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Abstract

In Goal-Oriented Adaptivity (GOAI), the error in a Quantity of Interest
is represented using global error functions of the direct and adjoint problems.
This error representation is subsequently bounded above by element-wise error
indicators that are used to drive optimal refinements.

In this work, we propose to replace, in the error representation, the adjoint
problem by an alternative operator. The main advantage of the proposed
approach is that, when judiciously selecting such alternative operator, the cor-
responding upper bound of the error representation becomes sharper, leading
to a more efficient [GTOAI

These representations can be employed to design novel h, p, and hp energy-
norm and goal-oriented adaptive algorithms.

While the method can be applied to a variety of problems, in this Disser-
tation we first focus on one-dimensional (1D) problems, including Helmholtz
and steady state convection-dominated diffusion problems.

Numerical results in 1D show that for the Helmholtz problem, it is advan-
tageous to select the Laplace operator for the alternative error representation.
Specifically, the upper bounds of the new error representation are sharper than
the classical ones used in both energy-norm and goal-oriented adaptive meth-
ods, especially when the dispersion (pollution) error is significant.

The 1D steady state convection-dominated diffusion problem with homoge-
neous Dirichlet boundary conditions exhibits a boundary layer that produces a
loss of numerical stability. The new error representation based on the Laplace
operator delivers sharper error upper bounds. When applied to a p{GOAl the
alternative error representation captures earlier the boundary layer, despite
the existing spurious numerical oscillations.

We then focus on the two- and three-dimensional (2D and 3D) Helmholtz
equation. We show via extensive numerical experimentation that the upper
bounds provided by the alternative error representations are sharper than the
classical ones. When using the alternative error indicators, a naive p-adaptive
process converges, whereas under the same conditions, the classical method
fails and requires the use of the so-called Projection Based Interpolation (PBI))
operator or some other technique to regain convergence. We also provide
guidelines for finding operators delivering sharp error representation upper
bounds.
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Abstract

Similar results stand for a 2D convection-dominated diffusion problem as
well as for 2D problems with discontinuous material coefficients. Finally, we
consider a sonic Logging While Drilling (LWDI) problem to illustrate the ap-
plicability of the proposed method.
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Resumen

En un contexto de adaptatividad orientada a un objetivo, el error en una
cantidad de interés esta representado a través de los errores globales de los
problemas directo y adjunto. Esta representacion del error se acota superi-
ormente por una suma de indicadores de error de cada elemento. Estos se
utilizan para producir refinamientos éptimos.

En este trabajo, proponemos representar el error del problema adjunto uti-
lizando un operador alternativo. La principal ventaja de nuestro enfoque es
que cuando se elige correctamente dicho operador alternativo, la correspondi-
ente cota superior se vuelve mas cercana al error en la cantidad de interés, lo
que permite una adaptatividad mas eficiente.

Estas representaciones pueden ser utilizadas para disenar algoritmos adap-
tativos en h, p o hp, basados en la norma de la energia o para aproximar una
cantidad de interés especifica.

Aunque el método propuesto se puede aplicar a una amplia gama de prob-
lemas, en esta tesis doctoral nos centramos primero en problemas unidimen-
sionales (1D), tales como el problema de Helmholtz y el problema estacionario
de conveccion-difusion con conveccién dominante.

Los resultados numéricos en 1D muestran que, para los problemas de propa-
gacion de ondas, las ventajas de este método son notorias cuando se considera
el operador de Laplace para la representacion del error. Especificamente, las
cotas superiores derivadas de la nueva representacién son mas cercanas a la
cantidad de interés que las del método convencional. Esto es cierto tanto para
la norma de la energia global como para una cantidad de interés particular,
especialmente cuando el error de dispersion es significativo.

El problema estacionario 1D de conveccién-difusiéon con conveccién domi-
nante y con condiciones de Dirichlet homogéneas tiene una capa limite que
produce una pérdida de estabilidad numérica. La nueva representacion del er-
ror proporciona cotas superiores mas cercanas a la cantidad de interés. Cuando
se aplica a un algoritmo adaptativo en p orientado a un objetivo, la repre-
sentacién alternativa del error captura antes la capa limite, a pesar de las
existentes oscilaciones numeéricas no fisicas.

En esta tesis doctoral, también nos centramos en la ecuacién de Helmholtz en
dos y tres dimensiones (2D y 3D). Mostramos a través de miltiples experimen-
tos numeéricos que las cotas superiores proporcionadas por las representaciones



Resumen

alternativas del error son mas cercanas a la cantidad de interés que cuando uno
considera la representacién clasica. Al utilizar los indicadores alternativos del
error, un algoritmo adaptativo en p sencillo converge, mientras que en las mis-
mas condiciones, el método convencional falla y requiere el uso de operadores
de proyeccion o de otras técnicas para recuperar la convergencia. En este
trabajo, también determinamos operadores que proporcionan representaciones
del error que inducen cotas superiores mas ajustadas.

Establecemos resultados similares tanto para el problema estacionario de
conveccién-difusion con conveccion dominante en 2D como para problemas 2D
con materiales discontinuos. Finalmente, se considera un problema sénico en
pozos petroliferos para ilustrar la aplicabilidad del método propuesto.
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Résumeé

Dans un contexte d’adaptabilité ciblée, I'erreur commise sur une quantité
d’intérét peut étre représentée grace aux erreurs globales des problemes di-
rect et adjoint. Cette représentation de 'erreur est majorée par la somme
des indicateurs d’erreurs élémentaires. Ces derniers sont alors utilisés pour
produire des raffinements de maillage optimaux.

Dans ces travaux, nous proposons de représenter I’erreur du probleme ad-
joint via un opérateur alternatif. L’avantage principal de notre approche est
que lorsque 'on choisit correctement 'opérateur alternatif, la majoration cor-
respondante de l'erreur a la quantité d’intérét devient plus précise, pour au-
tant I’adaptabilité issue de I'utilisation de ces nouveaux indicateurs s’en trouve
améliorée.

Ces représentations peuvent étre employées pour concevoir des algorithmes
adaptatifs en espace (h), en ordre d’approximation (p) ou les deux (hp), basés
sur la norme d’énergie ou bien ciblés sur une quantité d’intérét.

Bien que la méthode puisse étre appliquée a une large gamme de problemes,
nous nous concentrons tout d’abord sur des problemes unidimensionnels (1D),
comme le probleme d’Helmholtz et le probleme de convection-diffusion sta-
tionnaire a convection dominante.

Les résultats numériques en 1D montrent que, pour les probléemes de prop-
agation d’ondes, les avantages de notre méthode sont notoires lorsque l'on
considere 'opérateur de Laplace pour la représentation de ’erreur. Plus préci-
sément, les majorations issues de la nouvelle représentation sont plus précises
que celles provenant de la méthode classique et ce si 'on considere 1’énergie
globale ou bien une quantité d’intérét particuliere. Le phénomene est d’autant
plus notable lorsque lerreur de dispersion (pollution) est significative.

Le probleme 1D de convection-diffusion stationnaire a convection dominante
avec des conditions limites de Dirichlet homogenes présente une couche lim-
ite qui produit une perte de stabilité numérique. La nouvelle représentation
d’erreur délivre des majorations plus précises. Lorsqu’appliquée a une p-
adaptabilité ciblée, la représentation d’erreur alternative permet une capture
plus efficace la couche limite, malgré les oscillations numériques parasites ex-
istantes.

Devant ces résultats encourageants, nous nous penchons sur I’équation d’Helm-
holtz & deux et trois dimensions (2D et 3D). Nous montrons, au travers
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de multiples simulations numériques, que les majorations fournies par les
représentations d’erreur alternatives sont plus précises que celle de la repré-
sentation classique. Lorsque 'on utilise les indicateurs d’erreur alternatifs, un
processus naif de p-adaptabilité ciblée converge, tandis que dans les mémes
conditions, la méthode classique échoue et requiert 1'utilisation d’un opérateur
de projection ou d’autre techniques pour récupérer la convergence. Dans ce tra-
vail, nous fournissons également des directives pour déterminer les opérateurs
qui fournissent des représentations d’erreur induisant de majorations précises.

Des résultats similaires sont aussi établis tant pour un probleme 2D de
convection-diffusion stationnaire a convection dominante que pour des pro-
blemes 2D ayant des coefficients de matériaux discontinus. Nous considérons
un probleme de diagraphie ultra-sonique en cours de forage pour illustrer I’ap-
plicabilité de la méthode proposée.

viil



Contents

[Acknowledgements| i
[Abstract] iii
[Resumenl v
[Résumél vii
Contents! ix
[Cist of Figures| xiii
(1. Introduction 1
[1.1. Developments and Applications ot Goal-Oriented Adaptivity] . . 1
(1.1.1.  Application to structural problems| . . . . . . .. .. .. 2

[1.1.2.  Application to electroacoustic and electromagnetic prob- |

[ lemsl . . . ... 3
(1.1.3. Applications to fluid-structure interactions| . . . . . . . . 3

(1.1.4. Application to control theory| . . . . ... ... ... .. 4

(1.1.5. Convergence analysis| . . . . . . . . . ... ... ..... 4

[1.2. Goal Oriented Adaptive algorithms| . . . . . . ... ... .. .. )
[L3. Main contributionl. . . . . . . . .. ... ... 6
[1.4. Organization of the dissertation . . . . . . . . ... .. ... .. 7

[I.  Description of the error representations and algorithms| 9

[2. Abstract formulation and unconventional error representations|

[2.1. General abstract settingl . . . ... ... ...
[2.2. Formulation of the error representations| . . .
[2.2.1. Classical goal-oriented formulation| . .
[2.2.2. Alternative representations|. . . . . . .
[2.2.3. Optimal alternative operator|. . . . . .
[2.3. Model problem: convection, dittusion, reaction|

11

1X



CONTENTS

(3. Goal-oriented algorithm| 17
[3.1.  Goal-Oriented Adaptivity algorithm|. . . . . . .. ... ... .. 17
B.2. Fine meshes constructionl . . . . . . . . ... ... 18
[3.3. Error computations| . . . . . . ... 21
[3.4. Marking strategies and refinements| . . . . . . .. ... ... .. 21
[3.5. Projection Based Interpolation|. . . . . . .. ... ... ... .. 21
[3.6. Computation of the alternative operator| . . . . . . .. ... .. 23

l,_Numerical results| 25

4. 1D problems| 27
{[4.1. 1D Helmholtz equation| . . . . . .. ... ... ... ... ... . 27

[4.1.1. Model problem| . . . . . ... ... ..o 27
[4.1.2. Numerical results . . . . .. ... ... ... 28
[4.1.2.1.  Uniform p-refinements| . . . . . . ... ... .. 28
4.1.2.2, Unitorm h-refinements| . . . . . . ... ... .. 30
[4.1.2.3. p-adaptivity|. . . . . . . . . . ... ... ... 31
[4.1.2.4.  Modifying the alternative operator| . . . . . . . 37

[4.2. 1D steady state convection-dominated diffusion problem| . . . . 42
[4.2.1. Model problem| . . . . . ... ... ... ... ... ... 42
4.2.2. Numerical results . . . . .. ... ... .00 42
[4.2.2.1.  Uniform p-refinement|. . . . . . . ... ... .. 43
[4.2.2.2. p-adaptivity| . . . . . . .. ... 43

6. 2D and 3D problems| 49

[>.1. Helmholtz equationl . . . . . . . . .. ... ... ... .. .... 49
[b.1.1. Model problem| . . . . .. ... ... ... ........ 49
H.1.2. Numerical results . . . . .. ... ..o 50

[5.1.2.1.  Selection of the alternative operator| . . . . .. 50
[5.1.2.2. 2D numerical results: refinements and adaptivity| 55
[5.1.2.3. 3D numerical results: refinements and adaptivity| 60

[5.2.  Convection-dominated diftusion problem| . . . . . . . .. .. . . 62
[>.2.1. Model problem| . . . . ... ... ... ..., 62
h.2.2. Numerical results . . . . . ... .. ... .. ... .... 63

[6.3. Discontinuous coefficients . . . . . . . . .. ... 66
[>.3.1. Model problem| . . . . .. ... ... 66
[H.3.2. Numerical results . . . . .. .. ... ... 67

[6. Geophysical borehole application: frequency domain acoustics| 71
[6.1. Model problem| . . . . .. ... ... ... ... ... .. ..., 71




CONTENTS

[6.2. Numerical Resultsl. . . . .. ... ... ... ... ... .. ... 74
[l11. Main achievement, conclusions and future work 44
(. _Main achievements| 79

[7.1. Peer reviewed publications| . . . . . . . ... ... ... ... .. 79

[[.2. Conferences talkd . . . . . . .. .. ... .. .. ... ... .. 79

[7.3. Seminars & Workshops| . . . . . . .. ..o 80

[7.4. Teachingl . . . . . . .. .. ... .. 81

M5 Awardd. . . . . . . . 81

[7.6. Implemented software|. . . . . . . .. .. ... ... ... ..., 81
8. Conclusions and Future work| 83

RBI_Conclusiond . . . .. .. .. ... 83

B2 Futureworkl . . . . . . ... ... 84
[Appendix A. Error representations in terms of bilinear forms| 87

(A1, Definitions| . . . . . . . . ..o 87

[A.2. Variational problem|. . . . . . . .. ... ... ... 87

[A.3. Error representations| . . . . . . .. ... 88

[A.3.1. Classical approachl . . . ... ... ... ... ... ... 88
[A.3.2. Alternative approach| . . . . . .. . ... ... ... ... 89
Bib ograp 91
109

X1






List of Figures

[3.1.  Goal-Oriented Adaptivity algorithm.| . . . . . ... ... . ... 18
[4.1. 1D Helmholtz problem. Upper energy-norm bounds with uni- |
form p-refinements, [ = f, k=128 . . . . . . . ... ... ... 29
[4.2. 1D Helmholtz problem. Norm of the errors for uniform energy- |
norm p-refinements, £k = 128.]. . . . . . . . ... ... ... 29
[4.3. 1D Helmholtz problem. Norm of the errors e and € when in-
creasing the wavenumber k with B being the Laplace operator
using uniform p-refinements.| . . . . . .. ... 31
la. ~3 Degrees of Freedom (Dol]) per wavelength| . . . . . . 31
[b. ~6 [Dok] per wavelengthl . . . . .. ... ... ... ... 31
c. ~10 Dokl per wavelength| . . . . . .. ... ... ... .. 31
d. ~13 Dokl per wavelength| . . . . . .. .. ... ... ... 31
[4.4. 1D Helmholtz problem. Upper bounds for uniform p-refinements |
for k=128 and h =0.0154] . . . . . . .. ... ... ... ... 32
[4.5. 1D Helmholtz problem. Norm of the errors for uniform goal- |
oriented p-refinements, k= 128.| . . . . . . . . ... ... ... 32
|4.6. 1D Helmholtz problem. Error functions €; and &;, with B being |
the Laplace operator using uniform p-refinements, £ = 128 . . . 33
[a. e, with ~3 Dokl per wavelength| . . . . .. ... ... .. 33
[b. ¢, with ~6 [DoFl per wavelength| . . . . . . . ... ... . 33
[c. ep, with ~3 Dokl per wavelength| . . . . . . ... ... .. 33
(d. g, with ~6 [Dok| per wavelength| . . . . . . .. ... . . . 33
[4.7. 1D Helmholtz problem. Norm of the errors ¢, and £, when
increasing the wavenumber k with B being the Laplace operator
using uniform p-refinements.| . . . . . ... 34
[a. ~3 Dokl per wavelengthl . . . ... ... ... ... ... 34
[b. ~6 [Dokl per wavelength| . . . ... ... ... ... ... 34
c. ~10 Dokl per wavelength| . . . . . . ... ... ... ... 34
(d. ~13 Dokl per wavelength| . . . . ... .. ... ... ... 34
[4.8. 1D Helmholtz problem. Upper bounds for unitorm A-refinements |
with k=128 andp=2.| . . . . .. ... ... ... .. ..... 35

xiil



LIST OF FIGURES

[4.9. 1D Helmholtz problem. Norms of the errors for unitorm h- |

| refinements with £ =128 and p=2. . . . . . ... .. ... .. 35
[4.10. 1D Helmholtz problem. Upper bounds for p-refinements with [

I E=128 and h =0.00154] . . . . ... ... ... ... ...... 36
[a. Without [PBIl adaptivity with classical criterion| . . . . . 36

[b. With [PBIl adaptivity with classical criterion| . . . . . . . 36

[c. Without [PBIl adaptivity with alternative criterion|. . . . 36

d. With [IPBIl adaptivity with alternative criterion| . . . . . 36

[4.11. 1D Helmholtz problem. Alternative upper bounds for uniform [
h- and p-refinements using <Bu,v> = (u, U)LQ(OJ) , k=128 38

H* H

[b. Unitorm p-refinements| . . . . . .. .. ... ... .... 38
[4.12. 1D Helmholtz problem. Alternative upper bounds for uniform
p—refinements using <Bu : v>H* . (Vu, V'U>L2(0’1)+k2 (W, v) 20,
Tk =128] . . . . .. .. ... T 39
{4.13. 1D Helmholtz problem. Norm of the errors when mcreasing the
| wavenumber k£ with B being the positive Helmholtz operator

| using uniform p-refinements.| . . . . . . .. ... L 40
[a. ~3 Dokl per wavelength] . . . . ... ... .. ... ... 40
[b. ~6 Dokl per wavelength] . . . . ... ... ... .. ... 40
[c. ~10 [Dokl per wavelength| . . . . . .. .. ... ... ... 40
[d. ~13 Dok per wavelengthl . . . . .. .. ... .. ... .. 40

|4.14. 1D Helmholtz problem. Error function £, with B being the |
| positive Helmholtz operator using uniform p-refinements, £ = |

| [28. Error functions do not vanish at the nodes) . . . . . . . .. 41
[a. ep, with ~3 Dok per wavelength| . . . . . ... .. ... . 41

[b. g, with ~6 [Dok] per wavelength{ . . . . . . ... ... .. 41

[4.15. 1D convection-dominated diffusion problem. Upper bounds ob- |

| tained using uniform p-refinements when the[Qollis [of . . . . . . 43
[4.16. 1D convection-dominated diftusion problem. Upper bounds ob- [

| tained using uniform p-refinements when the |Qolfis 4| . . . . . . 44
[4.17. 1D convection-dominated diftusion problem. FError in the |[Qoll [

| for adaptive p-refinements, 5 =04 . . . ... .. ... .. ... 45
[4.18. 1D convection-dominated diffusion problem. FError in the |Qoll |

| for adaptive p-refinements, 5 =099 . . . . . . ... ... 45

[4.19. 1D convection-dominated diffusion problem. Final adapted coarse |
| meshes after the p-adaptive process for different refinement ra- |

| t10S 0. . . . 47
[a. B =04 . 47
[b. B=099 ... .. . 47

X1v



LIST OF FIGURES

[4.20. 1D convection-dominated diffusion problem. Solution of the

direct problem on the adapted coarse mesh for different refine-

ments ratios 5. . . .. ... 48
[a. B=04. .. .. . . . 48
[b. 5=099 ... ... 48
[5.1. Computational domain for Helmholtz problem in 2D.| . . . . . . 50
[>.2. Computational domain for our 3D Helmholtz problem.| . . . . . o1
[5.3. 2D Helmholtz problem, nr versus «a for a € R, k = 27 x 8.5 = |
177 ~ 53, and approx. 3 [Dok] per wavelength (with uniform |
P=3) . 52
[5.4. 2D Helmholtz problem, n+ versus « for a € 1R, £k = 177, and |
approx. 3 [Dok| per wavelength (with uniform p =3).[ . . .. .. 53
[5.5. 2D Helmholtz problem, 7j7 versus « for a € [—k?, +0), k = 177.
The top graph is produced for 3 [Dol| per wavelength (with
uniform p = 2). The subsequent plots are obtained by increasing
the approximation order p. The Laplace operator provides a |
quasi-optimal upper bound for all cases.| . . . . . . ... .. .. 54
[5.6. 2D Helmholtz problem, £ = 177. Uniform A-refinements, p = |
2. Error evolution in the [Qoland upper bounds given by the |
different error representations| . . . . . . ... ... ... . 55
[5.7. 2D Helmholtz problem, £ = 177. Uniform p-refinements, hk > |
1. Error evolution in the [Qoll and upper bounds given by the |
different error representations, namely, the classical bound ([2.8)),
the alternative bound using the residual dual R4(vy,) (2.11)), and
the alternative bound using the residual primal R, (us) (2.11). |. 56
[5.8. 2D Helmholtz problem, k = 177w, hk » 1. Error representation |
associated to the criterion selected for p-adaptivity. |. . . . . . . 57
(5.9. 2D Helmholtz problem, k = 177, hk » 1. Relative error in % |
in the [Qoll |/(e)]| depending on the selected adaptive criterion. |. 57
[5.10. 2D Helmholtz problem, k£ = 177, hk > 1. Final adapted fine |
meshes atter p-adaptivity| . . . ... ... ... ... ... ... 58
a. (Classical criterion withoutPBIIf . . . . . . . ... .. .. 58
b. Alternative criterion without[PBIll. . . . . . .. . .. .. 58
lc. Classical criterion with PBI1. . . .. .. ... .. .. .. 58
[d Alternative criterion with PBI| . . . . .. ... ... .. 58
[5.11. 2D Helmholtz problem, k = 177, p = 1 unitormly, hk > 1. Error |
map representations. We select a logarithmic scale of the error |
for selecting the color. The gray color has been set to separate |
between the elements that are to be refined (those with darker |
tones) and those that will be unrefined (brighter tones).|. . . . . 59

XV



LIST OF FIGURES

[a Classical estimators| . . . . . . . . . . . . . . . .. ... 59

[5.12. 2D Helmholtz problem, uniform p = 2; h is determined in order [

| to ensure a fixed number of (approx. eight) Dokl per wavelength. |
|

|

| Error evolution in the |Qoll and upper bounds for the error rep-

resentation of the |[Qoll when the wavenumber 1s increasing from

71 to 250. B is the Laplace operator, . . . . . . ... .. .... 60
[5.13. 2D Helmholtz problem, k = 177, hk > 1, uniform p-refinements. [
| Error evolution in the|Qolland upper bounds for the error repre- [
| sentation in the|Qol| when the|Qollis the average of the gradient |
| onasubdomainof Q. . . . ... ... L 61
5.14. 3D Helmholtz problem, k = 64/37 ~ 32.64. Uniform p-refinements.| 61
5.15. 3D Helmholtz problem, k = 64/37 ~ 32.64. Error evolution in |

| the |Qoll depending on the p-adaptive criterion.. . . . . . . . .. 62
[5.16. 2D convection-dominated diffusion problem. Uniform p-refinements |

| for different diffusion coefficients. 1. . . . . . . . .. . ... ... 63
[5.17. 2D convection-dominated diffusion problem. Uniform refine- [

| ments for v =107 . . . . ... 65
[a. Unitorm p-refinement. | . . . . . .. ... ... ... ... 65

b Uniform A-refinements. | . . . . . .. . ... ... .... 65

[5.18. 2D convection-dominated diffusion problem with v = 107". |

| Evolution of the upper bounds through p-adaptivity. | . . . . . . 66
[5.19. Domain with two materials. 1. . . . . . .. ... ... ... ... 67

[5.20. 2D Convection-dominated diffusion problem with a discontinu-
ous diffusion coefficient (o« = 1071 1)x(0,0.5)+ 10~ "L (0,1)x (0.5,1)-
Upper bounds corresponding to the case ot unitorm p-refinements| 68
[5.21. 2D Helmholtz problem with discontinuous materials (y = 2 842-
L (0,1)x(0,05) + 5053 - L(0.1)x(0.5,1)). Upper bounds corresponding
to the case of uniform p-refinements|. . . . . . . ... .. .. .. 69

[6.1. Sketch of the computational domain for acoustic [LWDI| mea- [
surements, composed of three different materials: The logging [
tool, the borehole fluid, and the rock tormation. The axis of |
symmetry 1s located on the lett side of the domain and coin- |

|
|

cides with the tool center. We have added a Pertectly Matched

Layer (PML) to truncate the computational domain. In red, we

draw the transmitter and in blue the array of receivers.| . . . . . 73
[6.2. Sonic [LWDL Error representations for p-adaptivity depending |
| on the selected criterion: classical criterion without [IPBIl alter- |
| native criterion without [PBI classical criterion using the [PBIl |
| and alternative criterion using the IPBIL | . . . . . .. ... . .. 75

xvi



LIST OF FIGURES

[6.3. Sonic [LWDIL Final adapted fine meshes atter p-adaptivity|. . . . 76
la.  Classical criterion without [PBIIf . . . . . ... ... ... 76
b.  Alternative criterion without [PBIlf. . . . . ... ... .. 76
lc.  Classical criterion with IPBIIl . . . . ... ... .. .. .. 76
[d Alternative criterion with IPBIIf . . . . .. . ... .. .. 76

XVil






1. Introduction

In Finite Element Methods (EEMk), it is often necessary to design meshes
with a large number of Degrees of Freedom (DoF]) to obtain highly accurate
solutions. Since computational resources are limited, it is customary to build
discretizations that require the smallest possible number of [DoF] to achieve
a given tolerance error. As a result, mesh-adaptive finite element algorithms
arose during the last decades for solving various engineering problems (e.g., [I]
2, 13]).

While adaptive algorithms were first designed to accurately approximate
the energy-norm of a problem [4, 5], many engineering applications require a
good approximation of a specific Quantity of Interest (Qol). An energy-norm
driven self-adaptive strategy can still be used for that purpose, although it
often becomes sub-optimal and unable to provide an accurate solution for the
required in a reasonable amount of time.

For example, in [0, [7] authors deal with a problem in which electromagnetic
fields are measured at a receiver antenna in a lossy media. In that situation,
the amplitude of the measurement is several orders of magnitude smaller at
the receiver than at the source, because of the energy dissipation through the
medium. Thus, a small relative error of the solution in the energy-norm may
not imply a small relative error at the receiver. Examples in [6l [7] show that
the classical energy-norm adaptive approach may procure relative errors of the
surpassing 15%, whereas the global energy-norm error is below 0.01%.

1.1. Developments and Applications of
Goal-Oriented Adaptivity

The origin of the Goal-Oriented Adaptivity (GOAI) is in the works of Ran-
nacher et al. [8, [, 10] followed by the works of Peraire, Patera et al. [I1], 12
13|, [14], 15, 16] on a posteriori error estimates of the error in the The
works of Prudhomme and Oden [17, 18] [19], 20] formulated the goal-oriented
error estimation procedure based on representing the error in the in terms
of global functions defined over the entire computational domain. This error
representation is subsequently bounded by the sum of local indicators that are
used for the adaptive process.
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There exist numerous engineering applications that motivate the use of
[GOAI including electromagnetics [21], [7, 22, 23 24], structural problems and
viscoelasticity [25] 26], 27, 28] 29], fluid-structure interactions 30} B1], 2], and
control theory [33] 34, B5]. Apart from these applications, convergence prop-
erties of [GOA] have also been recently studied in [36] 37, B8, 39, 40]. In the
following, we detail some of the main developments of concerning these
applications.

1.1.1. Application to structural problems

The first applications of the method to structural problems were published in
2000 and 2001 by J.T. Oden and K.S. Vemaganti in [41], 42], and they were
based on the previous works of J.T. Oden & S. Prudhomme [I7, [19]. Authors
developed the theory and methodologies of goal-oriented adaptive modeling
of heterogeneous materials. From there, J.T. Oden and his collaborators,
S. Prudhomme, D. Fuentes, D. Littlefield, A. Romkes developed a series of
applications on structural problems: In [43], authors extended the to
discrete lattices models. In [44], authors considered a class of problems with
axisymmetric deformations of layered elastomer-reinforced shells-of-revolution
subjected to shock loading, and an extension of [41] [42] to problems in elas-
tostatics of heterogeneous materials was published in [45], where the material
properties are given as functions of random variables with known probability
distribution density functions.

P. Ladeveze and his collaborators, L. Chamoin, J. Panetier, J. Waeytens, F.
Pled developed tools (based on constitutive relation error) for the in the
scope of structural problems such as viscoelasticity, fracture mechanics, and
transient viscodynamics: they developed error bounds of outputs of interest
for linear viscoelasticity [46], [47, 48]. Consequently, they obtained a “non-
intrusive” technique to solve the adjoint problem through a partition of unity
method [49, 50]. A strategy to handle nonlinear point-wise to obtain
strict error bounds without linearization was developed in [51] and extended
to fracture mechanics problems solved by means of XFEM [25], and to transient
viscodynamics [26]. They also revisited and improved the bounding techniques
with tools that lean on the Saint-Venant principle [52].

In 2012, C. Jhurani and L. Demkowicz developed and implemented a frame-
work for numerical homogenization and for nonlinear lattice elasticity
problems. The method requires the Moore-Penrose pseudo-inverse of element
stiffness matrices [27, 2§].
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1.1.2. Application to electroacoustic and electromagnetic
problems

A hp strategy was developed by P. Solin and L. Demkowicz in [53]. Tts
first use in [54] provided not only an application to electromagnetics but also
a verification of the method. D. Pardo, L. Demkowicz, C. Torres-Verdin, L.
Tabarovsky, M. Paszynski and C. Michler applied it to electrostatics and elec-
trodynamics in the works [21], [7, 22]. They simulated measurements obtained
by an alternate current resistivity logging instrument in a borehole environ-
ment surrounded by steel casing for the assessment of rock formation prop-
erties. In [55], authors combined the Perfectly Matched Layer (PMLl) with
the in the same framework. They showed that this combination enables
to significantly reduce the size of the computational domain with substantial
savings in computer time and memory. In the same framework, [56, 57] de-
veloped an hpdGOA] with shared data structures and a parallel multi-frontal
direct solver.

In 2007, hplGOAl was applied to the simulation of electromagnetic wave-
guides in [58, [59]. [60] provided a comparison between energy-norm and goal-
oriented based automatic hp-adaptive processes. [61] presented the same work
but in the context of open region electromagnetic problems. A multigoal-
oriented adaptive strategy for hp{FEM| was developed in [23]. This adaptive
strategy delivered a single optimal hp-grid intended to approximate simulta-
neously the solution of multiple and has been applied to invert magne-
totelluric measurements [24]. K. Key and J. Ovall developed a parallel goal-
oriented adaptive that can be used to rapidly compute highly accurate
solutions for 2.5D controlled-source electromagnetic and 2D magnetotelluric
problems [62]. L. M. Steffens et al. illustrated in [63] a new refinement strategy
for the Helmholtz equation based on a posteriori estimations of the numerical
wave number developed in [64].

1.1.3. Applications to fluid-structure interactions

Among the first works that introduced the to simulate and explain fluid-
structure interactions, we find [65] 66]. K.G. Van der Zee developed his Ph.D.
dissertation on this subject [67]. In collaboration with E. H. Van Brumme-
len, P. W. Fick, C.V. Verhoosel, and J.T. Oden, among others, K.G. Van der
Zee explored different aspects of the integration of the by considering
problems of fluid-structure interactions. In [68], they developed a goal-oriented
error estimator for finite element discretizations of a fluid-structure interaction
problem: the steady Stokes flow in a 2D channel where part of the channel
wall is flexible. They addressed, in [69], a complication in the application of
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to fluid-structure interaction problems: the treatment of the interface
conditions has non-trivial consequences for the properties of the dual problem.
They also used goal-oriented error estimation and adaptivity in the scope of
free-boundary problems [70, [7T]. In [32], they considered goal-oriented error
estimation in the scope of free-boundary problems using isogeometric analysis.
They developed a posteriori estimates of errors in the for the nonlinear
system of evolution equations embodied in the Cahn-Hilliard model of binary
phase transition [31]. Finally, [30] presented rigorous derivations of exact lin-
earized adjoints for a coupled fluid-structure problem. This allows the direct
application of the established goal-oriented error estimation framework.

1.1.4. Application to control theory

In the scope of optimal control of Partial Differential Equations (PDEk), the
goal-oriented dual weighted approach was applied to unconstrained problems
in [72] [73], to control constrained ones in [74} [75], [76] and to state constrained
problems in [77, [75]. More recent works have been published about the Dual
Weighted approach and the application to control theory: (a) [78] developed
a combined a posteriori analysis for the discretization and iteration errors in
the computation of finite element approximations to elliptic boundary value
problems. The emphasis was on the multi-grid method. The underlying the-
oretical framework was that of the Dual Weighted Residual (DWRI) method
for goal-oriented error estimation; (b) [79] presented a general strategy for de-
signing adaptive space-time finite element discretizations of the non-stationary
Navier-Stokes equations; (c¢) [80] developed, analyzed and implemented the
goal-oriented weighted dual approach to mixed control-state constrained dis-
tributed optimal control problems for linear second order elliptic boundary
value problems; (d) [35] derived primal-dual weighted goal-oriented a poste-
riori error estimates for point-wise state constrained optimal control problems
for second order elliptic partial differential equations. (e) [34] studied a[DWRI
approach for goal-oriented adaptive finite elements for a class of optimal con-
trol problems for elliptic variational inequalities. The development is based
on the concept of C-stationarity; (f) [33] developed an adaptive algorithm for
solving elliptic optimal control problems with simultaneously appearing state
and control constraints.

1.1.5. Convergence analysis

In 2009, goal-oriented adaptive methods were usually not proven to converge.
An exception is a method from [81], in which adaptivity was purely driven
by the minimization of the energy-norm of the error in the dual problem.
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Another exception is the goal-oriented method from [82]. Few works have
been produced since then: (a) In [39], an adaptive finite element method was
analyzed for approximating functionals of the solution of symmetric elliptic
second order boundary value problems. (b) [38] developed a convergence
theory for a class of goal-oriented adaptive finite element algorithms for second
order non-symmetric linear elliptic equations. (c¢) [37] developed a convergence
theory for a class of goal-oriented adaptive finite element algorithms for second
order semilinear elliptic equations. These last two results were gathered in S.
Pollock’s thesis [36]. One of the most recent developments on the topic was
due to M. Feischl, D. Praetorius and K.G. Van Der Zee [40], who performed
an abstract analysis of optimal [GOAL

1.2. Goal Oriented Adaptive algorithms

[GOAlalgorithms iterate along the following steps. Given an initial coarse mesh,
they estimate the error either using an a posteriori error technique [11], 13} [14]
15, [16], [83], 84], 12, [14] or by approximating it over a finer mesh [55, 85, 55] 23],
56]. Then, the error in the is represented via the global error functions of
the original and adjoint problems. Such global representation expresses how
much the error in a particular point is affecting to the error in the The
exact solution of the adjoint problem (influence function) alone is insufficient
to drive refinements since an enrichment (refinement) on the discrete space
does not guarantee a decrease of the influence function error at any particular
point. However, one may build an element-wise based upper bound in terms
of local norms whose energy decreases as refinements occur. This upper bound
can be used to drive refinements: one simply enriches those elements that will
reduce most that upper bound per added [DoFl In this way, the next coarse
grid is built, and the entire process is iterated until a given tolerance error is
reached.

For symmetric and positive definite problems, the energy-norm approach
becomes a particular case of the goal-oriented one that corresponds to the
situation in which the and the load vector of the original problem coincide,
as it occurs in several waveguide problems, e.g. [60], 58].

Different strategies were devised to obtain sharp upper bounds of an error
representation. For example, in [I7], authors introduced a scalar parameter
intended to improve the sharpness of the bound. In [86], the author introduced
dual estimators of the functional error that are based on dual residual weighting
and on dual error estimate weighting. These estimators are asymptotically
exact with respect to the error in the
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1.3. Main contribution

In this work, we start with the methodology presented in [17], referred to as the
classical [GOAlmethod. It employs the dual residual to derive upper bounds of
the error in the[Qol], and thus, indicators for the adaptive process. However, we
depart from the classical approach by introducing an alternative dual operator
exhibiting better properties than the original one (e.g. positive definiteness)
for the representation of the error in the [Qol] so the corresponding error upper
bounds (sum of indicators) become sharper than the classical ones. This new
methodology generalizes the classical one. In particular, when the alternative
dual operator coincides with the adjoint operator, we recover the error upper
bounds of the classical goal-oriented method.

The main contribution of this dissertation is to demonstrate that a proper
choice of such alternative operator may improve the upper bounds of the er-
ror representation. As a result, the adaptive algorithm arising from the new
error representation is more efficient when compared to a classical one. Ex-
tensive numerical results in 1D, 2D, and 3D are illustrated using uniform h-
and p-refinements, as well as a simple self-adaptive goal-oriented p-refinement
strategy.

This dissertation merges the results from our publications [87, 88, 89]. In
[87], we described the method for general 1D, 2D, and 3D problems, and
we illustrated it numerically with a 1D-Helmholtz example. A convergent
p-adaptive algorithm was obtained either: (a) by combining the classical in-
dicators and the Projection Based Interpolation (PBI) [90, O], 85], or (b) by
using the alternative indicators (with or without [PBI). We selected the Helm-
holtz equation for several reasons: this equation is widely used in applications
having a transmitter-receiver structure where goal-oriented strategies are of-
ten needed; the traditional weak Helmholtz bilinear form is not positive def-
inite; and the discrete solution is known to be numerically unstable for high
wavenumber because of dispersion errors and pollution effects [92, 93] ©94], 05
1, 96l 97, 08, 99].

In [88], we extended those results to the case of 1D convection-dominated
diffusion problems, where numerical instabilities occur due to the presence of
a boundary layer [I00, 2]. Thus, the main contribution of this publication
was to study the effect of the alternative error representation for the case
of 1D convection-dominated diffusion problems with the classical It is
well-known that the rapid capture of boundary layers is essential to regain sta-
bility, e.g. [101, 102} 103} 104, 105]. Numerical results show that our proposed
strategy captures such layers faster than the classical method.

Finally, in [89], we extended our numerical results to the 2D and 3D cases
and applied them to Helmholtz and convection-dominated diffusion problems
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for continuous and discontinuous coefficients. We also showed that finding, in
general, the operator that provides the sharpest possible bound is prohibitively
expensive, and we provided a feasible alternative operator that delivers quite
sharp upper bounds. Finally, a sonic Logging While Drilling (LWDI) problem
was selected to illustrate the applicability of the proposed method.

1.4. Organization of the dissertation

The remainder of the dissertation is organized as follows: Chapter [2| formu-
lates our new methodology and compare it to the classical approach. Chap-
ter [3| describes the adaptive algorithms used to produce the numerical results.
Chapter [ is devoted to numerical results for the 1D case, both for a Helmholtz
problem and a convection-dominated diffusion problem. Chapter [5| analyzes
multiple 2D and 3D numerical results for Helmholtz and convection-dominated
diffusion problems with continuous and discontinuous material coefficients. A
sonic geophysical borehole application is described in Chapter [6] The main
achievements are described in chapter [7] and the main conclusions and future
works are stated in Chapter This dissertation also contains Appendix [A]
that describe a reformulation of the proposed error representations in terms of
bilinear forms.
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2. Abstract formulation and
unconventional error
representations

In this chapter, we first introduce the notations and the abstract formulation
used in the rest of the document. Then, we describe the classical goal-oriented
error representation, which allows us to introduce an unconventional error rep-
resentation by selecting an alternative operator. We discuss the challenges that
arise when searching for the optimal alternative operator. Finally, we introduce
the general model problem that will be used for the numerical experiments.

2.1. General abstract setting

Given a domain D < R", H(D) denotes a Hilbert space of functions defined
over D, endowed with the norm ||y p.

Let 2 < R™ be the physical domain of our problem of interest. Let 7 be a
partition of  into open elements K such that Q = Urker K.

We work with a Hilbert space H(f2) having the following property: If w €
H(€2), then its restriction wy to any open element K € T satisfies wx € H(K).
We define the restriction Ry : H(Q) — H(K) such that Rg(v) = vk, Vv €
H(£2). From now on, we will use the simplified notation H := H(2) and Hy =
H(K). We denote by H* the space of continuous linear forms from H to K (R
or C) and Hj, the space of continuous linear forms from Hyx to K.

A bounded linear operator B € L(H, H*) is said to be localizable if, for any
K € T, there exists Bx € L(Hg, Hj,) such that:

(Bw, v}z = Y, (B © Rxw, Riv)gs g, = > (Brwic, VK )yt
KeT KeT

In other words, B = Z R} o Bk o Rg where R is the adjoint of Rk.

KeT
Remark: Tt is straightforward to show that if B : H — H* is localizable,

then the formal adjoint operator B* : H — H* is also localizable and B* =

2 R} o By o Rg.
KeT
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2.2. Formulation of the error representations

2.2.1. Classical goal-oriented formulation

Consider a loading form f € H* and a Quantity of Interest [ € H*. Let
H,, < H be a conforming finite element subspace associated with partition 7.
Let B € L(H,H*) be a localizable operator such that there exists a unique
solution for both continuous and discrete direct and dual problems:

Find v € H and wu;, € Hj;, such that

Bu=f in H* (2.1)

<Buh7 wh>H*7H = <f, wh>H*,H ,  Vwy, € H,. (2'2)

and

Find v € H and v, € H}, such that

B*v =1 inH* (2.3)
<B*Uh, wh>H*,H = <l, wh>H*7H, th € Hh. (24)

The errors in the approximations of the direct and adjoint problems are
defined as e = u — uy, and € = v — vy, respectively. One can also represent
these errors as solutions of the following variational problems:

e Find e € H such that

Be = f — Buh = Rp(uh). (25)

e [ind ¢ € H such that

B¥e=1-— B*Uh = 'Rd(vh). (26)

Functionals R, (up), Ra(vs) € H* are known as the primal and dual residuals,

respectively.
Evaluating (2.6 at e, using Galerkin’s orthogonality and the localization
property of B, we obtain

<l ) €>H*,H = <Rd<vh> 7€>H*,H = <B*5 ) 6>H*,H = Z <B;<(6K ) 6K>]HI";(,HK (27)
KeT

12
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Thus, an upper bound of the error in the is given as follow:

‘<l7e>H*7H’ Z ‘ K€K eK HE HK‘ Z Nk =017, (28)
KeT KeT
where 1 = ’(B}}eK : 6K>H§7HK’. This bound will be referred to as the classical

bound.

2.2.2. Alternative representations

The key idea proposed here is to use alternative representations of the residuals
Ra(vn) or Ry(up). Let B € L(H,H*) be a localizable invertible operator. We
define the alternative dual error representation as the solution of the linear
equation:

Find € e H such that
BE& = Ry(vp). (2.9)

Analogously, we define the alternative primal error representation as the
solution of the linear equation:

Find € € H such that

B& =R, (up). (2.10)

For simplicity, we use the same operators for the construction of the al-
ternative direct and dual errors. However, it is possible to select different
representations for each error. Following the same procedure as in Eqgs.
and (2.8), we obtain the alternative bound of the error in the

] < (Bt e o
KeT KeT
where 1 = <§ KEK ,€ K> . . One can alternatively make use of the primal
HKvHK

error representation € to obtain the bound:

<§K5K ,5K> (212)

‘<l7€>H*,H’ S Z

KeT

HY, Hi |

13
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The method presented here is indeed a generalization of the classical Goal-
Oriented Adaptivity (GOAl), that is recovered by simply selecting B = B*in
Eq. or B =B in Eq. (2.12).

Numerical results (see Figure show that upper bounds given by Eqs.
and are often similar. Hence and for simplicity, in the following we will
consider Eq. , disregarding Eq. .

An interesting case occurs when B defines a scalar product on H, then
the alternative error representation is the Riesz representation of the residual.
Additionally, if each local counterpart By of B is self-adjoint and semi-positive
definite, operator By defines a semi-inner product on Hy and we can take
additional Cauchy-Schwarz inequalities on (2.11)), i.e.,

nr < Z \/<§KgK,gK>H}}7HK\/<.§K€K,€K>H§7HK. (2.13)

KeT

From the mathematical standpoint, using upper bounds 7y or 77 is contro-
versial. First, because in the “Classical bound” , the operator of the prob-
lem can be indefinite, as for the Helmholtz equation, and one cannot ensure
that uniform grid refinements will monotonically reduce that bound unless, in
the case of a Helmholtz problem, the grid is assumed to be sufficiently small
with respect to the wavenumber, so the problem at the element level becomes
positive semi-definite. Even in this last situation, the associated cosine of the
angle between e and ¢ can still behave erratically under mesh refinements. A
similar problem can be diagnosed with bound since the cosine of the
angle between e and £ cannot be controlled under mesh refinements.

Stable upper bounds can be easily derived, as shown in Eq. . How-
ever, practitioners often employ error bound (despite the fact that it is
mathematically unstable), since it is sharper than the stable upper bounds
and frequently provides better results |21, 22]. In here, we follow this practical
approach, and we compare upper bounds VS .

In the remainder of this dissertation, we will display the error values and
their upper bounds relatively to (I, u)y. ;; in percent (unless specified).

2.2.3. Optimal alternative operator

The sharpest bound is obtained by an operator for which the triangle inequality
in Equation (2.11]) becomes an equality, namely:

-3

KeT

<BK€K ) €K>H*

K 7HK

(2.14)

‘<l76>H*,H‘ = Z <§KgK7€K>H27HK

KeT
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This implies that for all elements K € T, the complex quantities

<BK€K ) 6K>H*K,HK
are sharing the same angle. Moreover, each estimator needs to share the
same angle of ([, e)yx . To simplify, let us assume that they are all positive

real numbers. Then, we have to find an operator B such that the element-
wise application Biex € Hj, has to compensate the variations of ex in order
to obtain a positive real number after integration. The consequence is that
operator B = .+ R} 0Bk o R has to be defined on each element according
to ex. It will probably occur that, if it exists, B will not be a conventional
variational form, which will make much more complex the implementation
of the method. Thus, in this work, rather than searching for the optimal
operator, we shall concentrate on finding the best possible operator within a
preset family via numerical experimentation.

2.3. Model problem: convection, diffusion,
reaction

In this document, we illustrate the use of the error estimators presented above
on a problem governed by a diffusion-convection-reaction equation. We con-

sider the following general model problem. Let €2 be a domain of dimension
de{1,2,3).

Find u such that, for 3 € (L*(Q))¢, a,v € L*(Q),
—V(a-Vu)+8-Vu+yu=g onfd (2.15)
In particular, for § = 0 and v < 0, we obtain Helmholtz equation and for v = 0,

lall 2y < 18] 2(q)e: we recover a convection-dominated diffusion problem.
The boundary conditions will be specified for each particular case.

15






3. Goal-oriented algorithm

In this chapter, we describe the goal-oriented algorithm we employed to obtain
numerical results. First, we describe the main structure of the adaptive algo-
rithm, and then we detail its variations employed to compute the fine meshes,
the errors, and the element marking strategies.

3.1. Goal-Oriented Adaptivity (GOA]) algorithm

The algorithm is sketched in Figure [3.1] We start the iterative mesh-
adaptation algorithm by defining an initial coarse mesh with a given element
size h and polynomial order p set globally. In order to estimate the error
functions, we approximate it by considering a fine (reference) mesh. There are
various ways to define the fine mesh; we postpone this discussion to Section [3.2]
We approximate errors e and € (resp. €) of the direct and the adjoint
(resp. alternative adjoint (2.9)) problems on the fine mesh. In the following,
we refer to the approximation on the fine mesh of the errors by the notations
e and ¢ (resp. £). Further details on the errors computations are provided
in Section [3.3] Then, we compute the element-wise contributions of the error
(nx) ke given by Eq. (resp. (7K )ker given by Eq. (2.11)) and select
(“mark”) some elements for refinement.We describe the employed marking
strategies in Section [3.4] After performing those refinements, we obtain an
updated coarse mesh, which constitutes the initial mesh for the subsequent
adaptive iteration. We repeat this process until we reach the required precision.

17
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Coarse mesh

—> (Solve the direct problem) (Solve the adjoint problem)

l

Fine mesh i

E Compute error of E

: the adjoint problem ]

Compute error of \r 1
: or '

the direct problem /i ]

Compute error of the
alternative adjoint problem

(Estimate and mark)

]

l

Coarse mesh updated

Figure 3.1.: Goal-Oriented Adaptivity algorithm.

3.2. Fine meshes construction

Given a Cartesian coarse mesh with a given element size h and approximation
order p, we construct the fine mesh by either (a) selecting a reference element
size hyt < h, or (b) uniformly increasing the polynomial order by Ap = 2.

This increment in p is somehow arbitrary, and one could select a different
value, taking into account that a larger value will significantly increase the
computational cost, while the lower value Ap = 1 may be insufficient to ac-
curately estimate the error. Although in some cases the fine mesh should be
finer in space in order to better estimate the error, the high regularity of the
solutions of our model problem justifies such choice of fine mesh. Note that for
the Helmholtz problem, the value of Ap is not as crucial as for the convection-
dominated diffusion problem, where the behavior of the upper bounds depends
on Ap since the features of the solution are localized unlike in the solution of

18
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the Helmholtz problem.

A fine grid based on a reference element size h,.; < h has been considered
only in an early version of the uniform h-refinements 1D algorithm imple-
mented in MATLAB (Algorithm 1). In this algorithm, we set the following
input parameters: the number of elements of the discretization N and the
uniform polynomial order of approximation p. We set the wavenumber k& such
that for a given N and p, the minimum number of Degrees of Freedom (DoF))
per wavelength is small (below three). Then, we select a set of Nyesn Struc-
tured meshes until we reach a number of [DoF] per wavelength close to 100. We
consider the finest mesh as our reference mesh.

Algorithm 1: Uniform h-refinements in 1D

Input: N, p
forie {1, --
hi = Ngi
Up,, Vp, = solve(h;,p) // Solve the direct and adjoint
problems

y Nmesh} do

Uref < Up,

mesh

Upef < Uthesh

forie {1, Nyesn — 1} do

Jp,// compute mesh injections onto the finest mesh

En; = alternative_residual_dual(hy, ., ,p, Ip,vn,) // Solve the
unconventional dual error problem

€h, = Uref — Ip,Up,// Estimate the errors

Ehy = Vref — In;Un;

K3

The fine mesh based on increasing uniformly the order of approximation by
two has been employed to perform numerical experiments related to p-uniform
refinements and p-adaptivity. The resulting algorithm (Algorithm [2)) has been
implemented in Fortran90 using PETSc libraries [I06] for the resolution of
the finite element systems. Due to the use of hierarchical basis functions, the
corresponding injection operator is trivially implemented by simply adding
zeros to the coefficients associated with the p + 1 and p + 2 [DoF], leaving the
remaining coefficients unchanged.
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3. Goal-oriented algorithm

Algorithm 2: p-adaptivity

Input: T, = U K,,... // Initialize coarse mesh
Kpinit

Thpwi+2 // Construct the fine mesh

relative_error = tol // Initialize variable relative_error

while relative_error > tol do

Up, vp, // Compute the coarse mesh solutions

Jp(up), Jp(vy) // Inject the coarse solutions into the
fine mesh

e, ¢ (resp. &) // Compute errors using Eqs. (2.5),
(resp. ), based on the residuals

YKy € Thp, Nk, (resp. Nk,) // Compute estimators

(1, €)]

L, (e = un))]

forall K, € 7;,, do
s Kp 7> Kp
if Abolr, = (maxg, m) x 3 (resp.
NKp MKy
ADokr, = (maxp, ADoFKp) x () then
L Mark element’s interior, faces, and edges

relative_error= -100 // Update the relative

K, «— K,i1 // Refine each marked element, face, and
edge
Thp // Update the mesh and ensure the minimum rule
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3.3. Error computations

3.3. Error computations

As mentioned in Section [2.2] errors e and ¢ of the direct and adjoint problems
can be approximated either by computing the difference between the coarse
and fine mesh solutions (Algorithm [I)) or by solving for the residuals, as shown
in Eqgs. and (Algorithm . Both methods are equivalent. However,
when it comes to the alternative error £, the coarse mesh solution of the alter-
native operator is unavailable. Thus, and in order to keep a generic approach

for all problems, we solve the residual based equations (2.6)), (2.5)), and (2.9).

3.4. Marking strategies and refinements

Once all error functions are estimated globally, we compute the element-
wise error contributions leading to the error estimators nx and 7jx given by
Eqgs. and . Those contributions are ponderated by the number of
[DoF] that would need to be added (ADoF ) in the case of refinement.

To determine which elements need to be refined, we select those whose
error estimator is larger than a given percentage of the largest estimator
max (zpay-) and maxg (Agﬁ), respectively. In this work, unless explic-
itly mentioned, we set that percentage to 8 = 0.4. We isotropically increase
by Ap = 1 the polynomial orders of interior, faces, and edges of the selected
elements.

The uniform refinements algorithms are particular cases of the adaptive
strategy, where the mesh is globally refined either in h or p (i.e., the selected
percentage is equal to 5 = 0).

Once an updated mesh has been generated, we ensure that the minimum
rule [91] is respected by increasing the polynomial order of those element in-
teriors whose boundary nodes (faces and/or edges) exhibit a larger order of
approximation.

This adaptive approach can be trivially implemented, and we use it here
to illustrate the advantages and limitations of using alternative error repre-
sentations. More sophisticated and effective adaptive processes can be used,
e.g., [67, 107, 108, 109, 110} 111].

3.5. Projection Based Interpolation (PBI)

Following [911, 53], we have implemented the [PBIlin order to analyze its perfor-
mance in the context of when considering our proposed alternative error
representations. It ensures, for instance, almost optimal convergence rates for
the classical p-adaptive algorithm (up to a logarithmic factor, see [112]). The
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3. Goal-oriented algorithm

[PBI projects the fine mesh solutions u and v into the coarse grid by combining
interpolation with a local minimum energy projection. We denote those pro-
jections by I, (u) and I (v). The error representations and then
become error indicators as follow,

I i
= Z e = 2 ’ Bep! 7eK 2 HK) (3.1)
KeT KeT
~H _ ~II, 11,
n= e = ) (Bl e >H§7HK (3.2)
KeT KeT
where ellr glln 2ln ¢ H are solutions of the following variational problems.

e Find e € H such that

Be' = R, (10, (u)). (3.3)

e Find £ € H such that

B*eM = Ry(IL,(v)). (3.4)

e Find &' € H such that

B = Ry (I, (v)). (3.5)

Note that values ({3.1)) and (3.2) computed using the [PBI are no longer
bounds of the error in the Quantity of Interest (Qoll) <l,e>H*7H. They are
referred to as error indicators in the literature (cf. [97]).

Construction of the 2D Projection Based Interpolation (PBI) The [PBIl
follows three “rules”: (a) “locality”, (b) “global continuity”, and (c) “opti-
mality”. “Locality” means that the [PBI is computed element-wise; “global
continuity” imposes the global continuity across the elements; and “optimal-
ity” means that, since the order of approximation will decrease, we seek to
minimize the loss of information using a projection.

Given an element K, we compute the coefficients (u}'); of ITj,(u), interpolant
of w on K. We consider the coefficients of IIj(u) accordlng to the type of
associated basis function: first, the ones associated with the basis functions
that are not null on the vertexes (¢,),; then, the ones associated with the
basis function that are not null on the edges but zero on the vertices (edge
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3.6. Computation of the alternative operator

bubble functions, ((¢.;):)c), and finally the ones that are associated with the
basis functions that are non-zero only on the interior of the element (element
bubble basis function (¢x;)i)-

I, (u) = 2 ullp, + 22 uenlgzﬁez + Z u?ﬁgb;(z (3.6)

To determine the coefficients, we follow these steps:

(a)

(b)

ull is the coefficient of the vertex v connected to the element K and set
as

ull = u,. (3.7)

v

For each edge e, we consider the basis functions (¢.;); that are bubble
basis functions of this edge and we compute (’U/enl)z by minimizing the

quantity
Z u2i¢e,i - <U - Z ulz;[(bv)

(3.8)

1
Hy (e)

where Hé{f(e) is the subspace of H"?(e) of the functions vanishing at

the endpoints of the edge e. In practice, we do not computing the HS/O2
semi-norm. As in [91], we approximated it by a geometrically weighted
oul® ds

H!'-norm
2
e, j | s

where j—z is the line integral Jacobian of the parametrization of the edge

e into the master element.

(3.9)

Finally, for the coefficients corresponding to the bubble element basis
functions (@x;);, as for the edges, we compute (ul,;); by minimizing the
quantity

Z Uk i K — ((u - Z Uy by, + Z Z ugi@,i)

We refer to [112], 91] for further details.

(3.10)

HY(K)

3.6. Computation of the alternative operator

In order to compute the alternative error estimator, we need to build and fac-
torize the matrix associated with the alternative operator. Thus, we cannot
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3. Goal-oriented algorithm

reuse the same matrix for the computation of both the direct and the alterna-
tive adjoint errors. This is a drawback of our method, hopefully, compensated
by achieving an adaptive process that requires fewer [Dol] to reach its goal.
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Numerical results
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4. 1D problems

In this chapter, we present numerical results for two types of one-dimensional
(1D) problems: Helmholtz and convection-dominated diffusion problems.

Let Q = (0,1) be the domain. We denote by L?*(Q) the space of square
integrable functions on €, H*(2) the Sobolev space of functions with L?*(£2)
first derivatives on Q and by H{(£2) the subspace of functions from H'(Q) that
vanish on the boundaries and (-, ), is the standard L*inner product.

4.1. 1D Helmholtz equation
4.1.1. Model problem

Given k > 0, let us consider the following problem:

Find u such that,

d2
—(+k2)u=1 in (0,1),

dx?

(4.1)
d 1
u(0) = 0, %(1) =3
We set H := {v e H'(0,1),v(0) = 0}. Then, for any ¢, € H,
_ /9o dy iy
(86 Ve = (G 4o oy~ @ P (1.2
1
(F Bhpnss = {1 Ohgaon) — . (4.3)

For illustrative purposes, we define the following linear output functional (Quan-

tity of Interest (Qol])):

(l, Cb)H*,H = (1, ¢>L2(2/5,4/5) V¢ e H. (4.4)
We set the 1D-Laplacian as the alternative operator B , that is:
~ do diy
B ={(—,— v H. 4.5
(B0 )= (T )y V00 (4.5
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4. 1D problems

There exist several ways to numerically compute the errors. One is to use
the analytical solution and the approximated solution on Hj. In our case, we
know the analytical solution of the direct problem (4.1)):

u(z) = Re (aeikx + Be ke 132) : (4.6)

where

B 2k — 2eF + k2ekig

" (k? — 2 + 2keMi) i
T Tk (e 1 1)

and 0= o e 1)

However, we have not derived the exact solution of the adjoint problem ([2.3))
nor the solution of our alternative problem ([2.9). Thus, we work with two
approximation spaces: “coarse” and “fine”, as described in Chapter

4.1.2. Numerical results
4.1.2.1. Uniform p-refinements

We first consider the case [ = f. The direct and adjoint problems coincide, so
do their errors e = ¢ and € = £. This is the choice corresponding to classical
energy-norm adaptive algorithms [60, 59].

Figure shows numerically that the alternative bound provides a sharper
estimation of the error in the [Qoll (/,e€)y«  when performing uniform p-
refinements. We also distinguish two different regimes: (a) the pre-asymptotic
one, where the alternative upper bound is significantly sharper than the clas-
sical one, and (b) the asymptotic regime, where both upper bounds are almost
identical.

We now represent the L?-norm and H!'-semi-norm of the errors e and €.
That last quantity is obtained by solving the problem:

Find € € H such that:

(Be,¢) = (Be,o) V¢ e H. (4.7)

H*H H* H

Figure 4.2 shows that the norms of the error associated with the alternative
operator version are smaller than those corresponding to the traditional oper-
ators in the pre-asymptotic regime and approximate each other in the asymp-
totic regime. Intuitively, it seems that the alternative representation softens
(or eliminates) the pollution effect. This observation may explain why we ob-
tain sharper estimates using €. A second interesting fact is that |Vel|| £2(0,1)
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4.1. 1D Helmholtz equation
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Figure 4.1.: 1D Helmholtz problem. Upper energy-norm bounds with uniform
p-refinements, [ = f, k = 128.
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Figure 4.2.: 1D Helmholtz problem. Norm of the errors for uniform energy-
norm p-refinements, k = 128.

and k [€ 2,y are of the same order in the pre-asymptotic regime. This does
not occur for the alternative error representations.
As previously mentioned, one reason for observing better results with the al-
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4. 1D problems

ternative upper bounds seems to be the reduction of the pollution error. This
idea is further confirmed by the numerical results presented in Figure
showing that for few Degrees of Freedom (DoF]) per wavelength (in the pre-
asymptotic range, Figures [4.3al [4.3b} 4.3c]), € is less affected than e by the
pollution effect that arises when increasing the wavenumber k. When we con-
sider a larger number of [DoF] per wavelength so that we enter into the asymp-
totic regime (here 13 [DoF] per wavelength is enough for that, Figure , the
pollution disappears and both upper bounds become almost identical.

It is remarkable that the alternative upper bounds are sharper than the
classical ones just when it is needed, that is, in the pre-asymptotic regime when
the number of [DoF] per wavelength is below 13. In the asymptotic regime,
Helmholtz equation over a single element behaves like Laplace equation (a
simple scaling argument shows that the L?-term becomes negligible), and the
corresponding upper bounds coincide, as expected.

Figure 4.4 shows upper bounds for the case corresponding to the output
functional [ defined in Eq. [£.4] The observed behavior is similar as in the
previous example. Figure [4.4] displays the upper bounds compared to the
[Qoll Figure describes the norms of the errors and Figures [4.6] and
show how the errors ¢ and £ are affected by pollution. The conclusions of the
previous case still apply here. Additionally, we observe that the errors of the
dual problems are smaller than those of the original problem (see Figure
because the right-hand side is now localisable. Finally, Figures and
show that the errors of the 1D Laplace equation ¢ are null at the nodes of the
mesh, as expected, which implies that the pollution error disappears.

4.1.2.2. Uniform h-refinements

We now consider the case of uniform h-refinements (see Algorithm [I)). As
in the previous cases, Figure [4.8| shows that the alternative bound provides
a sharper estimation of the error in the (I, €)ps g also when performing
uniform h-refinements. Indeed, this figure exhibits a similar behavior as that
corresponding to the p-uniform refinements case (Figure . The alternative
estimate is sharper than the classical one. We also distinguish a different
behavior for the pre-asymptotic and asymptotic regimes.

Figure displays the L?-norm and H!'-semi-norm of the errors ¢, e, £,
and €. We observe similar results as those shown in Figure [4.2| i.e., we ob-
tain smaller errors for the alternative representation of the error in the pre-
asymptotic regime and similar results for the asymptotic regime.
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4.1. 1D Helmholtz equation
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Figure 4.3.: 1D Helmholtz problem. Norm of the errors e and € when increas-
ing the wavenumber £ with B being the Laplace operator using
uniform p-refinements.

4.1.2.3. p-adaptivity

We now consider the p-adaptive strategy described in Algorithm [2[ with the
following parameters: the wavenumber k = 128, the error tolerance on the
used as stopping criterion tol =10~*. The number of elements ensures that the
minimum number of [DoF] per wavelength is three so we satisfy the Nyquist
rate. We also impose a minimum of five elements in total to avoid rare cases.

Figure displays the upper bounds computed with and without the
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Figure 4.4.: 1D Helmholtz problem. Upper bounds for uniform p-refinements
for k =128 and h = 0.0154.
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Figure 4.5.: 1D Helmholtz problem. Norm of the errors for uniform goal-
oriented p-refinements, k = 128.
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-%0—4 | "1074
1 1 11
0| 1 %ﬁ 1o
| it |,
6 0‘.2 014 0.‘6 018 1‘ 6 012 014 016 018 i
(a) e, with ~3 [DoF] per wavelength  (b) &, with ~6 [DoFl per wavelength
-%0*5 | ‘-10‘*6
20 1F 15
1 |
ol bl “m 1A N|M"M}WW(“ﬁLm“JNJ”J 1o
N W 7 I '['\I[[" ]W ‘HHV Wl
5 i AL "ﬁ\ |5
) I . “l ull'

| | | | | | | |
0 02 04 06 08 1 0 02 04 06 08 1
(c) &, with ~3 [DoFl per wavelength  (d) &, with ~6 [DoF] per wavelength

Figure 4.6.: 1D Helmholtz problem. Error functions ¢, and £, with B being
the Laplace operator using uniform p-refinements, k = 128.

Projection Based Interpolation (PBI). When considering a p-adaptive algo-
rithm without projections, the classical error representation provides a non-
convergent algorithm (see Figure . Projectors are introduced to ensure
convergence (see Figure |4.10b). With the alternative error representation,
we recover convergence even without using the projected errors, as shown in
Figures 4.10c| and 4.10d] We believe that this behavior is strongly linked to
properties of the 1D-Laplace operator. Notice that the projected error is built
so that its value is null at the nodes of the mesh, thus, minimizing the pollution
effect. The 1D-Laplace operator has the same property. We expect to loose
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4. 1D problems

this property when using other operators for B.

In all cases, the upper bounds behave in the same way than for the uniform
refinements in the sense that the alternative upper bounds are sharper than
the classical ones during the pre-asymptotic regime and similar to each other
in the asymptotic regime.
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Figure 4.10.: 1D Helmholtz problem. Upper bounds for p-refinements with
k =128 and h = 0.0154.
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4.1. 1D Helmholtz equation

4.1.2.4. Modifying the alternative operator

One feature of the proposed method is that we can select the alternative oper-
ator B. One could expect that the sharpness of the upper bounds will depend
strongly on such choice. Figure describes the upper bounds obtained when
employing the L? inner product

<Bu : U>H*7H = (U, V) 201y (4.8)
for computing the error representation compared to the bound obtained when
using the Laplacian. We display the upper bounds both for A-uniform and
p-uniform refinements. We observe that: (a) the upper bounds are sharper in
the pre-asymptotic range than the classical ones, and (b) the upper bounds
corresponding to the Laplace operator are the sharpest in all cases.

Similarly, we now select the operator

<Bu : U>H*7H = (Vu,Vv) oy + k (u, V) 12(0,1) - (4.9)
Figure |4.12| shows the upper bounds for the case of p-uniform refinements. We
obtain similar results and conclusions as before, namely: (a) the alternative
upper bound is sharper than the classical one, and (b) the upper bounds
computed using the Laplace operator are the sharpest of all. We note that
the upper bound computed with the positive Helmholtz operator given by
Eq. is sharper than the one computed using the L? scalar product given
by Eq. , Figure .

Figure illustrates how the pollution seems to affect the errors e and
¢ when considering the positive Helmholtz operator given by Eq. . Re-
sults are similar to the Laplacian case. However, we now observe that error
¢ is more affected by the pollution than in the Laplacian case. Indeed, the
error function is no longer null at the nodes. Figures 4.14al and [4.14h] dis-
play the corresponding error functions for three and six [DoF] per wavelength,
respectively.
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Figure 4.11.: 1D Helmholtz problem. Alternative upper bounds for uniform h-
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4. 1D problems

4.2. 1D steady state convection-dominated
diffusion problem

4.2.1. Model problem

We consider the following 1D steady state convection-dominated diffusion
problem with homogeneous Dirichlet conditions:

For a given source F' € L?(0,1) and 0 < a « 1, find u such

that,
d? d
(— prohe dx) u=F(z) on (0,1), (4.10)
u(0) = u(l) =

The associated variational formulation is: For H = H;(0,1)

Find u € H such that,

(Bu, Oye g = (f Oy g, Vo eH, (4.11)

where B is defined as
(Bu, V)gge g = @ (02U, Q) 1201y — (02t , V) 2oy Vu,v € HL

We again select the alternative operator as the one associated with the
Laplace operator, i.e.:

Bu v = (Opu, 00) a0 1y, Vu,v e HY0,1). 4.12
< H* H L2(0,1) 0

4.2.2. Numerical results

The initial coarse mesh contains 100 elements uniformly distributed on the
log scale between 0 and 1 with a uniform polynomial order p;,;; = 1 and the
smallest element size being equal to 10™*. We define the source ' = 1 over the
domain and the as the integration of the i-th derivative (i = 0 or ¢ = 1) on
a subset that includes the boundary layer, specifically (0,0.05) < (0,1). That
is, Vo € H}(0,1),

<f7¢>H*7H = <F7¢>L2(071) = <17¢>L2(071) ) (413)
1 )
<lz ) ¢>H*7H = @ <1 s ¢(Z)>L2(070'05) ) (414)
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4.2. 1D steady state convection-dominated diffusion problem

where ¢ is the i-th derivative of ¢. We set the diffusion coefficient to a@ =
107%. The bilinear form we use to compute the alternative upper bounds is the
one derived from the Laplace equation with homogeneous Dirichlet boundary
conditions given by Equation (4.12]).

4.2.2.1. Uniform p-refinement

Figures and illustrate the behavior of the error upper bounds when
performing uniform p-refinements. Figure [4.15 shows that the alternative
bound coincides with the error in the when considering [y. The sign of
every estimator is the same, and thus, the triangular inequality that provides
the element-wise upper bound generates no loss. Figure[d.16]illustrates the be-
havior of the upper bounds when considering [;. In both cases, the alternative
bound is sharper than the classical one. Consequently, we expect the adaptive
process driven by the alternative error estimators to be more efficient. In the

following, we only consider Iy as [Qol]

10° g E
10t}

- g Classical E
i 103 ¢ bound E
5 12| i
3 § i
£ o0 I
;f 109 7 Alternative T 7
o i bound li(e)]| |
107! g £
10_2 ;7 | | | | | | | | é

|
100 200 300 400 500 600 700 800 90
Number of DoF

Figure 4.15.: 1D convection-dominated diffusion problem. Upper bounds ob-
tained using uniform p-refinements when the is [y

4.2.2.2. p-adaptivity

Since the exact solution is almost linear everywhere except on the proximity of
the boundary layer, we expect that the optimal mesh will select a large value
of p on the element(s) contained in the boundary layer, and it will be p = 1
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4. 1D problems
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Figure 4.16.: 1D convection-dominated diffusion problem. Upper bounds ob-
tained using uniform p-refinements when the is Iy

elsewhere. Furthermore, since the alternative adjoint error € is zero at the
nodes due to the choice of Laplace equation as the alternative dual operator
(see [87] and Section [4.1| for details), we would expect to solve the linear part
exactly when considering the exact solution as the reference one. However, the
selected fine mesh is not particularly adapted to this kind of problem, since the
initial mesh is coarse and does not match the boundary layer, as it occurs in
practical problems. Thus, the algorithm starts in the pre-asymptotic regime.

We executed the adaptive processes described in Chapter [3| with a stopping
tolerance in the of 0.01% and a maximum approximation order of 27.
Figures [4.17] and .18 track the error evolution on the throughout the
adaptive process with the ratio used for the marking process (see Algorithm
set to f = 0.4 and 8 = 0.99. The alternative estimators employ less [DoF] than
both the classical adaptive process and uniform p-refinements.

We have plotted the final meshes (see Figure 4.19) for the cases § = 0.4

(Figure 4.19al) and § = 0.99 (Figure |4.19b). The respective direct solutions
computed on those meshes are displayed in Figure [4.20]

We observe that the classical algorithm fails at eliminating the spurious
oscillations in both cases, especially, when S = 0.99. It is completely miss
driven by the spurious oscillations. Also, the alternative method identifies the
boundary layer more efficiently than the classical one. Indeed, for the case
£ = 0.4, the algorithm with the classical estimators executes more refinements
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Figure 4.17.: 1D convection-dominated diffusion problem. Error in the for
adaptive p-refinements, 5 = 0.4
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Figure 4.18.: 1D convection-dominated diffusion problem. Error in the for
adaptive p-refinements, § = 0.99

in the linear part of the solution, while the alternative estimator refines more
intensively around the boundary layer. For 5 = 0.99, the classical method fails
to catch both the boundary layer and the [Qol] producing thus an erroneous
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4. 1D problems

solution, whereas the alternative method succeeds at eliminating almost all os-
cillations by computing a quasi-optimal mesh. Note that the classical method
concentrates refinements around the point 0.05, where the ends.

In Figure 4.20, we have employed an “overkilling solution” over a highly
refined mesh (containing around 800 elements) for illustrative purposes.
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4.2. 1D steady state convection-dominated diffusion problem
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Figure 4.19.: 1D convection-dominated diffusion problem. Final adapted
coarse meshes after the p-adaptive process for different refine-
ment ratios .
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Figure 4.20.: 1D convection-dominated diffusion problem. Solution of the di-
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5. 2D and 3D problems

In this chapter, we present numerical results for two- and three-dimensional
(2D and 3D) Helmholtz and convection-dominated diffusion problems.

5.1. Helmholtz equation

5.1.1. Model problem

We consider the following problem with mixed boundary conditions: for {2 =
(0,1)¢, a domain of dimension d = 2 or 3, I'p|JI'; = 0Q, I'p(T; = &, a
partition of the domain boundary 0f2,

Find u such that, for k£ > 0,

—Au—ku=1 inQ,
u=0 on I'p, (5.1)
Ozu +iku =0  on 'y,

where 7 is the outgoing normal unit vector. We set H := {u € H'(Q), yr,, = 0}
and (-,-) ;. the standard L? sesquilinear product. We define the Quantity of
Interest as the linear functional in H* corresponding to the integral of
w € H on a portion I'ger of the boundary I';, which is given by the functional

<l 5 w)H*yH - <1 ,w>L2(FQ01) Vw S H
Operator B € L(H, H*) associated with the above problem is defined as follows,
(Bw, 2)ys g = (Vw, V2) 120y — E (w, Z)p2i) Tk (W, 2) 2, Yw,zeH
(5.2)

Notice that the above problem is numerically unstable for high wavenumbers,
see e.g. [92], 93, 94, [95] 1], 96, 113, [63], 64].
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5. 2D and 3D problems

For the 2D case, d = 2, the boundaries are set as

I'p = ([0.1] x {0}) | J ({0} x [0, 1]), (5.3)
Ty o= ([0, 1] x {13) | ({1} = [0, 1]), (5.4)
Lqor := {1} x (0.75, 1), (5.5)

as illustrated in Figure [5.1}

I'p Q

Figure 5.1.: Computational domain for Helmholtz problem in 2D.

For the 3D case, d = 3, we set the boundaries as follows (see Figure : A
Dirichlet boundary condition is set on the three faces whose intersection is
(0,0,0) and an impedance boundary condition is set on the three faces whose
intersection is (1,1, 1).

Tp =([0,1] x [0, 1] x {0}) | ] ([0,1] x {0} x [0,1]) (5.6)
LJ ({0} x [0,1] x [0, 1]) (5.7)

Iy :=([0,1] x [0,1] x {1}) [ ([0,1] x {1} x [0,1]) (5.8)
LJ ({1} x [0,1] x [0,1]) (5.9)

Taor = ([0.75,1] x [0.75, 1] x {1}) | ] ([0.75, 1] x {1} x [0.75,1]) ~ (5.10)
LJ ({1} x [0.75,1] x [0.75,1]). (5.11)

5.1.2. Numerical results
5.1.2.1. Selection of the alternative operator

Let B be the 2D Helmholtz operator defined by (5.2) with & € R*, a source
feH* and a Qol [ € H*, as defined in Section We set the wavenumber
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5.1. Helmholtz equation

Figure 5.2.: Computational domain for our 3D Helmholtz problem.

to k = 17m. We analyze the behavior of 77 of Eq. when varying the
alternative operator B,,, for a given discretization 7T, over the family i:

U= {Ea, ae C} (5.12)
where

<BO¢.">H*,H = <V7V>L2(Q) +O[<'a'>[,2(ﬂ) +1 |OZ| < 7'>L2(I‘I) : (513)

Boundary conditions for B, are selected to be the same as those of the original
operator B.

Figures and show the evolution of 7j7 with respect to a and along
specific directions: in Figure the parameter « is real, whereas in Figure
the parameter « is purely imaginary.

The sharpest upper bounds are obtained for v = 0 (Laplace operator) in
most cases. When « is real (see Figure , the Laplace operator is not
delivering exactly the sharpest bound, but it is very close to it.

The top panel of Figure [5.3| shows that for large || (= 10°), the behavior
of the alternative operator is almost equivalent to that of the L?-sesquilinear
product. If o > 0, B, is self-adjoint and positive definite. For both cases
(o = 10° and a < —10°), the alternative upper bounds are sharper than
the classical ones. If @ < 0, then we are dealing with a Helmholtz operator.
To numerically resolve Equation (2.9), we need to satisfy the Nyquist rate.
When o < —k? (the red area), the Nyquist rate criterion is compromised, and
the numerical resolution is untrustworthy. Thus, we restrict the analysis to
a € [—k?%,0]. The middle panel of Figure zooms on this area. We observe
that bound 7j7 is slightly oscillating as a becomes more negative, probably
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5. 2D and 3D problems
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Figure 5.3.: 2D Helmholtz problem, 77 versus o for o € R, k = 27 x 85 =
170 ~ 53, and approx. 3 [DoFl per wavelength (with uniform
p=3).
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5.1. Helmholtz equation
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Figure 5.4.: 2D Helmholtz problem, 77 versus « for a € iR, k = 177, and
approx. 3 [DoF] per wavelength (with uniform p = 3).

because the number of [DoF] per wavelength is getting smaller and dispersion
effect is stronger. The almost flat area for o > —800 is rescaled in Figure [5.3
(bottom panel) in order to determine whether or not the Laplacian is the
operator that provides the sharpest bound. We observe that the minimum
is not reached for @ = 0, but the relative difference between the minimum
(around 222% for a ~ 550) and the value of 7j7 for o = 0, 77 ~ 224% is
negligible. Thus, for approximation space Hy, it seems advantageous to use
the Laplace operator as the alternative operator.

Figure [5.5| shows the evolution of 77 as a function of o under the same con-
ditions than in Figure but, in here, we modify the approximation space H,
by increasing the polynomial order p by one. These results show the robust-
ness of the selected alternative operator (namely, the Laplacian) with respect
to the choice of discrete space H,.

From those numerical results, it appears that the stability of the alternative
operator plays a key role on the sharpness (or not) of the upper bounds. In-
deed, unlike the Helmholtz operator, the Laplace one does not generate any
dispersion error. Thus, in the remainder of this section, we select the Laplace
operator as our alternative operator.
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The top graph is produced for 3 [DoF] per wavelength (with uni-
form p = 2). The subsequent plots are obtained by increasing the
approximation order p. The Laplace operator provides a quasi-
optimal upper bound for all cases.



5.1. Helmholtz equation

5.1.2.2. 2D numerical results: refinements and adaptivity

Figures[5.6/and [5.7|show the upper bounds of the algorithm [2] when performing
uniform h-refinements (Figure and uniform p-refinements (Figure .
As mentioned in Section 2.2] Figure shows that using € or £ leads to
almost identical results. Thus, we restrict ourselves to the use of £, and the
representation of the dual residual Ry(vy,).

104 zL T T ]
B V~., “¢"' "ty E
| . ‘ v "'-v“ i
o 103} ‘e, - E
33; i i, 'x‘ - Classical |
= - . E bound 1
3 1021 N v
) B 1
© " |
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= - . E
rﬁv | Alternative 1
100 | bound |
E A\
7\ | | | | | | | | | | ]

2 3 4 5 6 78 10 14 18 25

DoF per wavelength in logarithmic scale

Figure 5.6.: 2D Helmholtz problem, k = 177. Uniform h-refinements, p = 2.
Error evolution in the [Qollnd upper bounds given by the different
error representations

In all cases, the element size h of the initial mesh is selected to enforce that
the discretization exhibits always at least 2.5 [DoF] per wavelength (piniy = 1,
uniformly). In this way, the Nyquist criterion is satisfied, and the pollu-
tion error eventually decays at an exponential rate with respect to p, since
2Pt + 1 > kh + B(kh)'? for some 8 > 0 (see [114, 97]). Once the pollution
error vanishes, the expected rate of convergence is h* (see [67]) for smooth
enough solutions. Figure shows that the convergence rates obtained for this
example when using uniform p-refinements are smaller than expected probably
due to the loss of smoothness caused by the non-smooth squared shape of the
domain and the lack of regularity of the right-hand side.

From these graphics, we observe that the alternative bound is signif-
icantly sharper in the pre-asymptotic regime than the classical one , and
both upper bounds coincide when the error in the is around 1% or below
(asymptotic regime).
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Figure 5.7.: 2D Helmholtz problem, & = 17x. Uniform p-refinements,

hk » 1. Error evolution in the [—] and upper bounds
given by the different error representations, namely, the classi-
cal bound |_T_|, the alternative bound using the residual dual
Ra(vp) [-+-] and the alternative bound using the residual

primal Ry, (uy) (2.11)) [-e-]

Figures [5.8 and show that with the alternative error representation, the
p-adaptive algorithm converges without the need to introduce the Projection
Based Interpolation (PBI) operator. When using the [PBIl both algorithms
converge with a similar behavior, as illustrated in Figure |5.8

When convergence occurs, errors exhibit almost identical convergence rates
as those observed for the uniform p-refinements, see Figure [5.9 Indeed, since
the solution of our model is highly regular and of uniform amplitude, quasi-
optimal meshes are obtained via uniform p-refinements and the final adapted
meshes (displayed in Figures , , and are almost p-uniform.
We remark that the classical criterion does not converge because it selects inap-
propriate p-refinements that do not decrease the error, and the algorithm stops
due to the limit of p = 14 set on the approximation order; see Figure [5.10a]

With the alternative error representation (where B is the weak Laplace
operator) without [PBI, we achieve similar results as those obtained with the
classical estimate with [PBIl Thus, in this case, we can substitute the [PBI],
which complicates the implementation, by the alternative dual problem.

Figure [5.11] shows the distribution map of the element error estimators
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Figure 5.8.: 2D Helmholtz problem, £ = 177, hk » 1. FError representation
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Figure 5.9.: 2D Helmholtz problem, k& = 177, hk » 1. Relative error in % in
the l(e)| depending on the selected adaptive criterion.

nk (2.8) and nx (2.11). We observe that the maximum error is about one
order of magnitude larger for the classical estimators than for the alternative
ones, which corroborates the results described in Figures [5.6] and [5.7] The al-
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Figure 5.10.: 2D Helmholtz problem, k& = 177, hk » 1. Final adapted fine
meshes after p-adaptivity.
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5.1. Helmholtz equation

ternative method concentrates the largest errors close to the which seem
to rapidly decay as we move below the line (0,1) x {0.75}. This observation
is coherent with the fact that the error £ is the solution of a diffusive prob-
lem that takes as a source the residual of the adjoint problem. Conversely,
the classical method exhibits large errors in a region that seems unrelated to
the Figure [5.10a] confirms that refinements occur in the aforementioned
region. Apart from the extreme values, the error distribution is quite uniform,
which is consistent with the nature of both e and e, which are solutions of
Helmholtz residual problems.

Error estimator Error estimator
1078 1077 107% 10® 10°* 108 1077 1076 107°

|
00 02 04 06 08 1 00 02 04 06 08 1

(a) Classical estimators (b) Alternative estimators

Figure 5.11.: 2D Helmholtz problem, k = 177, p = 1 uniformly, hk » 1. Error
map representations. We select a logarithmic scale of the error
for selecting the color. The gray color has been set to separate
between the elements that are to be refined (those with darker
tones) and those that will be unrefined (brighter tones).

Increasing the wavenumber. We now increase the wavenumber £ of operator
B. We employ a constant number of [DoF] per wavelength in order to compare
the behavior of the classical and the alternative upper bounds. Figure [5.1
shows that the alternative bound is significantly less affected by pollution
than the classical one and stays closer to the error in the The observed
oscillations are due to the selected [Qol|and they depend upon the total number
of wavelengths in the computational domain.
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Figure 5.12.: 2D Helmholtz problem, uniform p = 2; h is determined in order
to ensure a fixed number of (approx. eight) [DoF] per wavelength.
Error evolution in the and upper bounds for the error repre-
sentation of the when the wavenumber is increasing from 71
to 250. B is the Laplace operator.

Gradient of the solution as Quantity of Interest. We now show the ro-
bustness of the method by considering a different kind of (similar to that
used, for instance, in [I15]). For this purpose, we consider the 2D problem
described in Section with the following [Qol}

(L w)gs g = (1, Vw)LQ(QQol) YVw e H.

where Qqor == (0.75,1)%. Figure m shows that the bound provided by the al-
ternative representation is sharper than the classical one in the pre-asymptotic
regime, as expected.

5.1.2.3. 3D numerical results: refinements and adaptivity

Figure shows numerical results corresponding to uniform p-refinements.
Again, our method provides sharper upper bounds in the pre-asymptotic regime
than those obtained with the classical method. The p-adaptive algorithm also
exhibits a behavior similar to that observed in the 2D case (see Figure [5.15)).
The alternative bound is driving the convergence more efficiently than the
classical one.
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5.2. Convection-dominated diffusion problem

5.2.1. Model problem

We consider the following model problem based on a convection-dominated
diffusion equation. For Q = (0, 1)?,

Find u such that, for v> 0,

(5.14)

—vAu+ (1,1)-Vu=1 1in Q,
u =0 on 0f).

We set H = {u € H'(Q),u = 0on 002} and (-,-);. the standard L? scalar
product. We define the as the integral over Qqo < Q of w € H, which is
given by the functional

(wyge = (1, w) 2,y  Yw e H
Operator B € L(H, H*) is defined as follows,

(Bw, 2)gs g = V(VW,V2) 12y + (1, 1) - VW, 2) 2y,  Yw,z€H. (5.15)
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5.2. Convection-dominated diffusion problem

We define the alternative operator:

<§w , z>H* b= (Vw, Vz>L2(Q) Vw, z € H, (5.16)

)

which is associated with the Laplace equation with homogeneous Dirichlet
boundary condition on o). We set the domain to Qqer = (0.75,1)% which

includes a portion of the boundary layer.

5.2.2. Numerical results

We perform uniform p- and h-refinements starting from a quasi-uniform initial
mesh with 11 x 11 elements. Figure [5.16| shows the behavior of the upper
bounds with respect to diffusion parameter v. As parameter v decreases, the
upper bounds increase, as expected.

Error in the Qol: — vy =102 v =10"% - v =107
Classical bound: =»=p = 107°%-m- p = 1076 v=10"7
Alternative bound: =—p = 107 % =-#- p = 106 v=10"7
107 T ‘ T T T T T T T ‘

108
10°
10?

103

Relative error in %

102

| |
103 10%
Number of DoF

Figure 5.16.: 2D convection-dominated diffusion problem. Uniform p-
refinements for different diffusion coeflicients.

We now set v = 107* and consider uniform p-refinements. Figure
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5. 2D and 3D problems

shows the following four upper bounds of the error in the Qol:

1(e)] < ), [(Bke, )| (5.17)
K

< Z(V HV5||L2(K) + H5HL2(K)) ”v€HL2(K) , (5.18)
K

and

o) <Y )<§Ke,g>] (5.19)
K

S Z HV(EHL?(K) vaHL2(K) : (5.20)

K

Upper bounds and are non-monotonous probably due to the
lack of control on the angle between the errors. However, the monotonicity
is recovered when considering upper bounds ((5.18]) and (5.20)), although those
upper bounds are less sharp. Nevertheless, in all cases, we observe that the
alternative upper bounds are sharper than the classical ones. Moreover, if B
also includes an L?-inner product term as follows,

<Bw,z>H*’H = (Vw,V2) o) + (W,2) 12y Yw,z €M (5.21)
The alternative upper bound is still sharper than the classical one. Nonethe-
less, the Laplace alternative operator still provides the best results (see Fig-
ure . For h-refinements (see Figure , we observe that upper
bound ([5.19) is sharper than upper bound (5.17). However, there is no os-
cillating behavior due to the selected mesh size. For a finer size, we would
again observe the previously mentioned oscillations.

We now execute the p-adaptive process for v = 10~7 with an initial mesh
uniformly distributed on the log scale from the boundaries to the interior of
the domain such that the boundary layers are captured. Figure [5.18|shows the
evolution of the upper bounds driving the adaptivity. The classical method
does not converge, whereas the alternative criterion is successful even if not
very sharp at first glance. Additionally, the number of [DoF] needed for a
given precision is lower for the adaptive discretization than for the uniform
refinements case. This occurs because features of the solution are localized,
unlike in the solution of the Helmholtz problem, as mentioned in Section (3.2

64



5.2. Convection-dominated diffusion problem
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Figure 5.18.: 2D convection-dominated diffusion problem with v = 10~7. Evo-
lution of the upper bounds through p-adaptivity.

5.3. Discontinuous coefficients

5.3.1. Model problem

We consider the following general model problem governed by a diffusion-
convection-reaction equation with mixed boundary conditions: For €2 = (0, 1),
with FDUFI = 89, FDDFI = @

Find u such that, for «, 3,v € L*(Q),

—V(a-Vu)+pB(1,1) - Vu+~yu=1 1in Q,
u=0 onI'p, (5.22)
Ot + in/]y|lu =0 on I'y,

In particular, for I'y = & and v = 0, we recover our previous convection
diffusion problem, and for § = 0 and v < 0, we obtain the Helmholtz equation.
We set H := {u e H'(Q),ur, = 0} and (-, -)» the standard L? scalar product.
We define the as the integral of w € H over {lq, < (2, which is given by

the functional

<l , w>H*,H - <1 ,w>L2(QQ01) Vw € H
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5.3. Discontinuous coefficients

In the following, we set the domain to Qg = (0.75,1)%. Operator B €
L(H, H*) is defined as follows,

(Bw, 2)gs g = (VW ,Vz) o) + (B(L 1) - Vw, 2) 12 (5.23)

+ (YW, 2) o) + 2< |y|w, Z>L2(F1) , Yw,zeH. (5.24)

We define the following alternative operator: for @, 5 .y e L*(Q),

<]§w , z>H*7H = (aVw,Vz) ) + <§(1, 1) Vw, z> (5.25)

L2(9)

+ (YW, 2) 12 +1 < ¥ |w, Z>L2(F1) , Yw,zeH. (5.26)

The coefficients are considered to be piecewise-constant, as illustrated in Fig-

ure B.19

 Qol |
(02, B2, 72) Wunnnd]
(041,51771)

Figure 5.19.: Domain with two materials.

5.3.2. Numerical results

We first set I'y = &, v = 0, 8 = 1 with the following piecewise-constant diffu-
sion coefficient: o = a11(0,1yx(0,0.5) + @21 (0,1)x(0.5,1) With 1 being the character-
istic function. Figure shows the upper bounds for a; = 1074, ay = 1077,
b =79 =0, and @ = a. The alternative bound is sharper than the classical
one. As the discontinuity in the coefficients induces a loss of stability, both
upper bounds are less effective than in the constant coefficient case. However,
the alternative upper bound is less affected by the instability than the classical
one.
We now consider a Helmholtz problem by setting

L= ({1} x 0,1) | J((0,1) x {1}),
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5. 2D and 3D problems

a =1, =0 and a piecewise constant reaction coefficient:

v =7110,1)x0,05 T 72L0,1)x(0.5,1)-

_ Figure shows the upper bounds for v; = —2842 and ~, = —5053,
B =75 =0,and @ = «. For this case, there are no significant differences in the
behavior of the upper bounds between continuous or discontinuous coefficients.
The alternative method is producing sharper upper bounds for both cases, and
we again observe that both upper bounds coincide in the asymptotic regime
(when the error in the Qol is around 1%).
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xS i . * |
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=~ [ L L. % h
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:\\\ [ (| |
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Number of DoF

Figure 5.20.: 2D Convection-dominated diffusion problem with a discontinuous
diffusion coefficient (o = 107* - L(0.1)x(0,0.5) + 1077 - L(0,1)x(0.5,1))-
Upper bounds corresponding to the case of uniform p-refinements
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Figure 5.21.: 2D Helmholtz problem with discontinuous materials (y = 2 842 -
10,1)%(0,0.5) + 9053 - ]1(071)X(0.571)). Upper bounds corresponding to
the case of uniform p-refinements
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6. Geophysical borehole
application: frequency domain
acoustics

In this section, we apply our adaptive strategy to the simulation of sonic
Logging While Drilling (LWD)) measurements, as described in [116], 117, [T1§].
To simplify the implementation, we focus only on a purely acoustic media
(without elasticity).

6.1. Model problem

We assume axial symmetry around the center of the borehole, so we can reduce
the original 3D formulation to two spatial dimensions using cylindrical coordi-
nates. To truncate the computational domain, we employ a Perfectly Matched
Layer (PML) (see [119]). The logging instrument contains a transmitter ¢,
and an array of 13 receivers (r%);_1 13.

We consider the following problem with the following boundary conditions:
for @ < R?, with boundary T'p | JTads = 0Q, Tp [\ Taxis = &, where Tayis is

the boundary corresponding to the symmetry axis,

Find p such that, for ce L*(Q),c # 0, f € R™,

—Ap—lp =1, inQ
p=20 on I'p, (6.1)
Vp-n=0 on Iy,

where 1, is the characteristic function over the area occupied by transmitter
t, and 71 is the outgoing normal unit vector. We define the Quantity of Interest
(Qol)) as the sum over the array of receivers of the average value of the solution
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6. Geophysical borehole application: frequency domain acoustics

at each receiver. Namely,

Neg

l * = T~ 1 5 \ H, .
< 7¢>H H ; ’Qr; J‘Qré ¢ Q€ (6 2)

where €2, is the domain occupied by the i-th receiver, and N, is the number
of receivers. We set the frequency of the transmitter to f = 20 kHz. The
material coefficient ¢ varies throughout the domain depending on the propa-
gation velocity of the wave in each layer. The domain is composed of three
different layers: The tool (with associated velocity ¢io01), the fluid surrounding
the tool with velocity cquiq, and the rock formation with velocity cormation (S€€

Table . The computational domain is described in Figure .

Ctool Cluid Cformation

Velocities (m/s) | 5862 | 1524 | 4354

Table 6.1.: Propagation velocities (m/s) of the materials for [[WD| acoustic
measurements.
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6.1. Model problem
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Figure 6.1.: Sketch of the computational domain for acoustic [LWDI measure-
ments, composed of three different materials: The logging tool,
the borehole fluid, and the rock formation. The axis of symmetry
is located on the left side of the domain and coincides with the
tool center. We have added a[PMIL]to truncate the computational
domain. In red, we draw the transmitter and in blue the array of
receivers.
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6. Geophysical borehole application: frequency domain acoustics

6.2. Numerical Results

We select the Laplace operator with constant material coefficients as our al-
ternative operator,

<§w : Z>H* o= (Vw,Vz)2q, Yw,zel (6.3)

Figure[6.2] shows the evolution of the error upper bounds throughout the adap-
tive process. We plot the upper bounds given by Eqgs. and both
when using p-adaptivity with and without the Projection Based Interpola-
tion (PBI)) operator. Results are similar to the ones of Figure [5.8, The classi-
cal criterion fails to drive the adaptive process. On the other hand, both the
alternative and the PBI criteria succeed. The resulting meshes are shown in
Figure We observe that the classical criterion (see Figure performs
refinements only within the borehole and from which most of them are located
within the area occupied by the fluid. Thus, leading to an incorrect solution.
When the adaptive process is successful (see Figures , , and ,
refinements occur almost uniformly throughout the computational domain,
except on the surroundings of the junctions between the [PMIJ the logging in-
strument, and the fluid. The solution at those points is probably singular due
to the large variation of the coefficients, and further (possibly h-) refinements
are required.
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Figure 6.2.: Sonic [LWDL Error representations for p-adaptivity depending on
the selected criterion: classical criterion without [PBIl[==+] al-
ternative criterion without [PBII[=e=] classical criterion using the

[PBI[ -] and alternative criterion using the PBI[--+-]
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Figure 6.3.: Sonic LWDI Final adapted fine meshes after p-adaptivity.
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2017 V. Darrigrand, A. Rodriguez-Rozas, D. Pardo, I. Muga, A. Romkes,
and S. Prudhomme. Goal-oriented adaptivity using unconven-
tional error representations for the multi-dimensional Helm-
holtz equation. (accepted in International Journal for Numerical Meth-
ods in Engineering), 2017.

2017 V. Darrigrand, A. Rodriguez-Rozas, D. Pardo, and I. Muga. Goal-
oriented p-adaptivity using unconventional error representa-

tions for a 1D steady state convection-diffusion problem. Pro-
cedia Computer Science, 2017. doi: 10.1016/j.procs.2017.05.168

2015 V. Darrigrand, D. Pardo, and I. Muga. Goal-oriented adaptivity
using unconventional error representations for the 1D Helm-
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7.3. Seminars & Workshops

2017 E. Alberdi, V. Darrigrand, J. Munoz, D. Pardo, V. M. Calo, A. Ro-
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Goal-Oriented Adaptivity: Applications to Time-Domain and
Helmholtz Problems Fifth International Workshop On Multiphysics,
Multiscale, and Optimization Problems, Barcelona, Spain. May 2017
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scale, and Optimization Problems, BCAM, Bilbao, Spain. May 2016

2016 V. Darrigrand, D. Pardo, I. Muga and A. Rodriguez-Rozas.
Generalised Error Representations for Goal-Oriented Adap-
tivity Seminar Caleta Numérica, Valparaiso, Chile. May 2016

2016 V. Darrigrand, D. Pardo, I. Muga, and A. Rodriguez-Rozas.
Generalised Error Representations for Goal-Oriented Adap-

tivity Workshop: “The Sixth Valparaiso’s Mathematics and Applica-
tions Days” (V-MAD 6), Valparaiso, Chile. January 2016
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2015 V. Darrigrand, D. Pardo and I. Muga. Goal-Oriented Adaptivity
using Unconventional Error Representations for Wave Prop-
agation Problems. Seminar at UPC, Barcelona, Spain. March 2015
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using Unconventional Error Representations for Wave Prop-
agation Problems. Seminar at Kaust, Saudi Arabia. March 2015

2014 V. Darrigrand, D. Pardo, and I. Muga. Goal-Oriented Adaptivity
for Wave Propagation Problems using Multiple Dual Prob-
lems. Third International Workshop On Multiphysics, Multiscale, and
Optimization Problems, BCAM, Bilbao, May 2014.

2014 D. Pardo, J. Alvarez-Aramberri, V. Darrigrand, S. Bakr, and C. Torres-
Verdin. Fast Inversion of Alternate Current (AC) Geophysical
Measurements Third International Workshop On Multiphysics, Mul-
tiscale, and Optimization Problems, BCAM, Bilbao, May 2014.
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7.4. Teaching

2016 Mini course (4h) : Improving figures using TikZ/PGF for BKTEX:
An Introduction.
Valparaiso, Chile : May 2016.
Bilbao, Spain : May 2016.

2014-2015 ATER position: 192h (EqTD). Pau, France

7.5. Awards

2015 Best poster presentation for the doctoral school at University of Pau.
Goal-oriented adaptivity with multiple dual problems
University of Pau, France

7.6. Implemented software

The finite element library FEM employed in this work has been developed
within the group M2SI[] It is written in Fortran90 and it is still under devel-
opment. It allows arbitrary high-order, mixed finite element of H'-, H(curl)-

"https://sites.google.com/site/m2sigroup/
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H(div)-, and L?-conforming discretizations. Thus, it is suitable for solving
multiphysics problems and it is also employed for the inversion of borehole
resistivity measurements. The library solves 1D, 2D, and 3D problems, and it
employs quadrilateral elements in 2D and hexahedral elements in 3D.

My contribution to the software has been (a) to implement the p-adaptive
goal-oriented algorithm compatible with the proposed method, for H' dis-
cretizations. It contains a package that solves the direct and adjoint prob-
lems on both fine and coarse meshes; (b) to implement the Projection Based
Interpolation (PBI) for 1D and 2D; (c) to implement a Perfectly Matched
Layer (PMLJ) for Helmholtz problems in 1D, 2D, and 3D in collaboration with
Dr. Julen Alvarez-Arramberri.

We reduce the needs of computational resources by reusing the matrix LU
decomposition when feasible. When possible, we also pre-compute Gauss in-
tegrations in the master element in order to accelerate the computation of
the stiffness matrix. Indeed, for high-order elements, the time needed to inte-
grate basis functions dramatically increases. However, and especially for axial
symmetry (cylindrical coordinates), pre-computations comes with a cost in
memory usage compensated by the saved computational time.
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8. Conclusions and Future work

8.1. Conclusions

This dissertation proposes the use of operators, different from the adjoint one,
to represent the error in the Quantity of Interest (Qoll). Upper bounds of
these error representations drive the goal-oriented (or energy-norm) adaptive
process. We compared our alternative upper bound estimates vs those derived
with the classical goal-oriented methodology. In particular, we have studied
the behavior of a simple p-adaptive process when using both a classical error
representation in the Qol (as described in [19, [I7]) and an alternative error
representation, for the cases of (a) a 1D Helmholtz problem,(see Section [4.1)),
(b) a 1D convection dominated problem,(see Section [4.2)), (c) a 2D and a 3D
Helmholtz problem, (see Section [5.1)), (d) a 2D convection dominated problem
(see Section [5.2)), (e) 2D problems with discontinuous material coefficients (see
Section , and (f) a geophysical application consisting of simulating sonic
Logging While Drilling (LWDI) measurements restrained to a purely acoustic
media (see Chapter [6]).

We observe that our method provides sharper upper bounds when applied
to the 1D-Helmholtz equation using the 1D-Laplace operator to represent the
error. The experiments performed using different alternative operators, like
the L?-scalar product or the positive definite Helmholtz equation, show that
we also obtain upper bounds sharper than the classical ones. Thus, we have a
set of operators that may provide sharper estimates. This, in turn, enables us
to obtain more efficient adaptive algorithms.

For the 1D convection-dominated diffusion problem, we start with a very
coarse initial mesh with very few Degrees of Freedom (DoF]). Our alterna-
tive goal-oriented adaptive algorithm produces a final mesh that captures the
boundary layer, thus, reduces significantly the spurious oscillations.

We address the question of whether we can find an operator that provides the
sharpest upper bounds independently of the approximation space. However,
this seems to be prohibitively expensive. We illustrate this issue with a 2D
Helmholtz problem and we propose to use the Laplacian as the alternative
operator in order to represent the dual residual. With that operator, we are not
computing the sharpest upper bound but it represents a good trade-off between
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computational feasibility and obtaining sharp upper bounds. A guideline for
the choice of the alternative operator is to construct an operator that presents
a better numerical stability than the original one.

In the multi-dimensional case, numerical results confirm that error bounds
are sharper when using the alternative representation than with the classical
one. As a result, our simple adaptive process does not need the [PBIl (nor any
other projection) to converge when using the alternative error representation
as indicators, whereas the classical representation fails to drive the algorithm
to converge without the [PBIL The classical and alternative bounds coincide
when reaching the asymptotic regime.

One notorious advantage of our approach is its flexibility. Indeed, we can
apply this technique to a wide range of problems, including adaptivity in time
domain [104], 120], adaptivity in a high continuity space [121], 122, 123], or
hp-adaptive algorithms [7], 58].

8.2. Future work

In Chapter [0 we treated the case of sonic measurements restrained to
acoustics media. In a near future, we plan to extend our adaptive strategy to
elastoacoustics media [116, 117, 118]. The main challenge of elastoacoustics
media is the presence of coupled equations. The underlying questions about
the choice of the alternative operator are: (a) Should we choose an alternative
operator for each medium type or a uniform one? (b) If we select a different
operator for elastic and purely acoustics media, which one could provide best
error distribution for elastic media? For the case of purely acoustic media,
Chapter [6] provides some hints on how to address this question. Another ques-
tion is how to take into account the elastoacoustic interface in the alternative
error representation. Our first attempt, coming from the work developed in
this dissertation, would be to select a uniform possibly vector Laplacian as the
alternative operator.

We are also interested in solving multi-physics and/or multi-equation prob-
lems, such as those described in [6], 22] [124]. For instance, [124] studied a 2.5D
resistivity problem governed by coupled equations. The challenges are similar
to those appearing in the elastoacoustic case: Which physic(s) should we select
for the alternative operator? And, how to handle the coupling?

In both developments, the aim is to “reduce” the effect of the pollution error
intrinsic of wave propagation problems so that the adaptive process can lead
to an adapted mesh requiring an optimum number of [DoF]

In addition, we plan to implement an automatic hp-adaptive process for
the resolution of the aforementioned applications. However, its implemen-
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8.2. Future work

tation is challenging mainly due to the presence of hanging nodes that are
used to guarantee the continuity of the approximations. To overcome this
difficulty, we will implement a multi-level version of the hAp-Finite Element
Method (FEMI]) described in [125]. We expect a similar behavior of the al-
ternative error representations when using an hp-adaptive process as what we
observed for p-adaptivity.
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A. Error representations in terms
of bilinear forms

A.1. Definitions

We start this appendix with some definitions and notation. Let Q < R”Y be
an open domain and H := H(Q2) a Hilbert space on .

Let T be a partition of Q into open elements K such that Q = Uker K.
For each K € T, we consider the space Hg containing the restrictions to K
of functions of H. A continuous bilinear form a : H x H — R is said to be
localisable if

a(u,v) = 2 ak(u,v), Vu e H, Yv € H, (A.1)
KeT

where ax denotes the restriction of a to the space Hy x Hg. If a is also
symmetric and positive definite, then it defines a norm on H and semi-norms
on each Hg. We denote them by

|- lla:=~/aC,) and | -og = ~ax(, ),

respectively.

A.2. Variational problem

We set b to be a localizable symmetric continuous bilinear form and f a con-
tinuous linear form, both defined on H. Let V;, < H be a finite dimensional
Galerkin approximation space of H, related to the partition 7. Let us consider
the following variational formulation and its discrete equivalent:

Find w € H, u; € V}, such that

b(u,0) =f(¢), VoeH, (A.2)
O(un, ¢n) =f(¢n), Vén € Vi (A.3)
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We assume that solutions of these variational formulations are unique. Thus,
we can define the error function e := u — uy,.

For goal-oriented approaches, we provide an output functional [ that defines
the Quantity of Interest for which we want to minimise the relative error.
For example, an output functional can be the average of a function (or
a derivative) over a small subset Qg < (2, i.e.,

() 1 1

=—| wdr or I(u)=——| Vu-adzr, forsomedeR".
92| Jog €25 Jog

(A.4)
We assume that [ is a linear and continuous form on H. The goal of compu-
tations from the engineering point of view is to accurately estimate |I(u)|. For
that purpose, the main idea of Goal-Oriented Adaptivity (GOA]) is to control
the error |I(e)|. This can be achieved by finding a sharp upper bound that is
expressed in terms of computable norms that are guaranteed to decrease as
one performs grid refinements.

A.3. Error representations

A.3.1. Classical approach
In goal-oriented adaptivity, one employs the adjoint problems (A.2)) and (A.3]):
Find v € H and v, € V}, such that

b(p,v) =l(u), V¢eH, (A.5)
b(on, vn) =l(up), Yo € V. (A.6)

We assume that problems (A.5) and (A.6) are well posed so the dual error
function € := v — vy, is well defined. Let b be a localisable symmetric positive
definite bilinear form on H such that:

br (6, ) < |9y, V)5, » Vo, e H (A7)

We use b since the b form may not be positive definite and therefore we may
not be able to define a norm or semi-norm from it. For instance, if b is the
weak form of Helmholtz operator (—A — k2)(-), then b may be selected as the
weak form of operator (—A + k?)(+).

By plugging solutions u and wuy, into (A.5)) and (A.6]) respectively, and using
the localisable property of b, we obtain the following local estimation:

Ue) = [b(e, o)l < D Jbxle, o)l < D lels [0l - (A-8)

KeT KeT
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A.3. Error representations

We observe that v is independent of the discretization and does not decrease
with mesh refinements. However, the error e of the direct problem is b-
orthogonal to Vj,. In particular b(e,v) = b(e,e). Therefore, we can improve
the upper bound of |i(e)| by introducing a quantity that decreases faster with
mesh refinements:

Ue) = Io(e,e) < ) lbx(e o)l < Y lels, lely- (A.9)

KeT KeT

A.3.2. Alternative approach

The objective of our new approach is to improve the upper bound of the error
in the |l(e)] by obtaining sharper upper bounds.

Let b be an arbitrary localisable symmetric, elliptic, and continuous bilinear
form. We define our elliptic representation of the dual residual error functional
as the solution of the problem:

Find £ € H such that:

b(6,8) = U(¢) — b(¢,v), Ve (A.10)

By the Lax-Milgram theorem (or Riesz representation), the variational for-
mulation has a unique solution on H. A similar idea called elliptic error
representation was introduced by A. Romkes & J.T. Oden [I15] in the context
of modelling error analysis for adaptive modelling.

€ must decrease with mesh refinements since it represents an error functional
that depends continuously on the error £. Moreover, € is b-orthogonal to Vj:

B 2) = Ugn) — b, vn) = 0, for all ¢y, € V.
By introducing (A.10f), we can represent the error in the as:
I(e) = ble,e) = l(e) — ble,vp) = ble, £).

Hence, we obtain the new estimate:

()] = e, )| < Y PrceB)| < Y lels, 1, (A11)
KeT KeT

If problem (A.10]) is well-posed but the b form is non-elliptic, then only the

last inequality in @ is false. In that case, we would need to make use of

an inequality such as (]?\j[) Thus, our method generalises the existing ones.
In this Dissertation, we have shown numerically that there often exists ab

so that estimate ({A.11]) is sharper than estimate (A.9)).
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Acronyms

FEM Finite Element Method

PDE Partial Differential Equation
GOA Goal-Oriented Adaptivity
DWR Dual Weighted Residual

DoF  Degrees of Freedom

Qol Quantity of Interest

PBI  Projection Based Interpolation
LWD Logging While Drilling

PML Perfectly Matched Layer
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