h
o
u
t

h
a
v
in

g
to

o
p

e
n

th
e

n
o
d
e
s,

e
d
it

th
e

la
b

e
l/

d
e
ta

il
,

e
tc

.

R
e
q
u
ir

e
m

e
n
ts

U
sa

b
il
it

y
U

sa
b
il
it

y
R

e
q
u
ir

e
m

e
n
ts

R
e
q
u
ir

e
m

e
n
ts

C
o
m
p
e
n
d
iu
m

d
a
t
a
se

t

N
S
S

a
u
to

c
o
n
f
d
o
e
s

n
o
t

in
c
lu

d
e

IR
IX

–
e
n
a
b
le

-c
ry

p
to

d
o
e
s

n
o
t

w
o
rk

o
n

IR
IX

a
s

se
c
u
ri

ty
/
n
ss

/
c
o
n
fi
-

g
u
re

.i
n

d
o
e
s

n
o
t

d
e
fi
n
e

X
P

U
N

IX
a
n
d

fr
ie

n
d
s

o
n

IR
IX

.
R

e
q
u
ir

e
m

e
n
ts

R
e
li
a
b
il
it

y
M

a
in

te
n
a
n
c
e

R
e
q
u
ir

e
m

e
n
ts

M
a
in

te
n
a
n
c
e

M
o
z
il
la

a
u
to

m
a
-

ti
c
a
ll
y

ch
e
ck

s
th

e
“
R

e
a
ss

ig
n

b
u
g

to
”

ra
d
io

b
u
tt

o
n

M
o
z
il
la

a
u
to

m
a
ti

c
a
ll
y

ch
e
ck

s
th

e
“
R

e
a
ss

in
g

b
u
g

to
”

ra
d
io

b
u
t-

to
n

in
B

u
g
z
il
la

c
a
u
si

n
g

u
n
in

te
n
ti

o
n
a
l

ch
a
n
g
e
s

to
b
u
g
s.

T
e
st

e
d

w
it

h
w

in
3
2

0
5
1
4
0
4

m
o
z
il
la

w
in

3
2

b
u
il
d

o
n

N
T

.
M

o
re

to
c
o
m

e
.

O
th

e
r

O
th

e
r

R
e
li
a
b
il
it

y
R

e
li
a
b
il
it

y
R

e
li
a
b
il
it

y

in
st

a
ll
a
ti

o
n

fa
il
e
d

w
it

h
e
rr

o
r

-2
1
4

d
u
e

to
e
m

p
ty

fl
a
sh

.x
p
i

se
e
n

o
n

m
a
c

c
o
m

m
e
rc

ia
l

b
u
il
d

2
0
0
1
-0

5
-0

9
-0

4
-t

ru
n
k
.

T
h
e

in
-

st
a
ll
e
rs

,
b

o
th

fu
ll

a
n
d

st
u
b
,

fa
il
e
d

w
it

h
a

-2
1
4

e
rr

o
r.

T
h
o
u
g
h

th
e

in
st

a
ll
a
ti

o
n

“
a
p
p

e
a
rs

”
c
o
m

p
le

te
,

w
h
e
n

la
u
n
ch

e
d
,

it
c
ra

sh
e
s

a
t

th
e

e
n
d

o
f

th
e

sp
la

sh
sc

re
e
n
.

I
w

a
s

a
b
le

to
u
se

th
e

n
o
n
-

in
st

a
ll
e
r

b
it

s
fo

r
sm

o
k
e
te

st
in

g

In
st

a
ll
a
b
il
it

y
In

st
a
ll
a
b
il

it
y

In
st

a
ll
a
b
il
it

y
In

st
a
ll
a
b
il
it

y
In

st
a
ll
a
b
il
it

y

C
re

a
te

C
h
il
d
L

is
t

in
n
sP

re
f.

c
p
p

n
e
e
d
s

to
b

e
fi
x
e
d
.

C
re

a
te

C
h
il
d
L

is
t

d
o
e
s

n
o
t

c
re

a
te

th
e

ch
il
d
L

is
t.

b
u
f

is
n
o
t

g
e
t-

ti
n
g

a
ss

ig
n
e
d

p
ro

p
e
rl

y
.

P
L

st
rn

c
p
y
(b

u
f,

(c
h
a
r*

)&
ch

il
d
A

rr
a
y
[i
],

P
R

M
IN

(5
1
2
,

P
L

st
rl

e
n
((

ch
a
r*

)&
ch

il
d
A

rr
a
y
[i
])

+
1
))

;
a
n
d

P
L

st
rc

a
t

is
fa

il
in

g
P

L
st

rc
a
t(

ch
il
d
L

is
t,

b
u
f)

;
I

h
a
v
e

a
p
a
tc

h
fo

r
th

is
.

O
th

e
r

M
a
in

te
n
a
n
c
e

M
a
in

te
n
a
n
c
e

R
e
li
a
b
il
it

y
M

a
in

te
n
a
n
c
e

M
o
z
il
l
a
d
a
t
a
se

t

8

a)

x1,...,xv +x1,...,xv ?

x1,...,xv +
x1,...,xv -

x1,...,xv -

x1,...,xv +

Learning

Classifier

Prediction

Learning

technique

b)

x1,...,xv +x1,...,xv ?

x1,...,xv

x1,...,xv

x1,...,xv

x1,...,xv

Learning

Classifier

Prediction

Learning

technique

?
?
?

?

Figure 1: Using a hypothetical binary domain ({−,+}), graphical comparison
of (a) standard supervised classification —each training example is provided
with its real label— and (b) the learning from crowds paradigm —real labels
are unknown; the opinions of 3 annotators are available for each example.

C

X1 X3X2 X4

(a) Naive Bayes (NB)

C

X1 X3X2 X4

(b) Tree-augmented naive
Bayes (TAN)

C

X1 X3X2 X4

(c) 2-dependence Bayesian
network (KDB)

Figure 2: Examples of the structures of the Bayesian network classifiers used in
this study.

categories (c) is learnt such that, given a new example x∗, the classifier will
anticipate the corresponding category c∗.

In the learning from crowds paradigm, the real class labels of the examples
are unknown and only the subjective opinions of a set of t novice annotators are
available. The information of supervision of each example xi is codified by a
t-tuple li, where lia ∈ C indicates the class label assessed by annotator La for xi.
Thus, the training dataset is D = {(x1, l1), (x2, l2), . . . , (xN , lN)}. Although
the annotations are known to be noisy (the provided label lia is not always the
real unknown label ci), assuming better-than-random annotators is a common
practice in the related literature [8, 9]. The learning from crowds paradigm
overcomes the unavailability of the real labels by combining the provided multi-
ple annotations, li, in an informed way. Only the way in which the information
of supervision is provided differs from standard supervised classification; the
objective and other assumptions remain the same.

3.3 Classification models

In this analysis, our ML technique learns Bayesian network models, which are
used as probabilistic classifiers, i.e., Bayesian Network Classifiers (BNC) [43].
This choice is motivated by the interpretability of these models: influences and

9

Algorithm 1 Pseudocode of the structural learning procedure for TAN models.

procedure StructuralTAN(D) . D: training dataset
MIij ← I(Xi, Xj |C), ∀i, j : i 6= j . Conditional Mutual Information, using D
G← complete undirected graph with all the variables {Xi}ni=1.
Weight every edge Xi ←→ Xj with MIij
T ← Maximum weight spanning tree over G [44]
T ← Transform undirected edges to directed: Randomly select a variable Xi as

the root and direct all edges outward from it
T ← T+ Variable C + ∀i: edge C −→ Xi . Add naive Bayes structure
return T

end procedure

Algorithm 2 Pseudocode of the structural learning procedure for KDB models.

procedure StructuralKDB(D,K) . D: training dataset; K: no. of parents
MIic ← I(Xi, C), ∀i . Mutual Information, using D
MIcij ← I(Xi, Xj |C), ∀i, j : i 6= j . Conditional Mutual Information, using D
T ← ∅ ; sNodes← {arg maxXi MIic} . Initialize graph
repeat

Select Xm = arg maxXi 6∈sNodesMIic
Select min(|sNodes|,K) variables {Xj} with the highest MIcmj

T ← T+ edges from the selected variables {Xj} to Xm

sNodes← sNodes+Xm

until All the variables Xi are included in sNodes
T ← T+ Variable C + an edge C −→ Xi, ∀i . Add naive Bayes structure
return T

end procedure

dependencies among variables can be deduced from the explicit probability re-
lationships. They can be graphically represented, enhancing model comprehen-
sibility and facilitating the interaction with domain experts. Moreover, BNC
have been successfully used to model many classification problems of different
domains. A Bayesian network, represented by a pair (G,θ), is a probabilistic
graphical model that encodes the conditional dependencies between a set of
random variables V using a directed acyclic graph (DAG). The graph struc-
ture, G = (V ,R), codifies the arcs R (conditional dependencies) between nodes
V = (X1, . . . , Xn, C) (random variables), and θ is the set of parameters of the
conditional probability functions of each variable given its parents in the graph.

Specifically, three kinds of BNC where all the predictive variables are con-
ditioned to the class variable have been considered in this study: naive Bayes
classifier (NB) [45], tree augmented naive Bayes classifier (TAN) [46] and K-
dependence Bayesian network classifier (KDB) [47]. Based on the assumption
of conditional independence between the predictive variables given the class
variable, the naive Bayes classifier presents the simplest network structure (see
Figure 2). The TAN and KDB classifiers are more complex in terms of network
structure and allow models to capture some conditional dependencies between
predictive variables. Both the model parameters and the graph of conditional

10

(in)dependencies of a BNC can be estimated from a set of examples. In the spe-
cific case of learning from certainly labeled examples, maximum likelihood esti-
mates of the model parameters can be obtained by means of frequency counts
[48]. Regarding the graph structure, in this paper the standard methods for
learning TAN [46] and KDB [47] structures have been implemented. Their
pseudocodes are given in Algorithms 1 and 2, respectively. NB does not require
structural learning as its structure is fixed. The general classification rule of
this type of BNC is defined as,

argmax
c

p(C = c)

n∏
j=1

p(Xj = xj |PAj = paj , C = c) (1)

where argmaxc f(c) is an operator that finds the value c which maximizes the
expression f(c), paj is the vector of values assigned in the example x to the
predictive variables, PAj , which are parents of Xj in the structure G.

The lack of the ground truth labels prevents us from directly applying the
standard BNC learning techniques for complete data. Precisely, the use of learn-
ing from crowds techniques allows us to deal with this issue. In this paper, two
state-of-the-art techniques of different nature are used to show the performance
of the crowd learning paradigm on two defect classification domains. On the
one hand, a pre-processing technique that, using the K-means clustering algo-
rithm, models labeling behaviors of the whole crowd is considered. Its result
is a completely labeled dataset in which standard techniques can be applied
for learning a classification model. On the other hand, an EM-based technique
that models the individual behavior of each labeler is also applied. In this case,
model learning and ground truth estimation are iteratively alternated.

3.4 K-means based method

The method proposed by Zhang et al. [11], which only considers annotations
{li}Ni=1 (the corresponding examples {xi}Ni=1 are disregarded), has been imple-
mented (see Algorithm 3 for its pseudocode). First of all, the annotated la-
bels are transformed into label counts disregarding the information about who
provided each label: the number of annotators who provided class label c for
example x is calculated for every example and label. These vectors of label
counts are the examples provided to the K-means clustering algorithm, which
is set up with k equal to the number of categories, |C|. The vectors with the
highest label count for each label c are used as initial centroids. As usual, the
K-means algorithm assigns each example (vector of label counts) to a centroid.
As each centroid was generated for representing a class label, the ground truth
estimation of this technique assumes that each example belongs to the class
label that is represented by its closest centroid.

This method outputs an estimation of the ground truth labels. That is, a
vector gs in which each element gsi ∈ C (with i = {1, . . . , N}) is a class label. In
this way, using this labeling together with the corresponding original predictive
data, a complete dataset D̂ = {(x1, gs1), (x2, gs2), . . . , (xN , gsN)} can be built

11

Algorithm 3 Pseudocode of the implemented K-means based approach.

procedure kmeansApproach(D) . D = {(x1, l1), (x2, l2), . . . , (xN , lN)}
R← new matrix(nRow:N , nCol:|C|+ 1)
for i ∈ {1, . . . , N} do

for c ∈ {1, . . . , |C|} do
Ric ← countsOfLabel(li, c) . No. annotators providing label c in li

end for
Ric+1 ←

∑|C|
i=2Ric −Ric−1

end for
iCentroids← {arg maxi∈1,...,N Ric}|C|c=1

gs← Kmeans(R, iCentroids, k = |C|) . Assign each example to a centroid
. Examples assigned to the centroid representing label c belong to label c

return D̂ = {(x1, gs1), (x2, gs2), . . . , (xN , gsN)}
end procedure

and used to learn classification models by means of the techniques presented in
the previous section. Thus, ground truth inference and model learning are, in
this approach, two sequential but separate steps.

As aforementioned, the individual information about the annotators is dis-
regarded. The individual labels and, therefore, the information about which
annotator provided each label, are not considered. This makes any attempt to
individually model the behavior (reliability) of the annotators impossible. On
the contrary, this approach looks for profiles of label counts. That is, for each
category, it approximates the mean counts of labels assigned by the annotators
to examples of that category. The assumption that underlies this approach is
that the tendency to confuse categories, a.k.a. bias in this context, is somehow
global and can be modeled at crowd-level.

3.5 EM-based method

In contrast to the previously presented approach, the second technique, fol-
lowing a Dawid-Skene scheme [12], models individual annotators by means
of a set of reliability parameters that are subsequently used to calibrate the
contribution of the labels that they provide to ground truth estimation. An
Expectation-Maximization (EM) based method previously proposed for the
multi-dimensional learning from crowds problem [9] has been adapted to this
unidimensional but multi-class classification task. The EM strategy [49] allows
us to combine the estimation of a set of weights that model the reliability of each
annotator and the learning of the model using the labels provided by the set of
novices. In our method, the Expectation step estimates the reliability weights
of the annotators and, in the Maximization step, the model parameters are re-
estimated such that the likelihood is maximized given the data and the weights
estimated in the Expectation step. Iteratively, both steps are repeated. Under
general conditions, the iterative increase of the likelihood has been proved to
converge to a stationary value (local maximum) [50].

When TAN or KDB classifiers are learnt, an outer loop to the traditional

12

Algorithm 4 Pseudocode of the implemented Structural EM method.

1: procedure StructuralEM(D,maxIt, ε) . D = {(x1, l1), (x2, l2), . . . , (xN , lN)}
. Stop conditions: max. no. iterations, maxIt / threshold, ε

2: W ← initialReliabilityWeights(D)
3: G0 ← initialStructure(D,W)
4: repeat . Increasing i = 1, 2, ...
5: θ0 ← estimateParameters(D,W,Gi−1)
6: repeat . Increasing j = 1, 2, ...
7: W ← reestimateReliabilityWeights(D,M ≡ (Gi−1,θj−1))
8: θj ← estimateParameters(D,W,Gi−1)
9: until (diff(θj ,θj−1) < ε) Or (j = maxIt) . Model parameter optim. loop

10: Gi ← improveStructure(D,W,Gi−1)
11: until (Gi = Gi−1) Or (i = maxIt) . Model structure optimization loop
12: return M ≡ (Gi,θj)
13: end procedure

EM procedure allows us to combine model parameter estimation and struc-
tural learning (see Algorithm 4). This extension of EM, known as Structural
EM [51], iteratively improves an initially-proposed structure (see Algorithms 1
and 2). At each iteration, the structural improvement is carried out by means
of a one-step local search which looks for the structure that maximizes the
complete-data minimal description length (MDL) score. The neighborhood is
composed of all the structures (in the same space as the original one) that can
be obtained by removing one conditional dependency between two predictive
variables and adding another dependency between a different pair of predictive
variables. When no structure overcomes the current one in terms of MDL, the
algorithm stops.

For this study, two types of reliability weights, which codify the trustwor-
thiness of each annotator, have been considered. On the one hand, a reliability
weight per class label and annotator is used. These per-label weights (wa

c , for
all a ∈ {1, . . . , t}) codify the reliability of each annotator La when they provide
examples of a specific class label c. On the other hand, the confusion-matrix
weights (W a

cc′ , for all a ∈ {1, . . . , t} and c, c′ ∈ {1, . . . , |C|}) codify, for each an-
notator, both the reliability of an annotator when they predict a class label and
the probability of label c′ being the real label when the annotator provides c.
Firstly, the initial set of reliability weights is estimated by comparing the anno-
tations of each labeler with those of the rest of the annotators. Next, a model
is learnt using a counting procedure for model parameter estimation which has
been adapted to consider the multiple (weighted) labelings. A detailed descrip-
tion of the adapted procedure is presented in the next subsection. Once a model
is available, in the Expectation step of the EM strategy, the annotator reliability
weights can be re-estimated assuming that the ground truth is the output of
the predictive model. Reliability weight estimation procedures, both initial and
model-based assessments, are explained in detail in Section 3.5.2. A numerical
example of the calculation involved in this process is available in the additional

13

material of this paper.

3.5.1 Estimation of model parameters

The standard parameter estimation procedure has been adapted to collect fre-
quency counts from multiple noisy annotations per example, using the annotator
reliability weights in order to carry out an informed aggregation of the different
contributions. Similar to Hernández-González et al. [9], the parameter estima-
tion procedure to collect frequency counts integrating the multiple and weighted
labels can be expressed as follows:

N(u) =
∑

(xi,li)∈D

|C|∑
c=1

I[xi
J1

= u1, . . . , x
i
Jk

= uk] · F li

uk+1 (2)

where I[condition] is a function that returns 1 if condition is true and 0 oth-
erwise, u = (u1, . . . , uk, uk+1) is an instantiation of the random vector U =
(XJ1

, . . . , XJk
, C), a sub-vector of the original V = (X, C) with {J1, . . . , Jk} ⊆

{1, . . . , n}. Finally, F
l
c is the reliability of assigning label c jointly taking into

account the opinion of the annotators l and their reliability weights. With∑|C|
c=1 F

l
c = 1, it is calculated differently depending on the type of annotator

reliability weights. On the one hand, using the per-label weights (wa
c), it is

calculated as,

F
l
c =

∑t
a=1 I[la = c] · wa

c∑|C|
c′=1

∑t
a=1 I[la = c′] · wa

c′

(3)

On the other hand, F
l
c is calculated using the confusion-matrix reliability

weights (W a
cc′) as follows,

F
l
c =

∑t
a=1 I[c ∈ l] ·W a

lac∑|C|
c′=1

∑t
a=1 I[c′ ∈ l] ·W a

lac′

(4)

3.5.2 Estimation of reliability weights for the annotators

A simple estimation of the reliability weights of the annotators (line 2 in Alg. 4),
which only uses the available multiple labelings, is obtained by means of the
consensus criterion [9]. In the case of per-label weights, the consensus weight of
an annotator La in class label c is,

wa
c = iRelWeilabel(D) =

1

Φ

N∑
i=1

I[lia = c]
1

t− 1

∑
a′ 6=a

I[lia′ = c] (5)

with normalization factor Φ =
∑N

i=1 I[lia = c]. In the case of confusion-matrix
weights, the consensus weight of an annotator La for confusing label c′ with c
is,

W a
cc′ = iRelWeimatrix(D) =

1

Φ

N∑
i=1

I[lia = c]
1

t− 1

∑
a′ 6=a

I[lia′ = c′] (6)

14

Table 4: Relation of the different configurations used in the experiments and
their equations.

Acc Prob Acc+Cons Prob+Cons

Per-label Eq. 7 Eq. 8 (Eq. 7+Eq. 5)/2 (Eq. 8+Eq. 5)/2

Confusion-matrix Eq. 9 Eq. 10 (Eq. 9+Eq. 6)/2 (Eq. 10+Eq. 6)/2

Once a model fit M is available, the re-estimation of the reliability weights
of the annotators [9] (line 7 in Alg. 4) can be carried out using two different
strategies: (1) an accuracy-based strategy (Acc), where the class label ĉ pre-
dicted (according to Eq. 1) by the model M for each example is used as ground
truth, and (2) a probability-based strategy (Prob), which uses the probability
given by the model M to the labels assigned by each annotator to calculate their
reliability weights. In the case of using per-label weights (wa

c), both estimation
techniques can be formulated as,

wa
c = reRelWeiacclabel(D,M) =

1

Φ

N∑
i=1

I[lia = c] · I[ĉi = c] (7)

wa
c = reRelWeiproblabel(D,M) =

1

Φ

N∑
i=1

I[lia = c] · pM(c|xi) (8)

with normalization factor Φ =
∑N

i=1 I[lia = c]. And, in the case of using the
confusion-matrix reliability weights (W a

cc′), both estimation procedures are,

W a
cc′ = reRelWeiaccmatrix(D,M) =

1

Φ

N∑
i=1

I[lia = c] · I[ĉi = c′] (9)

W a
cc′ = reRelWeiprobmatrix(D,M) =

1

Φ

N∑
i=1

I[lia = c] · pM(c′|xi) (10)

where Φ is in both cases a normalization constant such that
∑|C|

c′=1 W
a
cc′ = 1.

As the EM strategy proposes a hill climbing approach for the problem of
model parameter estimation, a procedure that updates the annotator reliability
weights relying exclusively on the learnt model could be detrimental. If our
EM procedure iteratively converges to a harmful classifier that only predicts a
subset of labels, the estimated reliability weights can differ considerably from
the real reliability values. In order to avoid this undesirable deviation, our
method allows us to use the consensus weights (Eq. 5 or Eq. 6, as appropriate)
throughout the iterations of the EM process as a correction term (cons). Thus,
in this case the annotator reliability weights are re-estimated using the average
value of the consensus weights and the model-estimated weights.

15

X1,X2,...,Xn L1 L2 Lt

Pre-process

MV

Kmeans

X1, X2,..., Xn ĉ

Model learning

NB

TAN

KDB

standard

techniques

NB

TAN

KDB

standard

techniques

EM
+

different
configurations

NB

TAN

KDB

per-label
prob

NB

TAN

KDB

matrix
acc

Figure 3: Graphical description of the learning process. The different techniques
make use of the training dataset labeled by a crowd in a different way: the
majority voting and k-means based techniques transform it before a classifier is
built; and different configurations of the EM-based technique deal with the raw
training data in different ways to build a classifier.

4 Experimental work

4.1 Experimental settings

Different experiments have been carried out using both the K-means based and
the EM-based learning techniques to learn three types of Bayesian network
classifiers (NB, TAN and 2DB) from both datasets [36]. In the case of the EM-
based technique, all the possible configurations have been tested for its three
adjustable features: the type of reliability weights (per-label and confusion-
matrix) of the annotators, the weight estimation procedure (Prob and Acc)
and the use, or not, of consensus weight correction (cons). In order to assess
the size of the improvement achieved with the implementation of the crowd
learning paradigm, the majority voting (MV) strategy is used as a baseline.
This simple strategy completes the dataset by labeling each example with the
label most voted among the set of novices and, in this way, learns as in a standard
supervised classification problem. A graphical description of the training process
is provided in Figure 3. The use of the training crowd-labeled data by the
different learning techniques is compared.

All these experiments were carried out using our own implementation of the
different learning algorithms and evaluation strategies. As our developments
are written in Java, we can make easy use of several data management features
currently implemented in the popular software Weka [52]. In this way, the text
reported by users to describe defects (in two text fields, summary and descrip-
tion) was processed. In a pre-processing stage, standard NLP techniques have
been used to extract a relevant set of variables from the text fields and transform
the original database into a dataset which can be handled by ML techniques.
Specifically, the popular StringToWordVector filter implemented in Weka [52]

16

Classifier

X1 , X2 , ... , Xn L1 L2 Lt...

Eval1

ĉ

X1 , X2 , ... , Xn L1 L2 Lt...
T
R

A
IN

IN
G

 D
A
T
A

T
E
S

T
 D

A
T
A

Model learning Prediction
Evalt

Eval2

Eval=(1/t)Σa Evala

.
.
.

Figure 4: Graphical description of the evaluation strategy. The final perfor-
mance is the mean value after comparing each annotation with the predicted
labels.

was used. Stop-words were removed based on Rainbow [53], text was converted
to lowercase; the iterated version of the Lovins stemmer [54] was applied as
well as an alphabetic tokenizer where tokens are formed only using contiguous
alphabetic sequences. For each word a numeric variable is created which, for
each defect, takes as value the Term Frequency-Inverse Document Frequency
(TF-IDF) ratio. Without a ground truth to compare with, the number of se-
lected attributes was set to 100. Finally, each numeric variable was transformed
into a binary variable using a step function which takes a positive value only
if the original numeric value is larger than zero. Similarly, both parameters of
the EM-based technique have been set to their default values [9]: a threshold
indicating parametric convergence (set to 0.1%) and the maximum number of
iterations (fixed to 200). The use of default parameters allows us to focus this
work on the benefits of the learning from crowds approach. Note that there is
room for performance improvement via this pre-processing step.

Model evaluation is not straightforward in the learning from crowds paradigm.
The lack of a ground truth (certain labeling) makes the use of standard evalua-
tion techniques impossible. Given the relatively recent emergence of the learning
from crowds paradigm, the model evaluation in this scenario is still a field to be
explored. In this paper, the evaluation strategy followed is based on the same
idea that confers its characteristic robustness on the majority voting: the com-
bination of multiple independent assessments [9, 40]. That is, the mean value
of the performance metric calculated using the labels of one annotator at a time
as ground truth is considered. In practice, all the experiments in this section
are evaluated as follows (see Fig. 4): (1) after model learning, the performance
of the model is estimated using the annotations of each labeler, one at a time,
as ground truth, and (2) the mean value of all the estimates is the final perfor-
mance value. All the experimental results are obtained with a 10× 5-fold cross
validation procedure [55].

17

Table 5: Definition of the evaluation metrics based on a confusion matrix V ,
where Vcĉ is the number of examples predicted by the learnt classifier as class ĉ
when their real class is c.

Recallc Vcc/
∑|C|

c′=1
Vc′c Min-Recall minc∈{1,...,|C|}Recallc

Precisionc Vcc/
∑|C|

c′=1
Vcc′ Max-Recall maxc∈{1,...,|C|}Recallc

F1-mean 1
|C|

∑|C|
c=1

2·Recallc·Precisionc
(Recallc+Precisionc)

A-mean 1
|C|

∑|C|
c=1 Recallc

Accuracy 1
|C|

∑|C|
c=1 Vcc

4.2 Results

In order to provide a complete overview of the performance of the learnt clas-
sifiers, results in terms of A-mean (Table 6), F1-mean (Table 7) and accuracy
(Table 8) are presented. See Table 5 for a description of the evaluation metrics
used in this paper. In tables 6 to 8, the MV strategy, the K-means based tech-
nique and the eight different configurations (all the possible combinations of the
three features, see Table 4) of the EM-based technique are displayed in columns;
each row shows the experiments using a specific BNC in one of the datasets.
The best configuration for each BNC and dataset (by row) is highlighted in
bold. In (multi-class) classification, analyzing the performance of a classifier
depends on the preferences of the final user. Accuracy is a global measure that
evaluates the performance of a classifier independently of the number of class
labels. Classifiers which completely disregard one or more class labels can show
competitive accuracy values if their performance in examples of the rest of the
categories is outstanding. It is, therefore, a good option for users interested
in classifiers which show high global performance. However, if the final user is
interested in classifiers which perform well in all the class labels, A-mean [56],
the mean of the recall values, or F1 [57] are more suitable metrics. To illustrate
this trade-off between local and global performance, Figure 5 shows the mini-
mum and maximum recall values obtained by the different classifiers in any of
the class labels. These values provide an insight into the performance of the
classifiers across class labels: large differences among minimum and maximum
values usually correspond to large accuracy values and low differences to large
A-mean and F1-mean values.

The simplest solution, a standard supervised classification approach that
uses the most-voted labels (MV) as ground truth, gives a baseline whose ro-
bust behavior has already been analyzed [9]. In these experiments, MV is a
solid strategy which gives a competitive baseline; it is able to occasionally beat
the performance of some configurations of the applied techniques. However,
both applied crowd learning techniques consistently outperform the basic MV
strategy. In the Compendium domain, the results of the k-means based tech-
nique overcome those of MV in terms of all the metrics. However, mainly with
the TAN and KDB classifiers, the MV strategy beats the k-means approach in
the Mozilla domain. Regarding the EM-based approach, configurations with
confusion-matrix weights always outperform MV in terms of A-mean, where

18

Table 6: Results in terms of A-mean of the BNC classifiers learnt from both
datasets —rows— using a K-means based technique [11] and a EM-based tech-
nique with different configurations (Table 4) —columns. Majority Voting (MV)
is used as a baseline strategy.

BNC MV Kmeans EMPer-label Confusion-matrixProb Prob+Cons Acc Acc+Cons Prob Prob+Cons Acc Acc+Cons

C
o
m

p
e
n
d
iu

m

NB 0.455 0.593 0.480 0.474 0.479 0.475 0.491 0.492 0.488 0.492

TAN 0.433 0.603 0.436 0.440 0.436 0.442 0.456 0.458 0.454 0.460

2DB 0.404 0.572 0.400 0.408 0.402 0.413 0.424 0.425 0.417 0.415

M
o
z
il
la

NB 0.454 0.475 0.459 0.462 0.453 0.463 0.479 0.477 0.480 0.479

TAN 0.502 0.490 0.491 0.523 0.496 0.519 0.529 0.528 0.521 0.529

2DB 0.480 0.475 0.496 0.496 0.498 0.494 0.508 0.508 0.513 0.498

the differences are up to 4 percentage points. Nevertheless, configurations using
per-label weights consistently beat MV accuracy values, with differences which
are close to 3 percentage points.

The results reveal a clear behavior: the K-means based technique outper-
forms the rest of the approaches in the Compendium dataset, whereas in the
Mozilla dataset the best performing approach is the EM-based technique. It is
observed in terms of all the measured metrics. In the bar graphs corresponding
to the Compendium dataset in Figure 5, the difference between the K-means
approach and the rest of techniques is especially noticeable: it shows the best
results in terms of both maximum and minimum recall. Apart from the itera-
tive nature of the EM strategy (the K-means approach works as a pre-process
that produces an estimate of the ground truth), the main difference between
both approaches is the behavior that they aim to model. Whereas the K-means
based technique can only model biases shown by the whole crowd (annotators
usually confuse labels c and c′), the EM-based approach can model individual
biases (annotator a tends to confuse labels c and c′). This is the most feasible
explanation for the different behaviors of both methods in both domains. In
Table 1 it can be observed that annotations for the Compendium domain are
similar for all the labelers. The main divergence relates categories Usability and
Other (when the former is observed more frequently by an annotator, the latter
is not annotated as often, and vice versa). However, in the case of the Mozilla
domain, different behaviors can be observed among annotators; from annotator
L2, who provides balanced annotations, to annotators L1 and L5, who seem to
label similarly both overpopulating the Other category. In this last dataset and
according to the experimental results, modeling annotators individually is prob-
ably an adequate decision. With the Compendium dataset, the global modeling
carried out by the K-means approach seems to be more appropriate.

Regarding the EM-based approach and its different configurations, although
the differences are slight, the Prob procedure mostly outperforms Acc according
to A-mean and F1 metrics (tables 6 and 7, respectively). Note that the per-
formance of a classifier in all the class labels contributes to the computation of
these metrics. Similarly, the use of confusion-matrix reliability weights seems
more suitable if one of these metrics has to be optimized. The trend is clearly

19

Table 7: Results in terms of mean F1 of the BNC classifiers learnt from both
datasets —rows— using a K-means based technique [11] and a EM-based tech-
nique with different configurations (Table 4) —columns. Majority Voting (MV)
is used as a baseline strategy.

BNC MV Kmeans EMPer-label Confusion-matrixProb Prob+Cons Acc Acc+Cons Prob Prob+Cons Acc Acc+Cons

C
o
m

p
e
n
d
iu

m

NB 0.407 0.572 0.393 0.398 0.387 0.393 0.408 0.409 0.408 0.407

TAN 0.393 0.589 0.374 0.387 0.372 0.382 0.399 0.400 0.400 0.402

2DB 0.381 0.562 0.345 0.364 0.352 0.367 0.389 0.386 0.387 0.381

M
o
z
il
la

NB 0.394 0.376 0.405 0.402 0.404 0.403 0.407 0.405 0.401 0.405

TAN 0.449 0.408 0.432 0.454 0.437 0.452 0.462 0.463 0.452 0.462

2DB 0.439 0.395 0.429 0.442 0.430 0.440 0.447 0.446 0.444 0.439

Table 8: Results in terms of accuracy of the BNC classifiers learnt from both
datasets —rows— using a K-means based technique [11] and a EM-based tech-
nique with different configurations (Table 4) —columns. Majority Voting (MV)
is used as a baseline strategy.

BNC MV Kmeans EMPer-label Confusion-matrixProb Prob+Cons Acc Acc+Cons Prob Prob+Cons Acc Acc+Cons

C
o
m

p
e
n
d
iu

m

NB 0.474 0.554 0.482 0.478 0.480 0.480 0.454 0.456 0.453 0.452

TAN 0.465 0.565 0.471 0.474 0.468 0.475 0.441 0.441 0.442 0.443

2DB 0.459 0.535 0.461 0.465 0.467 0.468 0.437 0.435 0.437 0.428

M
o
z
il
la

NB 0.456 0.423 0.463 0.462 0.462 0.463 0.448 0.446 0.425 0.439

TAN 0.526 0.449 0.535 0.532 0.539 0.535 0.505 0.501 0.479 0.495

2DB 0.518 0.431 0.541 0.537 0.543 0.536 0.485 0.483 0.477 0.472

noticeable in the experimental results: configurations using per-label reliabil-
ity weights always outperform configurations using confusion-matrix weights in
terms of global accuracy (Table 8), and configurations using confusion-matrix
weights always stand out in terms of A-mean or F1 metrics. On the one hand,
it can be observed in Figure 5 that configurations with per-label weights often
show minimum recall values near to 0. This behavior is associated with classi-
fiers which concentrate their performance in a subset of class labels; usually, in
the most populated categories. Performing robustly in highly populated class
labels can lead to competitive global performance (e.g., in terms of accuracy)
even when results in sparsely populated categories are poor. On the other hand,
high A-mean or F1 values are associated with high minimum recall values. As
these metrics balance the performance on all the class labels, high values can
only be obtained when the performance is competitive on each label. More-
over, the use of consensus correction affects the results mainly when per-label
weights are used. To sum up, per-label weights promote classifiers with com-
petitive global performance, whereas confusion-matrix weights are appropriate
whenever the objective is an averaged competitiveness across class labels (defect
types, in our case).

Another interesting trend is the different performance of the three types of
BNCs when they are learnt with the different techniques. Inarguably, the best
performance is shown by TAN classifiers, always associated to the best learning

20

MV Kmeans L:P L:P+C L:A L:A+C M:P M:P+C M:A M:A+C

Minimum
Maximum

Min/Max recall values (NB/Compendium)

R
e

c
a
ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

MV Kmeans L:P L:P+C L:A L:A+C M:P M:P+C M:A M:A+C

Minimum
Maximum

Min/Max recall values (TAN/Compendium)

R
e

c
a
ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

MV Kmeans L:P L:P+C L:A L:A+C M:P M:P+C M:A M:A+C

Minimum
Maximum

Min/Max recall values (KDB/Compendium)

R
e

c
a
ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

MV Kmeans L:P L:P+C L:A L:A+C M:P M:P+C M:A M:A+C

Minimum
Maximum

Min/Max recall values (NB/Mozilla)

R
e
c
a
ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

MV Kmeans L:P L:P+C L:A L:A+C M:P M:P+C M:A M:A+C

Minimum
Maximum

Min/Max recall values (TAN/Mozilla)

R
e

c
a
ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

MV Kmeans L:P L:P+C L:A L:A+C M:P M:P+C M:A M:A+C

Minimum
Maximum

Min/Max recall values (KDB/Mozilla)

R
e

c
a
ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 5: Graphical representation of minimum and maximum recall values
obtained by the BNC classifiers —columns— learnt from both datasets —rows.
Similar to tables 6 to 8, results are displayed in each subfigure for majority
voting (first pair of bars), K-means based technique [11] (second pair), and
different configurations of the EM-based technique (Table 4).

technique, the K-means approach in the Compendium dataset and the EM-
based technique for Mozilla. This means that probabilistic relationships among
predictive variables have been correctly modeled. When the MV strategy and
the EM-based approach learn from the Compendium dataset, the best results
are associated with the experiments that infer NB classifiers. That is, when
the circumstances are not favorable, NB still performs reasonably well, showing
its robustness. In the same way, the high maximum-recall values of the NB
classifiers in the Compendium dataset (Figure 5) are noteworthy. Learnt 2DB
classifiers show a competitive behavior in the Mozilla dataset, but not to the
same extent as in the Compendium domain. This also emphasizes the different
nature of both domains. Allowing the learning techniques to introduce extra
relationships among predictive variables does not boost the performance of the
classifiers. Thus, either no such relationships are present on the Compendium
data or learnt models overfit the training data.

4.3 Discussion

Two crowd learning techniques have been applied to the task of defect classifica-
tion. The EM-based technique, an adaptation to this unidimensional multi-class
problem of our proposal for multi-dimensional problems [9], stands out in the
Mozilla domain. The second approach, a K-means based technique [11], out-

21

performs the rest of methods in the Compendium domain. In spite of the high
variability observed in the annotations (see Table 3), the experimental results
show that learning to classify defects without the ground truth, only using the
labelings provided by novices, is possible. Therefore, the proposed crowd learn-
ing paradigm is a robust choice for solving the defect classification problem.
This opens an interesting path for reducing the reliance on expert knowledge
for future software engineering classification tasks. Indeed, the performance
improvement regarding the majority voting strategy shows the value of model-
ing the behavior of the novices, either globally —the contribution of the whole
crowd— or individually —the annotations of each labeler.

The use of an ML approach in practice will result in a classification model
that, given a new defect, predicts its category (in this case, ODC Defect Im-
pact). Following the predictions of any classifier involves a partial risk, as an
irreducible error may exist even when the best possible model is learnt. The
existence of this irreducible error, known as Bayes error rate [58], is inherent to
the problem and should always be taken into account. In our case, an estimation
of the probability of error can be obtained for the learnt models: the summation
over the probabilities of all the label assignments which do not maximize Equa-
tion 1 for any possible defect description. The cost of this estimation increases
dramatically with the size of the descriptor vector (n). Although an implemen-
tation of the proposed approach is liable to classification error, the amount of
mistakes can be minimized with training data and rates of confidence on the
classification can be obtained.

Theoretical studies [59, 9] and other previous real applications [40, 60] sug-
gest that the classifiers learnt by means of the crowd learning approach are com-
petitive with the standard supervised classification whenever enough training
data is provided. In our specific task one can expect that defects will continue
being reported; i.e., more data will be available. However, in order to avoid
overloading annotators, their effort can be focused on labeling the most useful
examples. As not all the types of defects are equally difficult to classify (see
Fig. 5), further developments should ideally select the defects which need to
be annotated by the novices to boost the learning process: those which are not
accurately classified by the classifier. Similarly, Table 3 shows reports where the
agreement is unanimous. The number of annotators who are asked to annotate
each defect report could be optimized to further reduce the cost of the labeling
process. The estimated reliability weights could be taken into account to select,
individually for each defect, the annotators to be questioned. Although it is
a common practice to assume that annotators are novices, nothing prevents a
domain expert from participating. The presented EM-based technique is able
to identify experts and promote their annotations. Once identified, an effective
procedure would firstly ask experts for their opinion. This selective learning
process can be achieved by means of active learning [61], a strategy that allows
the classifier to be used in production and improved in parallel. Its application
to the learning from crowds paradigm has already been studied [60]. The ac-
tive learning extension for the proposed paradigm would cover all the needs of
an automatic defect classification procedure implemented in a real system and

22

would allow the classifier to be continuously improved at the same time.
Finally, an issue tracking system will have to be ultimately adapted to in-

clude the developments required for the participation of the community, which
is necessary to put the proposed approach into production. The study, develop-
ment and implementation of the ideas discussed in this paper is a step forward
towards the use of the presented approach in real world systems.

4.4 Threats to Validity

Concerning external validity, an obvious threat is the representativeness of the
studied systems, Compendium and Mozilla. Software systems usually have spe-
cific features such as the application domain, development environment and
number of people. Different systems usually differ in the distribution of types
of defects and, therefore, machine learning techniques need to adjust to the
specific environment of each problem. Moreover, in the presented applications
five annotators participated in the labeling processes. The results show that,
in spite of the high levels of noise reported in Table 1, their contributions are
informative and can be used to learn classification models. However, a larger
number of annotators is expected to enhance the performance of the different
methods, particularly that of the MV strategy [9, 40]. Although a more exten-
sive study would certainly be more conclusive, two systems have been analyzed
in the present study to foster representativeness. According to the results pre-
sented in the previous section, both domains are different enough to observe
particular behaviors and diversity of performance among the used techniques.

Concerning construct validity, the quality in the issue tracking system makes
it hard to easily classify defect data manually. We do not address other prob-
lems faced in the defect repositories such as defect duplicates. Apart from the
summary and the description of defects, more data which could be extracted
from Bugzilla repositories might be helpful. Other preprocessing decisions could
have been chosen or optimized: e.g., removal of outliers or text field (natural
language) processing. In order to focus the present study on the enhancement
associated to the application of the learning from crowds paradigm, standard
NLP procedures and default values have been used. The optimization of these
procedures for the defect classification task would likely report improved per-
formance. Moreover, and following the same reason, i.e., to focus the discussion
on the usefulness of the class information provided by the multiple annota-
tors, the original databases were transformed to 4-class classification problems.
This decision could have had an impact on the results. However, dealing with
the original databases would have required specific techniques to deal with the
multi-class imbalance classification problem and their inclusion might obscure
the interpretability of the results. Moreover, the techniques that we would have
required for such an approach are not available in the state-of-the-art as the
problem has not been addressed yet in the machine learning community. Both
the original and processed databases are publicly available [36] to guarantee
replicability.

Internal validity is concerned with whether the automated classifications

23

have arisen as a result of chance or not. In the case of 4 balanced class labels,
the probability of randomly assigning the right label to an example is 1/4 = 0.25.
Assuming a random assignment of labels according to the distribution of labels
estimated for the studied domains —based on the last column of Table 2—, the
probability of being right is approximately 0.298 = (0.122+0.292+0.412+0.182)
for the Compendium system and 0.312 = (0.242 + 0.052 + 0.372 + 0.342) for
Mozilla. Both domains have similar probability of randomly selecting the real
label. Taking this and the results of the previous section into account, it can be
concluded that the automated classifications are not a product of chance. How-
ever, the performance of the learnt classifier is different in both datasets. That
may be a product of the discriminant ability of the texts describing the defects
and the NLP procedures applied to them. That is, the predictive variables have
to be informative for this task to succeed.

5 Conclusions and future work

In this paper, the proposal of automation of the defect classification problem
without the supervision of an expert, only relying on multiple partially reliable
annotators, has been presented and tested in two real systems, Compendium and
Mozilla. Two state-of-the-art methodologies, one based on the EM strategy and
another one based on the K-means clustering algorithm, have been applied to
learn Bayesian network classifiers from reported defects.

Both techniques and the different tested configurations show their competi-
tive behavior in both domains. Whereas the K-means based technique models
the crowd of annotators as a whole, the EM-based technique tries to individu-
ally model the different annotators of the crowd. Their performance is different
through both studied domains. However, both crowd learning techniques sys-
tematically outperform a basic approach based on standard classification which
uses the most-voted labels, encouraging the study of advanced techniques to
combine the multiple contributions. Although further research is required, this
study supports the use of a learning from crowds approach to defect classifica-
tion when expert knowledge is not available.

For future work, dealing with the original 13-category problem would require
us to model the studied systems as multi-class imbalance problems. Specific ma-
chine learning techniques, such as SMOTEBoost [62], have already been pro-
posed to deal with this type of classification problem. However, their adaptation
to the learning from crowds paradigm is not straightforward and would require
further research. Specifically, we would like to study the effect of a set of skewed
annotators on the learning process of a domain where the types of the reported
defects are also unbalanced [63]. Regarding the evaluation of models learned
from crowds without ground truth, it would be interesting to explore how the
reliability weights estimated by, for example, the EM-based technique during
the learning phase can be used to constrain the contribution of the different
partial scores in the calculation of the final metric score (see Figure 4).

24

Acknowledgments

This work has been partially supported by the Basque Government (IT609-
13, Elkartek BID3A), the Spanish Ministry of Economy and Competitiveness
(TIN2016-78365-R) and the University-Society Project 15/19 (Basque Govern-
ment and University of the Basque Country UPV/EHU). Jose A. Lozano is
also supported by BERC program 2014-2017 (Basque Government) and Severo
Ochoa Program SEV-2013-0323 (Spanish Ministry of Economy and Competi-
tiveness). Daniel Rodriguez carried out this work while visiting Oxford Brookes
University. He is partly supported by projects BadgePeople TIN2016-76956-C3-
3-R. We would like to thank Varsha Veerappa for her help with data collection.

References

[1] B. Boehm, V. R. Basili, Software defect reduction top 10 list, in: B. Boehm,
H. D. Rombach, M. V. Zelkowitz (Eds.), Foundations of empirical software
engineering: the legacy of Victor R. Basili, Springer, 2005, pp. 426–431.

[2] A. Endres, An analysis of errors and their causes in system programs, in:
Proc. Int. Conf. Reliable Software, ACM, New York, NY, USA, 1975, pp.
327–336.

[3] R. B. Grady, Practical Software Metrics for Project Management and Pro-
cess Improvement, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[4] S. Wagner, Defect classification and defect types revisited, in: Proc. 2008
Workshop on Defects in Large Software Systems, DEFECTS’08, ACM,
New York, NY, USA, 2008, pp. 39–40.

[5] D. N. Card, Learning from our mistakes with defect causal analysis, IEEE
Software 15 (1) (1998) 56–63.

[6] F. Thung, D. Lo, L. Jiang, Automatic defect categorization, in: Proc. 19th
Working Conf. Reverse Engineering, 2012, pp. 205–214.

[7] G. Lugosi, Learning with an unreliable teacher, Pattern Recognit. 25 (1)
(1992) 79–87.

[8] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni,
L. Moy, Learning from crowds, J. Mach. Learn. Res. 11 (2010) 1297–1322.

[9] J. Hernández-González, I. Inza, J. A. Lozano, Multidimensional learning
from crowds: Usefulness and application of expertise detection, Int. J. In-
tell. Syst. 30 (3) (2015) 326–354.

[10] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus, B. Ray,
M.-Y. Wong, Orthogonal defect classification-a concept for in-process mea-
surements, IEEE Trans. Softw. Eng. 18 (11) (1992) 943–956.

25

[11] J. Zhang, V. S. Sheng, J. Wu, X. Wu, Multi-class ground truth inference
in crowdsourcing with clustering, IEEE Trans. Knowl. Data Eng. 28 (4)
(2016) 1080–1085.

[12] A. P. Dawid, A. M. Skene, Maximum likelihood estimation of observer
error-rates using the EM algorithm, J. R. Stat. Soc. Ser. C-Appl. Stat.
28 (1) (1979) 20–28.

[13] IEEE, IEEE Std 1044-1993. IEEE Standard Classification for Software
Anomalies (1993).

[14] C. B. Seaman, F. Shull, M. Regardie, D. Elbert, R. L. Feldmann, Y. Guo,
S. Godfrey, Defect categorization: Making use of a decade of widely varying
historical data, in: Proc. 2nd ACM-IEEE Int. Symp. Empirical Software
Engineering and Measurement, ESEM’08, ACM, New York, NY, USA,
2008, pp. 149–157.

[15] B. Freimut, C. Denger, M. Ketterer, An industrial case study of imple-
menting and validating defect classification for process improvement and
quality management, in: Proc. 11th IEEE Int. Symp. on Software Metrics
(METRICS’05), 2005, pp. 10–19.

[16] T. Nakamura, L. Hochstein, V. R. Basili, Identifying domain-specific defect
classes using inspections and change history, in: Proc. 2006 ACM/IEEE
Int. Symp. Empirical Software Engineering (ISESE’06), ACM, New York,
NY, USA, 2006, pp. 346–355.

[17] J. Duraes, H. Madeira, Definition of software fault emulation operators: a
field data study, in: Proc. Int. Conf. Dependable Systems and Networks,
2003, pp. 105–114.

[18] D. Falessi, G. Cantone, Exploring feasibility of software defects orthogonal
classification, in: Proc Int. Conf. Software and Data Technologies, Springer
Berlin Heidelberg, 2006, pp. 136–152.

[19] M. Butcher, H. Munro, T. Kratshmer, Improving software testing via ODC:
Three case studies, IBM Syst. J. 41 (1) (2002) 31–44.

[20] M. Soylemez, A. Tarhan, Using process enactment data analysis to support
orthogonal defect classification for software process improvement, in: Proc.
Joint Conf. 23rd Int. Workshop on Software Measurement and 8th Int.
Conf. Software Process and Product Measurement (IWSM-MENSURA),
2013, pp. 120–125.

[21] N. Bridge, C. Miller, Orthogonal defect classification using defect data to
improve software development, Softw. Qual. J. 3 (1998) 1997–8.

[22] R. Mays, C. Jones, G. Holloway, D. Studinski, Experiences with defect
prevention, IBM Syst. J. 29 (1) (1990) 4–32.

26

[23] N. Schneidewind, H.-M. Hoffmann, An experiment in software error data
collection and analysis, IEEE Trans. Softw. Eng. 5 (3) (1979) 276–286.

[24] T. J. Ostrand, E. J. Weyuker, Collecting and categorizing software error
data in an industrial environment, J. Syst. Softw. 4 (4) (1984) 289–300.

[25] V. R. Basili, B. T. Perricone, Software errors and complexity: An empirical
investigation, Commun. ACM 27 (1) (1984) 42–52.

[26] R. A. Demillo, A. P. Mathur, A grammar based fault classification scheme
and its application to the classification of the errors of TEX, Tech. rep.,
Software Engineering Research Center and Department of Computer Sci-
ences, Purdue University, W. Lafayette, IN 47907 (November 1995).

[27] T. Hall, D. Bowes, S. Counsell, L. Moonen, A. Yamashita, Software fault
characteristics: A synthesis of the literature, http://bura.brunel.ac.uk/
handle/2438/11013 (2015).

[28] M. Leszak, D. E. Perry, D. Stoll, Classification and evaluation of defects in
a project retrospective, J. Syst. Softw. 61 (3) (2002) 173–187.

[29] L. Buglione, A. Abran, Introducing root-cause analysis and orthogonal de-
fect classification at lower CMMI maturity levels, in: Proc. Int. Conf. Soft-
ware Process and Product Measurement (Mensura’06), 2006, pp. 29–40.

[30] K. Herzig, S. Just, A. Zeller, It’s not a bug, it’s a feature: How mis-
classification impacts bug prediction, in: Proc. 2013 Int. Conf. Software
Engineering, 2013, pp. 392–401.

[31] P. Runeson, M. Alexandersson, O. Nyholm, Detection of duplicate defect
reports using natural language processing, in: 29th Int. Conf. Software
Engineering (ICSE), 2007, pp. 499–510.

[32] N. Jalbert, W. Weimer, Automated duplicate detection for bug tracking
systems, in: Proc. 2008 IEEE Int. Conf. Dependable Systems and Networks
With FTCS and DCC (DSN), 2008, pp. 52–61.

[33] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, Y.-G. Guéhéneuc, Is it
a bug or an enhancement?: A text-based approach to classify change re-
quests, in: Proc. 2008 Conf. Center for Advanced Studies on Collaborative
Research: Meeting of Minds, ACM, New York, NY, USA, 2008, pp. 23:304–
23:318.

[34] Y. Zhou, Y. Tong, R. Gu, H. Gall, Combining text mining and data mining
for bug report classification, J. Softw.: Evol. Process 28 (3) (2016) 150–176.

[35] L. Huang, V. Ng, I. Persing, M. Chen, Z. Li, R. Geng, J. Tian, AutoODC:
Automated generation of orthogonal defect classifications, Automat. Softw.
Eng. 22 (1) (2015) 3–46.

27

[36] J. Hernández-González, D. Rodriguez, I. Inza, R. Harrison, J. A. Lozano,
Two datasets of defect reports labeled by a crowd of annotators of unknown
reliability, Data in Brief (2017) 1–7, in press.

[37] J. Howe, The rise of crowdsourcing, Wired Mag. 15 (6) (2006) 1–4.

[38] K. Mao, L. Capra, M. Harman, Y. Jia, A survey of the use of crowdsourcing
in software engineering, Tech. Rep. RN/15/01, Department of Computer
Science, University College London (2015).

[39] J. Hernández-González, I. Inza, J. A. Lozano, Weak supervision and other
non-standard classification problems: A taxonomy, Pattern Recognit. Lett.
69 (2016) 49–55.

[40] R. Snow, B. O. Connor, D. Jurafsky, A. Y. Ng, D. Labs, C. St, Cheap
and fast - but is it good? evaluating non-expert annotations for natural
language tasks, in: Proc. Conf. Empirical Methods in Natural Language
Processing, Vol. 254, 2008, pp. 254–263.

[41] J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, J. R. Movellan, Whose vote
should count more: Optimal integration of labels from labelers of unknown
expertise, in: Proc. Advances in Neural Information Processing Systems 22
(NIPS), 2009, pp. 2035–2043.

[42] P. Welinder, S. Branson, S. Belongie, P. Perona, The multidimensional
wisdom of crowds, in: Proc. Advances in Neural Information Processing
Systems 23 (NIPS), 2010, pp. 2424–2432.

[43] C. Bielza, P. Larrañaga, Discrete Bayesian network classifiers: a survey,
ACM Comput. Surv. 47 (1) (2014) 5.

[44] C. K. Chow, C. N. Liu, Approximating discrete probability distributions
with dependence trees, IEEE Trans. Inf. Theory 14 (3) (1968) 462–467.

[45] D. J. Hand, K. Yu, Idiot’s bayes—not so stupid after all?, Int. Stat. Rev.
69 (3) (2001) 385–398.

[46] N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers,
Mach. Learn. 29 (2–3) (1997) 131–163.

[47] M. Sahami, Learning limited dependence Bayesian classifiers, in: Proc. 2nd
Int. Conf. Knowledge Discovery and Data Mining, 1996, pp. 335–338.

[48] D. Heckerman, A tutorial on learning with bayesian networks, Tech. Rep.
MSR-TR-95-06, Learning in Graphical Models (1995).

[49] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from in-
complete data via the EM algorithm, J. R. Stat. Soc. Ser. B-Stat. Methodol.
39 (1) (1977) 1–38.

28

[50] G. J. McLachlan, T. Krishnan, The EM Algorithm and Extensions (Wiley
Series in Probability and Statistics), Wiley-Interscience, 1997.

[51] N. Friedman, Learning belief networks in the presence of missing values
and hidden variables, in: Proc. 14th Int. Conf. Machine Learning, 1997,
pp. 125–133.

[52] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten,
The WEKA data mining software: an update, SIGKDD Explor. 11 (1)
(2009) 10–18.

[53] A. K. McCallum, Bow: A toolkit for statistical language modeling, text
retrieval, classification and clustering, http://www.cs.cmu.edu/ mccal-
lum/bow (1996).

[54] J. B. Lovins, Development of a stemming algorithm, Mech. Trans. Comput.
Ling. 11 (1968) 22–31.

[55] J. D. Rodŕıguez, A. Perez, J. A. Lozano, Sensitivity analysis of k-fold cross
validation in prediction error estimation, IEEE Trans. Pattern Anal. Mach.
Intell. 32 (3) (2010) 569–575.

[56] A. Menon, H. Narasimhan, S. Agarwal, S. Chawla, On the statistical con-
sistency of algorithms for binary classification under class imbalance, in:
Proc. 30th Int. Conf. Machine Learning, 2013, pp. 603–611.

[57] H. He, E. Garcia, et al., Learning from imbalanced data, IEEE Trans.
Knowl. Data Eng. 21 (9) (2009) 1263–1284.

[58] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning,
2nd Edition, Springer Series in Statistics, 2009.

[59] A. Papoulis, S. U. Pillai, Probability, Random Variables, and Stochastic
Processes, 4th Edition, McGraw-Hill Education, 2002.

[60] V. S. Sheng, F. Provost, P. G. Ipeirotis, Get another label? improving data
quality and data mining using multiple, noisy labelers, in: Proc. 14th ACM
SIGKDD Int. Conf. Knowledge Discovery and Data Mining, ACM, 2008,
pp. 614–622.

[61] D. Cohn, L. Atlas, R. Ladner, Improving generalization with active learn-
ing, Mach. Learn. 15 (2) (1994) 201–221.

[62] N. V. Chawla, A. Lazarevic, L. O. Hall, K. W. Bowyer, Smoteboost: Im-
proving prediction of the minority class in boosting, in: Proc. 7th Euro-
pean Conf. Principles and Practice of Knowledge Discovery in Databases,
Springer, 2003, pp. 107–119.

[63] J. Zhang, X. Wu, V. S. Sheng, Imbalanced multiple noisy labeling, IEEE
Trans. Knowl. Data Eng. 27 (2) (2015) 489–503.

29

