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Abstract. Our main goal in this article is to study mixed norm estimates for the Cesàro means
associated with Dunkl–Hermite expansions on Rd. These expansions arise when one considers the
Dunkl–Hermite operator (or Dunkl harmonic oscillator) Hκ := −∆κ + |x|2, where ∆κ stands for
the Dunkl–Laplacian. It is shown that the desired mixed norm estimates are equivalent to vector-
valued inequalities for a sequence of Cesàro means for Laguerre expansions with shifted parameter.
In order to obtain such vector-valued inequalities, we develop an argument to extend these Laguerre
operators for complex values of the parameters involved and apply a version of three lines lemma.

1. Introduction and main results

The Dunkl operators were introduced by C. F. Dunkl in [9], where he built a framework for a
theory of special functions and integral transforms in several variables related to reflection groups.
Such operators are relevant in physics, namely for the analysis of quantum many body systems of
Calogero–Moser–Sutherland type (see [8, 14]). From the mathematical analysis point of view, the
importance of Dunkl operators lies on the fact that they generalize the theory of symmetric spaces
of Euclidean type. There is a vast literature related to Dunkl transform and Dunkl Laplacian, see
for instance [1, 5, 7, 12, 18, 23, 24].

In [17] M. Rösler studied the Dunkl–harmonic oscillator (which we will also call Dunkl–Hermite
operator)

Hκ := −∆κ + |x|2,
where ∆κ stands for the Dunkl–Laplacian (2.2), and introduced the Dunkl–Hermite functions Φµ,κ,

µ ∈ Nd, as eigenfunctions of Hκ. When κ, which is called a multiplicity function (see (2.1)), is the
null function, the situation is reduced to the standard Hermite operator H and Φµ,κ become the
usual Hermite functions Φµ, see [17, page 521]. The set {Φµ,κ}µ∈Nd forms an orthonormal basis for

L2(Rd, h2
κ dx) where h2

κ is a suitable weight function defined in terms of the corresponding reflection
group and κ, see precise definitions in Section 2. Thus we have the orthogonal expansion

f =
∑
µ∈Nd

(f,Φµ,κ)Φµ,κ

which converges to f in L2(Rd, h2
κ dx). Here (·, ·) is the product in L2(Rd, h2

κ dx). In short we can
rewrite this as

(1.1) f =

∞∑
j=0

Pj,κf, where Pj,κf =
∑
|µ|=j

(f,Φµ,κ)Φµ,κ.
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It is known that the Dunkl–Hermite functions are of Schwartz class and hence the projections
Pj,κf in (1.1) make sense for any f ∈ Lp(Rd, h2

κ dx). However, when p 6= 2, we do not have any
convergence results for

∑∞
j=0 Pj,κf . In the case of κ ≡ 0, where the above series reduces to standard

Hermite expansions, it is also well known that the Hermite expansions fail to converge in Lp(Rd, dx)
for p 6= 2, unless d = 1. Even when d = 1, the series converges in Lp(R, dx) (or, equivalently, the
corresponding partial sum operators are uniformly bounded) if and only if 4

3 < p < 4 according to
a theorem by R. Askey and S. Wainger [3].

In the absence of convergence results for the partial sums, we are led to consider other summa-
bility methods such as Cesàro means or Bochner–Riesz means. For N ∈ N and δ > 0 we define the
Cesàro means of order δ associated with the Dunkl–Hermite expansions by

(1.2) σδN,κf(x) :=
1

AδN

N∑
j=0

AδN−jPj,κf(x)

where

Aδj :=

(
j + δ

j

)
=

Γ(j + δ + 1)

Γ(j + 1)Γ(δ + 1)

are the binomial coefficients. When κ ≡ 0 and d ≥ 2, the operators σδN,0f (that we will simply

denote by σδNf) are nothing but the Cesàro means for the standard Hermite expansions. They

converge to f in Lp(Rd, dx), 1 ≤ p < ∞, whenever δ > d−1
2 , see [21, 22]. Actually, more precise

results are known, giving critical indices of summability for any given p, 1 ≤ p <∞.
In the one dimensional case there is only one reflection group, viz. Z2, and the generalized Hermite

expansion in this case has been studied by Ó. Ciaurri and J. L. Varona [4]. Therein, the authors
studied weighted norm inequalities for the Cesàro means. However, for the higher dimensional case
we are not aware of any work dealing with Cesàro or Riesz means associated with Dunkl–Hermite
expansions, which is the main concern of the present work.

The techniques used to study Cesàro means σδNf for the standard Hermite expansions are not
available in the case of Dunkl–Hermite expansions. This is mainly due to the lack of explicit
formulas for Φµ,κ and their asymptotic properties.

However, the situation changes if we express the Cesàro means in a convenient way, by separating
variables in polar coordinates. Indeed, the basic fundamental idea is to write down the Cesàro means
σδN,κf in terms of spherical h-harmonics. The spherical h-harmonics (or simply h-harmonics) are

the restrictions of solid h-harmonics to Sd−1, where Sd−1 is the unit sphere in Rd, d ≥ 2 (a
good reference for h-harmonics is [10, Chapter 5]). By solid h-harmonics we mean homogeneous
polynomials P (x) satisfying ∆κP (x) = 0. Let Hm be the space of all h-harmonics of degree m.
Then the space L2(Sd−1, h2

κ dσ) is the orthogonal direct sum of the finite dimensional spaces Hm
over m = 0, 1, 2, . . .. Thus there is an orthonormal basis {Ym,j : j = 1, 2, . . . , d(m),m = 0, 1, 2, . . .},
where

(1.3) d(m) = dim(Hm),

for L2(Sd−1, h2
κd σ) so that for each m, {Ym,j : j = 1, 2, . . . , d(m)} is an orthonormal basis of h-

harmonics of degree j for Hm. Let x ∈ Rd. Then, if we take x = rx′, r ∈ (0,∞), x′ ∈ Sd−1, the
h-harmonic expansion of a function f is given by

f(rx′) =
∞∑
m=0

d(m)∑
j=1

fm,j(r)Ym,j(x
′),

where the h-harmonic coefficients are

(1.4) fm,j(r) =

∫
Sd−1

f(rx′)Ym,j(x
′)h2

κ(x′)dσ(x′).
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Therefore, due to the ortogonality of the h-harmonics, it is natural to introduce the mixed norm
spaces for Dunkl–Hermite expansions Lp,2(Rd, h2

κ dx), namely, the space of all functions on Rd for
which

(1.5) ‖f‖(p,2) :=

(∫ ∞
0

(∫
Sd−1

|f(rx′)|2h2
κ(x′) dσ(x′)

) p
2

rd+2γ−1 dr

) 1
p

are finite. Here γ is a positive number intrinsic to the underlying multiplicity function κ, see Section
2 for the definition. Our main result is the following.

Theorem 1.1. Let d ≥ 2 and δ > d+2γ−1
2 where γ is as in (2.3). Then, for any 1 < p < ∞, we

have the uniform estimates
‖σδN,κf‖(p,2) ≤ C‖f‖(p,2).

Consequently, σδN,κf converges to f in Lp,2(Rd, h2
κdx) as N →∞.

We will sketch the outline of the proof. The first step is to write down the Cesàro means σδN,κf

evaluated at x = rx′ in terms of spherical harmonics. Then, a Funk–Hecke formula is used to
rewrite the projection of the kernel associated with σδN,κf in such a basis as a sum of shifted Cesàro
kernels for the usual Hermite expansions. Indeed, we will prove that

σδN,κf(rx′) =
N∑
m=0

d(m)∑
j=1

T δ,γN,mfm,j(r)Ym,j(x
′).

In the expression above, T δ,γN,m are the linear operators defined by

(1.6) T δ,γN,mfm,j(r) :=

∫ ∞
0

Kδ,γ
N,m(r, s)fm,j(s)s

d+2γ−1ds,

where fm,j(r) are the h-harmonic coefficients of f in (1.4). The kernels Kδ,γ
N,m can be written

in terms of the kernels of either the d-dimensional or d + 1-dimensional Cesàro means for the
standard Hermite expansions with shifted parameters. See Corollary 4.2. But now, the standard
Hermite polynomials evaluated at x are connected with the Laguerre polynomials evaluated at
|x|2. So when trying to prove the (p, 2) boundedness of the Cesàro operator, we end up with a
vector-valued extension for a sequence of operators associated to Laguerre expansions.

Theorem 1.2 (Vector-valued inequalities for T δ,γN,m). Let 0 ≤ γ ≤ 1
2 , δ > d+2γ−1

2 and T δ,γN,m be the

operators defined in (1.6). Then, for any 1 < p <∞, there is a constant C independent of N such
that∥∥∥( ∞∑

m=0

d(m)∑
j=1

|T δ,γN,mfm,j(r)|
2
)1/2∥∥∥

Lp(R+,rd+2γ−1dr)
≤ C

∥∥∥( ∞∑
m=0

d(m)∑
j=1

|fm,j(r)|2
)1/2∥∥∥

Lp(R+,rd+2γ−1dr)
,

where d(m) is as in (1.3), for any sequence of functions fm,j ∈ Lp(R+, rd+2γ−1dr) for which the
right hand side is finite.

Then, it will be seen that Theorem 1.1 is a direct consequence of Theorem 1.2.
In order to prove Theorem 1.2, we need to use a sophisticated version of the three lines lemma.

This will recquire to extend the Cesàro means for the usual Hermite expansions for complex values
of δ and also complexify the type of the Laguerre functions involved.

The natural question that arises immediately concerns the convergence of Cesàro means in
Lp(Rd, h2

κ dx), when κ 6= 0. Nothing is known about this, neither the techniques that could be
used to solve the problem.

The paper is organized as follows. In Section 2 we recall basics about the general Dunkl context
and the Funk–Hecke identity. Section 3 is devoted to the study of Cesàro means for the standard
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Hermite expansions, and a vector-valued inequality for an operator related to these Cesàro means
is proved. In Section 4 we express the Cesàro kernels for the Dunkl–Hermite expansions in terms
of the same for the standard Hermite expansions, and we bring out the connection with Laguerre
expansions, which allows us to introduce an analytic family of operators. With this, we prove the
main results in Section 5. For the sake of reading, we move the proofs of certain propositions in
Section 4 to Section 6. Section 7 contains also some technical results and integral formulas for
Bessel functions which involve ultraspherical polynomials with real and complex parameters.

Notation. Throughout the paper, we will use the following notation. In general, all the operators,
kernels and functions are defined in the ambient space Rd, so in these cases we will mostly omit
the dimensional parameter d. For instance, we will write just Φk or σδN . Nevertheless, whenever
the dependence of the kernels on the dimension is explicitly needed we will add a superindex d,

namely we will write Φ
(d)
k or σδ,dN . Moreover, when referring to these objects in Rd+1, we will always

explicitly add a superindex d + 1, like Φ
(d+1)
k or σδ,d+1

N , to denote the Hermite functions, Cesàro

means and kernels in Rd+1. The number of operators and parameters appearing in this work is
quite large, and we tried to reduce the notation to a minimum. Because of this, we present in
Section 5 a table with a summary of the most important operators and kernels involved directly
in the proof of the main theorems. For 1 ≤ p ≤ ∞, p′ will denote its conjugate, 1/p + 1/p′ = 1.
Moreover, we shall write C to denote positive constants independent of significant quantities the
meaning of which can change from one occurrence to another.

2. The general Dunkl setting

For completeness, in this section we collect several facts concerning the general Dunkl setting
and the Dunkl harmonic oscillator. For a more detailed exposition on these topics, we refer the
reader to [9, 10, 17].

We use the notation 〈·, ·〉 for the standard inner product on Rd. For ν ∈ Rd \ {0}, we denote by
σν the orthogonal reflection in the hyperplane perpendicular to ν, i.e.,

σν(x) = x− 2
〈ν, x〉
|ν|2

ν.

A finite subset R ⊂ Rd \ {0} is a root system if σν(R) = R, for all ν ∈ R. Each root system can be
written as a disjoint union R = R+ ∪ (−R+), where R+ and −R+ are separated by a hyperplane
through the origin. Such R+ is called the set of all positive roots in R. The group G generated by
the reflections {σν : ν ∈ R} is called the reflection group or Coxeter group associated with R. A
function

(2.1) κ : R→ [0,∞)

which is invariant under the action of G on the root system R is called a multiplicity function. Let
Tj , j = 1, 2, . . . d, be the difference-differential operators defined by

Tjf(x) =
∂f

∂xj
(x) +

∑
ν∈R+

κ(ν)νj
f(x)− f(σνx)

〈ν, x〉
.

These operators, known as Dunkl operators, form a family of commuting operators. The Dunkl
Laplacian ∆κ is then defined to be the operator

(2.2) ∆κ =
d∑
j=1

T 2
j
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which can be explicitly calculated, see [10, Theorem 4.4.9]. It is known that the operators Tj have
a joint eigenfunction Eκ(x, y) satisfying

TjEκ(x, y) = yjEκ(x, y), j = 1, . . . , d.

The function (x, y) 7→ Eκ(x, y) is called the Dunkl kernel or the generalized exponential kernel on

Rd × Rd, which is the generalization of the exponential function e〈x,y〉. Associated with the root
system R and the multiplicity function κ, the weight function h2

κ(x) is defined by

h2
κ(x) :=

∏
ν∈R+

|〈x, ν〉|2κ(ν).

The nonnegative real number

(2.3) γ =
∑
ν∈R+

κ(ν)

defined in terms of the multiplicity function κ(ν) plays an important role in Dunkl theory. Note
that h2

κ(x) is homogeneous of degree 2γ, which motivates the definition of mixed norm spaces as in
(1.5).

In the Dunkl setting we have a Funk–Hecke formula for h-harmonics. To state such formula,
we need to recall the intertwining operator in the Dunkl setting. It is known that there is an
operator Vκ satisfying TjVκ = Vκ

∂
∂xj

. However, the explicit form of Vκ is not known, except in

a couple of simple cases, but it is a useful operator. In particular, the Dunkl kernel is given by
Eκ(x, y) = Vκe

〈·,y〉(x). The Funk–Hecke formula for h-harmonics is as follows (see [6, Theorem
7.2.7] or [10, Theorem 5.3.4]).

Theorem 2.1 (Funk–Hecke for h-harmonics). Let f be a continuous function defined on [−1, 1]
and λ = d

2 + γ − 1. Then for every Ym,j ∈ Hm,∫
Sd−1

Vκf(〈x′, ·〉)(y′)Ym,j(y′)h2
κ(y′)dσ(y′) = Λκm(f)Ym,j(x

′)

where Λκm(f) is a constant defined by

Λκm(f) =
ωκdΓ(λ+ 1)√
πΓ(λ+ 1/2)

∫ 1

−1
f(u)P λm(u)(1− u2)λ−

1
2 du

with

(2.4) ωκd :=

∫
Sd−1

h2
κ(ω)dσ(ω).

By applying Theorem 2.1 to the function f(t) = erst, r, s ≥ 0, and using the fact Vκf(〈x′, y′〉) =
Eκ(rx′, sy′), we immediately obtain the following.

Corollary 2.2 (Funk–Hecke for the Dunkl kernel). Let λ = d
2 + γ− 1. Then for every Ym,j ∈ Hm,∫

Sd−1

Eκ(rx′, sy′)Ym,j(y
′)h2

κ(y′) dσ(y′)

=
ωκdΓ

(
d
2 + γ

)
√
πΓ
(
d−1

2 + γ
) (∫ 1

−1
ersuP λm(u)(1− u2)λ−

1
2 du

)
Ym,j(x

′),

where ωκd is as in (2.4).
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3. Cesàro means for the standard Hermite and extension to complex parameters

One of the key points to prove Theorem 1.1 is to express Cesàro kernels for the Dunkl–Hermite
expansions in terms of Cesàro kernels for the standard Hermite expansions and then extend these
operators for complex values of the parameters involved. In this section we recall some basic results
concerning the Lp boundedness of Cesàro means for the standard Hermite expansions and prove
others concerning the extended operators.

3.1. Cesàro and Bochner–Riesz means for the standard Hermite expansions. As ex-
plained in the introduction, when κ ≡ 0 the Dunkl–Hermite functions reduce to the standard
Hermite functions Φµ on Rd. Cesàro means of order δ ≥ 0 associated with the Hermite expansions
(or just standard Cesàro means) are then defined by

σδNf =
1

AδN

N∑
j=0

AδN−jPjf,

Pjf being the corresponding projections. The operators σδN can be described as integrals operators

with a kernel σδN (x, y), which is explicitly given by

σδN (x, y) =
1

AδN

N∑
j=0

AδN−jΦj(x, y),

where Φj(x, y) is the kernel of the jth projection associated with the Hermite operator (see [21,
page 6]). For |w| < 1, Mehler’s formula for Φj(x, y) reads as

(3.1)
∞∑
j=0

Φj(x, y)wj = π−
d
2 (1− w2)−

d
2 e
− 1

2

(
1+w2

1−w2

)
(|x|2+|y|2)+ 2w

1−w2 x·y.

From Mehler’s formula it follows that Φj(rx
′, sy′), and consequently σδN (rx′, sy′), is a function of

r, s and u := x′ ·y′. Hence, sometimes we will write Φj(r, s;u) instead of Φj(rx
′, sy′) and σδN (r, s;u)

instead of σδN (rx′, sy′).
We also introduce the Bochner–Riesz means associated with the Hermite expansions as

SδRf =
∞∑
j=0

(
1− 2j + d

R

)δ
+

Pjf,

where R > 0 and (1−s2)+ = max{1−s2, 0}. In the literature, the boundedness of both Cesàro and
Bochner–Riesz means have been studied. Their behaviour are similar in the sense that is possible
to express the Cesàro means σδNf in terms of SδRf and vice-versa. Indeed, we have the following
theorem due to J. J. Gergen [11], adapted to our context.

Theorem 3.1 (Gergen). Let m be the integral part of δ. Then there exist two functions U and
V , U(x) = O(x−2) as x → ∞, U(x) = O(xm−δ+1) as x → 0, and V (x) = O(x−2) as x → ∞,
V (x) = O(xδ) as x→ 0, such that

SδR(x, y) = R−δ
∑
k≤R

V (R− k)Aδkσ
δ
k(x, y)

and

σδN (x, y) =
1

AδN

∫ N+1

0
U(N + 1− t)tδSδt (x, y) dt, for N = 0, 1, . . .

In view of Gergen’s theorem, we can readily prove a version of [21, Theorem 3.3.3] (that states
pointwise estimates for Bochner–Riesz) for Cesàro means.
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Theorem 3.2. Let d ≥ 2 and δ > d−1
2 . Then for any q ≥ 2 and f ∈ Lq(Rd) we have the pointwise

inequality
sup
N
|σδNf(x)| ≤ CMqf(x)

where Mqf(x) =
(
M |f |q

) 1
q (x), M being the Hardy–Littlewood maximal function.

3.2. Extension of standard Cesàro means to complex parameters. In order to prove The-
orem 1.1 we need to consider Cesàro means σδN when δ is complex. Let us define

(3.2) δ(ζ) :=
d− 1

2
+ ζ for ζ ∈ C

and consider σ
δ(ζ)
N f with Re(δ(ζ)) ≥ 0. Let us also recall the definition of a function of admissible

growth: we say that a function F (y), y ∈ R, is of admissible growth if there exist constants a < π

and b > 0 such that |F (y)| ≤ ebea|y| . As a consequence of Theorem 3.2 we get the following result.

Theorem 3.3. Let d ≥ 2. Then for any q ≥ 2 and f ∈ Lq(Rd) we have the pointwise inequality

(3.3) sup
N

∣∣σδ(iβ+ε)
N f(x)

∣∣ ≤ Cε(β)Mqf(x)

for a fixed ε > 0 and β ∈ R. Here, the function Cε(β) is of admissible growth. Moreover, the

operator sup
N

∣∣σδ(iβ+ε)
N f

∣∣ is bounded on Lp(Rd) for any p > 2.

Proof. From the definition of σδN it follows that

(3.4) σ
δ(iβ+ε)
N f(x) =

1

A
δ(iβ+ε)
N

N∑
j=0

A
iβ+ ε

2
−1

N−j A
δ(ε/2)
j σ

δ(ε/2)
j f(x).

Indeed, the right hand side in the identity above is

1

A
δ(iβ+ε)
N

N∑
j=0

A
iβ+ ε

2
−1

N−j

j∑
k=0

A
δ(ε/2)
j−k Pkf(x) =

1

A
δ(iβ+ε)
N

N∑
k=0

Pkf(x)

N∑
j=k

A
iβ+ ε

2
−1

N−j A
δ(ε/2)
j−k ,

so (3.4) will be proved once we check that

A
δ(iβ+ε)
N−k =

N∑
j=k

A
iβ+ ε

2
−1

N−j A
δ(ε/2)
j−k ,

or equivalently

(3.5) A
δ(iβ+ε)
N =

N∑
j=0

A
iβ+ ε

2
−1

N−j A
δ(ε/2)
j .

Recall the following basic facts concerning generating functions. Since (1−w)−r−1 =
∑

k≥0

(
r+k
k

)
wk

and (1 − w)−s−1 =
∑

k≥0

(
s+k
k

)
wk, if we multiply these together, we get (1 − w)−(r+s+1)−1 =

(1− w)−r−1(1− w)−s−1. Equating coefficients gives us

(3.6)

(
r + s+ 1 + n

n

)
=

n∑
k=0

(
r + n− k
n− k

)(
s+ k

k

)
.

With this, we see that (3.5) is true.
Also, by Lemma 7.1, we have that

N∑
j=0

∣∣Aiβ+ ε
2
−1

N−j
∣∣Aδ(ε/2)

j ≤ Cε(β)
∣∣Aδ(iβ+ε)

N

∣∣.
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Now, since δ(ε/2) > d−1
2 , it follows from Theorem 3.2 that sup

j

∣∣σδ(ε/2)
j f(x)

∣∣ ≤ CMqf(x), so (3.3)

is proved.
Finally, the last statement of Theorem 3.3 follows from the fact that the maximal function Mq

is bounded on Lp(Rd) for any p > q ≥ 2. �

3.3. A vector-valued inequality for an operator connected to standard Cesàro means.
Further, we introduce one more operator SδN related to σδN as follows. For any f ∈ Lp(R+, dr) we
define

(3.7) SδNf(r) := r
d−1
p

∫ ∞
0

s
d−1
p′
(∫ 1

−1

∣∣σδN (r, s;u)
∣∣(1− u2)

d−3
2 du

)
f(s)ds.

We will require a vector-valued inequality for the maximal function associated with SδN . In order
to get this, recall the following result about vector-valued extensions for general bounded operators
by J. L. Krivine (see [13] or [16, Thm. 1.f.14]).

Theorem 3.4 (Krivine). Let X and Y be two Banach lattices and let T : X 7→ Y be a bounded
linear operator. Then, for every choice of {xi}ni=1 in X, we have∥∥∥∥( n∑

i=1

|Txi|2
)1/2

∥∥∥∥ ≤ KG‖T‖
∥∥∥∥( n∑

i=1

|xi|2
)1/2

∥∥∥∥,
where KG is the universal Grothendieck constant.

Theorem 3.5. Let d ≥ 2 and for ζ ∈ C, let δ(ζ) be defined as in (3.2). Then for any p > 2 we
have the vector-valued inequality(∫ ∞

0

( ∞∑
m=0

d(m)∑
j=1

(
sup
N

∣∣Sδ(iβ+ε)
N fm,j(r)

∣∣)2) p2 dr) 1
p

≤ C(β)

(∫ ∞
0

( ∞∑
m=0

d(m)∑
j=1

∣∣fm,j(r)∣∣2) p2 dr) 1
p

for any sequence of functions fm,j ∈ Lp(R+, dr) for which the right hand side is finite. Moreover,
C(β) is of admissible growth.

Proof. Observe that we can consider sup
N

∣∣Sδ(iβ+ε)
N f

∣∣ as a linear operator mapping Lp(R+) into

Lp
(
R+, l∞(N)

)
. Then, appealing to Theorem 3.4, it is enough to show that this maximal operator

is bounded on Lp(R+, dr).

Consider the radial function F defined by F (x) = |x|−
d−1
p f(|x|) which belongs to Lp(Rd) as

f ∈ Lp(R+, dr). In terms of F we can consider Sδ(iβ+ε)
N f as a radial function on Rd given by

|x|
d−1
p

∫
Rd

∣∣σδ(iβ+ε)
N (x, y)

∣∣F (y)dy.

Thus the boundedness of supN
∣∣Sδ(iβ+ε)
N f

∣∣ on Lp(R+, dr) follows from the fact that the maximal
operator

sup
N

(∫
Rd

∣∣∣σδ(iβ+ε)
N (x, y)

∣∣∣ |F (y)| dy
)

is bounded on Lp(Rd), which is true by Theorem 3.3. The theorem is proved. �
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4. Cesàro means for the Dunkl–Hermite and extension to complex parameters

In this section we establish various results in several steps:

(1) First, we recall the Mehler’s formula in the Dunkl–Hermite setting, analogous to the
Mehler’s formula for the standard Hermite functions (3.1).

(2) In the second step, we are able to write the Cesàro kernels for Dunkl–Hermite expansions
in terms of Cesàro kernels for Hermite expansions with shifted parameters. As a result, by
using polar coordinates, we express the Dunkl–Cesàro means as an expansion in h-harmonics
of linear operators defined in terms of standard Cesàro means, see Corollary 4.2.

(3) In turn, we show in Proposition 4.4 that the standard shifted Cesàro kernels are connected
to Cesàro kernels for Laguerre expansions.

(4) Finally, we need to extend this connection to complex values of the parameters in Proposi-
tion 4.5.

These facts are shown in this order in the subsequent subsections. They will lead us to the proof
of Theorem 1.2 and, as a consequence, of Theorem 1.1. Since the proofs of Propositions 4.4 and 4.5
are rather technical, we will state the results here, and the proofs are moved to a separate Section
6.

4.1. Mehler’s formula for Dunkl–Hermite functions. As stated in the introduction, general-
ized Hermite polynomials and generalized Hermite functions associated with Coxeter groups were
studied in [17], where the precise definitions can be found. For our purposes, the most important
result is the generating function identity or the Mehler’s formula for the Dunkl–Hermite functions.
For |w| < 1, one has (see [17, Theorem 3.12])

(4.1)
∑
µ∈Nd

Φµ,κ(x)Φµ,κ(y)w|µ| =
2

ωκd Γ
(
d
2 + γ

)(1− w2)−
d
2
−γe

− 1
2

(
1+w2

1−w2

)
(|x|2+|y|2)

Eκ

(
2wx

1− w2
, y

)
.

4.2. Cesàro kernels for Dunkl–Hermite in terms of Cesàro kernels for Hermite. In this
subsection we obtain an expression for the Cesàro kernel for the Dunkl–Hermite expansions in terms
of the Cesàro kernel for the standard Hermite expansions, via the Funk–Hecke formula stated in
Corollary 2.2.

Let Pj,κ be the orthogonal projection described in (1.1). Then Pj,κ is given by the kernel operator

(4.2) Pj,κf(x) =

∫
Rd

Φj,κ(x, y)f(y)h2
κ(y)dy

where

Φj,κ(x, y) =
∑
|µ|=j

Φµ,κ(x)Φµ,κ(y).

For δ ≥ 0, it is clear from (1.2) and (4.2) that the kernel of the Cesàro means σδN,κ is given by

(4.3) σδN,κ(x, y) :=
1

AδN

N∑
j=0

AδN−jΦj,κ(x, y).

Proposition 4.1 below contains expressions for the h-harmonic coefficients of Dunkl–Cesàro ker-
nels in terms of d-dimensional and (d+1)-dimensional standard Cesàro kernels. As remarked earlier,
in view of the Mehler’s formula (3.1) it follows that Φj(rx

′, sy′) is a function of r, s and u := x′ · y′.
The same is true for the Cesàro kernels and so again we will sometimes write Φj(r, s;u) instead of

Φj(rx
′, sy′) and σδN (r, s;u) instead of σδN (rx′, sy′). Let P λm stand for the normalized ultraspherical

polynomials of type λ > −1
2 and degree m. We have the following.
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Proposition 4.1 (Funk–Hecke for Cesàro–Dunkl–Hermite). For γ defined as in (2.3), let

cd,γ =
2π(d−1)/2

Γ(d−1
2 + γ)

and λ = d
2 + γ − 1. Then, for any spherical h-harmonic Ym,` of degree m, we have the identity

(4.4)

∫
Sd−1

σδ,dN,κ(rx′, sy′)Ym,`(y
′)h2

κ(y′) dσ(y′)

=
cd,γ

AδN

[N/2]∑
j=0

Aγ−1
j AδN−2j

(∫ 1

−1
σδ,dN−2j(r, s;u)P λm(u)(1− u2)λ−1/2 du

)
Ym,`(x

′).

Moreover, we also have

(4.5)

∫
Sd−1

σδ,dN,κ(rx′, sy′)Ym,`(y
′)h2

κ(y′) dσ(y′)

=
cd+1,γ− 1

2

AδN

[N/2]∑
j=0

A
γ− 3

2
j AδN−2j

(∫ 1

−1
σδ,d+1
N−2j(r, s;u)P λm(u)(1− u2)λ−1/2 du

)
Ym,`(x

′).

Proof. By integrating Mehler’s formula for the Dunkl–Hermite functions (4.1) against Ym,`(y
′) and

using the Funk–Hecke formula in Corollary 2.2 we get

(4.6)
∞∑
N=0

wN
∫
Sd−1

Φ
(d)
N,κ(rx′, sy′)Ym,`(y

′)h2
κ(y′) dσ(y′)

=
2(1− w2)−d/2−γ
√
πΓ(d−1

2 + γ)
e
− 1

2

(
1+w2

1−w2

)
(r2+s2)

(∫ 1

−1
e

2rsw
1−w2 uP λm(u)(1− u2)λ−

1
2 du

)
Ym,`(x

′).

Now, comparing the right hand side of the above with the Mehler’s formula for the Hermite expan-
sions (3.1), we conclude that

(4.7)
∞∑
N=0

wN
∫
Sd−1

Φ
(d)
N,κ(rx′, sy′)Ym,`(y

′)h2
κ(y′) dσ(y′)

=
2π(d−1)/2(1− w2)−γ

Γ
(
d−1

2 + γ
) ∞∑

N=0

(∫ 1

−1
Φ

(d)
N (r, s;u)P λm(u)(1− u2)λ−

1
2 du

)
wN Ym,`(x

′).

By multiplying the identity (4.7) by (1−w)−δ−1 and using the expansion (1−w)−δ−1 =
∑∞

N=0A
δ
Nw

N ,
we obtain

∞∑
N=0

wN
N∑
j=0

AδN−j

(∫
Sd−1

Φ
(d)
j,κ(rx′, sy′)Ym,`(y

′)h2
κ(y′) dσ(y′)

)

= cd,γ(1− w2)−γ
∞∑
N=0

wN
N∑
j=0

AδN−j

(∫ 1

−1
Φ

(d)
j (r, s;u)P λm(u)(1− u2)λ−

1
2 du

)
Ym,`(x

′)

= cd,γ(1− w2)−γ
∞∑
N=0

wNAδN

(∫ 1

−1
σδ,dN (r, s;u)P λm(u)(1− u2)λ−1/2 du

)
Ym,`(x

′).
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Since (1− w2)−γ =
∞∑
N=0

Aγ−1
N w2N , the above can be written as

∞∑
N=0

wN
N∑
j=0

AδN−j

(∫
Sd−1

Φ
(d)
j,κ(rx′, sy′)Ym,`(y

′)h2
κ(y′) dσ(y′)

)

= cd,γ

∞∑
N=0

wN
[N/2]∑
j=0

Aγ−1
j AδN−2j

(∫ 1

−1
σδ,dN−2j(r, s;u)P λm(u)(1− u2)λ−1/2 du

)
Ym,`(x

′).

Comparing the coefficients of wN on both sides in the above and in view of (4.3) we obtain (4.4).
Observe that the right hand side of (4.6) remains the same if we replace d by d + 1 and γ by

γ − 1
2 . Consequently, in view of Mehler’s formula for the Hermite expansions (3.1), the right hand

side of (4.6) is also equal to

2πd/2(1− w2)−γ+ 1
2

Γ
(
d−1

2 + γ
) ∞∑

N=0

(∫ 1

−1
Φ

(d+1)
N (r, s;u)P λm(u)(1− u2)λ−

1
2 du

)
wN Ym,`(y

′).

Therefore, by repeating an analogous reasoning, we also arrive at (4.5).
This completes the proof of the proposition. �

By expanding σδN,κf(x) in terms of h-harmonics and using Proposition 4.1 we can easily deduce
the following.

Corollary 4.2. For any Schwartz class function f we have

σδN,κf(rx′) =
N∑
m=0

d(m)∑
j=1

T δ,γN,mfm,j(r)Ym,j(x
′),

where T δ,γN,m are the operators defined in (1.6) with kernels Kδ,γ
N,m that can be expressed either as

(4.8) Kδ,γ
N,m(r, s) :=

cd,γ

AδN

[N/2]∑
j=0

Aγ−1
j AδN−2j

∫ 1

−1
σδ,dN−2j(rx

′, sy′)P λm(u)(1− u2)λ−1/2 du

or

(4.9) Kδ,γ
N,m(r, s) =

cd+1,γ− 1
2

AδN

[N/2]∑
j=0

A
γ− 3

2
j AδN−2j

∫ 1

−1
σδ,d+1
N−2j(r, s;u)P λm(u)(1− u2)λ−1/2 du.

Remark 4.3. Therefore, we can express the kernels Kδ,γ
N,m(r, s) and consequently the operators

T δ,γN,mf in terms of both d-dimensional and (d+ 1)-dimensional Hermite Cesàro kernels. Indeed, the

expression (4.8) comes from the use of identity (4.4) in Proposition 4.1, and the expression (4.9) is
obtained in view of identity (4.5) in Proposition 4.1.

4.3. The Laguerre connection. We are going to express the kernel Kδ,γ
N,m(r, s) in (4.8) in terms

of Laguerre functions. This is contained in Proposition 4.4 below. This result will not be enough
for our purposes; an improved version with complex parameters is required, see Proposition 4.5.
Nevertheless, we first show the non-complex version in detail since it is interesting to understand
that, philosophically, there is an underlying phenomenon of transplantation.

Let us recall some basic facts about Laguerre functions. For α > −1, let ψαk be the normalized
Laguerre functions given by

ψαk (r) =

(
2Γ(k + 1)

Γ(k + α+ 1)

) 1
2

Lαk (r2)e−
1
2
r2 , k = 0, 1, . . . ,
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where Lαk are the Laguerre polynomials of order α, see [15, page 76].
We have the following generating function identity for Laguerre functions (see [21, (1.1.47)]).

For |w| < 1,

∞∑
k=0

ψαk (r)ψαk (s)w2k = 2(1− w2)−1(rsw)−αe
− 1

2

(
1+w2

1−w2

)
(r2+s2)

Iα

(
2rsw

1− w2

)
.

Here, Iα is the modified Bessel function, see Subsection 7.2 for the definition and further results
concerning these functions. From this identity, we easily deduce that

(4.10)
∞∑
k=0

(rs)mψα+m
k (r)ψα+m

k (s)w2k+m = 2(1− w2)−1e
− 1

2

(
1+w2

1−w2

)
(r2+s2)

(rsw)−αIα+m

(
2rsw

1− w2

)
.

Proposition 4.4. For d ≥ 2, let λ = d
2 + γ − 1. Then the kernel Kδ,γ

N,m expressed either in (4.8) or

in (4.9) can be written as

Kδ,γ
N,m(r, s) =

1

AδN

[(N−m)/2]∑
j=0

AδN−m−2j(rs)
mψλ+m

j (r)ψλ+m
j (s)

provided N ≥ m. For other values of N , Kδ,γ
N,m(r, s) = 0.

4.4. Extension to complex parameters. In order to prove Theorem 1.2 we need to extend our
operators for complex parameters and get proper expressions for them.

First, observe that the kernels Kδ,γ
N,m in (4.8), initially expressed in terms of standard Cesáro

kernels, are also expressible in terms of Laguerre functions ψλ+m
k by Proposition 4.4. Then, since

Laguerre functions of complex parameters are well defined, the kernels Kδ,γ
N,m make sense even if δ

and γ are complex. For ζ ∈ C let us define

(4.11) λ(ζ) :=
d

2
+ ζ − 1.

Fix ε > 0 and consider the sequence of operators

(4.12) T ε,ζN,mf(r) :=

∫ ∞
0
Kε,ζN,m(r, s)f(s) ds

defined for f ∈ Lp(R+, dr) with kernel

(4.13) Kε,ζN,m(r, s) := r
2δ(ζ)
p s

2δ(ζ)

p′ K
δ(ζ+ε),ζ
N,m (r, s)

where p > 2. Then, we can go back and prove that the kernels Kε,ζN,m(r, s), that are now defined
in terms of Laguerre functions of complex parameters, can be expressed also in terms of the d-
dimensional and (d + 1)-dimensional kernels of Cesàro means involving parameters with certain
values of ζ. This result is contained in Proposition 4.5.

Observe that the operators T ε,ζN,m can be understood as “extensions”, for complex parameters,

of the operators T δ,γN,m. In turn, the kernels Kε,ζN,m can be understood as “extensions”, for complex

parameters, of the kernels Kδ,γ
N,m.
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Proposition 4.5. Let Cd =
4π(d−1)/2

Γ((d− 1)/2)
. For any β ∈ R we have

(4.14) Kε,iβN,m(r, s) =
Cd

A
δ(iβ+ε)
N

N∑
k=0

(
ε/2

N − k

)

×
[k/2]∑
j=0

A
ε
2

+iβ−1

j A
δ(iβ+ ε

2
)

k−2j r
2δ(iβ)
p s

2δ(iβ)

p′

∫ 1

−1
σ
δ(iβ+ ε

2
),d

k−2j (r, s;u)Qλ(iβ)
m (u) du

and

(4.15) Kε,
1
2

+iβ

N,m (r, s) =
Cd+1

A
δ( 1

2
+iβ+ε)

N

N∑
k=0

(
ε/2

N − k

)

×
[k/2]∑
j=0

A
ε
2 +iβ−1

j A
δ( 1

2
+iβ+ ε

2
)

k−2j r
2δ( 12+iβ)

p s
2δ( 12+iβ)

p′

∫ 1

−1
σ
δ( 1

2
+iβ+ ε

2
),d+1

k−2j (r, s;u)Q
λ( 1

2
+iβ)

m (u) du.

Here, the functions Q
λ(ζ)
m (u) are the ones defined in (7.2).

5. Mixed norm estimates for the Cesàro means: proofs of Theorems 1.1 and 1.2

In this Section we prove the main theorems. Theorem 1.1 easily follows from Theorem 1.2. In its
turn, the proof of Theorem 1.2 needs the ingredients from the previous sections, and the different
operators and their extensions with complex parameters play a role. Since the quantity of operators
and the corresponding kernels is large and the notation cumbersome, we present the Table 1 with
a summary of notation and references that will make the reading of this section more comfortable.

Table 1. Summary of operators and kernels

T δ,γN,m operator defined in (1.6)

Kδ,γ
N,m kernel of T δ,γN,m

T ε,ζN,m operator defined in (4.12)

Kε,ζN,m kernel of T ε,ζN,m, related to Kδ,γ
N,m by (4.13)

SδN operator defined in (3.7) in terms of the standard Cesàro means σδN

Proof of Theorem 1.1. In view of Corollary 4.2 we have that

‖σδN,κf‖(p,2) =

(∫ ∞
0

(∫
Sd−1

|σδN,κf(rx′)|2h2
κ(x′) dσ(x′)

) p
2

rd+2γ−1 dr

) 1
p

=

(∫ ∞
0

(∫
Sd−1

∣∣∣∣ ∞∑
m=0

d(m)∑
j=1

|T δ,γN,mfm,j(r)Ym,j(x
′)

∣∣∣∣2h2
κ(x′) dσ(x′)

) p
2

rd+2γ−1 dr

) 1
p

=
∥∥∥( ∞∑

m=0

d(m)∑
j=1

|T δ,γN,mfm,j(r)|
2
)1/2∥∥∥

Lp(R+,rd+2γ−1dr)
.

Then, with Theorem 1.2, we can conclude. �
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Therefore, it remains to prove Theorem 1.2. Given sequences of functions (fm,j) and (gm,j) such
that ∫ ∞

0

( ∞∑
m=0

d(m)∑
j=1

|fm,j(r)|2
) p

2
rd+2γ−1 dr =

∫ ∞
0

( ∞∑
m=0

d(m)∑
j=1

|gm,j(r)|2
) p′

2
rd+2γ−1 dr = 1

we define f̃m,j(r) = fm,j(r)r
2δ(γ)
p and g̃m,j(r) = gm,j(r)r

2δ(γ)

p′ , where δ(γ) is as in (3.2). Then it
follows that ∫ ∞

0

( ∞∑
m=0

d(m)∑
j=1

|f̃m,j(r)|2
) p

2
dr =

∫ ∞
0

( ∞∑
m=0

d(m)∑
j=1

|g̃m,j(r)|2
) p′

2
dr = 1.

We consider the function FN (ζ) on the strip 0 ≤ Re(ζ) ≤ 1
2 defined by

FN (ζ) :=

∫ ∞
0

( ∞∑
m=0

d(m)∑
j=1

T ε,ζN,mf̃m,j(r)g̃m,j(r)

)
dr.

It is clear that when fm,j are compactly supported on R+, FN (ζ) is a holomorphic function in
the interior of the strip 0 ≤ Re(ζ) ≤ 1

2 and continuous up to the boundary. We will prove that
FN (Re(ζ)) is bounded in the strip. In order to do that, we need the following variant of three lines
lemma proved in [20, Ch. V, Lemma 4.2].

Lemma 5.1 (Stein-Weiss). Suppose F is a function defined and continuous on the unit strip
S = {z ∈ C : 0 ≤ Re(z) ≤ 1} that is analytic in the interior of S satisfying

sup
x+iy∈S

e−a|y| log |F (x+ iy)| <∞

for some a < π. Then

(5.1) log |F (x)| ≤ 1

2
sinπx

∫ ∞
−∞

(
log |F (iy)|

coshπy − cosπx
+

log |F (1 + iy)|
coshπy + cosπx

)
dy

whenever 0 < x < 1.

Proposition 5.2. Let ζ := γ + iβ, with 0 ≤ γ ≤ 1/2 and β ∈ R. We have

|FN (iβ)| ≤ C0(β) and |FN (1
2 + iβ)| ≤ C1(β)

where C0(β) and C1(β) are independent of N and of admissible growth. Moreover,

|FN (γ)| ≤ C, for 0 ≤ γ ≤ 1/2.

Proof. In view of (4.14) in Proposition 4.5, the operator T ε,iβN,m is given by

T ε,iβN,mf(r) =
Cd

A
δ(iβ+ε)
N

N∑
k=0

(
ε/2

N − k

) [k/2]∑
j=0

A
ε
2

+iβ−1

j A
δ(iβ+ ε

2
)

k−2j

×
∫ ∞

0
r

2δ(iβ)
p s

2δ(iβ)

p′

∫ 1

−1
σ
δ(iβ+ ε

2
),d

k−2j (r, s;u)Qλ(iβ)
m (u) duf(s) ds.

The operators T ε,iβN,m can be bounded in terms of the operators Sδ(iβ+ε/2),d
k . Indeed, taking into

account the fact that
∑∞

j=0

∣∣(ε/2
j

)∣∣ <∞, we have

|T ε,iβN,mf̃m,j(r)| ≤ C0(β) sup
N
|Sδ(iβ+ε/2),d
N f̃m,j(r)|
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provided we have the estimate

Cd∣∣Aδ(iβ+ε)
N

∣∣
[k/2]∑
j=0

∣∣Aε/2+iβ−1
j A

δ(iβ+ε/2)
k−2j

∣∣ ≤ C0(β)

for all 0 ≤ k ≤ N , N = 1, 2, 3, · · · . But this can be proved similarly as in the case of Lemma 7.1,
and hence we leave the details to the reader.

With the above observations, we obtain, for p > 2,

|FN (iβ)| ≤
∫ ∞

0

( ∞∑
m=0

d(m)∑
j=1

|T ε,iβN,mf̃m,j(r)|
2

)1/2( ∞∑
m=0

d(m)∑
j=1

|g̃m,j(r)|2
)1/2

dr

≤ C0(β)

∫ ∞
0

( ∞∑
m=0

d(m)∑
j=1

(sup
N
|Sδ(iβ+ε/2),d
N f̃m,j(r)|)2

)1/2( ∞∑
m=0

d(m)∑
j=1

|g̃m,j(r)|2
)1/2

dr

≤ C0(β)

(∫ ∞
0

( ∞∑
m=0

d(m)∑
j=1

(sup
N
|Sδ(iβ+ε/2),d
N f̃m,j(r)|)2

)p/2
dr

)1/p

×
(∫ ∞

0

( ∞∑
m=0

d(m)∑
j=1

|g̃m,j(r)|2
)p′/2

dr

)1/p′

≤ C0(β)

(∫ ∞
0

( ∞∑
m=0

d(m)∑
j=1

|f̃m,j(r)|2
)p/2

dr

)1/p

= C0(β),

where in the last inequality we applied Theorem 3.5. Similarly, by (4.15) in Proposition 4.5, we get
the estimate

|T ε,1/2+iβ
N,m f̃m,j(r)| ≤ C1(β) sup

N
|Sδ(iβ+ε/2),d+1
N f̃m,j(r)|.

Then, an analogous reasoning with proper modifications, leads us to |FN (1
2 + iβ)| ≤ C1(β).

Observe that with the estimates just proven, we apply Lemma 5.1 to our function FN , so that
right hand side of (5.1) is finite, therefore ensuring the boundedness of FN (γ), for 0 < γ < 1/2. �

We recall the following result that corresponds with an idea of J. L. Rubio de Francia tacitly
contained in [19, Remark (a)]. Here we stated it as a theorem.

Theorem 5.3 (Rubio de Francia). Let T : Lp(Rd)→ Lp(Rd) be a bounded linear operator which is
rotation invariant, i.e. it commutes with the action of the rotation group SO(d) on Lp(Rd). Then,
T is also bounded in Lp(`2).

We are ready to prove Theorem 1.2.

Proof of Theorem 1.2. We first observe that when γ = 0 the Dunkl–Hermite expansion reduces to
the standard Hermite expansion and hence Theorem 1.2 is true. Indeed, we have Lp(Rd) bound-
edness of σδN for any δ > d−1

2 , 1 ≤ p < ∞ (see [22]). On the other hand, it is easy to check that
the Cesàro kernels associated to standard Hermite expansions are rotation invariant. Then, from
Theorem 5.3, we immediately get the desired vector-valued extension. When γ = 1

2 , the same

reasoning holds by considering Cesàro means σδ,d+1
N . Hence we can restrict ourselves to the case

0 < γ < 1
2 .



16 PRADEEP B., L. RONCAL, AND S. THANGAVELU

Given δ > d+2γ−1
2 we can choose ε > 0 so that δ = d+2γ+2ε−1

2 = δ(γ + ε), which is defined in
(3.2). It suffices to prove that, for p > 2,∥∥∥( ∞∑

m=0

d(m)∑
j=1

|T δ(γ+ε),γ
N,m fm,j(r)|2

)1/2∥∥∥
Lp(R+,rd+2γ−1dr)

≤ C
∥∥∥( ∞∑

m=0

d(m)∑
j=1

|fm,j(r)|2
)1/2∥∥∥

Lp(R+,rd+2γ−1dr)
.

We can write∫ ∞
0

( ∞∑
m=0

d(m)∑
j=1

T
δ(γ+ε),γ
N,m fm,j(r)gm,j(r)

)
rd+2γ−1 dr

=

∫ ∞
0

( ∞∑
m=0

d(m)∑
j=1

∫ ∞
0

K
δ(γ+ε),γ
N,m (r, s)fm,j(s)s

d+2γ−1 ds gm,j(r)

)
rd+2γ−1 dr

=

∫ ∞
0

( ∞∑
m=0

d(m)∑
j=1

∫ ∞
0

r
2δ(γ)
p s

2δ(γ)

p′ K
δ(γ+ε),γ
N,m (r, s)fm,j(s)s

2δ(γ)
p ds gm,j(r)

)
r

2δ(γ)

p′ dr

=

∫ ∞
0

( ∞∑
m=0

d(m)∑
j=1

∫ ∞
0
Kε,γN,m(r, s)f̃m,j(s) ds g̃m,j(r)

)
dr

=

∫ ∞
0

( ∞∑
m=0

d(m)∑
j=1

T ε,γN,mf̃m,j(r)g̃m,j(r)

)
dr = FN (γ),

and the last one is bounded, by Proposition 5.2. By an argument of duality, the estimate is valid
for all 1 < p <∞. �

6. Proofs of Propositions 4.4 and 4.5

Proof of Proposition 4.4. We integrate Mehler’s formula for ΦN (x, y) in (3.1) against the function

P λm(u)(1− u2)λ−1/2 over (−1, 1), and apply Lemma 7.2 with z = 2w
1−w2 rs, so that we get

∞∑
N=0

wN
∫ 1

−1
ΦN (r, s;u)P λm(u)(1− u2)λ−1/2 du

= π−
d
2 (1− w2)−

d
2 e
− 1

2

(
1+w2

1−w2

)
(r2+s2)

∫ 1

−1
P λm(u)(1− u2)λ−1/2ezu du

= π−(d−1)/2Γ
(
λ+ 1/2)(1− w2)−

d
2 e
− 1

2

(
1+w2

1−w2

)
(r2+s2) Iλ+m(z)

(z/2)λ
.

Comparing this with the generating function identity for the Laguerre functions (4.10) we obtain

(6.1)

∞∑
N=0

wN
∫ 1

−1
ΦN (r, s;u)P λm(u)(1− u2)λ−1/2 du

=
Γ(λ+ 1/2)

2π(d−1)/2
(1− w2)γ(wrs)m

∞∑
N=0

ψλ+m
N (r)ψλ+m

N (s)w2N .

On the one hand, multiplying
∑∞

N=0w
NΦN (r, s;u) by (1− w)−δ−1, we have

(6.2) (1− w)−δ−1
( ∞∑
N=0

wNΦN (r, s;u)
)

=

∞∑
N=0

( N∑
j=0

AδN−jΦj(r, s;u)
)
wN =

∞∑
N=0

AδNσ
δ
N (r, s;u)wN .
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On the other hand, we also have

(6.3) (1− w)−δ−1

( ∞∑
N=0

ψλ+m
N (r)ψλ+m

N (s)w2N

)
=

∞∑
N=0

( [N/2]∑
j=0

AδN−2jψ
λ+m
j (r)ψλ+m

j (s)
)
wN .

Therefore, in view of (6.2) and (6.3), from (6.1) we get

∞∑
N=0

AδN

(∫ 1

−1
σδN (r, s;u)P λm(u)(1− u2)λ−1/2 du

)
wN

=
Γ(λ+ 1/2)

2π(d−1)/2
(1− w2)γ(wrs)m

∞∑
N=0

( [N/2]∑
j=0

AδN−2jψ
λ+m
j (r)ψλ+m

j (s)
)
wN .

Now, we multiply both sides by (1− w2)−γ and rearrange to get

∞∑
N=0

( [N/2]∑
j=0

Aγ−1
j AδN−2j

∫ 1

−1
σδN−2j(r, s;u)P λm(u)(1− u2)λ−1/2 du

)
wN

=
Γ(λ+ 1/2)

2π(d−1)/2

∞∑
N=0

( [N/2]∑
j=0

AδN−2j(rs)
mψλ+m

j (r)ψλ+m
j (s)

)
wN+m

=
Γ(λ+ 1/2)

2π(d−1)/2

∞∑
N=m

( [(N−m)/2]∑
j=0

AδN−m−2j(rs)
mψλ+m

j (r)ψλ+m
j (s)

)
wN .

Equating the coefficients of wN on both sides, by (4.8) we see that

Kδ,γ
N,m(r, s) =

1

AδN

[(N−m)/2]∑
j=0

AδN−m−2j(rs)
mψλ+m

j (r)ψλ+m
j (s)

for N ≥ m. It is clear that Kδ,γ
N,m(r, s) = 0 for N < m. This completes the proof of the proposition.

Repeating the same procedure, but starting with Mehler’s formula (3.1) for Φ
(d+1)
N (x, y), x, y ∈

Rd+1, we obtain the proposition for the kernel Kδ,γ
N,m(r, s) expressed as in (4.9). �

Proof of Proposition 4.5. Let Q
λ(ζ)
m (u) be as in Lemma 7.3, where λ(ζ) is taken as in (4.11). We

integrate Mehler’s formula for ΦN (x, y) in (3.1) against Q
λ(iβ)
m (u), and use (7.9) with z = 2w

1−w2 rs,
so that

∞∑
N=0

wN
∫ 1

−1
ΦN (r, s;u)Qλ(iβ)

m (u) du

= π−
d
2 (1− w2)−

d
2 e
− 1

2

(
1+w2

1−w2

)
(r2+s2)

∫ 1

−1
Qλ(iβ)
m (u)ezu du

=
Γ((d− 1)/2)

2π(d−1)/2
(1− w2)−

d
2 e
− 1

2

(
1+w2

1−w2

)
(r2+s2) Iλ(iβ)+m(z)

(z/2)λ(iβ)
.
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From this and (4.10) we have

(6.4)
∞∑
N=0

wN
∫ 1

−1
ΦN (r, s;u)Qλ(iβ)

m (u) du

=
Γ((d− 1)/2)

4π(d−1)/2
(1− w2)iβ

∞∑
N=0

(rs)mψ
λ(iβ)+m
N (r)ψ

λ(iβ)+m
N (s)w2N+m.

Now we follow a similar procedure used in the proof of Proposition 4.4 but with modifications.
Namely, instead of multiplying both sides by (1 − w2)−γ(1 − w)−δ−1 we multiply by the factor

(1−w2)−iβ(1−w)−δ(iβ+ε)−1, which we rewrite as (1−w2)−
ε
2−iβ(1−w)−δ(iβ+ ε

2
)−1(1 +w)

ε
2 , where

δ(ζ) is as in (3.2). Then, left hand side of (6.4) delivers

(1− w2)−
ε
2−iβ(1− w)−δ(iβ+ ε

2
)−1(1 + w)

ε
2

∞∑
N=0

wN
∫ 1

−1
ΦN (r, s;u)Qλ(iβ)

m (u) du

= (1 + w)
ε
2

∞∑
N=0

wN
( [N/2]∑
j=0

A
ε
2

+iβ−1

j A
δ(iβ+ ε

2
)

N−2j

∫ 1

−1
σ
δ(iβ+ ε

2
)

N−2j (r, s;u)Qλ(iβ)
m (u) du

)
On the other hand, from the right hand side of (6.4) we get

C−1
d (1− w2)−

ε
2 (1− w)−δ(iβ+

ε
2 )−1(1 + w)

ε
2

∞∑
N=0

(rs)mψ
λ(iβ)+m
N (r)ψ

λ(iβ)+m
N (s)w2N+m

= C−1
d (1− w)−δ(iβ+ε)−1

∞∑
N=0

(rs)mψ
λ(iβ)+m
N (r)ψ

λ(iβ)+m
N (s)w2N+m

= C−1
d

∞∑
N=m

( [(N−m)/2]∑
j=0

A
δ(iβ+ε)
N−m−2j(rs)

mψ
λ(iβ)+m
j (r)ψ

λ(iβ)+m
j (s)

)
wN

= C−1
d

∞∑
N=m

wNA
δ(iβ+ε)
N K

δ(iβ+ε),iβ
N,m (r, s),

where the last equality is true in view of Proposition 4.4. Altogether, we have

∞∑
N=0

wN
( [N/2]∑
j=0

A
ε
2 +iβ−1

j A
δ(iβ+

ε
2 )

N−2j

∫ 1

−1
σ
δ(iβ+

ε
2 )

N−2j (r, s;u)Qλ(iβ)
m (u) du

)

=
(1 + w)−

ε
2

Cd

∞∑
N=m

wNA
δ(iβ+ε)
N K

δ(iβ+ε),iβ
N,m (r, s).

Multiplying both sides above by r
2δ(iβ)
p s

2δ(iβ)

p′ (1 + w)ε/2 and using (1 + w)ε/2 =
∑∞

j=0

(
ε/2
j

)
wj , we

see that

∞∑
N=0

wN
( N∑
k=0

(
ε/2

N − k

) [k/2]∑
j=0

A
ε
2 +iβ−1

j A
δ(iβ+

ε
2 )

k−2j r
2δ(iβ)
p s

2δ(iβ)

p′

∫ 1

−1
σ
δ(iβ+

ε
2 )

k−2j (r, s;u)Qλ(iβ)
m (u) du

)

=
1

Cd

∞∑
N=m

wNA
δ(iβ+ε)
N Kε,iβN,m(r, s).

Equating the coefficients of wN on both sides, we get (4.14).
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Similarly, by using the Mehler’s formula for Φ
(d+1)
N (x, y), x, y ∈ Rd+1, we have

∞∑
N=0

wN
∫ 1

−1
Φ

(d+1)
N (r, s;u)Qλ(1/2+iβ)

m (u) du

=
Γ(d/2)

4πd/2
(1− w2)iβ

∞∑
N=0

(rs)mψ
λ(1/2+iβ)+m
N (r)ψ

λ(1/2+iβ)+m
N (s)w2N+m.

Proceeding as above with this identity we obtain (4.15).
This completes the proof of the proposition. �

7. Technical results

7.1. A lemma concerning binomial coefficients with complex parameters. The estimate
contained in the following lemma is used in the proof of Theorem 3.3. Moreover, a slightly different
version of such lemma (whose explicit statement and proof are omitted) is also used in the proof
of Proposition 5.2.

Lemma 7.1. For ζ ∈ C, let δ(ζ) be defined as in (3.2). For any ε > 0 and β ∈ R we have the
estimate

1∣∣Aδ(iβ+ε)
N

∣∣
N∑
j=0

∣∣Aiβ+ ε
2
−1

N−j
∣∣Aδ(ε/2)

j ≤ Cε(1 + |β|) cosh(πβ)

where Cε is independent of N.

Proof. In order to prove the lemma we make use of the fact that

(7.1) |Γ(α+ iβ)| ≤ Γ(α),

for α, β ∈ R, α > 0, which follows from the very definition of Gamma function. We also have the
Beta function

Γ(x)Γ(y)

Γ(x+ y)
=

∫ 1

0
(1− t)x−1ty−1 dt

which leads to the estimate

(7.2)
∣∣∣Γ(α)Γ(iβ + 1)

Γ(α+ iβ + 1)

∣∣∣ ≤ Γ(α)

Γ(α+ 1)

for any α > 0. We rewrite

N∑
j=0

A
iβ+ε/2−1
N−j A

δ(ε/2)
j =

Γ(ε/2)

Γ(ε/2 + iβ)

N∑
j=0

Γ(N − j + ε/2 + iβ)

Γ(N − j + 1)Γ(ε/2)
A
δ(ε/2)
j .

By (7.1) and (3.6) we have∣∣∣ N∑
j=0

A
iβ+ε/2−1
N−j A

δ(ε/2)
j

∣∣∣ ≤ Γ(ε/2)

|Γ(ε/2 + iβ)|

N∑
j=0

Γ(N − j + ε/2)

Γ(N − j + 1)Γ(ε/2)
A
δ(ε/2)
j

=
Γ(ε/2)A

δ(ε)
N

|Γ(ε/2 + iβ)|
.

Thus, we are left with estimating∣∣∣∣ Γ(ε/2)

Γ(ε/2 + iβ)

A
δ(ε)
N

A
δ(ε+iβ)
N

∣∣∣∣ =

∣∣∣∣ Γ(ε/2)

Γ(ε/2 + iβ)

Γ(δ(ε) + iβ + 1)

Γ(δ(ε) + 1)

Γ(N + δ(ε) + 1)

Γ(N + δ(ε) + iβ + 1)

∣∣∣∣.
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The middle term in the right hand side is clearly bounded by (7.1). The first term can be written
as

(ε/2 + iβ)Γ(ε/2)Γ(iβ + 1)

Γ(iβ + 1)Γ(iβ + ε/2 + 1)

which leads, by (7.2), to the estimate∣∣∣∣ Γ(ε/2)

Γ(ε/2 + iβ)

∣∣∣∣ ≤ Γ(ε/2)

Γ(ε/2 + 1)

(1 + |β|)
|Γ(iβ + 1)|

.

Similarly, the third term gives the estimate |Γ(iβ + 1)|−1. Therefore, the expression in Lemma 7.1
is bounded by

Γ(ε/2)

Γ(ε/2 + 1)
(1 + |β|) |Γ(iβ + 1)|−2.

Once again the expression with the Beta function

Γ
(

1
2

)
Γ
(

1
2 + iβ

)
Γ(1 + iβ)

=

∫ 1

0
(1− t)−

1
2 tiβ−

1
2 dt

leads to the estimate |Γ(iβ + 1)|−1 ≤
√
π|Γ(1

2 + iβ)|−1. Therefore,

|Γ(iβ + 1)|−2 ≤ π
∣∣Γ(1

2 + iβ
)∣∣−2

= π
(
Γ(1

2 + iβ)Γ(1
2 − iβ)

)−1
.

In view of the identity Γ(z)Γ(1− z) = π
sinπz we obtain

|Γ(iβ + 1)|−2 ≤ sinπ
(

1
2 + iβ

)
= coshπβ.

This completes the proof of the lemma. �

7.2. Some results on ultraspherical polynomials and Bessel functions. We will prove some
technical results involving ultraspherical polynomials and modified Bessel functions with complex
parameters. Let us recall several facts concerning both special functions.

Rodrigues’ formula for the normalized ultraspherical polynomials takes the form

(7.3) (1− u2)λ−1/2P λm(u) =
(−1)m

2m(λ+ 1/2)m

dm

dum
(
(1− u2)m+λ−1/2

)
, m = 0, 1, . . . ,

where (λ)m = Γ(λ+m)
Γ(λ) is the Pochhammer symbol. The normalized ultraspherical polynomials are

also given by the explicit formula P λm(cos θ) = Cλm(cos θ)
Cλm(1)

where (see [2, page 302])

(7.4) Cλm(cos θ) =

m∑
k=0

(λ)k(λ)m−k
k!(m− k)!

cos (m− 2k)θ

for θ ∈ [0, π]. It is immediate from (7.4) that

(7.5) |P λm(u)| ≤ 1.

Since the functions λ 7→ (λ)k are holomorphic for each fixed u ∈ [−1, 1], the ultraspherical polyno-
mials P λm(u) can be extended as a holomorphic function of λ on the domain {λ ∈ C : Re (λ) > −1

2}.
Let Iλ be the modified Bessel function of the first kind and order λ, defined as

Iλ(z) =

∞∑
m=0

1

m! Γ(m+ λ+ 1)

(
z

2

)2m+λ

.

Note that the functions Iλ can also be defined for complex values of λ. We will use Schläfli’s integral
representation of Poisson type for modified Bessel function, see [15, (5.10.22)]

(7.6) Iλ(z) =
(z/2)λ√

πΓ(λ+ 1/2)

∫ 1

−1
ezu(1− u2)λ−1/2du, | arg z| < π, λ > −1

2
.
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The following lemma is useful to express the Dunkl–Cesàro mean kernel in terms of the Cesàro
kernel for the Laguerre expansions in Subsection 4.3.

Lemma 7.2. Let z ∈ C and λ > −1
2 . Then the following holds

(7.7)

∫ 1

−1
ezuP λm(u)(1− u2)λ−1/2 du =

√
πΓ(λ+ 1/2)(z/2)−λIλ+m(z), m = 0, 1, . . . .

Proof. In view of Rodrigues’ formula (7.3), we get∫ 1

−1
ezuP λm(u)(1− u2)λ−1/2 du =

(−1)m

2m(λ+ 1/2)m

∫ 1

−1
ezu

dm

dum
((1− u2)m+λ−1/2) du

Integrating by parts and using (7.6) we see that

(−1)m

2m(λ+ 1/2)m

∫ 1

−1
ezu

dm

dum
((1− u2)m+λ−1/2) du =

(z/2)m

(λ+ 1/2)m

∫ 1

−1
ezu(1− u2)m+λ−1/2 du

=
√
πΓ(λ+ 1/2)(z/2)−λIλ+m(z)

since Γ(λ+ 1/2) = Γ(λ+m+1/2)
(λ+1/2)m

. This proves the lemma. �

In order to estimate the Cesàro kernels for Dunkl–Hermite expansions, we needed to consider
a variant of Lemma 7.2 where the parameter λ has to be taken complex. In the following lemma
we express Iλ+m in terms of certain variants of ultraspherical polynomials defined for complex λ.
Furthermore, we also obtain some good estimates for these variants.

For u ∈ [−1, 1], define

Qλ,εm (u) :=
1

Γ(iβ + ε)

∫ 1

0
χ[|u|, 1](s)P

α
m

(u
s

)
(s2 − u2)α−1/2(1− s)iβ+ε−1sm+1 ds

for m = 0, 1, 2, . . . .

Lemma 7.3. Let ε > 0 and λ = α + iβ with α > 1
2 and β ∈ R. Then, for z ∈ C, we have the

identity

(7.8)

∫ 1

−1
ezuQλ,εm (u) du =

√
πΓ(α+ 1/2)

2
· Iλ+m+ε(z)

(z/2)λ+ε
.

Moreover, we have the uniform estimates

|Qλ,εm (u)| ≤ C (1− u2)α−
1
2

|Γ(iβ + 1)|
,

for all −1 ≤ u ≤ 1. Consequently,

Qλm(u) := lim
ε→0

Qλ,εm (u)

exists, satisfies (7.3) and

(7.9)

∫ 1

−1
ezuQλm(u) du =

√
πΓ(α+ 1/2)

2
· Iλ+m(z)

(z/2)λ
.

Proof. For Re(ν) > 0 and Re(µ) > 0, we have (see [2, Theorem 4.11.1])

Jν+µ(z)

zν+µ
=

21−µ

Γ(µ)

∫ 1

0

Jν(sz)

(sz)ν
(1− s2)µ−1s2ν+1 ds,
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where Jν is the Bessel function of order ν. Using the relation Jν(iz)
(iz/2)ν = Iν(z)

(z/2)ν and taking ν = α+m

and µ = ε+ iβ, i.e. ν + µ = λ+m+ ε, the above can be written as

Iλ+m+ε(z)

(z/2)λ+m+ε
=

2

Γ(iβ + ε)

∫ 1

0

Iα+m(sz)

(sz/2)α+m
(1− s2)iβ+ε−1s2α+2m+1 ds

=
2

Γ(iβ + ε)

∫ 1

0

Iα+m(sz)

(sz/2)α
(1− s2)iβ+ε−1s2α+m+1 ds.

Therefore, in view of this and (7.7), we get

Iλ+m+ε(z)

(z/2)λ+ε
=

2

Γ(iβ + ε)
√
πΓ(α+ 1/2)

∫ 1

0

∫ 1

−1
eszuPαm(u)(1− u2)α−

1
2 du (1− s2)iβ+ε−1s2α+m+1 ds.

By making a change of variables and then a change of the order of integration, the right hand side
of the above can be written as

2

Γ(iβ + ε)
√
πΓ(α+ 1/2)

∫ 1

−1
ezu
∫ 1

0
χ[|u|, 1](s)P

α
m

(u
s

)
(s2 − u2)α−

1
2 (1− s2)iβ+ε−1sm+1 ds du.

Thus we have the desired identity

Iλ+m+ε(z)

(z/2)λ+ε
=

2√
πΓ(α+ 1/2)

∫ 1

−1
ezuQλ,εm (u) du.

We now proceed to show that limε→0Q
λ,ε
m (u) exists and satisfies the required estimate. In order

to do so, let us write

fm(s) = Pαm(s)(1− s2)α−
1
2 , gm(s) = s2α+m−1

so that we can write

Qλ,εm (u) =
iβ + ε

Γ(iβ + ε+ 1)

∫ 1

|u|
fm
(
u
s

)
(1− s2)iβ+ε−1gm(s)s ds.

Integrating by parts and noting that the boundary terms vanish (since α > 1
2) we have

Qλ,εm (u) =
1

2Γ(iβ + ε+ 1)

∫ 1

|u|

d

ds

(
fm

(u
s

)
gm(s)

)
(1− s2)iβ+ε ds.

Observe that |Qλ,εm (u)| ≤ 1
2|Γ(iβ+1)|

∫ 1

|u|

∣∣ d
ds

(
fm
(
u
s

)
gm(s)

)∣∣(1 − s2)iβ ds. Besides, it is easy to check

that we can now pass to the limit as ε→ 0 and define

Qλm(u) := lim
ε→0

Qλ,εm (u) =
1

2Γ(iβ + 1)

∫ 1

|u|

d

ds

(
fm

(u
s

)
gm(s)

)
(1− s2)iβ ds.

On one hand, the boundedness (7.5) of Pαm(u) leads to the estimate∫ 1

|u|

∣∣∣fm(u
s

)∣∣∣g′m(s) ds ≤ C
(
gm(1)− gm(|u|)

)
≤ 2C.

On the other hand, from Rodrigues’ formula (7.3) it is easy to see that |f ′m(u)| ≤ C(1 − u2)α−
3
2

and therefore, ∫ 1

|u|

∣∣∣f ′m(us)∣∣∣ |u|s2
gm(s) ds ≤ C

∫ 1

|u|
(s2 − u2)α−

3
2
|u|
s
sm+1ds

which gives the estimate (as |u| ≤ s ≤ 1)

|Qλ,εm (u)| ≤ C

|Γ(iβ + 1)|
(1− u2)α−

1
2 .
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As Qλm(u) is defined as the limit of Qλ,εm (u) it follows that Qλm(u) also satisfies the same estimate.
Passing to the limit in (7.8) we see that∫ 1

−1
ezuQλm(u) du =

√
πΓ(α+ 1/2)

2
· Iλ+m(z)

(z/2)λ
.

This completes the proof. �
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