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Abstract

We consider an energy functional motivated by the celebrated K13 problem
in the Oseen-Frank theory of nematic liquid crystals. It is defined for sphere-
valued functions and appears as the usual Dirichlet energy with an additional
surface term.

It is known that this energy is unbounded from below and our aim has been
to study the local minimizers. We show that even having a critical point in a
suitable energy space imposes severe restrictions on the boundary conditions.
Having suitable boundary conditions makes the energy functional bounded and
in this case we study the partial regularity of the global minimizers.

1 Introduction

In this paper we study critical points of the following energy functional

E[n] =

ˆ
Ω

K

2
|∇n|2 dx+ K̃13

ˆ
∂Ω

((n · ∇)n) · ν dσ (1.1)

for maps n : Ω ⊂ Rd → Rd with |n(x)| = 1 a.e. in Ω̄ where

K > 0, K̃13 ∈ R
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and Ω ⊂ Rd with d ∈ {2, 3} is a C2 domain and ν denotes the exterior unit-normal.
This functional is motivated by the K13 problem in the Oseen-Frank theory of

liquid crystals. More details about the physical relevance of this problem are provided
in the next subsection, Section 1.1.

It has been known since 1985 thanks to the work of C. Oldano and G. Barbero [14]
that there exists a domain Ω ⊂ R3 and a sequence {nk}k∈N ⊂ C∞(Ω;S2) such that
E[nk] → −∞ as k → ∞. Thus one cannot understand the physical meaning of the
energy in the standard way, i.e. from the point of view of global energy minimizers.
However it is conceivable that the energy might still have nontrivial local energy-
minimizers and this has been the starting point of this work.

A first question is then to understand what is the space in which to look for
local minimizers. In order to understand this one can start by noting that for n ∈
C2(Ω,Sd−1) an integration by parts allows to rewrite the energy as:

E[n] =

ˆ
Ω

K

2
|∇n|2 dx+ K̃13

ˆ
Ω

d∑
α,β=1

(
∂nα
∂xβ

∂nβ
∂xα

+ nβ
∂2nα
∂xα∂xβ

)
dx

A minimal requirement for the functional space is that the energy makes sense for
functions in it. Thus a natural choice is:

A := W 1,2(Ω;Sd−1) ∩W 2,1(Ω;Sd−1) (1.2)

In this space one can consider various boundary conditions, which would make
the space smaller. However we surprisingly have that there are severe constraints on
what the boundary conditions could be:

Theorem 1.1. Let Ω ⊂ Rd, d = 2, 3 be an open bounded set with C1 boundary and
with unit-norm exterior normal denoted ν. Consider the energy E as defined in (1.1).

Let n̄ be a critical point of E in the functional space A defined in (1.2). Then we
have

n̄(x) · ν(x) ∈ {0,±1}, for almost all x ∈ ∂Ω (1.3)

The most interesting case is the one when n̄(x) · ν(x) = 0 for almost all x ∈ ∂Ω
and in dimension d = 3 as this allows for a certain level of freedom at the boundary.
Then one can show that the energy E reduces to:

G[n] :=

ˆ
Ω

K

3∑
α,β=1

∂nα
∂xβ

∂nα
∂xβ
− K̃13

ˆ
∂Ω

3∑
α,β=1

∂νβ
∂xα

nβnα. (1.4)

This energy makes sense in the large functional space W 1,2(Ω,S2) and it is easily
shown to be bounded from below and lower semicontinuous. Thus one can now
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consider minimizing G over the function space of W 1,2 functions with tangential
boundary conditions:

U := {u ∈ W 1,2(Ω,S2) : Trace(u) ∈ T } (1.5)

where

T := {γ ∈ H
1
2 (∂Ω,S2) : γ(x) · ν(x) = 0 for almost every x ∈ ∂Ω}. (1.6)

A first issue to consider is wether or not this functional space is non-empty as the
topological constraint might make it empty, as shown by the “Hairy Ball” Theorem.
Fortunately in our case the regularity at the boundary is weaker than continuous and
we have:

Proposition 1.2. Let Ω be a bounded C2 domain in R3. Then the space U defined
in (1.5) is non-empty.

Standard arguments provide the existence of a global minimizer. In general this
minimizer might not be continuous at the boundary for topological reasons (think
of the example of the “Hairy Ball” theorem). It is then of interest to look into the
matter of partial regularity for the global minimizers of G in the space U . This is
related to the works of R. Hardt and F. Lin in [7] and later that of Scheven [15] who
considered partially constrained boundary conditions, though only for the Dirichlet
functionals. We look into this through a method combining the two approaches in
the works mentioned above and taking into account the effect of the surface energy.
We can thus show:

Theorem 1.3. Let Ω ⊂ R3 be a C2 domain. Then a global energy minimizer of the
energy G (defined in (1.4)) in the space (1.5) is continuous on Ω̄ \Z where Z is a set
of one-dimensional Hausdorff measure equal to zero.

The paper is organized as follows: in the next section physical background is
provided, to be followed in Section 2 by the example of Barbero and Oldano showing
the unboundedness of the energy functional, and then the proof of Theorem 1.1.
In the last part, Section 3, we prove Proposition 1.2 and then Theorem 1.3. The
appendices contain a number of technical lemmas and the list of notations.

1.1 Physical motivation

Nematic liquid crystals are the simplest yet the most used type of liquid crystals, with
wide-ranging applications, particularly in displays. The simplest and most compre-
hensive model used for describing the stationary patterns is related to the Oseen-Frank
energy (see for instance [21]) :
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EOF [n] =

ˆ
Ω

K1|∇ · n|2 +K2|n · (∇× n)|2 +K3|n× (∇× n)|2 dx (1.7)

+

ˆ
Ω

(K2 +K24)(tr(∇n)2 − (∇ · n)2) +K13∇ · ((∇ · n)n) dx

(1.8)

where the vector n is unit-length. Using the identity, valid for n ∈ C1(Ω;S2):

tr(∇n)2 + |n · (∇× n)|2 + |n× (∇× n)|2 = |∇n|2

we have that for “equal elastic constants” K1 = K2 = K3 the Oseen-Frank energy
reduces to

ẼOF [n] =

ˆ
Ω

K2|∇n|2 +K24(tr(∇n)2 − (∇ · n)2) +K13∇ · ((∇ · n)n) dx

The K24 term is a null-Lagrangian as we have (see for instance [21],[1]):

ˆ
Ω

K24(tr(∇n)2 − (∇ · n)2) dx =

ˆ
Ω

∇ · ((n · ∇)n− (∇ · n)n) dx

=

ˆ
∂Ω

[(n · ∇)n− (∇ · n)n] · ν dσ =

ˆ
∂Ω

Dtn : n⊗ ν − tr(Dtn)n · ν dσ

where Dtn := ∇n − ν ⊗ ∂n
∂ν

is a differential operator that involves only tangential
derivatives, thus its value depends only on the boundary conditions.

The K13 term is different as it can be expressed as a surface integral, but the
surface integral does not depend only on tangential derivatives. However, we can
remove the tangential contribution to the K13 term as follows:

K24(tr(∇n)2 − (∇ · n)2) +K13∇ · ((∇ · n)n) = (K24 −K13)(tr(∇n)2 − (∇ · n)2)

+K13(tr(∇n)2 − (∇ · n)2) +K13∇ · ((∇ · n)n)

= K̃24(tr(∇n)2 − (∇ · n)2) +K13∇ · ((n · ∇)n)

(1.9)

thus the energy E that we consider in (1.1) contains the essential terms capturing
the difficulty of the physical K13 problem namely that the energy is unbounded from
below. The results we obtain in the next section are relevant to the full physical
Oseen-Frank energy, with suitable adaptations.
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2 Constraints on the boundary conditions

2.1 The unboundedness of the energy functional

We show now, by following the example provided in E.Virga’s book [21] and inspired
by [14] that the energy E can become unbounded from below, so no global minimizers
can exist. Let Ω be the domain in R3 given by Ω := {(x, y, z) : x, y ∈ (0, l), z ∈
(−d,+d)} and consider the functions nε(x, y, z) := (cos(ρε(z)), 0, sin(ρε(z)) with ρε(z)
given by:

ρε(z) :=


ρ0 + ε− 1

ε3
(z − d+ ε2)2 if z ∈ [d− ε2, d],

ρ0 + ε if z ∈ (−d+ ε2, d− ε2),

ρ0 + ε− 1
ε3

(z + d− ε2)2 if z ∈ [−d,−d+ ε2].

A calculation gives that nε ∈ A and

E[nε] := 4l2
(
K

3
−K13

sin(2ρ0)

2ε

)
.

Therefore if we choose ρ0 such that sin(ρ0) > 0 then we get

E[nε]→ −∞

proving that E is unbounded from below in the function space A (for this specific
domain Ω).

2.2 Critical points

Theorem 1.1 is proved by studying the first variations of the energy E in A . First we
will prove some lemmas; note that in Lemma 2.1 it is important that we are working
with n̄ ∈ W 2,1(Ω,S2) (hence −∆n̄− n̄|∇n̄|2 ∈ L1(Ω)).

Lemma 2.1. Let n̄ be a critical point of the energy E in the function space A . Then
n̄ satisfies the equation

d∑
α,β,γ=1

ˆ
∂Ω

(ϕβ,αn̄α − ϕγ,αn̄γn̄αn̄β) νβdS = 0

for all ϕ ∈ C∞(Ω̄,R3) such that ϕ = 0 on ∂Ω.
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Proof. Let n̄ be a critical point of E in A . First, let ψ ∈ C∞c (Ω,R3) and set n̄ε :=
n̄+εψ
|n̄+εψ| , then n̄εα = n̄α + ε(ψα − n̄αn̄βψβ) +O(ε2) as ε→ 0 and a standard calculation
gives

d

dε
E[n̄ε]

∣∣∣
ε=0

= K

ˆ
Ω

∇n̄ · ∇ψ − |∇n̄|2n · ψdx = 0.

We now use the fact that n̄ ∈ W 2,1(Ω,S2) to perform an integration by parts, giving

d

dε
E[n̄ε]

∣∣∣
ε=0

= K

ˆ
Ω

(
−∆n̄− |∇n̄|2n̄

)
· ψdx = 0.

As ψ can be chosen arbitrarily and −∆n̄ − n̄|∇n̄|2 ∈ L1(Ω), for variations in the
interior of Ω we obtain the harmonic map equation for maps into spheres: ∆n̄ +
|∇n̄|2n̄ = 0 holding almost everywhere.

Next, let ϕ ∈ C∞(Ω̄,R3) such that ϕ = 0 on ∂Ω and set n̄ε = n̄+εϕ
|n̄+εϕ| . Recalling

that we have n̄εα = n̄α + ε(ϕα − n̄αn̄βϕβ) + O(ε2) we obtain on the boundary the
following:

d

dε

∣∣
ε=0

νβ
(
n̄εα∂αn̄

ε
β

)
= νβ ((ϕα − n̄αn̄βϕβ)∂αn̄β + n̄α∂α (ϕβ − n̄βn̄γϕγ))

= νβ (ϕα∂αn̄β + n̄α∂αϕβ − n̄α∂α (n̄βn̄γ)ϕγ − n̄αn̄βn̄γ∂αϕγ)
= νβ (+n̄α∂αϕβ − n̄αn̄βn̄γ∂αϕγ + ϕα (∂αn̄β − n̄σ∂σ (n̄βn̄α)))

= νβ (+n̄α∂αϕβ − n̄αn̄βn̄γ∂αϕγ)

where for the second equality we used that |n| = 1 hence nβ∂αnβ = 0. For the last
equality we used that ϕ is zero on the boundary.

Using the last calculation we get:

d

dε
E[n̄ε]

∣∣∣
ε=0

= K

ˆ
Ω

∇n̄ · ∇ϕ− |∇n̄|2n̄ · ϕdx+K13

d∑
α,β,γ=1

ˆ
∂Ω

(ϕβ,αn̄α − ϕγ,αn̄γn̄αn̄β) νβdS

= K

ˆ
Ω

(
−∆n̄− |∇n̄|2n̄

)
· ϕdx+K13

d∑
α,β,γ=1

ˆ
∂Ω

(ϕβ,αn̄α − ϕγ,αn̄γn̄αn̄β) νβdS

= K13

d∑
α,β,γ=1

ˆ
∂Ω

(ϕβ,αn̄α − ϕγ,αn̄γn̄αn̄β) νβdS,

which proves the lemma (note that in passing from the first to second line we used
that ϕ = 0 on the boundary, and from the second to third that −∆n̄− n̄|∇n̄|2 = 0).

6



We now prove an analogue of the fundamental lemma of the Calculus of Variations.

Lemma 2.2. Let d ∈ {2, 3}, Ω ⊂ Rd be a C1 domain and g ∈ L∞(∂Ω,R). Suppose
that ˆ

∂Ω

∂ϕ

∂ν
g(x)dS(x) = 0 (2.1)

for all ϕ ∈ C∞(Ω̄,R) such that ϕ|∂Ω = 0, where ν(x) is the unit norm to ∂Ω at x.
Then

g(x) = 0

for almost all points x ∈ ∂Ω.

Proof. We prove for the case d = 3, the case d = 2 is a simpler version. Let x0 ∈ ∂Ω
be an arbitrary Lebesgue point of g and let ψ : (−ε, ε)2 → ∂Ω be a coordinate patch
such that ψ(0, 0) = x0. If we choose ε > 0 sufficiently small then the map

H : [0, ε)× (−ε, ε)× (−ε, ε)→ Ω

(r, s, t)→ [ψ(s, t)− rν(s, t)]

(where ν(s, t) = ψs×ψt
‖ψs×ψt‖ is the unit normal to ∂Ω at ψ(s, t)) provides a C1 homeomor-

phism from (0, ε) × (−ε, ε) × (−ε, ε) onto a relative neighbourhood U := H([0, ε) ×
(−ε, ε)× (−ε, ε)) of x0. For δ > 0 small define the maps

ϕδ(x) =

{
0 if x /∈ U(
ε
2δ

)2
γ
(
r, sε

2δ
, tε

2δ

)
if x ∈ U, where x = ψ(s, t)− rν(s, t).

where
γ : [0, ε)× (−ε, ε)× (−ε, ε)→ R

is smooth and 0 if (r, s, t) /∈ [0, ε
2
)×

(
− ε

2
, ε

2

)
×
(
− ε

2
, ε

2

)
. Then we have

ˆ
∂Ω

∂ϕδ
∂ν

g(x)dx = −
ˆ δ

−δ

ˆ δ

−δ

( ε
2δ

)2 ∂γ
(
r, sε

2δ
, tε

2δ

)
∂r

g(ψ(s, t))‖ψs × ψt‖ dsdt = 0.

Using the change of variables σ = sε
2δ

and θ = tε
2δ

, we get

ˆ ε
2

− ε
2

ˆ ε
2

− ε
2

∂γ (r, σ, θ)

∂r
g

(
ψ

(
2δσ

ε
,
2δθ

ε

))
‖ψs

(
2δσ

ε
,
2δθ

ε

)
× ψt

(
2δσ

ε
,
2δθ

ε

)
‖dσdθ = 0.

(2.2)
On the other hand we have:

7



∣∣∣∣∣
ˆ ε

2

− ε
2

ˆ ε
2

− ε
2

∂γ

∂r
(0, s, t)

(
g

(
ψ

(
2δs

ε
,
2δt

ε

))∥∥∥∥ψs × ψt(2δs

ε
,
2δt

ε

)∥∥∥∥− g (ψ (0, 0)) ‖ψs × ψt (0, 0)‖
)
dsdt

∣∣∣∣∣
≤

∣∣∣∣∣
ˆ ε

2

− ε
2

ˆ ε
2

− ε
2

∂γ

∂r
(0, s, t)

∥∥∥∥ψs × ψt(2δs

ε
,
2δt

ε

)∥∥∥∥(g(ψ(2δs

ε
,
2δt

ε

))
− g (ψ (0, 0))

)
dtds

∣∣∣∣∣
+

∣∣∣∣∣
ˆ ε

2

− ε
2

ˆ ε
2

− ε
2

∂γ

∂r
(0, s, t)g (ψ (0, 0))

(∥∥∥∥ψs × ψt(2δs

ε
,
2δt

ε

)∥∥∥∥− ‖ψs × ψt (0, 0)‖
)
dtds

∣∣∣∣∣
:= I + II

Using Cauchy- Schwartz inequality, a change of variables and the fact that x0 =
ψ(0, 0) is a Lebesgue point, we have

I ≤

(ˆ ε
2

− ε
2

ˆ ε
2

− ε
2

(
∂γ

∂r
(0, s, t)

)2 ∥∥∥∥ψs × ψt(2δs

ε
,
2δt

ε

)∥∥∥∥ dtds
) 1

2

×

(ˆ ε
2

− ε
2

ˆ ε
2

− ε
2

(
g

(
ψ

(
2δs

ε
,
2δt

ε

))
− g (ψ (0, 0))

)2 ∥∥∥∥ψs × ψt(2δs

ε
,
2δt

ε

)∥∥∥∥ dtds
) 1

2

=

(ˆ ε
2

− ε
2

ˆ ε
2

− ε
2

(
∂γ

∂r
(0, s, t)

)2 ∥∥∥∥ψs × ψt(2δs

ε
,
2δt

ε

)∥∥∥∥ dtds
) 1

2

×
(
ε2

4δ2

ˆ δ

−δ

ˆ δ

−δ
(g (ψ (σ, τ))− g (ψ (0, 0)))2 ‖ψs × ψt (σ, τ)‖ dtds

) 1
2

→ 0 as δ → 0.

Next, as ψt, ψs and ∂γ
∂r

are continuous functions, we can use dominated convergence
theorem to yield

II =

∣∣∣∣∣
ˆ ε

2

− ε
2

ˆ ε
2

− ε
2

∂γ

∂r
(0, s, t)g (ψ (0, 0))

(∥∥∥∥ψs × ψt(2δs

ε
,
2δt

ε

)∥∥∥∥− ‖ψs × ψt (0, 0)‖
)
dtds

∣∣∣∣∣
→ 0 as δ → 0.

We therefore have

g(x0)‖ψs × ψt(0, 0)‖
ˆ ε

2

− ε
2

ˆ ε
2

− ε
2

∂γ

∂r
(0, s, t) dsdt = lim

δ→0

ˆ
∂Ω

∂ϕδ
∂ν

g(x) dx = 0

as δ → 0.
Choosing γ(r, s, t) = r · a(s)b(t), where a, b : (−ε, ε)→ R are smooth and satisfy
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• a(s), b(t) ≥ 0,

• a(s), b(t) > 0 for s, t ∈ (− ε
3
, ε

3
),

• a(s), b(t) = 0 for s, t /∈ (− ε
2
, ε

2
).

Then we have

ˆ ε
2

− ε
2

ˆ ε
2

− ε
2

∂γ

∂r
(0, s, t) dsdt =

ˆ ε
2

− ε
2

ˆ ε
2

− ε
2

a(s)b(t) dsdt > 0

and g(x0) = 0 as required.

We can now proceed with the proof of Theorem 1.1.

Proof. [of Theorem 1.1] First we consider d = 2. Let n̄ be a critical point of E in
A . By lemma 2.1 n̄ satisfies the equation

ˆ
∂Ω

d∑
β,α=1

ϕβ,αn̄α (νβ − n̄β〈n̄, ν〉) dS = 0, (2.3)

for all ϕ ∈ C∞(Ω,R3) such that ϕ = 0 on ∂Ω. Let ν(x) = (ν1(x), ν2(x)) be the unit
vector to ∂Ω at x and τ(x) be a unit tangent to ∂Ω at x. Then at x ∈ ∂Ω we have

n̄ = 〈n̄, ν〉ν + 〈n̄, τ〉τ. (2.4)

plugging this into (2.3) gives

0 =

ˆ
∂Ω

d∑
β,α=1

ϕβ,α (〈n̄, ν〉να + 〈n̄, τ〉τα) (νβ − n̄β〈n̄, ν〉) dS.

Since ϕ = 0 on ∂Ω we have
∂ϕβ
∂τ

= ϕβ,α · τα = 0. Hence (2.3) simplifies to

0 =

ˆ
∂Ω

d∑
β=1

∂ϕβ
∂ν
〈n̄, ν〉 (νβ − n̄β〈n̄, ν〉) dS. (2.5)

If d = 3 then for any point x0 ∈ ∂Ω one can choose in a neighbourhood of x0 two
unit vector fields P,Q such that P ×Q = ν and 〈P,Q〉 = 0. Then by writing

n̄ = 〈n̄, ν〉ν + 〈n̄, P 〉P + 〈n̄, Q〉Q
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and using a partition of unity to use this into (2.3) we get that (2.5) holds for d = 3.
By setting ϕi ≡ 0 for i 6= β in (2.5), we get

ˆ
∂Ω

∂ϕ

∂ν
〈n̄, ν〉 (νβ − n̄β〈n̄, ν〉) dS = 0

for β = 1, 2, 3 and for all ϕ ∈ C∞(Ω,R) such that ϕ|∂Ω = 0. By Lemma 2.2, we
conclude that

〈n̄, ν〉 (νβ − n̄β〈n̄, ν〉) = 0 for β = 1, . . . , d. (2.6)

Fix an arbitrary point x ∈ ∂Ω. If 〈n̄(x), ν(x)〉 = 0 then we are done. Otherwise
suppose 〈n̄(x), ν(x)〉 6= 0, and then we must have

(νβ − n̄β〈n̄, ν〉) = 0 for β = 1, . . . , d.

Since 〈n̄, ν〉 6= 0

n̄β =
νβ
〈n̄, ν〉

for β = 1 . . . d,

which implies

〈n̄, ν〉 =
d∑

β=1

νβ
〈n̄, ν〉

νβ

=
〈ν, ν〉
〈n̄, ν〉

=
1

〈n̄, ν〉
.

Hence
〈n̄, ν〉2 = 1

and therefore
〈n̄, ν〉 = ±1.

3 Partial regularity for tangential boundary con-

ditions

We restrict from now on our attention to the case when the boundary conditions are
tangential, i.e. n(x) · ν(x) = 0 for all x ∈ ∂Ω, where ν is the outward pointing unit
normal.
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We note that for any vector v that is tangent to ∂Ω at x we have

d〈n(x), ν(x)〉
dv

:=
3∑

α=1

∂〈n(x), ν(x)〉
∂xα

vα = 0.

as 〈n(x), ν(x)〉 is constant in the v direction. That is tangential derivatives of
〈n(x), ν(x)〉 are zero for all x ∈ ∂Ω. Hence, as n(x) is a tangent vector to ∂Ω at
x ∈ ∂Ω, we have

d∑
α,β=1

nα
∂nβ

∂xα
νβ =

d∑
α=1

nα
∂(n · ν)

∂xα
−

d∑
α,β=1

∂νβ

∂xα
nβnα

= −
d∑

α,β=1

∂νβ

∂xα
nβnα.

Therefore, for maps with tangential boundary conditions we can write E as

G[n] :=

ˆ
Ω

K
d∑

α,β=1

∂nα

∂xβ
∂nα

∂xβ
−K13

ˆ
∂Ω

d∑
α,β=1

∂νβ

∂xα
nβnα.

This energy makes sense for maps in W 1,2(Ω,S2), and so we now focus on the slightly
simpler task of minimizing G over the function space

U := {u ∈ W 1,2(Ω,S2) : Trace(u) ∈ T } (3.1)

where

T := {γ ∈ H
1
2 (∂Ω,S2) : γ(x) · ν(x) = 0 for almost every x ∈ ∂Ω}. (3.2)

Given the topological constraints associated with having tangential boundary con-
ditions the first issue is to show that the function space U is non-empty. This will be
addressed in the next subsection, while in the last subsection we will prove a partial
regularity result for the minimizers.

3.1 Function Space is non empty

In this section we consider Ω to be a bounded domain of class C2 and study whether
or not the function space U defined through (3.1),(3.2) is non-empty.

If, for instance, ∂Ω is the torus then there exist smooth maps in T that have
smooth extensions to the solid torus B×S1 and hence U would be non empty. However,
if ∂Ω is S2 then the “Hairy Ball Theorem” tells us that there are no continuous maps

11



in T and so it is not immediate that U is non empty. Fortunately, since H
1
2 in

dimension two is larger than the space of continuous functions we are able to show
that T and U are still non-empty even when ∂Ω a general C2 surface. 1

To this end we use an extension Theorem from [6] (stated as Theorem 3.6 in the
following) which tells us that a function in T can be extended to a function in U .
This means to show U is non empty we only need to show that T is non empty. To
do this we construct a function that belongs to T through a sequence of lemmas. We
remark that a map γ ∈ H

1
2 (∂Ω,S2) is in T if and only if γ(x) ∈ Tx∂Ω for almost

every x ∈ ∂Ω, where Tx∂Ω is the tangent space to ∂Ω at x.
In Lemma 3.1 below we will give necessary and sufficient conditions to extend a

vector field from the boundary of a manifold N to its interior. Before we can state
Lemma 3.1 we must first introduce some notation:

If U is a C2 manifold embedded in Rd, let TxU be the tangent space to U at
x ∈ U . Let g be a smooth vector field on U , i.e a smooth map g : U → Rd such that
g(x) ∈ TxU for every x ∈ U . Then let ind(g, U) denote the index of g on U (we refer
the reader to [9],[18] or [3] for detailed properties of ind(g, U)).

If U is a manifold with boundary we define

∂ U [g] := {x ∈ ∂U : g(x) · ν(x) < 0},

where ν(x) is the outward-pointed unit normal to U at x.
Furthermore, we recall that if U is a compact surface then its Euler characteristic

χ(U) can be related to its topological genus k through the formula

χ(U) = 2(1− k).

Lemma 3.1. Let N be a C1 manifold with boundary embedded in Rd and g ∈ C∞(∂N,Rd)
such that

g(x) ∈ Tx(∂N) and |g(x)| = 1. (3.3)

Then g admits an extension to a continuous field V : N → Rd such that, for every
x ∈ N , V (x) ∈ TxN , |V (x)| = 1 and V |∂N = g if and only if

ind(g, ∂ N [g]) = χ(N). (3.4)

Proof. Let g ∈ C∞(∂N,Rd) such that (3.3) and (3.4) hold. Let X be the topological
double of N , that is, the manifold obtained by glueing two copies of N along their
boundaries (see [10] example 3.80 for a detailed construction of X). By modifying
the value of d if needed we can assume that X is embedded in Rd.

1We just need C2 regularity for using Theorem 3.6, for all the other results of the section it would
suffice to have C1.
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Let U ⊂ X be a tubular neighbourhood of ∂N such that the nearest point pro-
jection π : U → ∂N is well defined. Let ϕ : X → R be a smooth function such that
ϕ|∂N = 1 and ϕ|X\U = 0. Then let G̃ : X → Rd be the extension of g defined by

G̃(x) :=

{
ProjTxX (g(π(x)))ϕ(x) for x ∈ X ∩ U,
0 for x ∈ X \ U,

where ProjTxX(y) is the projection of y onto TxX. As 0 /∈ G̃(∂N), by the Transitivity
Theorem (see [2] Theorem 14.6), there exists a smooth tangent vector field F on X
such that F has finitely many zeros in N and F |∂N = g. Define P∂NF to be the map

P∂NF (x) := ProjTx∂N(F (x)) for x ∈ ∂N

and for a continuous vector field v : N → Rd, define ∂ N [v] is to be the set

∂ N [v] := {x ∈ ∂N : v(x) · ν(x) < 0}.

By Morse’s Index Formula (see [12]) and the stability of the index we have

ind(F,N) = ind(G̃, N)

= χ(N)− ind(P∂NG̃, ∂ N [P∂NG̃])

= χ(N)− ind(g, ∂ N [g])

= 0.

We now just need to modify F such that |F | > 0 on N . Up to a continuous
transformation, we can assume that all the zeros are contained in one coordinate
patch D ⊂ N , with chart φ : D → Bd(0, 1) such that φ(∂D) = ∂Bd(0, 1), where
Bd(0, 1) is the ball in Rd centred at 0 with radius 1. Let F̃ : Bd(0, 1) → Rd be the
map defined as

F̃ (x) := F (φ−1(x))

and assume that |F̃ | > 0 in Bd(0, 1) \Bd(0, 1
2
). Then,

0 = ind(F̃ , Bd(0, 1)) = deg

(
F

|F |
, ∂D;Sd−1

)
.

It can now be shown, as proved in [8], that there exists a harmonic field ψ : Bd(0, 1)→
Sd−1 such that ψ|∂Bd(0,1) = F̃

|F̃ | . Finally, we define our extension:

V (x) =

{
F (x)
|F (x)| if x ∈ N \D,
ψ(φ(x)) if x ∈ D.

V is continuous and smooth everywhere apart from ∂D.
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Remark: Note that in the above construction we get a vector field on N that is
smooth almost everywhere.

We now relate the H
1
2 to a space whose norm is easier to compute, the W 1,p space:

Lemma 3.2. Let U ⊂ R2 be an open set with C1 boundary and u ∈ W 1,p(U,S2) for

1 < p < 2. Then u ∈ H 1
2 (U,S2).

In order to prove this we use the following Propositions from [20] (or [13]):

Theorem 3.3. Let p ∈ [1,∞) and s ∈ (0, 1). Let Ω be an open set in Rn of class C1

with bounded boundary and u ∈ W 1,p(Ω,R). Then

‖u‖W s,p(Ω) ≤ C‖u‖W 1,p(Ω)

for some positive constant C = C(n, s, p) ≥ 1.

and

Theorem 3.4. Let p ∈ [1,+∞), s ∈ (0, 1) and Ω ⊆ Rn be an open set of class C1

with bounded boundary. Then W s,p(Ω) is continuously embedded in W s,p(Rn), namely
there exists C = C(n,Ω) such that for any u ∈ W s,p(Ω) there exists ũ ∈ W s,p(Rn)
such that ũ

∣∣
Ω

= u and
‖ũ‖W s,p(Rn) ≤ C‖u‖W s,p(Ω).

We also use the interpolation lemma from [11]

Theorem 3.5. For all u ∈ W s,q(Rn) ∩ L∞(Rn) there holds the inequality

‖u‖W θs,q/θ(Rn) ≤ c(n)

(
q

q − 1

)θ (
1− s
1− θ

) θ
q

‖u‖θW s,q(Rn)‖u‖
1−θ
L∞

where 0 < s < 1, 1 < q <∞, and 0 < θ < 1.

We can now prove Lemma 3.2.

Proof. [Lemma 3.2] Let 1 < p < 2 and u ∈ W 1,p(U). By Theorem 3.3 we have that

u ∈ W 2
3
,p(U). Let ũ ∈ W 2

3
,p(R2) be the extension given by Theorem 3.4. By setting

s = 2
3
, θ = 3

4
and q = 3

2
in Theorem 3.5 we have

‖u‖
H

1
2 (U)
≤ ‖ũ‖

H
1
2 (R2)

= ‖ũ‖
W

2
3 ·

3
4 ,2(R2)

≤ C‖ũ‖
3
4

W
2
3 ,

3
2 (R2)
‖u‖

1
4

L∞(R2)

≤ C‖u‖
3
4

W
2
3 ,

3
2 (U)
‖u‖

1
4

L∞(R2) ≤ C‖u‖
3
4

W 1, 32 (U)
‖u‖

1
4

L∞(R2) <∞.
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In order to prove Proposition 1.2 we use an extension theorem from [6], which we
state here for the reader’s convenience.

Theorem 3.6. If 1 < p < m, Ω is a bounded C2 domain in Rm, and N is a compact
C2 submanifold of Rk with π0(N) = π1(N) = . . . π[p]−1(N) = 0, then any function
η ∈ W 1−1/p,p(∂Ω, N) admits an extension ω ∈ W 1,p(Ω, N).

We are now in a position to prove Proposition 1.2

Proof. [Proposition 1.2] Let Ω be a C2 domain such that ∂Ω is a surface of genus
k. Then we have that

χ(∂Ω) = 2(1− k).

We first show that the map ϕ : B2(0, 1)→ S1 defined by

ϕ(x1, x2) =

(
−x2√

(x1)2 + (x2)2
,

x1√
(x1)2 + (x2)2

)
is in W 1,p(B2(0, 1), S1). Then |∇ϕ| = 1

|x| and we have: thus

ˆ
B2(0,1)

|∇ϕ|pdx ≤ C

ˆ 1

0

r1−pdr

which is finite for 1 < p < 2, hence ϕ ∈ W 1,p(B2(0, 1),S1) for 1 < p < 2.

For i = 1 . . . |χ(∂Ω)| let (Ui, ψi) be coordinate patches on ∂Ω such that
⋂|χ(∂Ω)|
i=1 Ui =

∅. Using

ϕ(x1, x2) =

(
−x2√

(x1)2 + (x2)2
,

x1√
(x1)2 + (x2)2

)
,

or

ϕ̃(x1, x2) =

(
x2√

(x1)2 + (x2)2
,

−x1√
(x1)2 + (x2)2

)
we can put a unit vector field, vi, on each Ui such that the map V :

⋃
Ui → S2 defined

by
v(x) := vi(x) if x ∈ Ui

satisfies
ind

(
v
∣∣
∂(∪Ui)

, ∂ (∂Ω \ ∪Ui))[v]
)

= χ(∂Ω).

Using Lemma 3.1 we can now extend V to a vector field on ∂Ω that is smooth on
∂Ω \

⋃
Ui. Since ϕ and ϕ̃ are both in W 1,p(∂Ω,S2) for 1 < p < 2 the map V is

in W 1,p(∂Ω,S2). Then by Lemma 3.2 we have that V ∈ H 1
2 (∂Ω,S2), it follows that

V ∈ T and hence T is non empty. Using Theorem 3.6 we can now conclude that the
function space T is non empty.
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3.2 Regularity of Minimizers

We prove that a minimizer, u, of G in U is continuous on Ω \ Z, where Z is some
subset of Ω with zero one-dimensional Hausdorff measure. We show that for x ∈ Ω\Z
the rescaled energy

Er[u] := r−1

ˆ
Ω∩C(a,r)

|∇u|2dx

decays suitably fast as r tends to 0. Continuity of u then follows by Morrey’s Lemma
(see for example [19] Chapter 18). Our proof of the energy decay is based on the
work of Schoen and Uhlenbeck [16] and the papers by Hardt and Lin [6], [7].

We give a brief outline of the proof here. For a given domain Ω we construct a map
Q : Ω→ SO(3) (depending only on ∂Ω) such that for an arbitrary map u ∈ U we have
that Q(x)u(x) lies on the equator of S2 for almost all x ∈ ∂Ω. This transforms our
tangential boundary conditions into a partially constrained boundary condition as in
[7], so we can adapt some of the results there in order to prove a Hybrid inequality
(Lemma 3.11). The proof of the energy decay (Lemma 3.12 and Theorem 3.13) is
then done by contradiction. We assume there exists a sequence of minimizers, ui, and
domains, Ωi, that do not have energy decay but do satisfy εi =

´
Ωi
|∇ui|2 dx → 0 as

i→∞. We then form the blow-up sequence ε−1
i (ui − ui) that converges weakly to a

blow up function v. We then prove some estimates on v by showing it is harmonic.
These estimates are then transferred to the ui using the Hybrid inequality in order
to get a contradiction.

3.2.1 Scaling and notations

In order to apply Morrey’s Lemma we must investigate how our energy scales. For
x ∈ R3 define the cylinder C(x, r) := {y ∈ R3 : |(y1, y2)− (x1, x2)| < r, |y3 − x3| < r}.
Let

ϕ ∈ C2(R2,R) with ϕ(0) = 0 = |∇ϕ(0)|, Lip(ϕ) ≤ 1 (3.5)

and define

Ωϕ : = {(x1, x2, x3) ∈ C(0, 1) : x3 < ϕ(x1, x2)}
= {x ∈ R3 :

∣∣(x1, x2)
∣∣ < 1 and − 1 < x3 < ϕ(x1, x2)}.

For a domain Ω ⊂ R3, a ∈ ∂Ω there exists R > 0, h ∈ SO(3) and ϕR,a ∈ C2(R2,R)
such that ϕR,a(0) = 0 = |∇ϕR,a(0)|,Lip(ϕR,a) ≤ 1 and

ΩϕR,a = {h−1[(y − a)/R] : y ∈ C(a,R) ∩ Ω}.
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For 0 < r ≤ R, let ϕr,a = ϕR,a(
rx
R

), then for u ∈ U , the expression nr,a(x) =
n[rh(x) + a] defines a function in W 1,2(Ωϕr,a ,S2) whose trace, γ, on ∂Ωϕr,a \ ∂C(0, 1)
satisfies γ(x) · (h · ν(x)) + a) = 0 almost everywhere. We note that

E1(ur,a) =

ˆ
Ωϕ∩C(0,1)

|∇ur,a(x)|2dx = r−1

ˆ
Ωϕ∩C(a,r)

|∇u|2dx

Lip(ϕr,a) = Lip(ϕR,a)R
−1r

‖ϕr,a‖C2 := max
|α|=2

sup
x∈R2

∣∣∣∣∂|α|ϕr,a(x)

∂xα

∣∣∣∣ = R−2r2‖ϕR,a‖C2 .

For convenience we collect the notations of various domains we will use

Ωϕ := {(x1, x2, x3) ∈ C(0, 1) : x3 < ϕ(x1, x2)} Ω0 := {(x1, x2, x3) ∈ C(0, 1) : x3 < 0}
Gϕ := ∂Ωϕ \ ∂C(0, 1) G0 := ∂Ω0 \ ∂C(0, 1)
Hϕ := ∂Ωϕ ∩ ∂C(0, 1) H0 := ∂Ω0 ∩ ∂C(0, 1)
Br := {x ∈ R3; |x| ≤ r} B := B3(0, 1)

Using these notations we define the energy, Gϕ, for a map u ∈ W 1,2(Ωϕ,S2) to be

Gϕ[u] :=

ˆ
Ωϕ

|∇u|2 dx−K13

ˆ
Gϕ

uαuβ
∂νβ

∂xα
dx.

3.2.2 A Useful Projection

Given ϕ as above we will construct a map

Q : Ωϕ → SO(3)

such that if
u ∈ Uϕ := {u ∈ W 1,2(Ωϕ,S2) : Trace(u) ∈ Tϕ}

where
Tϕ = {γ ∈ H

1
2 (Gϕ,S2) : γ(x) · ν(x) = 0 almost everywhere }.

then the map w(x) := Q(x)u(x) is in the function space

Eϕ = {v ∈ W 1,2(Ωϕ,S2) : Trace(v) ∈ S̃1},

where S̃1 = {(x1, x2, x3) ∈ S2 : x3 = 0}.

We construct Q as follows: let x ∈ Gϕ and let ν(x) be the unit norm to Gϕ at
x. Define Q(x) to be the rotation about the axis ν(x)× (0, 0, 1) through the angle τ
given by cos(τ) = ν(x) · (0, 0, 1). Explicitly Q is given by
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Q(x) :=



ϕ2
x2 + ϕ2

x1 cos(τ)

ϕ2
x1 + ϕ2

x2
−ϕx

1ϕx2(1− cos(τ))

ϕ2
x1 + ϕ2

x2

ϕx1 sin(τ)

(ϕ2
x1 + ϕ2

x2)
1
2

−ϕx
1ϕx2(1− cos(τ))

ϕ2
x1 + ϕ2

x2

ϕ2
x1 + ϕ2

x2 cos(τ)

ϕ2
x1 + ϕ2

x2

ϕx2 sin(τ)

(ϕ2
x1 + ϕ2

x2)
1
2

− ϕx1 sin(τ)

(ϕ2
x1 + ϕ2

x2)
1
2

− ϕx2 sin(τ)

(ϕ2
x1 + ϕ2

x2)
1
2

cos(τ)


, (3.6)

where ϕxi = ∂ϕ
∂xi

, cos(τ) = (ϕ2
x1 + ϕ2

x2 + 1)−
1
2 and sin(τ) =

√
ϕ2
x1

+ϕ2
x2

ϕ2
x1

+ϕ2
x2

+1
. Then for

x = (x1, x2, x3) ∈ Ωϕ define

Q(x) = Q
(
(x1, x2, ϕ(x1, x2))

)
.

It is straightforward to check that Q ∈ C1(Ωϕ, SO(3)). We now find some bounds on
the entries of Q that will be useful throughout our proof.

Lemma 3.7. Let Q,ϕ be defined as above, then we have

sup{|Q(x)n− n| : x ∈ Ωϕ, n ∈ S2} ≤ 9Lip(ϕ).

Proof. Let x ∈ Gϕ and n ∈ S2. We have |Q(x)n− n| ≤
∑3

i=1|(Q(x)n− n)i|, where
(Q(x)n− n)i is the ith component of Q(x)n− n. We find bounds on each component
individually.

|(Q(x)n− n)1| =
∣∣∣∣(ϕ2

x2 + ϕ2
x1 cos(τ)− ϕ2

x1 − ϕ2
x2

ϕ2
x1 + ϕ2

x2

)
n1 −

ϕx1ϕx2(1− cos(τ))n2

ϕ2
x1 + ϕ2

x2
+ ϕx1 cos(τ)n3

∣∣∣∣
Writing ϕx1(x) = r cos(t), ϕx2(x) = r sin(t) for appropriate r ∈ (0,∞), t ∈ [0, 2π) we
have

|(Q(x)n− n)1| ≤

∣∣∣∣∣∣
r2 cos2(t)

(
(r2 + 1)−

1
2 − 1

)
r2

∣∣∣∣∣∣+

∣∣∣∣∣∣
r2 cos(t) sin(t)

(
1− (r2 + 1)−

1
2

)
r2

∣∣∣∣∣∣+ |r|

≤ 2r + r

≤ 3Lip(ϕ)

We can get a similar estimate for (Q(x)n− n)2 and (Q(x)n− n)3, hence

|Q(x)n− n| ≤ 9Lip(ϕ).
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Lemma 3.8.

sup

{∣∣∣∣∂Qij(x)

∂xk

∣∣∣∣ : i, j, k ∈ {1, 2, 3}, x ∈ Ωϕ

}
< 6 ‖ϕ‖C2

Proof. Let x ∈ Ωϕ, we find bounds on each
∂Qij(x)

∂xk
, write ϕx1(x) = r sin(t), ϕx2(x) =

r cos(t).∣∣∣∣∂Q11(x)

∂xk

∣∣∣∣ =

∣∣∣∣∣ ϕ2
x1
∂cos(τ)
∂xk

(ϕ2
x1 + ϕ2

x2)
+ 2

[
ϕx2xkϕ

2
x1ϕx2(1− cos(τ)) + ϕx1xαϕx1ϕ

2
x2(cos(τ)− 1)

(ϕ2
x1 + ϕ2

x2)
2

]∣∣∣∣∣
≤

∣∣∣∣∣ ϕ2
x1(ϕx1ϕx1xk + ϕx2ϕx2xk)

(ϕ2
x1 + ϕ2

x2)(ϕ
2
x1 + ϕ2

x2 + 1)
3
2

∣∣∣∣∣+ 2 ‖ϕ‖C2

[∣∣∣∣sin2(t) cos(t)(1− cos(τ))

r

∣∣∣∣
+

∣∣∣∣sin(t) cos(t)(1− cos(τ))

r

∣∣∣∣]
≤ 2 ‖ϕ‖C2 Lip(ϕ) + 4 ‖ϕ‖C2 Lip(ϕ)

By the symmetry of Q, ∂Q22

∂xk
will have the same bound.

Next, bounding ∂Q12

∂xk
;∣∣∣∣∂Q12

∂xk

∣∣∣∣ =

∣∣∣∣(ϕx1xkϕx2 + ϕx1ϕx2xk)(cos(τ)− 1)

ϕ2
x1 + ϕ2

x2
+ 2

ϕx1ϕx2(ϕx1ϕx1xk + ϕx2ϕx2xk)(1− cos(τ))

(ϕ2
x1 + ϕ2

x2)
2

−ϕx
1ϕx2(ϕx1ϕx1xk + ϕx2ϕx2xk)

(ϕ2
x1 + ϕ2

x2)(ϕ
2
x1 + ϕ2

x2 + 1)
3
2

∣∣∣∣∣
≤ ‖ϕ‖C2 r

2

(∣∣∣∣r cos(t)

r2

∣∣∣∣+

∣∣∣∣r sin(t)

r2

∣∣∣∣)+ 2r4 ‖ϕ‖C2

(∣∣∣∣r cos(t)

r4

∣∣∣∣+

∣∣∣∣r sin(t)

r4

∣∣∣∣)
≤ 6 ‖ϕ‖C2 Lip(ϕ)

≤ 6 ‖ϕ‖C2 .

Again, by the symmetry of Q, ∂Q21

∂xk
will have the same bounds. We have∣∣∣∣∂Q13

∂xk

∣∣∣∣ =

∣∣∣∣∣ ϕx1xk

(ϕ2
x1 + ϕ2

x2 + 1)
1
2

− ϕx1(ϕx1ϕx1xk + ϕx2ϕx2xk)

(ϕ2
x1 + ϕ2

x2 + 1)
3
2

∣∣∣∣∣
≤ ‖ϕ‖C2 + 2 ‖ϕ‖C2 Lip(ϕ)2

≤ 3 ‖ϕ‖C2
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and ∂Q23

∂xk
, ∂Q31

∂xk
, ∂Q32

∂xk
will have the same bounds. Finally,∣∣∣∣∂Q33

∂xk

∣∣∣∣ =

∣∣∣∣∣ϕx1ϕx1xk + ϕx2ϕx2xk

(ϕ2
x1 + ϕ2

x2 + 1)
3
2

∣∣∣∣∣
≤ 2Lip(ϕ) ‖ϕ‖C2

≤ 2 ‖ϕ‖C2 .

This gives the result with K = 6.

Lemma 3.9.
sup{Qij(x) : i, j ∈ {1, 2, 3} and x ∈ Ωϕ} = 1

Proof. First we note that Q11(0) = 1 and so 1 ≤ sup{Qij(x) : i, j ∈ {1, 2, 3}, x ∈ Ωϕ}.
Next we calculate

|Q11(x)| ≤
ϕ2
x2

ϕ2
x1 + ϕ2

x2
+

ϕ2
x1

ϕ2
x1 + ϕ2

x2
= 1

|Q12(x)| ≤
∣∣∣∣ϕx2ϕx1(1− cos(τ))

ϕ2
x1 + ϕ2

x2

∣∣∣∣ ≤ ∣∣∣∣ 2ϕx2ϕx1

ϕ2
x1 + ϕ2

x2

∣∣∣∣ ≤ 1

|Q13(x)| ≤

∣∣∣∣∣ ϕx1

(ϕ2
x1 + ϕ2

x2 + 1)
1
2

∣∣∣∣∣ ≤ |ϕx1| ≤ 1

|Q33(x)| = |cos(τ)| ≤ 1

The other terms are similar or the same.

3.2.3 Proof of Partial Regularity

We will use the projection Q and the following extension Lemma from [7] in order to
prove a Hybrid Inequality. Note that the following lemma is stated for balls rather
than cylinders.

Lemma 3.10. There are positive constants δ, q and c such that, if 0 < ε < 1, ξ ∈ R3,
and η ∈ W 1,2(Ωϕ ∩ ∂B,S2) satisfies the small oscillation condition[ˆ

Ωϕ∩∂B
|∇tanη|2dH2

][ˆ
Ωϕ∩∂B

|η − ξ|2dH2 +

ˆ
∂(Ωϕ∩∂B)

|η − ξ|2dH1

]
≤ δ2εq (3.7)

and if η|∂Ωϕ∩∂B has image in S1, then there exists a function ω ∈ W 1,2(Ωϕ ∩ B,S2),

ω|Ωϕ∩∂B = η,ω|Gϕ has image in S1 and

ˆ
Ωϕ∩B
|∇ω|2dx ≤ ε

ˆ
Ωϕ∩∂B

|∇tanη|2dH2+cε−q

[ˆ
Ωϕ∩∂B

|η − ξ|2dH2 +

ˆ
∂(Ωϕ∩∂B)

|η − ξ|2dH1

]
.
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Proof. For a proof see Theorem 3.1 in [7].

We can now prove our main ingredient:

Lemma 3.11. [Hybrid inequality] There exists positive constants c1, c2 and q
such that if 0 ≤ λ ≤ 1, ϕ is as above, u is a minimizer of Gϕ amongst maps
in Uϕ with fixed trace on Hϕ such that

´
Ωϕ
|∇u|2 dx < c1λ

q
2 , Lip(ϕ) ≤ c1λ

q
2 and

‖ϕ‖C2 ≤ c1λ
q
2 , then(

1

2

)−1 ˆ
Ωϕ∩C(0, 1

4)
|∇u|2 dx ≤λ

(
‖ϕ‖2

C2 +

ˆ
Ωϕ∩C(0,1)

|∇u|2 dx

)

+ λ−qc2

(
Lip(ϕ)2 +

ˆ
Ωϕ∩C(0,1)

∣∣u− u∣∣2 dx)
+ λ−qc2

ˆ
Gϕ∩C(0,1)

∣∣u− u∣∣2 dH2 + c2 ‖ϕ‖2
C2 .

where u := H2(Gϕ)−1
´
Gϕ
udH2.

Proof. As we have the set inclusions C
(
0, 1

4

)
⊂ B3(0, 1

2
) and B ⊂ C(0, 1) it suffices

to prove the inequality(
1

2

)−1 ˆ
Ωϕ∩B 1

2

|∇u|2 dx ≤λ

(
‖ϕ‖2

C2 +

ˆ
Ωϕ∩B
|∇u|2 dx

)

+ λ−qc2

(
Lip(ϕ)2 +

ˆ
Ωϕ∩B

∣∣u− u∣∣2 dx)
+ λ−qc2

ˆ
Gϕ∩B

∣∣u− u∣∣2 dH2 + c2 ‖ϕ‖2
C2 .

Let u be a map satisfying the assumptions of the Lemma. We aim to apply
Lemma 3.10 to the map Q(x)u(x). In order to do this we must check the map
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Q(x)u(x) satisfies the small oscillation condition (3.7). We first bound

|∇(Q(x)u(x))|2 =
3∑

i,k,l=1

(
∂(Qiju

j)

∂xk

)2

=
∑
i,j,k

(
∂Qij

∂xk
uj +

∂uj

∂xk
Qi,j

)2

≤ 2
∑
i,j,k

[(
∂Qij

∂xk
uj
)2

+

(
∂uj

∂xk
Qij

)2
]

≤ 2
∑
i,k

[
3∑
j=1

(
∂Qi,j

∂xk

)2 3∑
l=1

(ul)2 +
3∑

m=1

(
∂um

∂xk

)2 3∑
n=1

(Qin)2

]
≤ 18

(
‖ϕ‖2

C2 + |∇u|2
)

(3.8)

by Lemma 3.8 and 3.9.
As in [5], we note that for an increasing function η : [0, 1]→ R we have

L1 ({s : η′(s) ≥ 8(η(1)− η(0))}) ≤ 1

8
.

Hence we can find σ ∈
[√

2
2
, 1
]

such that u|Ωϕ∩∂B3(0,σ) ∈ W 1,2(Ωϕ ∩ ∂B3(0, σ), S2),

ˆ
Ωϕ∩∂B3(0,σ)

∣∣Qu− u∣∣2 dH2+

ˆ
∂(B3(0,σ)∩Gϕ)

∣∣Qu− u∣∣2 dH1 ≤ 8

[ˆ
Ωϕ∩B

∣∣Qu− u∣∣2 dx+

ˆ
Gϕ

∣∣Qu− u∣∣2 dH2

]
(3.9)

and ˆ
Ωϕ∩∂B3(0,σ)

|∇tan(Qu)|2 dH2 ≤ 8

ˆ
Ωϕ∩B
|∇(Qu)|2 dx. (3.10)

By Lemma A.3 in the Appendix, there exists a constant c independent of ϕ such that

ˆ
Ωϕ∩B

∣∣u− u∣∣2 dx ≤ c

ˆ
Ωϕ∩B
|∇u|2 dx

ˆ
Gϕ

∣∣u− u∣∣2 dH2 ≤ c

ˆ
Ωϕ∩B
|∇u|2 dx. (3.11)
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Combining inequalities (3.8), (3.9), (3.10), (3.11) and Lemma 3.7 we have(ˆ
Ωϕ∩∂B3(0,σ)

|∇tan(Qu)|2 dH2

)(ˆ
∂(B3(0,σ)∩Gϕ)

∣∣Qu− u∣∣2 dH1 +

ˆ
Ωϕ∩∂B3(0,σ)

∣∣Qu− u∣∣2 dH2

)

≤ 64

(ˆ
Ωϕ∩B
|∇(Qu)|2 dx

)(ˆ
Gϕ

∣∣Qu− u∣∣2 dH2 +

ˆ
Ωϕ∩B

∣∣Qu− u∣∣2 dx)

≤ 2304

(
‖ϕ‖2

C2 L3(Ωϕ ∩ B) +

ˆ
Ωϕ∩B
|∇u|2 dx

)
×(ˆ

Ωϕ∩B
|Qu− u|2 +

∣∣u− u∣∣2 dx+

ˆ
Gϕ

|Qu− u|2 +
∣∣u− u∣∣2 dH2

)

≤ 2304c

(
‖ϕ‖2

C2 +

ˆ
Ωϕ∩B
|∇u|2 dx

)
×(

Lip(ϕ)H2(Gϕ) + Lip(ϕ)L3(Ωϕ) + 2c

ˆ
Ωϕ∩B
|∇u|2 dx

)

≤ c

(
‖ϕ‖2

C2 +

ˆ
Ωϕ∩B
|∇u|2 dx

)(
Lip(ϕ) +

ˆ
Ωϕ∩B
|∇u|2 dx

)

where c has absorbed all constants. Note that as

L3(Ωϕ ∩ B) ≤ L3(B) and H2(Gϕ) ≤
ˆ
B2

1 + |∇ϕ|2dx ≤ 2L2(B2) (3.12)

the constant c can be chosen to not depend on the domain. Defining ε := aλ, for
some 0 < a < 1 to be chosen later, and choosing c1 such that c2

1 < aq δ
2

c
, where δ > 0

is the constant from Lemma 3.10, we have(ˆ
Ωϕ∩∂B3(0,σ)

|∇tan(Qu)|2 dH2

)(ˆ
∂(B3(0,σ)∩Gϕ)

∣∣Qu− u∣∣2 dH1 +

ˆ
Ωϕ∩∂B3(0,σ)

∣∣Qu− u∣∣2 dH2

)
≤ c2

1λ
qc

≤ εqδ2.

It now follows that Qu satisfies the small oscillation condition of Lemma 3.10. There-
fore, there exists ω ∈ W 1,2(Ωϕ∩B3(0, σ),S2) such that ω|Ωϕ∩∂B3(0,σ) = Qu|Ωϕ∩∂B3(0,σ)
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, ω|Gϕ∩B3(0,σ) ∈ S̃1 and

ˆ
Ωϕ∩B3(0,σ)

|∇ω|2 dx ≤ cε

ˆ
Ωϕ∩∂B3(0,σ)

|∇tanQu|2 dH2

+ cε−q

[ˆ
Ωϕ∩∂B3(0,σ)

∣∣Qu− u∣∣2 dH2 +

ˆ
∂(Ωϕ∩∂B3(0,σ))

∣∣Qu− u∣∣2 dH1

]
.

Using (3.8), (3.9), (3.10), (3.11), (3.12) and Lemma 3.7 we bound

ˆ
Ωϕ∩B3(0,σ)

|∇ω|2 dx ≤ 8ε

ˆ
Ωϕ∩B
|∇Qu|2 dx+ 8cε−q

[ˆ
Ωϕ∩B

∣∣Qu− u∣∣2 dx+

ˆ
Gϕ

∣∣Qu− u∣∣2 dH2

]

≤ cε

(
‖ϕ‖2

C2 +

ˆ
Ωϕ∩B
|∇u|2 dx

)

+ cε−q

[
Lip(ϕ)2 +

ˆ
Ωϕ∩B

∣∣u− u∣∣2 dx+

ˆ
Gϕ

∣∣u− u∣∣2 dH2

]
(3.13)

where c has absorbed all constants.
We now use the inverse of the matrix Q(x) in order to get a map that belongs to

Uϕ. For a given point x ∈ ∂Ωϕ the matrix [Q(x)]−1 is given by Q(x)T , thus using the
symmetry of Q we can write [Q(x)]−1 out explicitly as

[Q(x)]−1 =

 Q11(x) Q12(x) −Q13(x)
Q21(x) Q22(x) −Q23(x)
−Q31(x) −Q32(x) Q33(x)

 ,
where Qij(x) are the entries of the matrix Q(x). By the same calculations as before
the map x 7→ [Q(x)]−1 is C1 and satisfies the bound∣∣∇([Q(x)]−1ω(s))

∣∣2 ≤ 18
(
‖ϕ‖2

C2 + c|∇ω|2
)
. (3.14)

Moreover, as ω|Gϕ∩B3(0,σ) ∈ S̃1 we have w̃(x) := [Q(x)]−1ω(x) ∈ UΩϕ∩B3(0,σ) and

w̃(x)|Ωϕ∩∂B3(0,σ) = u|Ωϕ∩∂B3(0,σ).
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Using that σ > 1
2

and the minimality of u we have

ˆ
Ωϕ∩B3(0, 1

2
)

|∇u|2 dx−K13

ˆ
Gϕ∩B3(0, 1

2
)

uαuβ
∂να

∂xβ
dH2

≤
ˆ

Ωϕ∩B3(0,σ)

|∇u|2 dx−K13

ˆ
Gϕ∩B3(0,σ)

uαuβ
∂να

∂xβ
dH2

+K13

[ˆ
Gϕ∩B3(0,σ)

uαuβ
∂να

∂xβ
dH2 −

ˆ
Gϕ∩B3(0, 1

2
)

uαuβ
∂να

∂xβ
dH2

]
≤
ˆ

Ωϕ∩B3(0,σ)

|∇w̃|2 dx

+K13

[ˆ
Gϕ∩B3(0,σ)

(
uαuβ − w̃αw̃β

) ∂να
∂xβ

dH2 −
ˆ
Gϕ∩B3(0, 1

2
)

uαuβ
∂να

∂xβ
dH2

]

which implies the inequality

ˆ
Ωϕ∩B3(0, 1

2
)

|∇u|2 dx ≤
ˆ

Ωϕ∩B3(0,σ)

|∇w̃|2 dx+K13

[ˆ
Gϕ∩B3(0,σ)

(
uαuβ − w̃αw̃β

) ∂να
∂xβ

dH2

]
.

Next we apply (3.14) and (3.13), choose a < 1
18c

and substitute ε = aλ to get the
boundˆ

Ωϕ∩B3(0,σ)

|∇w̃|2 dx ≤
ˆ

Ωϕ∩B3(0,σ)

18
(
‖ϕ‖2

C2 + c|∇ω|2
)
dx

≤ 18

(
cε

(
‖ϕ‖2

C2 +

ˆ
Ωϕ∩B
|∇u|2 dx

)

+ cε−q

[
Lip(ϕ)2 +

ˆ
Ωϕ

∣∣u− u∣∣2 dx+

ˆ
Gϕ

∣∣u− u∣∣2 dH2

])
+ 18 ‖ϕ‖2

C2 L3(Ωϕ)

≤ λ

(
‖ϕ‖2

C2 +

ˆ
Ωϕ∩B
|∇u|2 dx

)

+ λ−qc2

(
Lip(ϕ)2 +

ˆ
Ωϕ∩B

∣∣u− u∣∣2 dx+

ˆ
Gϕ

∣∣u− u∣∣2dH2

)
+ c2 ‖ϕ‖2

C2 .
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On the other hand, as u and w̃ are both S2 valued, we have

K13

[ˆ
Gϕ∩B3(0,σ)

(
uαuβ − w̃αw̃β

) ∂να
∂xβ

dH2

]
≤ |K13|

ˆ
Gϕ∩B3(0,σ)

∣∣uαuβ − w̃αw̃β∣∣ ∣∣∣∣∂να∂xβ

∣∣∣∣ dH2

≤ c

ˆ
Gϕ∩B3(0,σ)

∣∣∣∣∂να∂xβ

∣∣∣∣ dH2.

A straight forward calculation gives

∂ν

∂xβ
=

(−ϕx1,xβ ,−ϕx2,xβ , 0)(
ϕ2
x1 + ϕ2

x2 + 1
) 1

2

−
(
ϕx1,xβϕx1 + ϕx2,xβϕx2

)
(−ϕx1 ,−ϕx2 , 1)(

ϕ2
x1 + ϕ2

x2 + 1
) 3

2


hence ∣∣∣∣∂να∂xβ

∣∣∣∣ ≤ 3 ‖ϕ‖C2 .

Recalling that H2(Gϕ) is bounded for all ϕ we complete the proof.

Lemma 3.12. [Energy Improvement] There are positive constants ε, c and
θ < 1 such that if ϕ is as in (3.5), u is a minimizer of Gϕ amongst maps in Uϕ
with fixed trace on Hϕ and

´
Ωϕ
|∇u|2dx ≤ ε2, then

1

θ

ˆ
C(0,θ)∩Ωϕ

|∇u|2dx ≤ θmax{
ˆ

Ωϕ

|∇u|2dx, c (Lip(ϕ) + ‖ϕ‖C2)} (3.15)

Proof. Suppose, for a contradiction, that for fixed 0 < θ < 1 there are sequences
(ui), (ϕi), (εi) such that ui is minimizing in Ωϕi and ε2

i =
´

Ωϕi
|∇ui|2dx→ 0 as i→∞,

but
1

θ

ˆ
C(0,θ)∩Ωϕi

|∇ui|2dx > θmax

{ˆ
Ωϕi

|∇ui|2dx, i (Lip(ϕi) + ‖ϕi‖C2)

}
.

This implies that

1

θ

ˆ
C(0,θ)∩Ωϕi

|∇ui|2dx > θε2
i , (3.16)

Lip(ϕi)

ε2
i

→ 0, (3.17)

‖ϕi‖C2

ε2
i

→ 0. (3.18)
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We now consider the normalised functions

vi = ε−1
i (ui − ui).

Then, by Lemma A.3, the sequence
{
‖vi‖W 1,2(Ωϕi )

}∞
i=1

is a bounded sequence in R.

As each vi is defined on a different domain we extend them all to a common domain
using the extension Lemma A.1 that can be found in the appendix. Let C = {x ∈
R3 : |(x1, x2)| < 1 and − 1 < x3 < 1

2
}. Then there exists, by Lemma A.1, a constant

c, that is independent of i, and functions v̂i ∈ W 1,2(C) such that vi = v̂i|Ωϕi and

‖v̂i‖W 1,2(C) ≤ c‖vi‖W 1,2(Ωϕi )

(note that Ωϕi ⊂ C for i sufficiently large and so we assume Ωϕi ⊂ C for all i). As v̂i
is bounded in W 1,2(C) there exists v̂ ∈ W 1,2(C) such that v̂i converges weakly (on a
subsequence) to v̂ in W 1,2(C). Define v ∈ W 1,2(Ω0) as v := v̂|Ω0

.
We claim that the function v is harmonic. In order to see this we first note that

as ui are minimizers and ui(x) · ν(x) = 0 for x ∈ ∂Gϕi we have that ui satisfies
ˆ

Ωϕi

〈∇ui,∇ζ〉 − |∇ui|2ui · ζdx = 0, (3.19)

for all ζ ∈ C∞0 (Ωϕi). Let ζ ∈ C∞(R3) be such that spt(ζ) ⊂ Ω0. Then for sufficiently
large i we have spt(ζ) ⊂ Ωϕi . Observing that ∇ui = εi∇vi, substituting this into
(3.19) and dividing by εi yields

0 =

ˆ
Ωϕi

〈∇vi,∇ζ〉 − εi|∇vi|2ui · ζdx.

Using the uniform bounds on |∇vi|2,ui and ζ, we see that the second term tends to
0 as i → ∞. As spt(ζ) ⊂ Ω0 ⊂ C and we have that spt(ζ) ⊂ Ωϕi ⊂ C for i large
enough, we can use the weak convergence of v̂i to v̂ to get

0 = lim
i→∞

ˆ
Ωϕi

〈∇vi,∇ζ〉 − εi|∇vi|2ui · ζdx

= lim
i→∞

[ˆ
C
〈∇vi,∇ζ〉dx

]
+ 0

=

ˆ
C
〈∇v,∇ζ〉dx

=

ˆ
Ω0

〈∇v,∇ζ〉dx.
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Therefore v is harmonic in Ω0.
We now examine the behaviour of v on G0 and we will show that v is regular up

to the boundary. In order to do so we introduce the following subspaces of S2:

Σi
x : = {y ∈ S2 : y · ν(x1, x2, ϕi(x

1, x2)) = 0}
Σ0 : = {y ∈ S2 : y · (0, 0, 1) = 0}.

Claim: v(x) ∈ Tan(Σ0, a) for H2 almost everywhere x ∈ G0.

Proof of Claim: For each i let Qi be the projection defined by (3.6) (that now depends
on i). Let ũi : Ω0 → S2 be the functions defined by

ũi(x) := ui(x̃i), where x̃i := (x1, x2, x3 + ϕi(x
1, x2)).

and ṽi to be the functions
ṽi = ε−1

i (ũi − ui).

Note that for almost every x ∈ Ω0 we have ṽi(x) → v(x). As ui(x) ∈ Σi
x for almost

every x ∈ Gϕi , we have Qi(x̃i) · ũi(x) ∈ Σ0 for almost every x ∈ G0. Then for almost
every x ∈ G0 we have

dist(ui,Σ0)2 ≤
∣∣Qi(x̃i)ũi(x)− ui

∣∣2.
Averaging this over G0 and using Lemma 3.7, relation (3.17) and the Poincaré in-
equalities gives

dist(ui,Σ0)2 ≤
[
H2(G0)

]−1
ˆ
G0

∣∣Qi(x)ũi − ui
∣∣2dH2

≤ 2
[
H2(G0)

]−1
(ˆ

G0

|Qi(x̃i)ũi(x)− ũi(x)|2 +
∣∣ũi − ui∣∣2H2

)
≤ cε2

i . (3.20)

Hence, for i sufficiently large, there is a unique nearest point ai of ui on Σ0. As (ui)i∈N
is a bounded sequence in R3 it has a subsequence converging to some a ∈ R3. Also

ε−1
i

∣∣ui − ai∣∣ = dist(ui,Σ0)
εi

≤
√
cεi
εi

=
√
c, is bounded. Thus on subsequence we have

lim
i→∞

ui = a ∈ Σ0 and lim
i→

ε−1
i (ui − ai) = w ∈ R3.

As (ui − ai) ∈ Nor(Σ0, ai) and ai → a we have w ∈ Nor(Σ0, a). For almost every
x ∈ G0, ṽi(x)→ v(x) as i→∞. For such an x and i sufficiently large we have that

(x1, x2, x3 + ϕi(x
1, x2)) ∈ Gϕi ,
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and hence ũi(x) ∈ Σi
x̃i

. We compute

lim
i→∞

ε−1
i (Qi(x)ũi(x)− ui) = lim

i→∞

(
ε−1
i (Qi(x)ũi(x)− ũi(x)) + ε−1

i (ũi(x)− ui)
)

= lim
i→∞

ε−1
i (Qi(x)ũi(x)− ũi(x)) + v(x),

using Lemma 3.7

lim
i→∞

ε−1
i |Qi(x)ũi(x)− ũi(x)| ≤ lim

i→∞
c
Lip(ϕi)

εi
= 0.

Thus
lim
i→∞

ε−1
i

(
Qi(x)ũi(x)− ui

)
= v(x) for almost every x ∈ G0.

As ε−1
i (Qi(x)ũi(x) − ai) approaches a vector in Tan(Σ0, a) and w ∈ Nor(Σ0, a), we

have
ε−1
i (ũi(x)− ai) · ε−1

i (ui − ai)→ 0 as i→∞.
Thus

v(x) · (−w) = lim
i→

ε−1
i (ũi(x)− ui) · ε−1

i (ai − ui)

= lim
i→

(
ε−1
i (ũi(x)− ai)ε−1

i (ai − ui)
)
· ε−1

i (ai − ui)

= |w|2.

By averaging over G0 we deduce |w|2 = v(−w) = 0, hence

v(x) = v(x) + w

= lim
i→

ε−1
i (Qi(x)ũi(x)− ui) + lim

i→
ε−1
i (ui − ai)

= lim
i→

ε−1
i (Qi(x)ũi(x)− ai) ∈ Tan(Σ0, a).

This proves the claim.
Next we decompose v = v> + v⊥, where v> ∈ Tan(Σ0, a) and v⊥ ∈ Nor(Σ0, a).

We deduce that both v> and v⊥ are Harmonic inside Ω0 and that v⊥ is regular up to
G0 because it satisfies the boundary condition

v⊥ = 0 on G0.

To verify the regularity of v> up to G0 we show v> satisfies the Neumann boundary
condition

∂

∂xm
v> = 0 on G0
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in a weak sense, i.e ˆ
Ω0

∇v · ∇ξ dx = 0

for any ξ ∈ C∞(Ω0,Tan(Σ0, a)) with (∂Ω0 \G0)∩Spt(ξ) = ∅. For this purpose choose
an open neighbourhood U of Σ0 in R3 such that every point y ∈ U has a unique
nearest point on Σ0. For x ∈ Gϕi and y ∈ U , define the 1-dimensional subspaces of
R3 as

Ti(x, y) = {t(y × νi(x)) + y : t ∈ R}.
Then for x = (x1, x2, x3) ∈ Ωϕi and y ∈ U , define

Ti(x, y) := Ti
(
(x1, x2, ϕi(x

1, x2)), y
)
.

We then have that {Ti(x, y) : x ∈ Ωϕi , y ∈ U} is a smooth field of 1 dimensional
subspaces such that

Ti(x, y) ⊆ Tan(S2, y) for x ∈ Gϕi , y ∈ S2 ∩ U

and

Ti(x, y) = Tan(Σi
x, y) for x ∈ Gϕi and y ∈ Σi

x.

Next, define Πi : Ωϕi×U ×R3 → R3 such that for (x, y, z) ∈ Ωϕi×U ×R3, Πi(x, y, z)
is the orthogonal projection of z onto Ti(x, y). Explicitly Πi is given by

Πi(x, y, z) =
[(y × νi(x))⊗ (y × νi(x))] z

|y × νi(x)|2
+ y. (3.21)

We have the following bounds on the derivatives of Πi:∣∣∣∣∂Πi(x, y, z)

∂xj

∣∣∣∣ < Cε2
i |z|,

∣∣∣∣∂Πi(x, y, z)

∂zj

∣∣∣∣ ≤ 1,

∣∣∣∣∂Πi(x, y, z)

∂yj

∣∣∣∣ < C|z|, (3.22)

the proof these bounds can be found in Lemma B.1 of the appendix.
We are now in a position to show thatˆ

Ω0

∇v · ∇ξdx = 0.

We use the cut off function

λδ(t) :=


1 if 0 ≤ t ≤ δ

2
,

2− 2δ−1t if δ
2
< t ≤ δ,

0 if δ < t.
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to define
ξi(x) = λδi(dist(ui(x),Σ0)) · Πi(x, ui(x), ξ(x)),

where δi will be determined later. We have{
ξi(x) ∈ Tan(S2, ui(x)) for x ∈ Ωϕi ,

ξi(x) ∈ Tan(Σi
x, ui(x)) for x ∈ Gϕi .

Next, for x ∈ Ωϕi let uti(x) be the solution of{(
d
dt

)
uti(x) = ξi(x),

u0
i (x) = ui(x).

Then uti ∈ W 1,2(Ωϕi ,S2) with d
dt
uti ∈ Tan(Σi

x, ui(x)) for x ∈ Gϕi , hence uti(x) ∈ Σi
x for

x ∈ Gϕi and uti(x) = ui(x) for x ∈ ∂Ωϕi \Gϕi . The minimality of ui implies that

0 =
d

dt

∣∣∣∣
t=0

ˆ
Ωϕi

∣∣∇uti(x)
∣∣2 dx−K13

ˆ
Gϕi

ut,αi ut,βi
∂νβ

∂xα
dH2

= 2

ˆ
Ωϕi

∇ui∇ξi dx−K13

ˆ
Gϕi

ξαi u
β
i

∂νβ

∂xα
+ ξβi u

α
i

∂νβ

∂xα
dH2.

Let Ai = {x ∈ Ωϕi :
∣∣ui(x)− ui

∣∣2 ≥ δ2i
4
}. We haveˆ

Ai

δ2
i

4
dx ≤

ˆ
Ai

∣∣ui(x)− ui
∣∣2 dx ≤ ˆ

Ωψi

∣∣ui(x)− ui
∣∣2 dx ≤ c

ˆ
Ωψi

|∇ui|2 dx ≤ cε2
i

and hence
L3(Ai) ≤ 4cε2

i δ
−2
i . (3.23)

Setting Bi = Ωϕi \ Ai we have∣∣∣∣∣
ˆ

Ωϕi

∇vi · ∇ξ dx

∣∣∣∣∣ = ε−1
i

∣∣∣∣∣
ˆ

Ωϕi

∇ui · ∇ξ −∇ui · ∇ξi dx

+
K13

2

ˆ
Gϕi

ξαi u
β
i

∂νβ

∂xα
+ ξβi u

α
i

∂νβ

∂xα
dH2

∣∣∣∣∣
≤ ε−1

i

∣∣∣∣ˆ
Ai

∇ui · (∇ξ −∇ξi) dx
∣∣∣∣︸ ︷︷ ︸

:=Ii

+ ε−1
i

∣∣∣∣ˆ
Bi

∇ui · (∇ξ −∇ξi) dx
∣∣∣∣︸ ︷︷ ︸

:=IIi

+ ε−1
i

∣∣∣∣∣K13

2

ˆ
Gϕi

ξαi u
β
i

∂νβ

∂xα
+ ξβi u

α
i

∂νβ

∂xα
dH2

∣∣∣∣∣
≤ Ii + IIi + cε−1

i H2(Gϕi)‖ϕi‖C2.
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We have that ε−1
i cH2(Gϕi)‖ϕi‖C2 → 0 as i→∞ and so we must show that Ii, IIi → 0

as i→ 0.

Ii → 0

Using Hölder we have

Ii ≤ ε−1
i

(ˆ
Ai

|∇ui|2 dx
) 1

2
(

2

(ˆ
Ai

|∇ξ|2 dx+

ˆ
Ai

|∇ξi|2 dx
)) 1

2

≤ ε−1
i (ε2

i )
1
2

(
2(cε2

i δ
−2
i ) + 2

ˆ
Ai

|∇ξi|2 dx
)

( as |∇ξ(x)| < c for some c). (3.24)

(3.25)

We now focus on |∇ξi|2. Writing

Πi(x, y, z) =
(
Π1
i (x, y, z),Π2

i (x, y, z),Π3
i (x, y, z)

)
, ui = (u1

i , u
2
i , u

3
i ) and ξ = (ξ1, ξ2, ξ3),

we have∣∣∣∣∂ξki∂xj

∣∣∣∣2 =

∣∣∣∣ ∂∂xj (λδi(dist(ui(x),Σ0))Πk
i (x, ui(x), ξ(x))

)∣∣∣∣2
=

∣∣∣∣∣λ′δi(dist(ui(x),Σ0))

(
3∑
l=1

∂uli(x)

∂xj
∂(dist(ui(x),Σ0))

∂xl

)
Πk
i (x, ui(x), ξ(x))

+λδi(dist(ui(x),Σ0))
∂

∂xj
(
Πk
i (x, ui(x), ξ(x))

)∣∣∣∣2
≤ cδ−1

i

∣∣∣∣∣
3∑
l=1

∂uli(x)

∂xj

∣∣∣∣∣
2

+ 2

∣∣∣∣∣
3∑
l=1

[
∂Πk

i (x, ui(x), ξ(x)

∂xj
δlj

+
∂Πk

i (x, ui(x), ξ(x))

∂yl
∂uli(x)

∂xj
+
∂Πk

i (x, ui(x), ξ(x)

∂zl
∂ξl(x)

∂xj

]∣∣∣∣2
≤ cδ−1

i

3∑
l=1

∣∣∣∣∂uli(x)

∂xj

∣∣∣∣2 + c
3∑
l=1

∣∣∣∣∂Πk
i

∂xl
(x, ui(x), ξ(x))

∣∣∣∣2 + c

3∑
1=l

∣∣∣∣∂uli∂xj
(x)

∣∣∣∣2 + c

3∑
l=1

∣∣∣∣∂ξl(x)

∂xj

∣∣∣∣2,
where in the last line we have used (3.22). Summing this inequality over j, k, using
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the estimates (3.22), (3.23) and the fact that
´

Ωϕi
|∇u|2dx = ε2

i yields

ˆ
Ai

|∇ξi|2dx =

ˆ
Ai

3∑
i,j=1

∣∣∣∣∂ξki (x)

∂xj

∣∣∣∣2dx
≤
ˆ
Ai

3∑
i,j=1

[
cδ−1
i

3∑
l=1

∣∣∣∣∂uli∂xj

∣∣∣∣2 + c
3∑
l=1

∣∣∣∣∂Πk
i (x, ui(x), ξ(x))

∂xl

∣∣∣∣2

+c
3∑
l=1

∣∣∣∣∂uli(x)

∂xj

∣∣∣∣2 + c
3∑
l=1

∣∣∣∣∂ξl(x)

∂xj

∣∣∣∣2
]
dx

≤ cδ−1
i ε2

i + cε2
i + cε2

i + cε2
i δ
−2
i

≤ cδ−1
i ε2

i + 4cε2
i δ
−2
i (c+ c) + cε2

i . (3.26)

Therefore, by combining (3.24) and (3.26) we get

Ii ≤ 2(cε2
i δ
−1
i ) + cδ−1

i ε2
i + 4cε2

i δ
−2
i (cε2

i + c) + cε2
i → 0 as i→∞,

providing δi = ε
1
3
i b, where b is a constant to be chosen later.

We now show IIi → 0. Recall that for x ∈ Bi we have
∣∣ui(x)− ui

∣∣ ≤ δi
4

and so
for x ∈ Bi

dist(ui(x),Σ0) ≤ dist(ui(x), ui) + dist(ui,Σ0)

≤ δi
4

+ cεi (by inequality 3.20)

≤ δi
2

( providing δi = 4cε
1
3
i ).

For x ∈ Bi we have

ξi(x) = λδi(dist(ui(x),Σ0)) · Πi(x, ui(x), ξ(x))

= Πi(x, ui(x), ξ(x)).

As ξ ∈ Tan(Σ0, a) we have ξ(x) = Πi(0, a, ξ(x)), hence

ε−1
i

∣∣∣∣ˆ
Bi

∇ui (∇ξ −∇ξi) dx
∣∣∣∣ = ε−1

i

∣∣∣∣ˆ
Bi

∇ui (∇Πi(0, a, ξ)−∇Πi(x, ui(x), ξ)) dx

∣∣∣∣
≤ ε−1

i

∣∣∣∣ˆ
Bi

∇ui
(
∇Πi(0, a, ξ)−∇Πi(0, ui, ξ)

)
dx

∣∣∣∣︸ ︷︷ ︸
:=IIIi

+ ε−1
i

∣∣∣∣ˆ
Bi

∇ui
(
∇Πi(x, ui(x), ξ)−∇Πi(0, ui, ξ)

)
dx

∣∣∣∣︸ ︷︷ ︸
:=IVi

.
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We now show that IIIi and IVi both go to zero separately. Using Hölder’s inequality
and Lemma B.2 from the appendix we estimate

IIIi ≤ ε−1
i

(ˆ
Bi

|∇ui|2 dx
) 1

2
(ˆ

Bi

(
∇Πi(0, a, ξ)−∇Πi(0, ui, ξ)

)2
dx

) 1
2

=

ˆ
Bi

∣∣∣∣∣
3∑

j,k=1

(
∂Πk

i (0, a, ξ)

∂xj
− ∂Πk

i (0, ui, ξ)

∂xj

)∣∣∣∣∣
2

dx

 1
2

=

ˆ
Bi

∣∣∣∣∣
3∑

j,k=1

(
3∑
l=1

∂Πk
i

∂zl
(0, a, ξ)

∂ξl

∂xj
− ∂Πk

i

∂zl
(0, ui, ξ)

∂ξl

∂xj

)∣∣∣∣∣
2

dx

 1
2

≤
[ˆ

Bi

c
∣∣a− ui∣∣dx] 1

2

→ 0 as i→∞.

IVi → 0

IVi = ε−1
i

∣∣∣∣ˆ
Bi

∇ui ·
[
∇Πi(x, ui, ξ)−∇Πi(0, ui, ξ)

]
dx

∣∣∣∣
≤

2

ˆ
Bi

∣∣∇Πi(x, ui, ξ)−∇Πi(x, ui, ξ)
∣∣2 dx︸ ︷︷ ︸

:=Vi

+

ˆ
Bi

∣∣∇Πi(x, ui, ξ)−∇Πi(0, ui, ξ)
∣∣2 dx︸ ︷︷ ︸

:=V Ii


1
2

= (2(Vi + V Ii))
1
2

If we can show Vi, V Ii → 0 then IVi → 0 and hence IIi → 0. Using Lemma B.2 and
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(3.22) we have

Vi =

ˆ
Bi

∣∣∇Πi(x, ui, ξ)−∇Πi(x, ui, ξ)
∣∣2 dx

=

ˆ
Bi

3∑
j,k=1

∣∣∣∣∣
3∑
l=1

δlj

(
∂Πk

i

∂xl
(x, ui, ξ)−

∂Πk
i

∂xl
(x, ui, ξ)

)
+

3∑
l=1

∂uli
∂xj

∂Πk
i

∂yl
(x, ui, ξ)

+
3∑
l=1

∂ξl
∂xj

(
∂Πk

i

∂zl
(x, ui, ξ)−

∂Πk
i

∂zl
(x, ui, ξ)

)∣∣∣∣∣
2

dx

≤
ˆ
Bi

cε2
i + cε2

i + c
∣∣ui(x)− ui

∣∣2dx+ c

ˆ
Ωεi

|∇ui|2 dx

≤
ˆ
Bi

2cε2
i + cδ2

i dx+ cε2
i → 0.

Finally,

V Ii =

ˆ
Bi

∣∣∇Πi(x, ui, ξ)−∇Πi(0, ui, ξ)
∣∣2 dx

=

ˆ
Bi

3∑
j,k=1

∣∣∣∣∣
3∑
l=1

δjl
∂Πk

i

∂xl
(x, ui, ξ) +

3∑
l=1

∂ξl
∂xj

(
∂Πk

i

∂zl
(x, ui, ξ)−

∂Πk
i

∂zl
(0, ui, ξ)

)∣∣∣∣∣
2

.

Using Lemma B.3 we have∣∣∣∣∂Πk
i

∂zl
(x, y, z)− ∂Πk

i

∂zl
(0, y, z)

∣∣∣∣ ≤ c|νi(x)− νi(0)| ≤ cLip(ϕi) ≤ cεi.

Therefore

V Ii ≤
ˆ
Bi

cε2
i + cεi dx→ 0 as i→ 0,

and thus we have shown ˆ
Ω0

∇v · ∇ξ dx = 0.

It now follows that v⊥ and v> extend by even and odd reflections to functions
harmonic on C. Thus, since v = 0 and

´
Ω0
|∇v|2dx ≤ 1, we have

r−3

ˆ
C(0,r)∩Ω0

|v|2dx ≤ cr2

ˆ
Ω0

|v|2 dx

≤ cr2

ˆ
Ω0

|∇v|2 dx

≤ cr2. (3.27)
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The first inequality follows from standard linear elliptic theory (similar to the proof
of Lemma 2.2 in [5]) and the second follows using Lemma A.3. The second inequality
of (3.27) along with the Poincaré inequality and trace theory also implies

r−4

ˆ
C(0,r)∩G0

|v|2dH2 ≤ r−3‖v‖2

H
1
2 (C(0,r)∩G0)

≤ cr2. (3.28)

We now use Vitali convergence Theorem (Theorem A.2) to show that ‖vi‖L2(Ωϕi )
→

‖v‖L2(Ω0). As v̂i converges weakly in W 1,2(C) to v̂, we have that v̂i converges strongly

in L2(C) (on a subsequence) to v̂. Hence we have

v̂i1Ωϕi
(x)→ v1Ω0(x)

for L3 almost everywhere x ∈ C, where 1Ωϕi
and 1Ω0 are the indicator functions of

Ωϕi and Ω0 respectively. Using the Sobolev embedding Theorem we have

‖vi‖L3(Ωϕi )
≤ ‖v̂i‖L3(C) ≤ C ′‖v̂i‖W 1,2(C) ≤ C ′C‖vi‖W 1,2(Ωϕi )

≤ K. (3.29)

Let E ⊂ C be an arbitrary measurable set. Then Hölders inequality and inequality
(3.29) yields

ˆ
E

∣∣v̂i1Ωϕi

∣∣2 dx ≤ (ˆ
E

∣∣v̂i1Ωϕi

∣∣3 dx) 2
3

L3(E)
1
3

≤ K
2
3

(
L3(E)

) 1
3 .

Therefore for any ε > 0 there exists a δ > 0 such that
´
E

∣∣v̂i1Ωϕi

∣∣2dx ≤ ε for all i and

all E ⊂ C such that L3(E) < δ. Hence
∣∣vi1Ωϕi

∣∣2 is uniformly integrable. Thus by
Vitali convergence Theorem we getˆ

C

∣∣∣∣∣v̂i1Ωϕi

∣∣2 − |v1Ω0|
2
∣∣∣dx→ 0.

Therefore for any θ < r < 1 we have∣∣∣∣∣
 

Ωϕi∩C(0,r)

|vi|2 dx−
 

Ω0∩C(0,r)

|v|2 dx

∣∣∣∣∣ ≤ cθ2 ≤ cr2 (3.30)

for sufficiently large i. We also have ‖vi‖L2(Gϕi )
→ ‖v‖L2(G0), hence for sufficiently

large i we have ∣∣∣∣∣
 
Gϕi∩C(0,r)

|vi|2dH2 −
 
G0∩C(0,r)

|v|2dH2

∣∣∣∣∣ ≤ cθ2 ≤ cr2. (3.31)
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Combining (3.27), (3.28), (3.30) and (3.31) we arrive at

 
Ωϕi∩C(0,r)

∣∣ui − ui∣∣2dx ≤ ε2
i

(
cr2 +

 
Ω0∩C(0,r)

|v|2 dx
)
≤ cε2

i r
2 (3.32)

and similarly  
Gϕi∩C(0,r)

∣∣ui − ui∣∣2dH2 ≤ cε2
i r

2. (3.33)

We now use the Hybrid inequality (Lemma 3.11) and the scaling discussed in
section 3.2.1 in order to to contradict our assumption that 1

θ

´
C(0,θ)∩Ω

|∇ui|2dx > θε2
i .

For each i we apply the Hybrid inequality to the scaled function (ui)4θ to obtain

1

2θ

ˆ
C(0,θ)∩Ωϕi

|∇ui|2 dx

≤ λ

(
‖(ϕi)4θ‖2

C2 +
1

4θ

ˆ
C(0,4θ)∩Ωϕi

|∇ui|2dx

)

+ λ−qc

(
Lip((ϕi)4θ)

2 +

 
C(0,4θ)∩Ωϕi

∣∣ui − ui∣∣2 dx+

 
C(0,4θ)∩Gϕi

∣∣ui − ui∣∣2 dH2

)
+ c ‖(ϕi)4θ‖2

C2

≤ λ

[
(4θ)2 ‖ϕi‖2

C2 +
1

4θ

ˆ
C(0,4θ)∩Ωϕi

|∇ui|2 dx

]

+ λ−qc

(
(4θ)2Lip(ϕi)

2 +

 
C(0,4θ)∩Ωϕi

∣∣ui − ui∣∣2 dx+

 
C(0,4θ)∩Gϕi

∣∣ui − ui∣∣2 dH2

)
+ c(4θ)2 ‖ϕi‖C2 .
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Iterating this (k − 1) more times (where k is an integer to be chosen later) gives

1

2θ

ˆ
C(0,θ)∩Ωϕi

|∇ui|2 dx ≤ λk(4kθ)−1

ˆ
Ωϕi∩C(0,4kθ)

|∇ui|2 dx

+
k∑
j=1

λj(4jθ)2 ‖ϕi‖2
C2

+
k∑
j=1

λ−qλj−1

(
(4jθ)2Lip(ϕi)

2 +

 
C(0,4jθ)∩Ωϕi

∣∣ui − ui∣∣2 dx
+

 
C(0,4jθ)∩Gϕi

∣∣ui − ui∣∣2 dH2

)

+
k∑
j=1

λj−1(4jθ)2 ‖ϕi‖2
C2 .

Let k be an integer such that 4kθ ≤ 1 ≤ 4k+1θ, then using (3.32) and (3.33) we have
for i large enough

1

2θ

ˆ
C(0,θ)∩Ωϕi

|∇ui|2 dx ≤ 4λkε2
i +

k∑
j=1

θ2ε2
i (16λ)j

+ λ−q−1ε2
i

k∑
j=1

[
(16λ)jθ2 + 2cθ2(16λ)j

]
+ λ−1ε2

i θ
2

k∑
j=1

(16λ)j

≤ 4λkε2
i + λ−lcθ2(1− 16λ)−1ε2

i

where l = max {q + 1, 1} and c has absorbed all other constants. Set λ = θ
3
k , then

providing θ < 1
4

we have λk = θ3 < θ
16

. Next, as k →∞ as θ → 0, we may fix θ < 1
4

sufficiently small such that

16cθ < θ
3l
k .

Note that for θ sufficiently small we have λ < 1
32

which implies (1− 16λ)−1 ≤ 2 then

λ−lcθ2(1− 16λ)−1 = θ−
3l
k cθ2(1− 16λ)−1

≤ cθ2

16cθ
(1− 16λ)−1

≤ θ

8
.

Therefore
1

2θ

ˆ
C(0,θ)∩Ωϕi

|∇ui|2 dx <
(
θ

4
+
θ

8

)
ε2
i =

3θ

8
ε2
i ,
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contradicting our choice of ui, ϕi.

Theorem 3.13 (Energy Decay). Suppose Ω is a C2 domain in R3 and take
a ∈ ∂Ω. If u ∈ U is a minimizer of G in U with

´
Ω∩C(a,R)

|∇u|2dx ≤ ε2R, then

ˆ
Ω∩C(a,r)

|∇u|2 dx ≤ r2R−1θ−2 max{ε2, c(R +R2)}

for 0 < r ≤ R, a suitable θ ∈ (0, 1) and c a constant depending on Ω.

Proof. We apply inequality (3.15) to the scaled function v1(x) = uθR,a(x) to get that
for a θ ∈ (0, 1) as in Lemma 3.12 we have:

1

Rθ

ˆ
C(a,Rθ)∩Ω

|∇u(x)|2dx =

ˆ
C(a,1)∩Ω

|∇uRθ,a(x)|2dx

=
1

θ

ˆ
C(a,θ)∩Ω

|∇uR,a(x)|2dx

≤ θmax{
ˆ
C(a,1)∩Ω

|∇uR,a(x)|2dx, c
(
Lip(ϕR,a) + ‖ϕR,a‖C2

)
}

≤ θmax{
ˆ
C(a,1)∩Ω

|∇uR,a(x)|2dx, c
(
RLip(ϕ) +R2 ‖ϕ‖C2

)
}.

Then, inductively, for k ∈ N we get that

(θk−1R)−1

ˆ
C(a,θk−1R)∩Ω

|∇u|2dx ≤ θk−1 max{ε2, c
(
RLip(ϕ) +R2 ‖ϕ‖C2

)
}

hence

(θkR)−1

ˆ
C(a,θkR)∩Ω

|∇u|2dx =
1

θ

ˆ
C(a,θ)∩Ω

∣∣∇uθk−1R,a

∣∣2dx
≤ θmax

{ˆ
C(a,1)

∣∣∇uθk−1R,a

∣∣2dx, c (Lip(ϕθk−1R,a) +
∥∥ϕθk−1R,a

∥∥
C2

)}
≤ θmax{

[
θk−1 max

{
ε2, c

(
RLip(ϕ) +R2 ‖ϕ‖C2

)
}
]
,

c
(
(θk−1R)Lip(ϕ) + (θk−1R)2 ‖ϕ‖C2

)}
= θk max

{
ε2, c

(
RLip(ϕ) +R2 ‖ϕ‖C2

)}
.
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Hence the inequality

(θkR)−1

ˆ
C(a,θkR)∩Ω

|∇u|2dx ≤ θk max
{
ε2, c

(
RLip(ϕ) +R2 ‖ϕ‖C2

)}
holds for all k ∈ N. Next, choose k such that θk+1R ≤ r < θkR. Then

r−1

ˆ
C(a,r)∩Ω

|∇u|2dx ≤ θ−1(θkR)−1

ˆ
C(a,θkR)∩Ω

|∇u|2dx

≤ θ−1θk max
{
ε2, c

(
RLip(ϕ)2 +R2 ‖ϕ‖2

C2

)}
≤ θ−1(θ−1R−1r) max

{
ε2, c

(
RLip(ϕ)2 +R2 ‖ϕ‖2

C2

)}
≤ θ−2R−1rmax

{
ε2, c(R +R2)

}
.

Proof. [of Theorem 1.3]
We note that we just need to look into partial regularity on the boundary, be-

cause in the interior of Ω the energy behaves like that of the standard harmonic
map for which the regularity theory is classical (see [17]). Indeed, let n̄ be a min-
imizer of G and take an arbitrary open set ω with ω̄ ⊂ Ω. Let nω be a mini-
mizer of

´
ω
|∇n|2 dx in W 1,2(ω;S2) with boundary condition n̄|ω. Then defining

ñ(x) :=

{
n(x) for x ∈ Ω \ ω
nω(x) for x ∈ ω we have that ñ is a minimizer of G and thus all

the arguments for harmonic maps can be applied to it in ω.
The main point of our work in this last section has been to obtain the energy decay

near the boundary, namely Theorem 3.13 before. For a point where the rescaled
energy is small enough the standard Morrey lemma shows that the estimate thus
obtained implies Hölder regularity. Standard covering arguments show then the set
of singularitiy points, those where the renormalized energy is not small, is of zero
one-dimensional Hausorf measure (see for instance [7]).

Appendices

A Some Lemmas for Partial Regularity

We prove two lemmas that will be useful in the proof of the partial regularity. They are
standard results for a fixed domain but we need them to hold with certain constants
independent of the domains.
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The first is an extension lemma and it is standard (see for instance [4] Chapter
4), but we reproduce a proof for the readers convenience. Its main point is to show
that the extension map can be chosen in a manner that depends only on the upper
bound of the Lipschitz constant of the boundary.

Lemma A.1. Let ϕ : R2 → R be a Lipschitz map such that ϕ(0) = |∇ϕ(0)|2 = 0 and

Lip(ϕ) ≤ 1
5
. Then if f ∈ W 1,2(Ωϕ), there exists f̂ ∈ W 1,2(C) such that f̂ = f on Ωϕ

and ∥∥∥f̂∥∥∥
W 1,2(C(0,1))

≤ c‖f‖W 1,2(Ωϕ)

where c is independent of ϕ, f and we denote C := {x ∈ R3 : |(x1, x2)| < 1 and − 1 <
x3 < 1

2
} respectively Ωϕ := {(x1, x2, x3) ∈ C(0, 1) : x3 < ϕ(x1, x2)}.

Proof. Fix ϕ and define

U := C \ Ωϕ.

For simplicity we write x′ := (x1, x2). First suppose that f ∈ C1(Ωϕ) and set{
f̂(x) = f(x) if x ∈ Ωϕ,

f̂(x) = f(x′,−x3 + 2ϕ(x′)) if x ∈ U.

We note that f = f̂ on Ωϕ ∩ C and we claim that∥∥∥f̂∥∥∥
W 1,2(U)

≤ c1‖f‖W 1,2(Ωϕ).

To see this let ψ ∈ C1
c (U) and {ϕk}∞k=1 be a sequence of C∞ functions such that

ϕk ≤ ϕ

ϕk → ϕ uniformly

Dϕk → Dϕ almost everywhere

supk‖Dϕk‖L∞ <∞.

Then for j = 1, 2 we haveˆ
U

f̂
∂ψ

∂xj
dx =

ˆ
U

f(x′, 2ϕ(x′)− x3)
∂ψ

∂xj
dx

= lim
k→∞

ˆ
U

f(x′, 2ϕk(x
′)− x3)

∂ψ

∂xj
dx

= − lim
k→∞

ˆ
U

(
∂f

∂xj
(x′, 2ϕk(x

′)− x3) + 2
∂f

∂x3
(x′, 2ϕk(x

′)− x3)
∂ϕk
∂xj

(x′)

)
ψdx

= −
ˆ
U

(
∂f

∂xj
(x′, 2ϕ(x′)− x3) + 2

∂f

∂x3
(x′, 2ϕ(x′)− x3)

∂ϕ

∂xj
(x′)

)
ψdx
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In the same way we can computeˆ
U

f̂
∂ψ

∂x3
dx =

ˆ
U

∂f

∂x3
(x′, 2ϕ(x′)− x3)ψdx.

Then, by a change of variables and using the fact Lip(ϕ) ≤ 1
5

we get
ˆ
U

∣∣Df(x′, 2ϕ(x′)− x3)
∣∣2dx ≤ c1

ˆ
Ωϕ

|Df |2dx, (A.1)

for some appropriate c1 that is independent of f and ϕ. This proves the claim

and moreover also shows that
∥∥∥f̂∥∥∥

W 1,2(C)
≤ c1‖f‖W 1,2(Ωϕ). The result for a general

f ∈ W 1,2(Ωϕ) can now be achieved via density.

For the proof of the next lemma we will use Vitali convergence theorem which we
state here for the readers convenience

Theorem A.2 (Vitali Convergence Theorem). Let (X,F , µ) be a positive measure
space. Let fn : X → R,∀n ∈ N and f : X → R be measurable functions such that:

a. µ(X) <∞

b. {fn}n∈N is uniformly integrable

c. fn(x)→ f(x) almost everywhere as n→∞

d. |f(x)| <∞ almost everywhere

then the following hold

i. f ∈ L1(µ)

ii. limn→∞
´
X
|fn − f |dµ = 0

We now use this and lemma A.1 to prove the following Poincaré inequality. Its
main point is to check that the constant in the inequality can be chosen uniformly
for all the domains we consider.

Lemma A.3. Let ϕ : R2 → R be a Lipschitz map such that ϕ(0) = |∇ϕ(0)|2 = 0 and
Lip(ϕ) ≤ 1

2
. Then there exists C > 0, independent of ϕ, such that for all u ∈ W 1,2(Ωϕ)

we have the Poincaré type inequalityˆ
Ωϕ

∣∣u− u∣∣2dx ≤ C

ˆ
Ωϕ

|∇u|2dx

where u := H2(Gϕ)−1
´
Gϕ
udH2.
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Proof. We argue by contradiction and assume that for all i ∈ N there exist ϕi,ui ∈
W 1,2(Ωϕi) such that ´

Ωϕi
|∇ui|2dx´

Ωϕi

∣∣ui − ui∣∣2dx < 1

i
.

Define the functions vi :=
(
ui − ui

) (´
Ωϕi

∣∣ui − ui∣∣2dx)− 1
2
. Then we have

ˆ
Ωϕi

|∇vi|2dx ≤
1

i
and

ˆ
Ωϕi

|vi|2dx = 1.

As |∇ϕi| < 1
2
, there exists a subsequence (not relabelled) such that ϕi → ϕ uniformly

for some ϕ.
By Lemma A.1 there exist functions v̂i ∈ W 1,2(C) such that ‖v̂i‖W 1,2(C) ≤ c‖vi‖W 1,2(Ωϕi )

and by inspecting the proof there exists constant c1 such that ‖∇v̂i‖L2(C) ≤ c1‖∇vi‖L2(Ωϕi )
.

It follows that there exists v̂ ∈ W 1,2(C) such that v̂i converge weakly in W 1,2 to v̂,
but as ‖∇v̂i‖L2(C) → 0 we have that v̂ ≡ k for some constant k. We now investigate
the behaviour of v̂ on Gϕ where we recall that Gϕ := ∂Ωϕ \ ∂C(0, 1). We have∣∣∣∣∣

ˆ
Gϕi

vidH2 −
ˆ
Gϕ

v̂dH2

∣∣∣∣∣ ≤
∣∣∣∣∣
ˆ
Gϕi

(vi − v̂) dH2

∣∣∣∣∣+

∣∣∣∣∣
ˆ
Gϕi

v̂ dH2 −
ˆ
Gϕ

v̂ dH2

∣∣∣∣∣
≤ ‖vi − v̂‖H 1

2−ε(Gϕi )
+

∣∣∣∣∣
ˆ
Gϕi

v̂ dH2 −
ˆ
Gϕ

v̂ dH2

∣∣∣∣∣
≤ ‖vi − v̂‖H1−ε(Ωϕi )

+

∣∣∣∣∣
ˆ
Gϕi

v̂ dH2 −
ˆ
Gϕ

v̂dH2

∣∣∣∣∣
≤ ‖v̂i − v̂‖H1−ε(C) +

∣∣∣∣∣
ˆ
Gϕi

v̂ dH2 −
ˆ
Gϕ

v̂ dH2

∣∣∣∣∣
As we have ‖v̂i‖H1(C) bounded uniformly we have that v̂i → v̂ in H1−ε(C) and since
also ϕi → ϕ uniformly the above tends to 0. Then

0 =

ˆ
Gϕi

vidH2 →
ˆ
Gϕ

v̂dH2, (A.2)

which implies that v̂ ≡ 0.
However, we claim that

1 = lim
i→∞

ˆ
Ωϕi

|vi|2dx =

ˆ
Ωϕ

|v|2dx (A.3)
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which would contradict v̂ ≡ 0.
To prove (A.3) we use Vitali convergence Theorem. First as v̂i converges strongly

in L2(C) to v̂ we have
v̂i(x)1Ωϕi

(x)→ v̂(x)1Ωϕ(x)

for almost every x ∈ C.
We now show that the sequence of functions {

∣∣v̂i1Ωϕi

∣∣2} are uniformly integrable.
Note that by the Sobolev inequalities, there exists c2 such that ‖v̂i‖L3(C) ≤ c2‖v̂i‖W 1,2(C)
hence as v̂i is bounded in W 1,2(C) it is also a bounded sequence in L3(C), say
‖v̂i‖L3(C) ≤ c3. Fix ε > 0 we want to show that there exists δ > 0 such that´
E

∣∣v̂i1Ωϕi

∣∣2dx < ε whenever E ⊂ C and L3(E) < δ . With this in mind for E ⊂ C we
estimate

ˆ
E

∣∣v̂i1Ωϕi

∣∣2dx ≤ (ˆ
E

∣∣v̂i1Ωϕi

∣∣3dx) 2
3
(ˆ

E

dx

) 1
3

≤ ‖v̂i‖2
L3(C)L

3(E)
1
3

≤ c3L3(E)
1
3

thus by setting δ = ε3/c3 we have shown {
∣∣v̂i1Ωϕi

∣∣2} are uniformly integrable. We
can now conclude using Vitali convergence Theorem that

lim
i→∞

ˆ
C

∣∣∣∣∣v̂i1Ωϕi

∣∣2 − ∣∣v̂1Ωϕ

∣∣2∣∣∣dx = 0

which implies (A.3) and completes the proof.

B Some bounds on the Projection (3.21)

We prove some bounds on the derivatives of the projection Πi : Ωϕi × U × R3 → R3

defined by

Πi(x, y, z) =
[(y × νi(x))⊗ (y × νi(x))] z

|y × νi(x)|2
+ y,

where Ωϕi and U are as in the proof of Lemma 3.12.

Lemma B.1. Providing U is sufficiently small then there exists C > 0 such that for
large i the projection Πi satisfies the bounds∣∣∣∣∂Πi(x, y, z)

∂xj

∣∣∣∣ < Cε2
i |z|,

∣∣∣∣∂Πi(x, y, z)

∂zj

∣∣∣∣ ≤ 1,

∣∣∣∣∂Πi(x, y, z)

∂yj

∣∣∣∣ < C|z|.
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Proof. Writing y = (y1, y2, y3) a straight forward calculation yields

∂Πi

∂yj
(x, y, z) =

z · ((δ1j, δ2j, δ3j)× νi(x)) (y × νi(x))

|y × νi(x)|2

+
z · (y × νi(x)) ((δ1j, δ2j, δ3j)× νi(x))

|y × νi(x)|2

− 2 ((y × νi(x)) · ((δ1j, δ2j, δ3j)× νi(x))) (z · (y × νi(x))) (y × νi(x))

|y × νi(x)|4

+ (δ1j, δ2j, δ3j)

∂Πi

∂zj
(x, y, z) =

[(y × νi(x))⊗ (y × νi(x))] (δ1j, δ2j, δ3j)

|y × νi(x)|2

∂Πi

∂xj
(x, y, z) =

z ·
(
y × ∂νi(x)

∂xj

)
(y × νi(x))

|y × νi(x)|2
+
z · (y × νi(x))

(
y × ∂νi(x)

∂xj

)
|y × νi(x)|2

−
2
(

(y × νi(x)) ·
(
y × ∂νi(x)

∂xj

))
(z · (y × νi(x))) (y × νi(x))

|y × νi(x)|4

where

∂ν

∂xj
=

(−ϕx1xj ,−ϕx2xj , 0)(
ϕ2
x1 + ϕ2

x2 + 1
) 1

2

− (ϕx1xjϕx1 + ϕx2xjϕx2) (−ϕx1 ,−ϕx2 , 1)(
ϕ2
x1 + ϕ2

x2 + 1
) 3

2

 .
We observe that if U is sufficiently small and i sufficiently large then there exists

constants c1, c2 > 0 such that c1 < |y × νi(x)| < c2. This, along with the inequality
(3.18), gives∣∣∣∣∂Πi(x, y, z)

∂xj

∣∣∣∣ < Cε2
i |z|,

∣∣∣∣∂Πi(x, y, z)

∂zj

∣∣∣∣ ≤ 1,

∣∣∣∣∂Πi(x, y, z)

∂yj

∣∣∣∣ < C|z|.

We next prove a bound on the difference of two projections onto two different
lines.

Lemma B.2. Let y1, y2 ∈ U , x ∈ Ωϕi and z ∈ R3. Then we have the bound∣∣∣∣∂Πi

∂zj
(x, y1, z)− ∂Πi

∂zj
(x, y2, z)

∣∣∣∣ ≤ ∣∣y1 − y2
∣∣.
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Proof. First, by writing Λj = (δ1j, δ2j, δ3j) we have

∂Πi

∂zj
(x, y, z) =

(y × νi(x))⊗ (y × νi(x))Λj

|y × νi(x)|2

= A(y, x)Λj,

where A(x, y) = (y×νi(x))⊗(y×νi(x))

|y×νi(x)|2 ∈M3×3. We consider the linear map h : R3 → R3

z 7→ (A(y1, x)− A(y2, x))z,

and calculate the operator norm of h. Note that the map v 7→ A(x, y)v is the
projection of v onto the line spanned by (y×νi(x)).We assume that the plane spanned
by (y1 × νi(x)) and (y2 × νi(x)) to be R2 with

((y1 × νi(x)) = (1, 0, 0) and (y2 × νi(x)) = (cos(τ), sin(τ), 0),

where τ is the angle between (y1 × νi(x)) and (y2 × νi(x)). Then

A(y1, x)− A(y2, x) =

 1− cos2(τ) − cos(τ) sin(τ) 0
− cos(τ) sin(τ) − sin2(τ) 0

0 0 0

 .
We can find the operator norm of this by finding the largest eigenvalue. A calculation
yields

‖h‖op = |sin(τ)|.
Using elementary geometry we have

sin(τ) ≤ |(y
1 × νi(x))− (y2 × νi(x))|

|y1 × νi(x)|
≤
∣∣y1 − y2

∣∣.
Therefore∣∣∣∣((y1 × νi(x))⊗ (y1 × νi(x))

|(y1 × νi(x))|2
− (y2 × νi(x))⊗ (y2 × νi(x))

|(y2 × νi(x))|2

)
Λj

∣∣∣∣ ≤ |Λj||sin(τ)| ≤
∣∣y1 − y2

∣∣.
Using similar reasoning one can also prove the following.

Lemma B.3. There exists C > 0 such that∣∣∣∣∂Πk
i

∂zl
(x, y, z)− ∂Πk

i

∂zl
(0, y, z)

∣∣∣∣ ≤ C|νi(x)− νi(0)|,

for all x ∈ Ωϕi, y ∈ U and z ∈ R3.
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Proof. We first calculate that∣∣∣∣∂Πk
i

∂zl
(x, y, z)− ∂Πk

i

∂zl
(0, y, z)

∣∣∣∣ =∣∣∣∣(y × νi(x))⊗ (y × νi(x))Λj

|y × νi(x)|2
− (y × νi(0))⊗ (y × νi(0))Λj

|y × νi(0)|2

∣∣∣∣.
This is the difference between two projections on to two different lines,hence by the
same reasoning as in the proof of Lemma B.2 we obtain∣∣∣∣∂Πk

i

∂zl
(x, y, z)− ∂Πk

i

∂zl
(0, y, z)

∣∣∣∣ ≤ c|νi(x)− νi(0)|

as required.

C Notation

• E[n] =
´

Ω
K
2
|∇n|2 dx+K13

´
∂Ω

((n · ∇)n) · ν dσ

• A := W 1,2(Ω;Sd−1) ∩W 2,1(Ω;Sd−1)

• Ω ⊂ Rn a is C2 domain (See Theorem 1.1)

• ν unit-norm exterior normal.

• T := {γ ∈ H 1
2 (∂Ω,S2) : γ(x) · ν(x) = 0 for almost every x ∈ ∂Ω}

• U := {u ∈ W 1,2(Ω,S2) : Trace(u) ∈ T }

• G[n] :=
´

Ω
K
∑d

α,β=1
∂nα

∂xβ
∂nα

∂xβ
−K13

´
∂Ω

∑d
α,β=1

∂νβ

∂xα
nβnα.

• ‖ϕr,a‖C2 := max|α|=2 supx∈R2

∣∣∣∂|α|ϕr,a(x)

∂xα

∣∣∣
• C(x, r) := {y ∈ R3 : |(y1, y2)− (x1, x2)| < r, |y3 − x3| < r}

• Ωϕ = {(x1, x2, x3) ∈ C(0, 1) : x3 < ϕ(x1, x2)}

• Ω0 := {(x1, x2, x3) ∈ C(0, 1) : x3 < 0}

• Gϕ = ∂Ωϕ \ ∂C(0, 1)

• G0 = ∂Ω0 \ ∂C(0, 1)

• Hϕ = ∂Ωϕ ∩ ∂C(0, 1)
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• H0 = ∂Ω0 ∩ ∂C(0, 1)

• Gϕ[u] :=
´

Ωϕ
|∇u|2 dx−K13

´
Gϕ
uαuβ ∂ν

β

∂xα
dx.

• Bd(0, 1) is the ball in Rd centred at 0 with radius 1.
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