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Abstract. In this paper we present a theorem that generalizes Sawyer’s classic result
about mixed weighted inequalities to the multilinear context. Let ~w = (w1, ..., wm) and

ν = w
1
m
1 ...w

1
m
m , the main result of the paper sentences that under different conditions on

the weights we can obtain∥∥∥∥∥T (~f )(x)

v

∥∥∥∥∥
L

1
m

,∞(νv
1
m )

≤ C
m∏
i=1

‖fi‖L1(wi),

where T is a multilinear Calderón-Zygmund operator. To obtain this result we first
prove it for the m-fold product of the Hardy-Littlewood maximal operator M , and also

for M(~f)(x): the multi(sub)linear maximal function introduced in [LOPTT].
As an application we also prove a vector-valued extension to the mixed weighted

weak-type inequalities of multilinear Calderón-Zygmund operators.

1. Introduction

In 1985, E. Sawyer [S] proved the following mixed weak-type inequality:

Theorem 1.1. If u, v ∈ A1, then there is a constant C such that for all t > 0,

uv
({
x ∈ R :

M(fv)(x)

v(x)
> t
})
≤ C

t

∫
R
|f(x)|u(x)v(x) dx.

In the same work E. Sawyer conjectured that the previous theorem is valid if the

maximal operator is replaced by the Hilbert transform. In 2005, D. Cruz-Uribe, J. M.

Martell and C. Pérez [CMP] extended this result to Rn. Furthermore, they proved it for

Calderón-Zygmund operators, solving this Sawyer’s conjecture.

Theorem 1.2 ([CMP]). If u, v ∈ A1, or u ∈ A1 and uv ∈ A∞, then there is a constant

C such that for all t > 0,

uv

({
x ∈ Rn :

|T (fv)(x)|
v(x)

> t
})

≤ C

t

∫
Rn
|f(x)|u(x)v(x) dx,

where T is Hardy-Littlewood maximal function or any Calderón-Zygmund operator.

Quantitative estimates of these mixed weighted results can be found in [OPR]. More-

over, it was conjectured in [CMP] that the conclusion of the previous theorem still holds

if a weaker and more general hypothesis is satisfied. That is, if we have the following

conditions on the weights, u ∈ A1 and v ∈ A∞. Recently, in [LOP] the first two authors
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and C. Pérez solved such conjecture. Namely, the following theorem was proved, which

constitutes the most difficult case of this class of mixed weighted inequalities.

Theorem 1.3 ([LOP]). Let T be a Calderón-Zygmund operator or the Hardy-Littlewood

maximal operator and let u ∈ A1 and v ∈ A∞. Then there is a finite constant C depending

on the A1 constant of u and the A∞ constant of v such that∥∥∥T (fv)

v

∥∥∥
L1,∞(uv)

≤ C‖f‖L1(uv).

On the other hand, the study of multilinear Calderón-Zygmund theory started in the

seventies with the works of R. Coifman and Y. Meyer ([CM1] and [CM2]). However, a

systematic treatment of this topic appears later with works of L. Grafakos and R. Torres

[GT1, GT2]. We recall the definition of a multilinear Calderón-Zygmund operator: let

T : S(Rn) × · · · × S(Rn) → S ′(Rn) be a multilinear operator initially defined on the m-

fold product of Schwartz spaces and taking values into the space of tempered distributions;

we say that T is an m-linear Calderón-Zygmund operator if, for some 1 ≤ q1, . . . , qm <∞
and 1

m
≤ p < ∞ satisfying 1

p
= 1

q1
+ · · · + 1

qm
, it extends to a bounded multilinear

operator from Lq1 × · · · × Lqm to Lp, and if there exists a function K defined off the

diagonal x = y1 = · · · = ym in (Rn)m+1 satisfying the appropriate decay and smoothness

conditions (see Page 5 in [LOPTT] ) and such that

T (f1, . . . , fm)(x) =

∫
Rn
· · ·
∫
Rn
K(x, y1, . . . , ym)

m∏
i=1

fi(yi) dy1 · · · dym

for all x /∈ ∩mi=1suppfi. Related to weighted estimates for these operators, the first result

was obtained in [GT2] (see also [PT]) where the authors proved that, if 1 < q1, . . . , qm <∞
and w is a weight in the Muckenhoupt Aq0 class for q0 = min{q1, . . . , qm}, an m-linear

Calderón-Zygmund operator T maps Lq1(w)×· · ·×Lqm(w) into Lp(w). In [LOPTT] Lerner

et. al, developed the appropriate class of multiple weights for m-linear Calderón-Zygmund

operators. Now, we recall some of those results in [LOPTT] that will be useful for us along

this paper. Let 1 ≤ q1, . . . , qm < ∞ and 1
m
≤ p < ∞ be such that 1

p
= 1

q1
+ · · · + 1

qm
. We

say that ~w = (w1, . . . , wm) satisfies the multilinear A~q condition if

sup
Q

( 1

|Q|

∫
Q

ν~w

)1/p
m∏
i=1

( 1

|Q|

∫
Q

w
1−q′i
i

)1/q′i
<∞

where the supremum is taken over all cubes Q (when qi = 1,
(

1
|Q|

∫
Q
w

1−q′i
i

)1/q′i
is under-

stood as (inf
Q
wi)
−1). Now, if ~w satisfies the A~q condition and 1 < q1, . . . , qm < ∞, then

an m-linear Calderón-Zygmund operator T maps Lq1(w1) × · · · × Lqm(wm) into Lp(ν~w).

If at least one qi = 1, then T maps Lq1(w1) × · · · × Lqm(wm) into Lp,∞(ν~w). It is shown

that
∏m

i=1Aqi ⊆ A~q and that this inclusion is strict. Moreover, if T is the m-linear Riesz

transform, it was proved in [LOPTT] that A~q is a necessary condition for such weighted

estimate of T .
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One of the key points in [LOPTT] was the introduction of the multi(sub)linear maximal

function M defined by

M(~f )(x) = sup
Q3x

m∏
i=1

1

|Q|

∫
Q

|fi(yi)|dyi,

where ~f = (f1, ..., fm) and the supremum is taken over all cubes Q containing x.

This maximal operator is smaller than the product
∏m

i=1Mfi, which was the auxiliary

operator used previously to estimate multilinear singular integral operators.

The aim of this paper is to obtain mixed weighted estimates that generalize Theorem

1.3 to the multilinear context. We will investigate both
∏m

i=1Mfi and M(~f) under dif-

ferent assumptions. Then by an extrapolation theorem we can also prove mixed weighted

inequalities for multilinear Calderón-Zygmund operators.

The first result of this paper is the following:

Theorem 1.4. Let w1, ..., wm ∈ A1 and v ∈ A∞. Denote ν = w
1
m
1 ...w

1
m
m . Then,∥∥∥∥∥

∏m
i=1Mfi
v

∥∥∥∥∥
L

1
m,∞(νv

1
m )

≤ C
m∏
i=1

‖fi‖L1(wi).

The particular case in which the weight v = 1 in the theorem above was proved in

[LOPTT] (See Theorem 3.12 there). Adding a non-constant function v in the distribution

function makes the proof more complicated. However, benefits from Theorem 1.3 and

the ideas in [LOPTT] allow us to obtain the result. It is obvious that the conclusion in

Theorem 1.4 also holds for the maximal operator M.

We will see below that as a consequence of Theorem 1.4, we can obtain the same result

for multilinear Calderón-Zygmund operators. However, we know that
∏m

i=1Mfi is too big

to estimate multilinear Calderón-Zygmund operators. In fact, it was proved in [LOPTT]

that the condition w1, ..., wm ∈ A1 is stronger than ~w = (w1, ..., wm) ∈ A~1. And since the

last condition characterizes the weak type of a multilinear Calderón-Zygmund operator

T from L1(w1)× · · · ×L1(wm) into L1/m,∞(ν), it is natural to ask if it is possible to relax

the hypothesis w1, ..., wm ∈ A1 in Theorem 1.4 if we put T or M instead of
∏m

i=1 Mfi.

The next theorem gives a partially positive answer.

Theorem 1.5. Let ~w = (w1, ..., wm) ∈ A~1, ν = w
1
m
1 ...w

1
m
m and v be a weight satisfying

νv
1
m ∈ A∞. Then there is a constant C such that

(1.1)

∥∥∥∥∥M(~f )(x)

v

∥∥∥∥∥
L

1
m,∞(νv

1
m )

≤ C
m∏
i=1

‖fi‖L1(wi).

So (1.1) holds for either ~w = (w1, ..., wm) ∈ A~1 and νv
1
m ∈ A∞ or (as a consequence

of Theorem 1.4) if the weights wi ∈ A1 for i = 1, ...,m and v ∈ A∞. These conditions

are independent. However, we believe that there is a unified condition that contains both

such that (1.1) holds. That is:
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Conjecture 1.6. Let ~w = (w1, ..., wm) ∈ A~1, v1/m ∈ A∞ and ν = w
1
m
1 ...w

1
m
m . Then there

is a constant C such that∥∥∥∥∥M(~f )(x)

v

∥∥∥∥∥
L

1
m,∞(νv

1
m )

≤ C
m∏
i=1

‖fi‖L1(wi)

Remark 1.7. In general, under the hypothesis of Theorem 1.5 the estimate (1.1) does

not hold if M(~f) is replaced by
∏m

i=1Mfi even in the case that v(x) = 1. This fact was

proved in [LOPTT, Remark 7.5].

The following (extrapolation) theorem allows us to reduce the problem of multilinear

Calderón-Zygmund operators to the multilinear maximal function, exactly as in the linear

case. Actually, the theorem below was essentially obtained in [OP], which is a combination

of Theorem 1.5 and some observations in Section 2.2 there. However, for the sake of

completeness we will give a complete proof in Appendix A .

Theorem 1.8 ([OP]). Let ~w = (w1, ..., wm) ∈ A~1, v1/m ∈ A∞ and ν = w
1
m
1 ...w

1
m
m . Then∥∥∥∥∥T (~f)

v

∥∥∥∥∥
L

1
m,∞(νv

1
m )

≤ C

∥∥∥∥∥M(~f)

v

∥∥∥∥∥
L

1
m,∞(νv

1
m )

where C is a constant and T is a multilinear Calderón-Zygmund operator.

Now, as a consequence of Theorems 1.4, 1.5 and 1.8 we obtain the main result of this

paper:

Theorem 1.9. Let T be a multilinear Calderón-Zygmund operator, ~w = (w1, ..., wm) and

ν = w
1
m
1 ...w

1
m
m . Suppose that ~w ∈ A~1 and νv

1
m ∈ A∞ or w1, ..., wm ∈ A1 and v ∈ A∞. Then

there is a constant C such that

(1.2)

∥∥∥∥∥T (~f )(x)

v

∥∥∥∥∥
L

1
m,∞(νv

1
m )

≤ C
m∏
i=1

‖fi‖L1(wi)

Recall the definition of RH∞:

Definition 1.10. We denote by RH∞ the class of weights w such that for all cube Q,

there exists a constant C, which is independent of Q, such that

ess sup
x∈Q

w(x) ≤ C

|Q|

∫
Q

w(x)dx.

Since if u ∈ A1 and v ∈ RH∞, then uv
1
m ∈ A∞ (see Lemma 2.1 below), we have a

direct corollary of Theorem 1.9.

Corollary 1.11. Let ~w = (w1, ..., wm) ∈ A~1 and let v ∈ RH∞. Then there is a constant

C such that ∥∥∥∥∥T (~f )(x)

v

∥∥∥∥∥
L

1
m,∞(νv

1
m )

≤ C

m∏
i=1

‖fi‖L1(wi)
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The article is organized as follows. In Section 2 we prove Theorem 1.4. The proof

of Theorem 1.5 is presented in Section 3. In Section 4 as an application of Theorem

1.9 we obtain a vector-valued extension of the mixed weighted inequalities obtained for

multilinear Calderón-Zygmund operators. The last Section is the Appendix A where we

give a complete proof of Theorem 1.8.

2. Proof of Theorem 1.4

First, we need the following Lemma.

Lemma 2.1.

(a) w ∈ A∞ if and only if w = w1w2, where w1 ∈ A1 and w2 ∈ RH∞.

(b) If w ∈ A1, then w−1 ∈ RH∞.

(c) If u, v ∈ RH∞, then uv ∈ RH∞.

(d) If w ∈ A∞ and u ∈ RH∞, then wu ∈ A∞.

(e) If w ∈ RH∞, then ws ∈ RH∞ for any s > 0.

All these properties of Ap classes of Muckenhoupt are well known. The first three

can be found in [CN] or [GR] for instance. However, as far as we know, (d) and (e) are

not written specifically in any place, so in the following paragraph we present a simple

argument for them.

Proof of (d): Since w ∈ A∞, by (a), w = w1w2, where w1 ∈ A1 and w2 ∈ RH∞. By

(c), w2u ∈ RH∞. Then, wu = (w1w2)u = w1(w2u). Now, by (a), wu ∈ A∞.

Proof of (e): If s ≥ 1, this is just by Hölder’s inequality, so we only need to consider

the case s < 1. Since w ∈ RH∞ ⊂ A∞, then

1

|Q|

∫
Q

w ≤ Cs,w

( 1

|Q|

∫
Q

ws
) 1
s
.

By definition, our claim follows immediately.

Proof of Theorem 1.4 : The main idea of this proof is to reduce the problem to the

linear case and then apply Theorem 1.3. We define

E = {x : v(x) <
m∏
i=1

Mfi(x) ≤ 2v(x)}

Let ṽi =
∏m

j=1,j 6=i (Mfj)
−1 and let vi = vṽi. Observe that v ∈ A∞ and ṽi ∈ RH∞. By

Lemma 2.1 (d), vi ∈ A∞. In order to prove the theorem it is enough to show that

v
1
mν(E) ≤ C

m∏
i=1

‖fi‖L1(wi).

By Hölder’s inequality and Theorem 1.3, we have

v
1
mν(E) ≤

∫
E

( m∏
i=1

Mfi wi
) 1
m ≤

m∏
i=1

(∫
E

Mfi wi

) 1
m ≤ 2

m∏
i=1

(∫
E

vi wi

) 1
m
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≤ 2
m∏
i=1

(∫
{x:Mfi>vi}

vi wi

) 1
m ≤ C

m∏
i=1

‖fi‖
1
m

L1(wi)
,

where in the last inequality we have used Theorem 1.3 since wi ∈ A1 and vi ∈ A∞.

3. Proof of Theorem 1.5

We follow the strategy of [LOP]. So we only need to consider the dyadic multilinear

maximal functions. First, recall that if ~w = (w1, ..., wm) ∈ A~1, then ν = w
1
m
1 ...w

1
m
m ∈ A1

(see Theorem 3.6 in [LOPTT]). On the other hand, since ν ∈ A1 it is not difficult to check

that the hypothesis νv
1
m ∈ A∞ implies that v

1
m ∈ A∞.

We shall prove

νv
1
m

({
x : 1 <

Md(f1, · · · , fm)(x)

v(x)
≤ 2
})
≤ C

( m∏
i=1

∫
Rn
|fi|wi

) 1
m

Without loss of generality, we can assume fi ≥ 0, i = 1, · · · ,m. Let

Ek :=
{
x : 1 <

Md(f1, · · · , fm)(x)

v(x)
≤ 2, amk < v(x) ≤ am(k+1)

}
,

where a > 2n. Again, define

Ωk = {Md(f1, · · · , fm) > amk}

and let {Ikj }j be the collection of maximal dyadic cubes in Ωk. Then by maximality,

amk <
∏m

i=1〈fi〉Ikj ≤ 2mnamk. Splitting the collection {Ikj }j to

Ql,k = {Ikj : ak+l ≤ 〈v
1
m 〉Ikj < ak+l+1}, l ∈ Z.

Then we have ∑
k∈Z

νv
1
m (Ek) =

∑
k∈Z

νv
1
m (Ek ∩ Ωk) =

∑
k∈Z

∑
j

νv
1
m (Ek ∩ Ikj )

≤
∑
k∈Z

∑
l≥0

∑
Ikj ∈Ql,k

ak+1ν(Ek ∩ Ikj )

=
∑
k∈Z

∑
l≥0

∑
Ikj ∈Γl,k

ak+1ν(Ek ∩ Ikj ),

where

Γl,k = {Ikj ∈ Ql,k : |Ikj ∩ {x : ak < v
1
m ≤ ak+1}| > 0}.

From now on, we shall deal with the case l = −1 and l ≥ 0 separately. By monotone

convergence theorem, it suffices to give a uniform estimate for∑
k≥N

∑
l≥0

∑
Ikj ∈Γl,k

ak+1ν(Ek ∩ Ikj ),

where N < 0. We have the following two lemmas. The proofs are essentially given in

[LOP].

Lemma 3.1. Γ = ∪l∈Z ∪k≥N Γl,k is sparse.
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Lemma 3.2. For l ≥ 0 and Ikj ∈ Γl,k, there exist constants c1 and c2 depending on ν, v

such that

ν(Ek ∩ Ikj ) ≤ c1e
−c2lν(Ikj ).

We also have the following lemma.

Lemma 3.3. If w1w2 ∈ A∞, then for any cube Q, we have

〈w1w2〉Q ≤ C([w1w2]A∞)〈w1〉Q〈w2〉Q.

Proof. let E1 = {x ∈ Q : w1(x) > 4〈w1〉Q} and E2 = {x ∈ Q : w2(x) > 4〈w2〉Q}. Then by

Chebyshev, it is easy to see that E := Q\(E1∪E2) satisfies |E| ≥ 1
2
|Q|. Since w1w2 ∈ A∞,

we have

w1w2(Q) ≤ c([w1w2]A∞)w1w2(E) ≤ 16c([w1w2]A∞)〈w1〉Q〈w2〉Q|E|

≤ 16c([w1w2]A∞)〈w1〉Q〈w2〉Q|Q|.

�

With this lemma, we can also obtain the exponential decay for l < 0.

Lemma 3.4. For l < 0 and Ikj ∈ Γl,k, there exists a constant c1 depending on ν, v such

that

ν(Ek ∩ Ikj ) ≤ c1a
lν(Ikj ).

Proof. By Lemma 3.3, we have

νv
1
m (Ikj ) ≤ Cν,v〈ν〉Ikj 〈v

1
m 〉Ikj |I

k
j | ≤ Cν,va

k+lν(Ikj ).

On the other hand,

νv
1
m (Ikj ) ≥ akν(Ek ∩ Ikj ).

Therefore

ν(Ek ∩ Ikj ) ≤ Cν,va
lν(Ikj ).

�

Now fix l, form the principal cubes for ∪k≥NΓl,k: let P l0 be the maximal cubes in

∪k≥NΓl,k, then for m ≥ 0, if I ts ∈ P lm, we say Ikj ∈ P lm+1 if Ikj is maximal (in the sense of

inclusion) in D(I ts) such that

〈ν〉Ikj > 2〈ν〉Its
Denote P l = ∪m≥0P lm and π(Q) is the minimal principal cube which contains Q. We have∑

k

∑
l∈Z

∑
Ikj ∈Γl,k

ak+1ν(Ek ∩ Ikj ) ≤
∑
l∈Z

c1e
−c2|l|a1−l

∑
k

∑
Ikj ∈Γl,k

〈v
1
m 〉Ikj ν(Ikj )

≤
∑
l∈Z

2c1e
−c2|l|a1−l

∑
Its∈Pl
〈ν〉Its

∑
k,j:π(Ikj )=Its

v
1
m (Ikj )

.n
∑
l∈Z

c1e
−c2|l|a−l[v

1
m ]A∞

∑
Its∈Pl
〈ν〉Itsv

1
m (I ts)
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=
∑
l∈Z

c1e
−c2|l|a−l[v

1
m ]A∞

∫
Rn
v

1
m

∑
Its∈Pl
〈ν〉ItsχIts

.
∑
l∈Z

c1e
−c2|l|a−l[v

1
m ]A∞ [ν]A1

∑
Q∈Pl∗

νv
1
m (Q),

where in the last step we have used the stopping criteria, i.e.,∑
Its∈Pl
〈ν〉ItsχIts ≤ 2[ν]A1ν(x), a.e. x ∈ ∪

s,t:Its∈Pl
I ts

and P l∗ is the collection of maximal cubes (in the sense of inclusion) in P l. For fixed

Q ∈ P l∗, by Lemma 3.3

νv
1
m (Q) ≤ Cν,v〈ν〉Q〈v

1
m 〉Q|Q| .n alCν,vu(Q)

m∏
i=1

〈fi〉
1
m
Q

≤ alCν,v[~w]A~1

m∏
i=1

(

∫
Q

fiwi)
1
m .

By the disjointness of Q and Hölder’s inequality, we obtain∑
Q∈Pl∗

νv
1
m (Q) . alCν,v[~w]A~1

m∏
i=1

‖fi‖
1
m

L1(wi)
,

and we conclude the proof.

4. A vector-valued extension of Theorem 1.9

Recently in [CMO] D. Carando, M. Mazzitelli and the second author obtained a gen-

eralization of the Marcinkiewicz-Zygmund inequalities to the context of multilinear oper-

ators. In the particular case of paraproducts, Marcinkiewicz-Zygmund inequalities were

obtained by C. Benea and C. Muscalu in [BM1] and [BM2]. The results in [CMO] extend

the previous ones in [GM] and [BPV].

The following theorem is one of the results in [CMO].

Theorem 4.1 ([CMO]). Let 0 < p, q1, . . . , qm < r < 2 or r = 2 and 0 < p, q1, . . . , qm <∞
and, for each 1 ≤ i ≤ m, consider {f iki}ki ⊂ Lqi(µi). And Let S be a multilinear operator

such that S : Lq1(µ1)×· · ·×Lqm(µm)→ Lp,∞(ν), then, there exists a constant C > 0 such

that

(4.1)

∥∥∥∥∥∥
( ∑
k1,...,km

|S(f 1
k1
, . . . , fmkm)|r

) 1
r

∥∥∥∥∥∥
Lp,∞(ν)

≤ C‖S‖weak
m∏
i=1

∥∥∥∥∥∥
(∑

ki

|f iki |
r

) 1
r

∥∥∥∥∥∥
Lqi (µi)

.

As a consequence of this theorem and Theorem 1.4 we obtain the following mixed

weighted vector valued inequality for a multilinear Calderón-Zygmund operator T .
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Corollary 4.2. Let S(~f) = T (~f)
v

, where T is a Calderón-Zygmund operator. Let ~w =

(w1, ..., wm) ∈ A~1 and v ∈ RH∞, or w1, ..., wm ∈ A1 and v ∈ A∞. Let ν = w
1
m
1 ...w

1
m
m

and let 1 < r ≤ 2. For each 1 ≤ i ≤ m, consider {f iki}ki ⊂ L1(wi). Then, there exists a

constant C > 0 such that

(4.2)

∥∥∥∥∥∥
( ∑
k1,...,km

|S(f 1
k1
, . . . , fmkm)|r

) 1
r

∥∥∥∥∥∥
L

1
m,∞(νv

1
m )

≤ C
m∏
i=1

∥∥∥∥∥∥
(∑

ki

|f iki|
r

) 1
r

∥∥∥∥∥∥
L1(wi)

.

Observe that S satisfies S : L1(w1)× · · ·×L1(wm)→ L
1
m
,∞(νv

1
m ), so we are under the

hypothesis of Theorem 4.1.

5. Appendix A. Proof of Theorem 1.8

First, as we mentioned before, that if ~w = (w1, ..., wm) ∈ A~1 then ν = w
1
m
1 ...w

1
m
m ∈ A1.

We will follow the ideas of [OP, Theorem 1.5], and these ideas are based in previous one

in [CMP]. Define the operator S by

Sf(x) =
M(fν)(x)

ν(x)

when ν(x) 6= 0 and Sf(x) = 0 when ν(x) = 0. (Since ν ∈ A1, ν > 0 a.e.).

Since ν ∈ A1, S is bounded on L∞(νv
1
m ) with constant C = [ν]A1 , that is,

‖Sf‖
L∞(νv

1
m )
≤ [ν]A1‖f‖L∞(νv

1
m )
.

We will now show that S is bounded on Lp0(νv
1
m ) for some 1 < p0 <∞. Observe that∫

Rn
Sf(x)p0 ν(x) v

1
m (x) dx =

∫
Rn
M(fν)(x)p0 ν(x)1−p0 v

1
m (x) dx.

Since v1/m ∈ A∞, v
1
m ∈ At for some t > 1 large. Then by the Ap factorization theorem

there exist v1, v2 ∈ A1 such that v
1
m = v1v

1−t
2 ; hence,

ν1−p0v
1
m = v1(νv

t−1
p0−1

2 ).

By Lemma 2.3 in [CMP] there exists 0 < ε < 1, depending only on [ν]A1 , such that

νvε2 ∈ A1 for all v2 ∈ A1 and 0 < ε < ε0. Thus, if we let

p0 =
2(t− 1)

ε0

+ 1,

then νv
1
m ∈ Ap0 .

By Muckenhoupt’s theorem, M is bounded on Lp0(ν1−p0v
1
m ) and therefore S is bounded

on Lp0(νv
1
m ) with some constant C0. Thus by Marcinkiewicz interpolation in the scale of

Lorentz spaces, S is bounded on Lq,1(νv
1
m ) for all p0 < q < ∞. In particular, by [CMP,

Proposition A.1],
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‖Sf‖
Lq,1(νv

1
m )
≤ 2

1
q

(
C0

( 1

p0

− 1

q

)
+ C1

)
‖f‖

Lq,1(νv
1
m )
.

Thus, for all q ≥ 2p0 we have that ‖Sf‖
Lq,1(νv

1
m )
≤ K0‖f‖Lq,1(νv

1
m )

withK0 = 4p0

(
C0+C1

)
.

We emphasize that the constant K0 is valid for every q ≥ 2p0.

Again by [CMP, Lemma 2.3], for every weight W1 ∈ A1 with [W1]A1 ≤ 2K0 there

exists 0 < ε̃0 < 1 (that depends only on K0) such that W1W
ε
2 ∈ A1 for all W2 ∈ A1 and

0 < ε < ε̃0.

Fix 0 < ε < min{ε̃0,
1

2p0
} and let r = (1

ε
)′. Then r′ > 2p0 and so S is bounded on

Lr
′,1(νv

1
m ) with constant bounded by K0. Now apply the Rubio de Francia algorithm to

define the operator R on h ∈ Lr′,1(νv
1
m ), h ≥ 0, by

Rh(x) =
∞∑
k=0

Skh(x)

2kKk
0

.

It follows immediately from this definition that:

• h(x) ≤ Rh(x);

• ‖Rh‖
Lr′,1(νv

1
m )
≤ 2‖h‖

Lr′,1(νv
1
m )

;

• S(Rh)(x) ≤ 2K0Rh(x).

In particular, it follows from the last item and the definition of S that Rh ν ∈ A1

with [Rh ν]A1 ≤ 2K0. Let W1 = Rh ν and W2 = v1 ∈ A1. Then W1W
ε
2 ∈ A1. Hence,

Rh ν v 1
mr′ ∈ A1 ⊂ A∞.

Then,∥∥∥T (~f)

v

∥∥∥ 1
mr

L
1
m,∞(νv

1
m )

= sup
λ>0

λ
1
mr

(
νv

1
m {x ∈ Rn :

∣∣∣T ( ~f)(x)

v(x)

∣∣∣ > λ}
) 1
r

= sup
λ>0

λ
1
mr

(
νv

1
m {x ∈ Rn :

∣∣∣T ( ~f)(x)

v(x)

∣∣∣ 1
mr
> λ

1
mr }
) 1
r

= sup
t>0

t
(
νv

1
m {x ∈ Rn :

∣∣∣T ( ~f)(x)

v(x)

∣∣∣ 1
mr
> t}

) 1
r

=
∥∥∥(T (~f)

v

) 1
mr
∥∥∥
Lr,∞(νv

1
m )

= sup
h∈Lr′,1(νv

1
m ) : ‖h‖

Lr
′,1(νv

1
m )

=1

∣∣∣ ∫
Rn

∣∣∣T (~f)(x)

v(x)

∣∣∣ 1
mr

h(x) ν(x) v
1
m (x) dx

∣∣∣
= sup

h∈Lr′,1(νv
1
m ) : ‖h‖

Lr
′,1(νv

1
m )

=1

∣∣∣ ∫
Rn
|T (~f)(x)|

1
mr h(x) ν(x) v

1
mr′ (x) dx

∣∣∣.
Before finishing we recall the following fact, which was proved in [LOPTT] (see Corollary

3.8 there), if w ∈ A∞ and s > 0 then
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∫
Rn
|T (~f)(x)|s w(x)dx ≤ C

∫
Rn
M(~f)(x)s w(x)dx.

From the definition of Rh(x), the last inequality and Hölder’s inequality

∫
Rn
|T (~f)(x)|

1
mr h(x) ν(x) v

1
mr′ (x) dx ≤

∫
Rn
|T (~f)(x)|

1
mr Rh(x) ν(x) v

1
mr′ (x) dx

≤
∫
Rn
M(~f)(x)

1
mr Rh(x) ν(x) v

1
mr′ (x) dx

= C

∫
Rn

(M(~f)(x)

v(x)

) 1
mr Rh(x) ν(x) v

1
m (x) dx

≤ C
∥∥∥(M(~f)

v

) 1
mr
∥∥∥
Lr,∞(νv

1
m )

∥∥∥Rh∥∥∥
Lr′,1(νv

1
m )

≤ 2 C
∥∥∥M(~f)

v

∥∥∥ 1
mr

L
1
m,∞(νv

1
m )

∥∥∥h∥∥∥
Lr′,1(νv

1
m )

= 2 C
∥∥∥M(~f)

v

∥∥∥ 1
mr

L
1
m,∞(νv

1
m )
.

So we have that ∥∥∥T (~f)

v

∥∥∥ 1
mr

L
1
m,∞(νv

1
m )
≤ C

∥∥∥M(~f)

v

∥∥∥ 1
mr

L
1
m,∞(νv

1
m )
.
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[OPR] S. Ombrosi, C. Pérez and J. Recchi, Quantitative weighted mixed weak-type in-

equalities for classical operators, Indiana Univ. Math. J., 65(2016) 615–640.
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