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Abstract
This work proposes the use of an alternative error representation for Goal-Oriented Adaptivity
(GOA) in context of steady state convection dominated diffusion problems. It introduces an
arbitrary operator for the computation of the error of an alternative dual problem. From
the new representation, we derive element-wise estimators to drive the adaptive algorithm.
The method is applied to a one dimensional (1D) steady state convection dominated diffusion
problem with homogeneous Dirichlet boundary conditions. This problem exhibits a boundary
layer that produces a loss of numerical stability. The new error representation delivers sharper
error bounds. When applied to a p-GOA Finite Element Method (FEM), the alternative error
representation captures earlier the boundary layer, despite the existing spurious numerical
oscillations.
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1 Introduction

The need for accurate computations with limited computational resources is becoming increas-
ingly urging in many engineering applications. Over the last decades, algorithms designed to
compute optimal meshes arose for various problems (e.g., [11, 12, 5]).

Classical adaptive algorithms are driven by global norms such as the energy-norm. They
are intended to provide optimal discrete spaces in the sense that they minimize the number of
unknowns needed to achieve a prescribed tolerance error in the energy-norm. Unfortunately,
these adaptive strategies may be unuseful when the quantity of interest (QoI) is only loosely
related to the energy of the problem, as it occurs in a large variety of engineering applications
(see, e.g., [14]). For those cases, GOA algorithms are employed (see [1, 15, 13, 16, 4, 10, 8]).

GOA algorithms iterate along the following steps. Given an initial coarse mesh, they esti-
mate the error either using an a posteriori error technique or by simply approximating it over
a finer mesh. Then, the error in the quantity of interest is represented with the help of the
global error functions of the original and adjoint problems. Such global representation provides
the so-called influence function, which expresses how much the error in a particular point is
affecting to the error in the QoI. This influence function alone is insufficient to drive refine-
ments, since an enrichment (refinement) on the discrete space does not guarantee a decrease of
the influence function at any particular point. Thus, one builds an element-wise based upper
bound of the influence function in terms of local norms whose energy decreases as refinements
occur. This upper bound is the one driving refinements: one simply enriches those elements
with largest contributions to that upper bound. In this way, the next coarse grid is built, and
the entire process can be iterated until a given tolerance error is reached.

In our previous work [6], we developed and analyzed an alternative error representation that
provides sharper upper bounds of the error in the QoI for a 1D Helmholtz equation. The key
of such representation was to introduce a new operator to compute the error of an alternative
dual problem. As a result, the adaptive algorithm arising from the new error representation
was more efficient when compared to a classical one.

This work extends our previous results to the case of convection dominated diffusion prob-
lems, where numerical instabilities occur due to the presence of a boundary layer [9, 12]. Thus,
the main contribution here is to study the effect of the alternative error representation devel-
oped in [6] for the case of convection dominated diffusion problems. It is well-known that the
rapid capture of the boundary layer is essential to re-gain stability. Numerical results show
that our proposed strategy captures such layer faster than classical GOA methods (see, e.g.,
[15, 13]).

In this work, we employ a classical FEM. Other methods such as Streamline upwind/Petrov-
Galerkin (SUPG) [3] or the Discontinuous Petrov–Galerkin DPG [7] formulations have been
designed and studied for the case of convection dominated diffusion problems. Our aim here is
to present an unsophisticated technique that works is often used by for practitioners.

The rest of this article is organized as follows. We introduce the problem in Section 2 and,
in Section 3, we recall the method described in [6]. Section 4 describes the algorithm. Section 5
is the core of this article and shows the numerical results of the application of the alternative
estimator for the convection-diffusion case. Finally, Section 6 draws the main conclusions of
this investigation.
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2 Model problem and formulation

We consider the following 1D steady state convection dominated diffusion problem with homo-
geneous Dirichlet conditions:

For a given source F ∈ L2(0, 1) and 0 < α� 1, find u such that,{
−α∂xxu− ∂xu = F (x) on (0, 1),

u(0) = u(1) = 0.

An variational problem associated is:

Find u ∈ H1
0 (0, 1) such that,

b(u, φ) = f(φ), ∀φ ∈ H1
0 (0, 1) (2.1)

where b is defined as

b(u, v) = α 〈∂xu , ∂xv〉L2(0,1) − 〈∂xu , v〉L2(0,1) , ∀u, v ∈ H1
0 (0, 1).

and 〈· , ·〉L2 is the standard L2 scalar product. In above, we denote by L2(0, 1) the space of
square integrable functions on (0, 1), H1(0, 1) the Sobolev space of functions with L2(0, 1) first
derivatives on (0, 1) and by H1

0 (0, 1) the subspace of functions from H1(0, 1) that vanish on the
boundaries.

3 Goal Oriented Adaptivity

Let l, a linear continuous form, denote the operator associated to the QoI. The goal is to
construct a mesh that accurately approximates l(u) using a minimum number of degrees of
freedom (DoF). We use a FEM to approximate the exact solution u by a discrete solution uh
that belongs to a finite dimensional Galerkin approximation space Vh ⊂ H1

0 (0, 1). We split the
interval (0, 1) into a partition of open elements K such that (0, 1) =

⋃
K.

To reach the optimum grid, we use adaptivity, which employs upper bounds of l(e) =
l(u − uh) = l(u) − l(uh). As mentioned in the introduction, this work focuses on constructing
sharp upper bounds.

3.1 Classical error representation

The classical method introduces the adjoint state problem:

Find v ∈ H1
0 (0, 1) such that

b(φ, v) = l(φ), ∀φ ∈ H1
0 (0, 1) (3.1)

The approximation of v in Vh is denoted by vh and its error as ε = v − vh.
By plugging the error e of the direct problem (2.1) into the adjoint problem (3.1) and using the
Galerkin orthogonality, we obtain the following element-wise upper bound:

|l(e)| = |b(e, ε)| 6
∑
K

|bK(e, ε)| . (3.2)
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3.2 Alternative error representation

We introduce a symmetric positive definite bilinear (localizable) form b̃ in order to compute a
Riesz representation of the adjoint problem residual as follows:

Find ε̃ ∈ H1
0 (0, 1) such that

b̃(φ, ε̃) = l(φ)− b(φ, vh), ∀φ ∈ H1
0 (0, 1)

In our case, we select the operator associated to the Laplace equation, i.e.:

b̃(u, v) = 〈∂xu , ∂xv〉L2(0,1) , ∀u, v ∈ H1
0 (0, 1). (3.3)

The corresponding error representation and upper bound then becomes::

|l(e)| =
∣∣∣̃b(e, ε̃)∣∣∣ 6∑

K

∣∣∣̃bK(e, ε̃)
∣∣∣ . (3.4)

Remark: Mathematically, upper error bounds (3.2) and (3.4) can be controlled by an element-
wise sum of norm product by applying Cauchy-Schwarz inequality when the bilinear forms are
symmetric and positive definite (for non-positive definite forms, a slightly more sophisticated
approach is needed). Those bounds exhibit a strictly monotonous behavior as we refine the
grid (i.e., enrich the space), while (3.2) and (3.4) can present some oscillations. However, in
practice, those norm-based upper bounds involve an additional loss of sharpness. Thus, most
practitioners prefer to use bounds (3.2) and (3.4) for computations.

4 p-Adaptive goal oriented algorithm.

We consider the following p-adaptive algorithm with the new error representations given by
Equations (3.2) and (3.4). Given an initial mesh, we first solve the direct and adjoint problem.
We then create a finer mesh by increasing uniformly the polynomial order of approximation p
by two with respect to the orders set for the initial coarse mesh.

Then, we compute errors e, ε and ε̃, which are the errors of the direct, adjoint, and alternative
dual problems, respectively. They are solutions of the following variational formulations:

Find e ∈ H1
0 (0, 1) such that

b(e, φ) = f(φ)− b(uh, φ), ∀φ ∈ H1
0 (0, 1)

Find ε ∈ H1
0 (0, 1) such that

b(φ, ε) = l(φ)− b(φ, vh), ∀φ ∈ H1
0 (0, 1)

Find ε̃ ∈ H1
0 (0, 1) such that

b̃(φ, ε̃) = l(φ)− b(φ, vh), ∀φ ∈ H1
0 (0, 1)
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Subsequently, we compute the element-wise indicators |bK(e, ε)| (resp.
∣∣∣̃bK(e, ε̃)

∣∣∣). Then, we

mark those elements that exhibit an error estimator larger than a given ratio 1 − β of the
largest error estimator. Finally, we increase by one the order of the marked elements. Figure 1
sketches the main steps of the algorithm. This strategy has been chosen for its simplicity
of implementation; more sophisticated marking processes and refinements strategies can be
designed, including those shown in [16, 2].

Coarse mesh

Fine mesh

Solve the adjoint problemSolve the direct problem

Compute error of
the direct problem

Compute estimators

Perform refinements

Coarse mesh updated

p + 2

Compute error of
the adjoint problem

or

Compute error of the
alternative adjoint problem

Figure 1 – Goal oriented adaptive algorithm.

5 Numerical results

The initial coarse mesh contains 100 elements uniformly distributed in the log scale between
10−4 and 1 with a uniform polynomial order pinit = 1. We define the source F ≡ 1 over the
domain and the QoI as the integration of the ith derivative, (i = 0 or i = 1) on a subset that
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includes the boundary layer, specifically (0, 0.05) ⊂ (0, 1). That is, ∀φ ∈ H1
0 (0, 1),

f(φ) =

∫ 1

0

F · φ =

∫ 1

0

φ,

li(φ) =
1

0.05

∫ 0.05

0

φ(i).

We set the diffusion coefficient to α = 10−6. The bilinear form we use to compute the alternative
bounds is the one derived from the Laplace equation with homogeneous Dirichlet boundary
conditions given by Equation (3.3).

5.1 Uniform p-refinement

Figure 2 illustrates the behavior of the bounds when performing uniform p-refinements. Figure
2a shows that the alternative bound coincides exactly with the error in the QoI when considering
l0. The sign of every estimator is the same, and thus, the triangular inequality that provides
the element wise upper bound generates no loss. Figure 2b illustrates the behavior of the upper
bounds when considering l1. In both cases, the alternative bound is sharper than the classical
one. Consequently, we expect the adaptive process driven by the alternative error estimators
to be more efficient. In the following, we only consider l0 as QoI.
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200 400 600 800
10−2

10−1

100

101

102

103

104

105

DoF

R
el
at
iv
e
er
ro
r
in

%

(a) The QoI is l0
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(b) The QoI is l1

Figure 2 – Bounds obtained using uniform p-refinements.

5.2 Adaptive process

Since the exact solution is almost linear everywhere except on the proximity of the boundary
layer, we expect that the optimal mesh will select a very large p on the element(s) containing
the boundary layer, and it will be p = 1 elsewhere. Furthermore, since the alternative adjoint
error ε̃ is zero at the nodes due to the choice of Laplace equation as the alternative dual operator
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(see [6] for details), we would expect to solve the linear part exactly when considering the exact
solution as the reference one. However, the selected fine mesh is not adapted to this kind of
problem, since the initial mesh is coarse and does not match the boundary layer, as it occurs
in practical problems. Thus, the algorithm starts in the pre-asymptotic regime.

We ran the adaptive processes described in Section 4 with a stopping tolerance in the QoI of
0.01% of the direct fine solution in the QoI and a maximum approximation order of 27. Figure 3
tracks the error evolution on the QoI throughout the adaptive process with the percentage used
for the marking process set to β = 60% (left panel) and β = 1% (right panel). The alternative
estimators employs less DoF than both the classical adaptive process and uniform p-refinements.
We have plotted the final meshes (see Figure 4) for the cases where β = 60% (left panel) and
β = 1% (right panel). The respective direct solution computed on those meshes are displayed
in Figure 5.

We observe that the classical algorithm fails at eliminating the spurious oscillations in both
cases, especially, when β = 1%. It is completely miss-driven by the spurious oscillations.
Also the alternative method identifies the boundary layer more efficiently than the classical
one. Indeed, for the case β = 60%, the algorithm with the classical estimators executes more
refinements in the linear part of the solution, while the alternative estimator refines more
intensively around the boundary layer. For β = 1%, the classical method fails to catch both
the boundary layer and the QoI, producing thus an erroneous solution, whereas the alternative
method almost succeeds at eliminating the oscillations by computing the optimal mesh. Note
that the classical method concentrates refinements around the point 0.05, where the QoI ends.

For the figures, we have employed an “exact solution” computed using an overkilling mesh
(containing around 800 elements).

Uniform p-refinements Classical criteria Alternative criteria
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Figure 3 – Error in the QoI obtained using adaptive p-refinements for different refinements
ratios β. Left panel: β = 60%, right panel: β = 1%.
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Figure 4 – Final adapted coarse meshes after the adaptive process for different ratios of refine-
ment β. Left panel: β = 60%, right panel: β = 1%.
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Figure 5 – Solution of the direct problem on the adapted coarse mesh for different ratios of
refinement β. Left panel: β = 60%, right panel: β = 1%.

6 Conclusions

In this work, we have studied the behavior of a simple p-adaptive process when using both
a classical error representation in the QoI (as described in [13, 15]) and an alternative error
representation, for the case of a 1D convection dominated diffusion problem. The well-known
particularity of this problem is that a boundary layer generates spurious oscillations on the
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numerical solution for coarse meshes [9]. For a coarse initial mesh with few DoF, our alternative
GOA algorithm still produces a final mesh that catches the boundary layer while reducing
significantly the spurious oscillations. As future work, we plan to incorporate unrefinements
within our adaptive strategy in order to correct possibly misplaced refinements at a later stage,
and thus, obtain optimal meshes for any ratio of refinement β. We are also working in 2D and
3D problems.
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