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Abstract. In this work, we propose novel discretizations of the spectral frac-

tional Laplacian on bounded domains based on the integral formulation of the

operator via the heat-semigroup formalism. Specifically, we combine suitable
quadrature formulas of the integral with a finite element method for the ap-

proximation of the solution of the corresponding heat equation. We derive two

families of discretizations with order of convergence depending on the regular-
ity of the domain and the function on which the spectral fractional Laplacian is

acting. Our method does not require the computation of the eigenpairs of the
Laplacian on the considered domain, can be implemented on possibly irregular

bounded domains, and can naturally handle different types of boundary con-

straints. Various numerical simulations are provided to illustrate performance
of the proposed method and support our theoretical results.

1. Introduction

Fractional operators, and nonlocal operators in general, became of high inter-
est in mathematical modeling because of their success in overcoming difficulties
encountered when trying to explain phenomena and fit data in complex systems.
Fractional generalizations of model equations have been studied both with time-
fractional derivatives (e.g., diffusion problems in biologcal systems [44, 45] and
porous media [48], or in relaxation phenomena and viscoelasticity [52, 41]) and
with space-fractional operators (e.g., in plasma physics [17], quantum mechanics
[61], contaminant dispersion [62] or cardiac electrical propagation [10, 16]) in rela-
tion also to experimental evidence (e.g., [25, 27, 50, 43, 32, 3, 42]).

Preliminary results of fractional models are promising and encourage the ex-
ploration of their use in more realistic settings, so that interesting mathematical
models could phase into physically grounded equations, able to predict phenomena
observed in experiments. The present study is motivated by providing accessible
and effective tools for real world models involving fractional calculus operators.

In order to fix the physical foundation of fractional models, bounded domains
and boundary conditions come into play [30].

Typically, experiments are set up so that no effects are expected from outside the
domain where the sample is contained and the local boundary conditions should
fully determine the evolution of the process under study. For example, the observ-
able under investigation can be zero at the boundaries, mathematically described
by homogeneous Dirichlet boundary conditions. However, depending on the phe-
nomena and the domain observed, other boundary conditions involving the specifi-
cation of a nonzero value of the observable or a particular expression of its flux at
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the boundaries are required. This last example is the case of an insulated domain
where the imposition of reflecting boundaries (i.e., homogeneous Neumann bound-
ary conditions) ensures mass conservation. When the observed process takes place
in a domain characterized by high spatial complexity and/or structural heterogene-
ity we cannot ignore what happens at the interface between different structural
compartments nor the conditions imposed at the boundary of the considered do-
main; hence the need for a consistent definition of nonlocal operators with boundary
conditions.

With this in mind, in the present paper we study a family of nonlocal operators
defined in a consistent manner with the bounded domain on which they act and
the corresponding local boundary conditions.

Since this issue concerns the nonlocality in space, we consider the fractional
Laplacian as a prototype operator. For this nonlocal operator many definitions
exist (e.g., Fourier multiplier [54], Riesz potential operator [36], hypersingular in-
tegral [46], heat-semigroup [56], extension problem [12]) and these definitions are
proved to be equivalent for sufficiently smooth functions in Rn, n ≥ 1, [35]. How-
ever, when the nonlocal operator is considered on bounded domains, this equiv-
alence no longer holds. In the literature, one can find many different approaches
for the definition or restriction of the fractional Laplacian in the bounded domain
case and often, for each of these definitions, various schemes are proposed for the
numerical computation of the considered operator (see e.g., [31, 14, 18, 20, 7, 5, 23,
15, 60, 22, 24, 1]).

The work presented in this manuscript is based on the spectral definition of
the fractional Laplacian on an open set Ω ⊂ Rn [11, 57, 59]. Let L be a linear
non-negative second order differential operator on L2(Ω), self-adjoint and with a
compact inverse. Then there is an orthonormal basis of L2(Ω) made of eigenfunc-
tions {ϕm}m∈N of L, i.e., Lϕm = λmϕm, such that λm ≥ 0, and λm → ∞. Then,
Lu =

∑
m λm〈u, ϕm〉ϕm, and fractional powers of the operator, namely Ls, with

s ∈ (0, 1), are defined as

(1.1) Lsu =
∑
m

λsm〈u, ϕm〉ϕm,

for all functions u ∈ L2(Ω) such that
∑
m λ

2s
m |〈u, ϕm〉|2 < ∞ (〈·, ·〉 denotes the

inner product in L2(Ω)). The choice of functional spaces on which L satisfies the
aforementioned properties and the particular expression of eigenvalues λj and eigen-
functions ϕj depend not only on L but also on Ω and on the boundary conditions
considered for this domain. Therefore, here and throughout the rest of the manu-
script, we use the subscript B to highlight that a given operator, in the bounded
setting, is considered together with some boundary conditions. For example, we
denote the Laplacian on Ω by (−∆B) rather than simply (−∆).

When L = (−∆B), from (1.1) we obtain the definition of the spectral frac-
tional Laplacian (−∆B)s on Ω and the notation is consistent with the one used for
the Dirichlet and Neumann spectral fractional Laplacians in references [59], [58],
and [29]. The fact that different boundary conditions modify the definition of the
nonlocal operator on the bounded domain Ω is in complete agreement with our ini-
tial physical considerations and motivates our choice of working with the spectral
definition rather than any other definition of fractional operator available in the
literature.
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Regarding the numerical approximation of fractional equations on bounded do-
mains Ω involving the spectral fractional Laplacian, we mention here two strate-
gies. On the one hand, the matrix transfer technique, initially proposed by Ilić
et al. [33, 34], computes a finite difference approximation of the spectral frac-
tional Laplacian via the direct approximation of the eigenvalues and eigenvectors of
the standard discrete Laplacian coupled to some given boundary conditions. This
method can be easily adopted on simple geometries but, in the case of general do-
mains, only estimates of the eigenpairs are available, and computations require the
solution of a very large number of eigenvalue problems. An efficient method for ap-
proximating the eigendecomposition of the Laplacian on more general domains has
been recently proposed in [55]. On the other hand, for general Lipschitz domains
Ω ⊂ Rn, n > 1, Nochetto et al. [47] developed a finite element (FE) technique to
compute the solution to the fractional Poisson equation involving the spectral frac-
tional Laplacian with homogeneous Dirichlet boundary conditions and interpreted
in light of the Caffarelli–Silvestre extension method [12]. See [18] for a similar ap-
proach in the context of finite differences. Bonito and Pasciak in [7] proposed an
integral formulation for fractional powers of the inverse of the Laplacian to solve
the fractional Poisson equation.

Differently from the approaches mentioned above, we exploit the fact that defi-
nition (1.1) is equivalent to the one based on the heat-semigroup [56]. In particular,
for the spectral fractional Laplacian we have

(1.2) (−∆B)su(x) =
1

Γ(−s)

∫ ∞
0

(
et∆Bu(x)− u(x)

) dt

t1+s
,

where et∆B u represents the solution of the classical heat equation on the bounded
domain Ω with initial condition u and boundary conditions B.

The connection between the nonlocal operator and the local heat equation pro-
vided by equation (1.2) allows us to develop an accessible and effective method for
the numerical computation of the considered nonlocal operator on general bounded
domains and with various boundary constraints. Specifically, in the present paper
we compute the value of the operator (−∆B)s on a given function by combining a
FE approach for the solution of the heat equation and a quadrature rule for the

integral in (1.2) with respect to the measure dµ(t) =
dt

t1+s
. We provide a suitable

discretization for the considered fractional operator and prove convergence of the
numerical approximation. The cases of Dirichlet, Neumann and Robin boundary
conditions are studied in details and several numerical results are provided. The
numerical method is also used to compute the numerical approximation to a frac-
tional porous medium type equation on a bounded domain: the sharp boundary
behavior predicted in [5] is recovered.

Fractional powers of the Laplacian with homogeneous boundary conditions are
our main focus. However, under suitable assumptions, we propose a possible strat-
egy to deal with the case of non-homogeneous boundary conditions, and we outline
how our approach can be applied to compute fractional powers of more general
second order elliptic operator L and how it can be adapted to deal with the case of
more general boundary conditions.

Organization of the paper. In 2, we introduce our framework, some defini-
tions, the concepts of the FE theory, and provide the general form of the quad-
rature approximation that will be used in the rest of this work. After stating
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our main assumptions, in 3 we provide our first discretization and the correspond-
ing proof of convergence. Under suitable assumptions, a similar approach is used
to derive a higher order discretization of the nonlocal operator, as shown in de-
tail in 4. In 5 we study the case of non-homogeneous boundary conditions. We
define a fractional-type operator corresponding to the Laplacian coupled with non-
homogeneous boundary conditions and convergent discretizations of the considered
operators are provided. Possible extensions of our main results to more general
operators is outlined in 6. In 7, we present numerical experiments to support our
results and to illustrate the performance of the presented numerical methods. Our
conclusions and future research directions are given in 8.

2. Definitions and concepts

2.1. Notations and functional setting. Boundary conditions. Let Ω be a bounded

domain in Rn, u : Ω→ R, κ : ∂Ω→ R, and ∂u
∂ν be the derivative of u along the unit

outward normal direction on ∂Ω. We denote by B one of the following boundary
operators:

B(u) = u,(2.1)

B(u) =
∂u

∂ν
,(2.2)

B(u) = κ u+
∂u

∂ν
, κ(x) > 0 for all x ∈ ∂Ω,(2.3)

which are known as Dirichlet, Neumann, and Robin boundary operators, respec-
tively. For now we simply assume that the function u is regular enough so that all
of the above makes sense.

Eigenvalue problem. Let Ω be a Lipschitz bounded domain and B one of the

the above boundary operators. Then, there exists an orthonormal basis of L2(Ω)
consisting of eigenfunctions {ϕm}m∈N of the Laplacian operator −∆ coupled to
homogeneous boundary conditions B(·) = 0, that is, non-trivial solutions of

(2.4)

{
−∆ϕm = λmϕm in Ω,
B(ϕm) = 0 on ∂Ω.

Moreover, the corresponding eigenvalues {λm}m∈N are all non-negative and form a
non-decreasing sequence such that λm →∞ (see e.g. [53]).

Functional spaces. Given an open set Ω and r ≥ 0, Hr(Ω) denotes the classical

Sobolev space W r,2(Ω) (cf. [21]). We denote by ‖ · ‖r the classical norm of Hr(Ω).
Throughout the manuscript we will always use ‖·‖0 to indicate the norm in H0(Ω) =
L2(Ω). H1

0 (Ω) is the set of functions u ∈ H1(Ω) with null trace on ∂Ω. For any
given r ≥ 0, let HrB(Ω) be the space of u ∈ L2(Ω) such that

(2.5) ‖u‖HrB =

( ∞∑
m=1

λrm|ûm|2
)1/2

<∞,

where ûm := 〈u, ϕm〉 denotes the L2(Ω) inner product of u with the basis function
ϕm previously introduced. Most of the results in this manuscript will be stated
in terms of the norm ‖ · ‖HrB given by (2.5), for some suitable non-negative integer
r. When r is a non-negative integer, HrB(Ω) has the following characterization (see
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Lemma 2.2 in [8] for the Dirichlet case, with similar proofs for the Neumann and
Robin cases):

(2.6) HrB(Ω) = {u ∈ Hr(Ω) | B(∆ju) = 0 on ∂Ω, ∀ non-negative integer j < r/2},

and the norm ‖ · ‖HrB is equivalent to the usual norm ‖ · ‖r in Hr(Ω). The condi-

tions imposed on ∆ju at the boundary are known in the literature as compatibility
conditions.

2.2. Fractional powers of the Laplacian in bounded domains. Fractional
powers with exponent s ∈ (0, 1) of the Laplacian coupled to the boundary condition
B are defined in the spectral sense as

(2.7) (−∆B)su :=

∞∑
m=1

λsmûmϕm,

for all functions u ∈ L2(Ω) such that
∑
m λ

2s
m |ûm|2 < ∞ (see e.g., [11]). These

conditions on u are a quite common requirement in the literature dealing with
the spectral fractional Laplacian and we will proceed under these assumptions.
However, wanting to work in full generality, the assumptions on the function u
could be relaxed.

Let B be one of the boundary operators introduced in (2.1), (2.2), or (2.3). We
let w(x, t) := et∆Bu(x) denote the solution of the heat equation

(2.8)

 ∂tw −∆w = 0 (x, t) ∈ Ω× (0,∞),
w(x, 0) = u(x) x ∈ Ω,
B(w(·, t))(x) = 0 (x, t) ∈ ∂Ω× [0,∞).

By separation of variables, the function w can be written as the following series:

(2.9) w(x, t) =

∞∑
m=1

e−λmtûmϕm(x),

where λm and ϕm are the eigenpairs defined in (2.4). Let w∞ denote the steady-
state of (2.11). Using the series expansion of w we can easily see that w∞ = 0 when
λm > 0 for all m (as in the Dirichlet case and the Robin case with κ > 0), while
w∞ = û1ϕ1 = 1

|Ω|
∫

Ω
u dx when λ1 = 0 and λm > 0 for m ≥ 2 (as in the Neumann

case).
On a bounded domain Ω, the definition of (−∆B)s given by (2.4)-(2.7) is equiv-

alent to the following one:

Definition 1. Let Ω be a bounded domain, s ∈ (0, 1) and u ∈ H2s
B (Ω). The spectral

B-fractional Laplacian of u in Ω is given by

(2.10) (−∆B)su(x) =
1

Γ(−s)

∫ ∞
0

(
et∆Bu(x)− u(x)

) dt

t1+s
,

where et∆Bu(x) is the solution of (2.8).

In 5 we will extend definition (2.10) to a fractional-type operator associated with
non-homogeneous boundary conditions.
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2.3. Basics on the finite elements theory. To compute FE approximations of
the heat equation solution, we consider the heat problem (2.8) in weak form. The
weak formulation of the heat equation (2.8) is as follows: given u ∈ L2(Ω) find
w ∈ L2(0,∞;V ) ∩ C([0,∞);L2(Ω)) such that

(2.11)

{
d

dt
〈w(t), v〉+ a(w(t), v) = 0, ∀v ∈ V, t > 0

w(0) = u,

where a(·, ·) is the bilinear form corresponding to the particular set of boundary
conditions considered in (2.8) and V is a suitable functional space (i.e., H1

0 (Ω)
for homogeneous Dirichlet conditions or H1(Ω) in the homogeneous Neumann and
Robin cases). In particular, a(w, v) =

∫
Ω
∇w · ∇v for the Dirichlet and Neumann

cases, while a(w, v) =
∫

Ω
∇w ·∇v+〈κ w, v〉L2(∂Ω) in the Robin case, with 〈·, ·〉L2(∂Ω)

denoting the scalar product in L2(∂Ω). Note that the series expansion given by
(2.9) still holds for the weak solution w (see e.g. Lemma 7.2-1 in [51]).

We introduce here the notation and concepts of the FE theory that we will use
throughout this manuscript.
Triangulation. Let h > 0 and Th denote a triangulation of Ω̄ such that the
diameter of each element K ∈ Th is smaller than h.
Spatial nodes. Let Ωh denote the set {xi}Nhi=1 of Nh nodes in the considered
triangulation.
Time points. Let ∆t > 0 and tj = j∆t, for j = 0, 1, . . . , Nt, be a uniform grid of
time points used to discretize the interval [0, T ], for a given T > 0.
Finite dimensional space and FE basis. Let Pk, k ≥ 1, denote the space of
polynomials of degree less than or equal to k and let Xk

h be the space of triangular
FE, that is,

Xk
h :=

{
vh ∈ C0(Ω̄) | vh|K ∈ Pk ∀K ∈ Th

}
.

Let Vh = V ∩Xk
h be the finite dimensional space approximating V and {φi}Nhi=1 be

the FE basis of Vh given by the functions φi ∈ Xk
h , such that φi(xj) = δij for all

xj ∈ Ωh.
L2(Ω)-orthogonal projection. Let u ∈ L2(Ω) and P kh be the L2(Ω)-orthogonal
projection operator over the space Xk

h , that is, the operator P kh : L2(Ω)→ Xk
h such

that 〈P khu, φ〉 = 〈u, φ〉 for all φ ∈ Xk
h .

Stiffness and Mass matrices. The stiffness matrix A and the mass matrix M
corresponding to the FE approximation of the problem (2.11) on Vh have entries
Aij = a(φi, φj) and Mij = 〈φi, φj〉 for i, j = 1, . . . , Nh, respectively.

Definition 2. Let Ω be a bounded domain, u ∈ L2(Ω), h,∆t > 0, and θ ∈ [0, 1].
Let W(j) be the solution vector of the iterative linear system

(2.12) (M + θ∆tA)W(j) = (M + (θ − 1)∆tA)W(j−1) for j = 1, . . . , Nt,

where the initial condition W(0) has components W
(0)
i = P khu(xi), for i = 1, . . . , Nh.

The FE solution of degree k of (2.11) is the function wh : Ω×{(∆t·N)∩[0, T ]} →
R such that

(2.13) wh(x, tj) =

Nh∑
i=1

W
(j)
i φi(x), for all x ∈ Ω,

where {φi}Nhi=1 is the FE basis of degree k.
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2.4. Definition of the discrete operator. Given u ∈ H2s
B (Ω), we denote by Θs

the following discrete operator in time:

(2.14) Θsu(x) :=
1

Γ(−s)

 Nt∑
j=1

(w(x, tj)− u(x)) βj + (w∞ − u(x)) β∞

 ,
where w(x, tj) is the solution of (2.11) at the time points tj = j∆t, Nt ∈ N is a
suitable integer, the βj are weights defining a suitable quadrature rule for (2.10),
w∞ is the steady-state of (2.11), and β∞ is the value of the tail of the integral with
respect to the measure dt

t1+s (see 3.1 and 4.1 for further details).
Combining (2.14) with the FE we get the following approximation of the spectral

B-fractional Laplacian (−∆B)s of a given u:

Definition 3. Let wh be the FE solution of degree k of (2.11) defined by equation
(2.13), corresponding to the initial datum u. Then, for all x ∈ Ω, the approxima-
tion of the B-fractional Laplacian of u is defined as

(2.15) Θs
hu(x) :=

1

Γ(−s)

 Nt∑
j=1

(wh(x, tj)− wh(x, 0)) βj + (w∞ − u(x)) β∞

 .
Remark 1. In 3 and 4 we propose two different choices of the weights βj leading
to approximations of (−∆B)su with different accuracy. The weights βj defined in
(3.2) correspond to a composite midpoint quadrature rule while the ones in (4.2)
correspond to a quadrature defined via a piecewise linear interpolant.

3. Main result

3.1. Assumptions. In order to prove our main convergence results, we need some
assumptions on the domain Ω, the triangulation Th, the function u, the spatial and
the temporal steps h and ∆t, respectively. Specifically, we assume:

(AΩ) Ω is a bounded convex polytope (see Remark 2 below).
(AB) The boundary operator B is given by (2.1), (2.2), or (2.3). If B is the Robin

boundary operator, then κ ∈ C1(∂Ω) and κ(x) > 0 for all x ∈ ∂Ω.

(Au) u ∈ Hk+1
B (Ω), with k ≥ 1 (degree of the FE).

(ATh) Th is a quasi-uniform family of triangulations: letting hK := diam(K), K ∈
Th, and ρK := sup{diam(S)|S is a ball contained in K}, there exist two
constants, σ ≥ 1 and τ > 0, such that maxK hK/ρK ≤ σ and minK hK ≥
τ h, ∀h > 0.

(ACFL) If 0 ≤ θ < 1
2 , then ∆t h−2 ≤ cµ/(1 − 2θ), where cµ is a positive constant

independent from both ∆t and h, derived from a bound for the largest
eigenvalue of the bilinear form a(·, ·) on the finite-dimensional space Vh
(see e.g., Chapter 6 in reference [49] for details).

Remark 2. We have assumed the domain to be a convex polytope so that the
technicalities related to FE approximations in the case of curvilinear boundaries and
re-entrant corners can be avoided. However, assumption (AΩ) can be relaxed to Ω
being a bounded domain with Lipschitz boundary ∂Ω. The case of Lipschitz domains
with curvilinear boundaries can be dealt with, for example, as proposed in [4], while
suitable mesh refinements near re-entrant corners allow the recovery of optimal
error bounds for non-convex domains as shown in the work by Chatzipantelidis et
al. [13] and references therein.
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3.2. Low order approximation. We now state our first main result, which con-
cerns homogeneous boundary conditions.

Theorem 3.1. Let s ∈ (0, 1), h > 0, θ ∈ [0, 1], k ∈ N, and

(3.1) ∆t = η hp for some η > 0 and p ∈


[2, k + 1] if 0 ≤ θ < 1

2
,

(0, k + 1] if
1

2
≤ θ ≤ 1.

Assume that (AΩ), (Au), (AB), (ATh), (ACFL) hold, and let Θs
h be defined by (2.15)

where:

(a) wh is the FE solution of degree k of (2.11) with initial datum u;

(b) Nt ≥
1− s
λmin∆t

log

(
1

∆t

)
, λmin being the first nonzero eigenvalue of (−∆B);

(c) the weights βj, for j = 1, . . . , Nt, are given by

(3.2) βj :=

∫ tj+∆t/2

tj−∆t/2

dt

t1+s
=

1

s

[
1(

tj − ∆t
2

)s − 1(
tj + ∆t

2

)s
]
,

and

β∞ :=

∫ ∞
tNt+∆t/2

dt

t1+s
=

1

s((Nt + 1/2)∆t)s
.

Then, there exists a constant C > 0 independent of h such that

(3.3) ‖(−∆B)su−Θs
hu‖0 ≤ C hp(1−s).

3.3. Proof of 3.1. In order to prove 3.1 we need some intermediate results. We
split the integral in (2.10) into three parts:

(i) singular part

(3.4) IS [u](x) :=
1

Γ(−s)

∫ T1

0

(
et∆Bu(x)− u(x)

) dt

t1+s
, for some T1 > 0,

(ii) middle part

(3.5) IM [u](x) :=
1

Γ(−s)

∫ T2

T1

(
et∆Bu(x)− u(x)

) dt

t1+s
, for some T2 > T1,

(iii) tail

(3.6) I∞[u](x) :=
1

Γ(−s)

∫ ∞
T2

(
et∆Bu(x)− u(x)

) dt

t1+s
.

This way, (−∆B)su = IS [u] + IM [u] + I∞[u]. For each of these integrals, in 3.3.1,
we define an approximation, that we denote by IDS , I

D
M , I

D
∞, so that

Θsu = IDS [u] + IDM [u] + ID∞[u].

In 3.3.1 we provide a bound to ‖(−∆B)su − Θsu‖0 while in 3.3.2 we estimate
‖Θsu−Θs

hu‖0. The proof of 3.1 follows from these preliminary results.
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3.3.1. Intermediate results. In the following lemmas, we work under the assump-
tions (AΩ), (AB), and that the regularity of u is as given explicitly by the constants
in each error estimate.

Lemma 1. Let s ∈ (0, 1), ∆t > 0, IS given by (3.4) with T1 := ∆t/2, and IDS [u] :=
0. Then, there exists a constant cS = cS(s, ‖u‖H2

B
) > 0 such that

‖IS [u]− IDS [u]‖0 ≤ cS ∆t1−s.

Proof. Using the series expansion of u and w = et∆Bu (see (2.9)),

w(x, t)− u(x) =
∑
m

(e−λmt − 1) ûm ϕm(x).

By orthonormality of the functions ϕm,

‖w(·, t)− u‖0 =

[∑
m

(
e−λmt − 1

)2 |ûm|2]1/2

.

Moreover, for all λ ≥ 0 and t ≥ 0, (e−λt − 1)2 ≤ λ2t2, so that

‖w(·, t)− u‖0 ≤

[∑
m

λ2
mt

2|ûm|2
]1/2

= ‖u‖H2
B
t.

Therefore, exploiting Minkowski’s integral inequality

‖IS [u]− IDS [u]‖0 ≤
1

|Γ(−s)|

∫ ∆t/2

0

‖w(·, t)− u‖0
dt

ts+1

≤
‖u‖H2

B

|Γ(−s)|

∫ ∆t/2

0

dt

ts
≤ cS ∆t1−s.

�

Lemma 2. Let s ∈ (0, 1), ∆t > 0, IM given by (3.5) with T1 := ∆t/2 and T2 =
(Nt + 1/2)∆t for some positive integer Nt. Let tj = j∆t for j = 1, . . . , Nt and

(3.7) IDM [u](x) :=
1

Γ(−s)

Nt∑
j=1

(etj∆Bu(x)− u(x))βj ,

with weights βj given in (3.2). Then, there exists a constant cM = cM (s, ‖u‖H2
B

) > 0
such that

‖IM [u]− IDM [u]‖0 ≤ cM ∆t1−s.

Proof. We split the interval [∆t/2, (Nt + 1/2)∆t] into Nt subintervals of size ∆t,
denote w = et∆Bu, and rewrite IM [u] as the following finite sum of integrals:

IM [u](x) =
1

Γ(−s)

Nt∑
j=1

∫ tj+∆t/2

tj−∆t/2
(w(x, t)− u(x))

dt

t1+s
,

where tj = j ∆t, for j = 1, . . . , Nt. By using the expression (3.7) for IDM [u] we
obtain

IM [u](x)− IDM [u](x) =
1

Γ(−s)

Nt∑
j=1

∫ tj+∆t/2

tj−∆t/2
(w(x, t)− w(x, tj))

dt

t1+s
,
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so that, by using the triangular inequality and Minkowski’s integral inequality,

‖IM [u]− IDM [u]‖0 ≤
1

|Γ(−s)|

Nt∑
j=1

∫ tj+∆t/2

tj−∆t/2
‖w(·, t)− w(·, tj)‖0

dt

t1+s
.

Using the series expansion of w and the fact that for all λ ≥ 0, e−λt is a convex
and monotonically decreasing function of t, one finds that on each subinterval Ij =
[tj −∆t/2, tj +∆t/2],

(e−λmt − e−λmtj )2 ≤ λ2
me
−2λm(tj−∆t/2)(t− tj)2 ≤ λ2

m∆t
2.

Therefore, ‖w(·, t)− w(·, tj)‖0 ≤ ∆t‖u‖H2
B

for all j and all t ∈ Ij , which leads to

‖IM [u]− IDM [u]‖0 ≤
‖u‖H2

B
∆t

|Γ(−s)|

Nt∑
j=1

∫ tj+∆t/2

tj−∆t/2

dt

t1+s
=
‖u‖H2

B
∆t

|Γ(−s)|

∫ (Nt+1/2)∆t

∆t/2

dt

t1+s

≤
‖u‖H2

B
∆t

|Γ(−s)|
2s

s∆ts
≤ cM ∆t1−s.

�

Lemma 3. Let s ∈ (0, 1), I∞ given by (3.6) for some T2 > 0, and

(3.8) ID∞[u](x) :=
(w∞ − u(x))

Γ(−s)

∫ ∞
T2

dt

t1+s
=

(w∞ − u(x))

Γ(−s) s T s2
.

Let λmin be the first nonzero eigenvalue of (−∆B). Then there exists a constant
c∞ = c∞(s, ‖u‖0) such that

‖I∞[u]− ID∞[u]‖0 ≤ c∞
e−λminT2

T s2
.

Proof. Recall that w∞ = 0 for the Dirichlet and Robin cases, while w∞ = û1ϕ1 for
Neumann boundary conditions, and let mmin be the index corresponding to λmin

(i.e., for the boundary operators of interest, mmin = 1 in the Dirichlet and Robin
cases, while mmin = 2 in the Neumann case). Then, for all t ≥ 0, w(x, t) − w∞ =∑∞
m=mmin

e−λmtûmϕm(x), so that

‖w(·, t)− w∞‖0 =

[ ∞∑
m=mmin

e−2λmt|ûm|2
]1/2

≤ e−λmint‖u‖0.

Hence,

‖I∞[u]− ID∞[u]‖0 ≤
1

|Γ(−s)|

∫ ∞
T2

‖w(·, t)− w∞‖0
dt

t1+s
≤ ‖u‖0 e

−λminT2

|Γ(−s)|sT s2
.

�

Preposition 1. Let assumptions of 3.1 hold. Let (−∆B)s and Θs be defined by
(2.10) and (2.14), respectively. Then, there exists a constant ca = ca(s, ‖u‖H2

B
) > 0

such that

‖(−∆B)su−Θsu‖0 ≤ ca ∆t1−s.
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Proof. The result follows by simply combining 1, 2, and 3.

‖(−∆B)su−Θsu‖0 ≤ ‖IS [u]− IDS [u]‖0 + ‖IM [u]− IDM [u]‖0 + ‖I∞[u]− ID∞[u]‖0

≤ cS ∆t1−s + cM ∆t1−s + c∞
e−λminT2

T s2
.

Finally, using the definition of Nt and choosing T2 = (Nt + 1/2)∆t we obtain that
e−λminT2

T s2
≤ ∆t1−s, and a suitable choice of the constant ca completes the proof. �

3.3.2. Finite element approximation. In this section we combine some well-known
estimates of the FE method to obtain a bound for the error made by approximating
Θsu by Θs

hu. As usual, we denote by w the solution of the heat equation with initial
condition u, and by wh the corresponding FE approximation of order k.

Recalling that w(·, 0) = u and that wh(·, 0) = P khu is the L2(Ω)-orthogonal
projection of the function u, from classical estimates for the FE projection error
(e.g., Section 3.5 in [49]) we have

(3.9) ‖w(·, 0)− wh(·, 0)‖0 = ‖u− P khu‖0 ≤ c hk+1||u||k+1

for some positive constant c independent from h.
In order to bound ‖w(·, tj) − wh(·, tj)‖0 for tj > 0 we use the fact that there

exists a constant c̃ independent from h, ∆t, and tj such that

(3.10) ‖w(·, tj)− wh(·, tj)‖0 ≤ c̃ (hk+1 +∆t).

The above result, for tj > 1 can be obtained via classical FE estimates which hold
even for rough initial data, u ∈ L2(Ω) (see e.g., Remark 11.3.2 in [49] or Theorems 1
and 2 in [39]), while for tj ≤ 1, the bound (3.10) is a consequence of the regularity
assumptions made on u, ensuring that the constant c̃ can be controlled by the
integral (over [0, 1]) of suitable spatial norms of the heat solution w and its temporal
derivatives (see e.g., Theorem 11.3.4 in [49] or Theorem 2.1 in [9]).

Preposition 2. Let assumptions of 3.1 hold and Θsu given by (2.14). Then, there
is a constant cD = cD(s,Ω, ‖u‖k+1,B, k) > 0 such that

‖Θsu−Θs
hu‖0 ≤ cD (hk+1∆t−s +∆t1−s).

Proof. Via the triangular inequality we find

(3.11) ‖Θsu−Θs
hu‖0 ≤

1

|Γ(−s)|

Nt∑
j=1

[
‖w(·, tj)−wh(·, tj)‖0+‖w(·, 0)−wh(·, 0)‖0

]
βj .

On one hand, by using (3.9), we can bound the sum of terms in (3.11) involving
w(·, 0) and wh(·, 0) as follows:

1

|Γ(−s)|

Nt∑
j=1

‖w(·, 0)− wh(·, 0)‖0 βj ≤
c hk+1 ‖u‖k+1

|Γ(−s)|

Nt∑
j=1

βj

=
c hk+1 ‖u‖k+1

|Γ(−s)|

∫ T2

∆t/2

dt

t1+s
≤ c0 hk+1∆t−s.
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On the other hand, for the remaining terms of (3.11) we use (3.10) and obtain

1

|Γ(−s)|

Nt∑
j=1

‖w(·, tj)− wh(·, tj)‖0 βj ≤
1

|Γ(−s)|
c̃
(
hk+1 +∆t

) ∫ T2

∆t/2

dt

t1+s

≤ c1
(
hk+1 +∆t

)
∆t−s.

Hence, combining the above estimates we get

‖Θsu−Θs
hu‖ ≤ c0 hk+1∆t−s + c1

(
hk+1 +∆t

)
∆t−s

≤ cD
(
hk+1∆t−s +∆t1−s

)
.

�

3.3.3. Proof of the main result.

Proof of 3.1. The triangular inequality yields

(3.12) ‖(−∆B)su−Θs
hu‖0 ≤ ‖(−∆B)su−Θsu‖0 + ‖Θsu−Θs

hu‖0.
1 provides the following bound of the first term in (3.12):

‖(−∆B)su−Θsu‖0 ≤ ca ∆t1−s.
On the other hand, from 2 we have that

‖Θsu−Θs
hu‖0 ≤ cD(hk+1∆t−s +∆t1−s).

From (3.1) we have that hk+1∆t−s = η−shk+1−ps and ∆t1−s = η1−shp(1−s). More-
over, k + 1 − ps ≥ p(1 − s) for all p ≤ k + 1. Hence, the order of convergence is
always determined by hp(1−s), and by suitably choosing the constant C in (3.3) we
conclude the proof. �

4. Higher order discretization

Since s ∈ (0, 1), the rate of convergence presented in 3.1 can be slow for practical
computations when s is close to one. In this section, we present a discretization that
allows to obtain a better rate of convergence at the expenses of requiring some extra
regularity to the function u, and also to the boundary operator in the Robin case.
We adopt the Crank-Nicolson temporal scheme, corresponding to setting θ = 1/2
in the FE solution of the heat equation given by (2.12). We suitably modify the
relationship between the discretization parameters ∆t and h, and consider higher
order quadrature approximations for both IS and IM .

4.1. Assumptions and higher order result. We assume that:

(HAB) The boundary operator B is given by (2.1), (2.2), or (2.3). If B(u) is the
Robin boundary operator, then κ ∈ C3(∂Ω) and κ(x) > 0 for all x ∈ ∂Ω.

(HAu) u ∈ HrB(Ω) with r = max{k + 1, 4}.
The approximation of the B-fractional Laplacian of u is defined as in 3 where now
wh is the FE solution of degree k of (2.11) with θ = 1/2 and the weights βj are
given by (4.2)-(4.3).

Theorem 4.1. Let s ∈ (0, 1), h > 0, k ∈ N and

(4.1) ∆t = η hp for some η > 0 and p ∈ (0, (k + 1)/2] .

Assume that (AΩ), (HAu), (HAB), (ATh) hold, and let Θs
h be given by (2.15) where:
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(a) wh is the Crank-Nicolson FE solution of degree k of (2.11) corresponding to
the initial datum u;

(b) Nt ≥
2− s
λmin∆t

log

(
1

∆t

)
, λmin being the first nonzero eigenvalue of (−∆B);

(c) the weights βj are defined as

(4.2) βj :=
1

∆ts
×


1

1−s − F
′(1) + F (2)− F (1) j = 1,

F (j + 1)− 2F (j) + F (j − 1) j = 2, . . . , Nt − 1,
F ′(Nt)− F (Nt) + F (Nt − 1) j = Nt,

with

(4.3) F (t) :=
t1−s

s(s− 1)
and F ′(t) := − 1

s ts
,

and

β∞ :=

∫ ∞
tNt

dt

t1+s
=

1

s(Nt∆t)s
.

Then, there exists a constant C > 0 independent from h such that

(4.4) ‖(−∆B)su−Θs
hu‖0 ≤ C hp(2−s).

4.2. Proof of 4.1. Similarly to the approach used in 3.3, we use the splitting
(−∆B)su = IS [u]+IM [u]+I∞[u] and define different approximations for the singular
part, the middle part, and the tail of the integral. Specifically, for the singular part
we now define

(4.5) IDS [u](x) :=
e∆t∆Bu(x)− u(x)

Γ(−s)∆t

∫ ∆t

0

dt

ts
=

1

Γ(−s)
e∆t∆Bu(x)− u(x)

(1− s)∆ts
.

In the following lemmas, we work under the assumptions (AΩ), (HAB), and that
the regularity of u is as given explicitly by the constants in each error estimate.

Lemma 4. Let s ∈ (0, 1), ∆t > 0, IS be as in (3.4) with T1 := ∆t, and IDS [u]
defined by (4.5). Then, there exists a constant cS = cS(s, ‖u‖H4

B
) > 0 such that

‖IS [u]− IDS [u]‖0 ≤ cS ∆t2−s.

Proof. Using the properties of the exponential, for all λm ≥ 0 we have

0 ≤ 1− e−λmt

t
− 1− e−λm∆t

∆t
≤ λ2

m∆t

2
∀t ∈ [0, ∆t].

Hence,

(4.6)

(
e−λmt − 1−

(
e−λm∆t − 1

∆t

)
t

)2

≤ λ4
m∆t

2t2

4
∀t ∈ [0, ∆t].

Letting w = et∆Bu, using the series expansion of w and u, and from (4.6), we obtain

‖IS [u]− IDS [u]‖0 ≤
1

|Γ(−s)|

∫ ∆t

0

∥∥∥∥w(·, t)− u−
(
w(·, ∆t)− u

∆t

)
t

∥∥∥∥
0

dt

t1+s

≤ 1

|Γ(−s)|

∫ ∆t

0

( ∞∑
m=1

λ4
m∆t

2t2

4
|ûm|2

)1/2
dt

t1+s

=
‖u‖H4

B
∆t

2|Γ(−s)|

∫ ∆t

0

t
dt

t1+s
=

‖u‖H4
B

2|Γ(−s)|(1− s)
∆t2−s.

�
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For the middle part, we consider the piecewise linear interpolant of et∆Bu(x)−
u(x) on a grid of equally spaced points tj = j∆t, j = 1, . . . , Nt. Given a function
φ : [0,+∞)→ R, the linear interpolant of φ is defined as

P[φ](t) :=

Nt∑
j=1

φ(tj)P∆t(t− tj), with P∆t(t) :=

{
1− |t|

∆t
if |t| ≤ ∆t,

0 elsewhere.

Letting ψ(x, t) := et∆Bu(x)− u(x), we define

(4.7) IDM [u](x) :=
1

Γ(−s)

∫ Nt∆t

∆t

P[ψ](x, t)
dt

t1+s
=

1

Γ(−s)

Nt∑
j=1

(etj∆Bu(x)−u(x)) ρj ,

where ρj :=
∫ Nt∆t
∆t

P∆t(t − tj) dt
t1+s . Note that the integrals ρj are positive since

the tent functions P∆t(t − tj) are positive for all j. Moreover, following the same
procedure used in [31] for the exact computation of quadrature weights we find:

ρj =
1

∆ts
×

 −F
′(1) + F (2)− F (1) j = 1,

F (j + 1)− 2F (j) + F (j − 1) j = 2, . . . , Nt − 1,
F ′(Nt)− F (Nt) + F (Nt − 1) j = Nt,

where F and F ′ are defined as in (4.3).

Remark 3. Note that the weights βj in (4.2) are equal to ρj for all j except for
j = 1 where an extra positive term (coming from the discretization of the singular
part of the integral in the definition of (−∆B)s) is added to ρ1.

Lemma 5. Let s ∈ (0, 1), ∆t > 0, IM be as in (3.5) with T1 := ∆t and T2 := Nt∆t
for some positive integer Nt. Let IDM be defined by (4.7). Then, there exists a
constant cM = cM (s, ‖u‖H4

B
) > 0 such that

‖IM [u]− IDM [u]‖0 ≤ cM ∆t2−s.

Proof. We start by splitting the integral over [∆t,Nt∆t] as the sum of integrals
over subintervals Ii = [tj , tj+1] of length ∆t. Let w(x, t) = et∆Bu(x) and ψ(x, t) =
w(x, t) − u(x). For notational convenience, we denote gm(t) = e−λmt − 1. Then,
using (2.9) it is straightforward to show that

P[ψ](x, t) =

Nt∑
j=1

( ∞∑
m=1

gm(t)ûmϕm(x)

)
P∆t(t− tj) =

∞∑
m=1

P[gm](t)ûmϕm(x).

and thus,

ψ(x, t)− P[ψ](x, t) =

∞∑
m=1

(gm(t)− P[gm](t)) ûmϕm(x).

On each subinterval Ii, P[gm] is the Lagrange linear interpolant of gm and hence
there exists a constant c independent of ∆t and tj such that for all t ∈ Ii,

‖gm − P[gm]‖L∞([tj ,tj+1]) ≤ c ∆t2
∥∥∥∥∂2gm
∂t2

∥∥∥∥
L∞([tj ,tj+1])

≤ c ∆t2λ2
m.
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Consequently, for all t ∈ Ii,

‖ψ(t)− P[ψ](t)‖0 =

( ∞∑
m=1

|gm(t)− P[gm](t)|2|ûm|2
) 1

2

≤ c ∆t2
( ∞∑
m=1

λ4
m|ûm|2

) 1
2

= c ‖u‖H4
B
∆t2.

From the definitions of IM and IDM , the triangular inequality and Minkowski’s
integral inequality we hence get

‖IM [u]− IDM [u]‖0 ≤
1

|Γ(−s)|

Nt∑
j=1

∫ tj+1

tj

‖ψ(t)− P[ψ](t)‖0
dt

t1+s
(4.8)

≤
c ‖u‖H4

B
∆t2

|Γ(−s)|

∫ Nt∆t

∆t

dt

t1+s
≤
c ‖u‖H4

B

|Γ(−s)|s
∆t2−s.(4.9)

�

Finally, we set I∞ as in (3.8) and define

(4.10) Θsu := IDS [u] + IDM [u] + ID∞[u].

Then, Θsu can be written as in (2.14) with weights βj given by (4.2)-(4.3).

Preposition 3. Let assumptions of 4.1 hold, (−∆B)s and Θs be defined by (2.10)
and (4.10). Then, there exists a constant ca = ca(s, ‖u‖H4

B
) > 0 such that

‖(−∆B)su−Θsu‖0 ≤ ca ∆t2−s.

Proof. We proceed as in the proof of 1 using now 4, 5 and 3 to get

‖(−∆B)su−Θsu‖0 ≤ ‖IS [u]− IDS [u]‖0 + ‖IM [u]− IDM [u]‖0 + ‖I∞[u]− ID∞[u]‖0

≤ cS ∆t2−s + cM ∆t2−s + c∞
e−λminT2

T s2
.

Using the definition of Nt and choosing T2 = Nt∆t, we get e−λminT2

T s2
≤ ∆t2−s. A

suitable choice of the constant ca concludes the proof. �

With 3 we complete the control of the error coming from the discretization of
the integral.

Preposition 4. Let assumptions of 4.1 hold and let Θs be defined by (4.10). Then,
there is a constant cD = cD(s,Ω, ‖u‖k+1,B, k) > 0 such that

‖Θsu−Θs
hu‖0 ≤ cD (hk+1∆t−s +∆t2−s).

Proof. We follow the exact same procedure and notation used in the proof of 2. The
bound (3.9) for the projection error still holds. The FE error for tj > 0 can be now
improved exploiting the fact that the second-order Crank-Nicolson discretization
scheme is used in time, leading to an error O(hk+1 +∆t2) (see e.g., Corollary 11.3.1
in [49] and [40]). Thus, we find

Nt∑
j=1

‖w(·, tj)− wh(·, tj)‖ βj ≤ c
(
hk+1 +∆t2

) Nt∑
j=1

βj .
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By definition, βj > 0 for all j. Consequently,

Nt∑
j=1

βj =
∆t−s

1− s
+

Nt∑
j=1

ρj =
∆t−s

1− s
+
F ′(Nt)− F ′(1)

∆ts
≤ c ∆t−s.

Thus, following the proof of 2, we conclude that

‖Θsu−Θs
hu‖0 ≤ cD (hk+1 +∆t2)∆t−s.

�

We can now prove the higher order discretization result.

Proof of 4.1. Following the same steps done in the proof of 3.1, now exploiting the
estimates of 3 and 4, we obtain

‖(−∆B)su−Θs
hu‖0 ≤ c (hk+1∆t−s +∆t2−s),

By using the relationship between h and ∆t given by (4.1), we have hk+1∆t−s =
η−shk+1−ps and ∆t2−s = η2−shp(2−s). Moreover, k+1−ps ≥ p(2−s) for p ≤ k+1

2 .

Therefore, the order of convergence is determined by ∆t2−s = hp(2−s) and by
suitably choosing the constant C in (4.4) we obtain the desired result. �

5. Nonlocal operators with non-homogeneous boundary conditions

In many practical physical applications, the condition required at the boundary
is not necessarily homogeneous. In this section we define and deal with a family
of nonlocal operators of fractional type that are compatible with non-homogeneous
Dirichlet, Neumann or Robin boundary conditions.

5.1. The nonlocal operator. Consider u : Ω→ R, satisfying B(u) = g on ∂Ω for
some g : ∂Ω → R. Let v(x, t) be the solution of the following heat equation with
initial condition u and non-homogeneous boundary conditions:

(5.1)

 ∂tv −∆v = 0 (x, t) ∈ Ω× (0,∞),
v(x, 0) = u(x) x ∈ Ω,
B(v(·, t))(x) = g(x) (x, t) ∈ ∂Ω× [0,∞).

Generalizing 1, we define the nonlocal operator Lsg on the given u as

(5.2) Lsg[u](x) :=
1

Γ(−s)

∫ ∞
0

(v(x, t)− v(x, 0))
dt

t1+s
, ∀x ∈ Ω.

We intentionally avoid using the notations et∆ and (−∆)s when dealing with
non-homogeneous boundary conditions since Lsg is not a fractional power of the
Laplacian coupled to non-homogeneous boundary conditions. However, as we show
in Section 5.2, Lsg[u] = (−∆B)s[u− z], where z is the harmonic extension of g to Ω.

Clearly, the same strategy previously proposed in this work can be followed to
obtain numerical approximations of (5.2): the solution of the heat equation (5.1)
can be approximated via FE accounting for non-homogeneous boundary conditions,
while the quadrature formulas for the approximation of the singular integral (5.2)
remain unchanged. Moreover, the above-mentioned characterization of the nonlocal
operator Lsg in terms of (−∆B)s can be exploited as a powerful tool in the numerical
approach (see Section 5.3).

After the first submission of this manuscript we came across the work by Antil
et al. [2] in which they propose an alternative way to deal with non-homogeneous



FRACTIONAL LAPLACIAN IN BOUNDED DOMAINS 17

boundary data. However, in the very recent work by Lischke et al. [38], our defini-
tion (given by (5.1)-(5.2)) and the one presented in [2] are shown to be equivalent.
Moreover, the authors of [38] also present a nice and detailed comparison of the
two approaches from the numerical point of view.

5.2. Characterisation of Lsg. The solution of (5.1) can be written as the sum

v(x, t) = w(x, t) + z(x), where w(x, t) = et∆B [u − z](x) is the solution of the heat
equation with homogeneous boundary conditions and shifted initial condition, i.e.,

(5.3)

 ∂tw −∆w = 0 (x, t) ∈ Ω× (0,∞),
w(x, 0) = u(x)− z(x) x ∈ Ω,
B(w(·, t))(x) = 0 (x, t) ∈ ∂Ω× [0,∞),

and z is the steady-state of (5.1), i.e., the solution of the harmonic extension prob-
lem

(5.4)

{
∆z = 0 x ∈ Ω
B(z)(x) = g x ∈ ∂Ω.

The following characterization result provides an alternative definition of Lsg.

Lemma 6. Assume that u ∈ H2s(Ω) such that B(u) = g and let the solution
of (5.4) be z ∈ H2s(Ω). Let also Lsg and (−∆B)s be defined by (5.1)-(5.2) and
(2.10) respectively. Then,

Lsg[u] = (−∆B)s[u− z] in Ω.

Proof. Clearly, u− z ∈ H2s(Ω) and B(u− z) = 0. Let w(x, t) := et∆B [u− z](x) be
the solution of (5.3). Then, by using (5.4) and (5.3), for every x ∈ Ω the function
v(x, t) := w(x, t) + z(x) is such that

vt −∆v = wt −∆w + ∆z = 0,

and

v(x, 0) = w(x, 0) + z(x) = u(x)− z(x) + z(x) = u(x).

Moreover, it is immediate to see that B(v(·, t)) = B(w(·, t)) + B(z) = g for every
t ≥ 0 and therefore v(x, t) is a solution of (5.1). Then,

(−∆B)s[u− z](x) =
1

Γ(−s)

∫ ∞
0

(
et∆B [u− z](x)− [u− z](x)

) dt

t1+s

=
1

Γ(−s)

∫ ∞
0

(w(x, t)− w(x, 0))
dt

t1+s

=
1

Γ(−s)

∫ ∞
0

(
[w(x, t) + z(x)]− [w(x, 0) + z(x)]

) dt

t1+s

=
1

Γ(−s)

∫ ∞
0

(v(x, t)− v(x, 0))
dt

t1+s

= Lsg[u](x),

which concludes the proof. �

The condition requiring the solution to the harmonic extension problem (5.4)
to be z ∈ Hr(Ω) for some r ≥ 0 relies heavily on the geometry of the domain
Ω, the specific type of boundary conditions B imposed, and the regularity of the
boundary data g. Providing a general theory able to encompass all these regularity
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considerations is far from the main goal of the present article. However, for illus-
tration purposes, we focus on a particular example and show how the numerical
tools derived in the previous sections can be applied in these settings.

5.3. Numerical approximation in the non-homogeneous case. For simplic-
ity, in this section we restrict ourselves to the case of Dirichlet boundary conditions
in a two-dimensional convex polygonal domain Ω (thus satisfying (AΩ)).

Consider a function u ∈ H2(Ω) and let g = u|∂Ω be the trace of u in Ω. Classical

regularity theory ensures that g ∈ H
3
2 (∂Ω) and hence, the solution z of (5.4) is

such that z ∈ H2(Ω) (see for example Theorem 1.5 and Theorem 1.8 in [26]). Thus,
u− z ∈ H2(Ω) and (u− z)|∂Ω = 0, via (2.6) we obtain that u− z ∈ H2

B(Ω).
In practice, given a function u, z will not be a known analytically. To over-

come this issue, we consider z̃h to be the FE approximation of degree k = 1 of

problem (5.4) for a given triangulation. Namely, z̃h =
∑Nh
i=1 Ziφi, according to

the notation previously used in this manuscript. Similarly to (5.3), let w̃ be the
solution of

(5.5)

 ∂tw̃ −∆w̃ = 0 in Ω× (0,∞)
w̃(x, 0) = u(x)− z̃h(x) in Ω
B(w̃(·, t))(x) = 0 on ∂Ω× [0,∞),

and w̃h be the corresponding FE approximation of degree k = 1.
The following theorem provides a numerical approximation of Lsg[u] and, exploit-

ing the result of Theorem 3.1, gives a bound for the L2-norm of the error.

Theorem 5.1. Let s ∈ (0, 1), θ ∈ [0, 1], k = 1 and h,∆t > 0 such that (3.1) holds.
Let Ω ⊂ R2, assume that (AΩ) and (ATh) hold, and B is the Dirichlet boundary
operator. Let u ∈ H2(Ω) and g := u|∂Ω. Let z̃h be the FE solution of degree k of
(5.4) and Θs

h be defined according to (2.15), with Nt, βj and β∞ given by (b) and
(c) from 3.1. Then,

‖Lsg[u]−Θs
h[u− z̃h]‖0 ≤ C hp(1−s).

Proof. By 6, Lsg[u] = (−∆B)s[u− z]. Hence, the triangular inequality gives

‖(−∆B)s[u− z]−Θs
h[u− z̃h]‖0 ≤ ‖(−∆B)s[u− z]−Θs

h[u− z]‖0
+ ‖Θs

h[u− z]−Θs
h[u− z̃h]‖0.

Clearly, the result of 3.1 (for k = 1) can be applied to obtain

‖(−∆B)s[u− z]−Θs
h[u− z]‖0 ≤ c1 hp(1−s).

On the other hand,

‖Θs
h[u−z]−Θs

h[u−z̃h]‖0 ≤
1

|Γ(−s)|

Nt∑
j=0

‖wh(·, tj)− w̃h(·, tj)− wh(·, 0) + w̃h(·, 0)‖0 βj ,

To bound the right-hand side, we use the stability of the FE method (see e.g. [49]
for details) with respect to the initial data, ensuring that for all j ≥ 0,

‖wh(·, tj)− w̃h(·, tj)‖0 ≤ c̄ ‖wh(·, 0)− w̃h(·, 0)‖0,

where c̄ = c̄(θ). At this point we use the linearity of the projection operator P kh
and the fact that, by definition, P kh is exact on each element of the triangulation Th
for polynomial functions of degree k or less. Hence, by construction, P kh (z̃h) = z̃h.
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Moreover, the accuracy of both the interpolant of z and the FE approximation
deriving from the solution of (5.4) are of order hk+1, so that

‖wh(·, 0)− w̃h(·, 0)‖0 = ‖P kh (u− z)− P kh (u− z̃h)‖0 = ‖P kh (z)− z̃h‖0
≤ ‖z − P kh (z)‖0 + ‖z − z̃h‖0 ≤ c2 hk+1.

Proceeding as in the previous sections, we combine all estimates and get

‖Θs
h[u− z]−Θs

h[u− z̃h]‖0 ≤ c ‖wh(·, 0)− w̃h(·, 0)‖0
Nt∑
j=1

βj ≤ c̃ hk+1∆t−s.

The relationship between ∆t and h given by (3.1) concludes the proof. �

6. Generalisations

The results of 3.1 and 4.1 can be generalized not only to non-homogeneous
boundary conditions but also to a wider class of operators coupled to homogeneous
boundary conditions.

Instead of the Laplacian operator −∆ one can consider a more general positive
second order elliptic operator of the form

L =

n∑
i,j=1

∂xi(aij(x)∂xj ) +

n∑
i=1

bi(x)∂xi + c(x).

Like in 1, the fractional powers of the operator L with the boundary condition B
can be expresed as

(LB)su(x) =
1

Γ(−s)

∫ ∞
0

(
e−tLBu(x)− u(x)

) dt

t1+s
,

where e−tLB denotes the heat-semigroup associated to L and B. Analogous results
to 3.1 and 4.1 can be proved for the operator (LB)s provided that the bilinear
form corresponding to the operator LB in the associated variational formulation is
weakly coercive (see e.g., [51, 53] for precise conditions on L and B), and that the
coefficients aij , bj , c, the domain Ω and the function u ensure a sufficiently smooth
e−tLBu(x).

Regarding the boundary conditions, in this work, we have considered the case
of Dirichlet, Neumann, and Robin boundary operators, assuming that a single
type of condition is applied to the whole boundary ∂Ω. However, more general
boundary constraints (e.g., mixed conditions in different parts of the boundary)
can be considered, provided that the properties of weak coercivity of the bilinear
form and the regularity of e−tLBu(x) needed for the proof can be ensured.

Details on these regularity conditions for both the operator L and more general
boundary conditions can be found in reference [37].

7. Numerical experiments

In order to illustrate the performance of our numerical methods we perform var-
ious numerical experiments and report here our results. The implementations of
the methods are done in MATLAB (R2016a, The MathWorks Inc., Natick, Mas-
sachusetts, US).

Let h, θ, k be fixed parameters of the FE method, and let ∆t, Nt be chosen
according to 3.1 and 4.1. We solve iteratively the linear system PW(j) = QW(j−1),
where P := (M+θ∆tA) and Q := (M+(θ−1)∆tA) are the Nh×Nh square matrices
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of the FE scheme, we compute the difference vector (W(j) −W(0)), multiply it by
the weights βj , and sum all terms to finally obtain

(7.1)
1

Γ(−s)

 Nt∑
j=1

(W(j) −W(0)) βj + (W∞ −W(0))β∞

 .
Here W∞ is the constant vector corresponding to the steady-state of the heat
equation (which is known explicitly and depends on the boundary conditions),
while W(0) is the vector with coordinates given by L2-projection of the function u
on the nodes of the spatial grid Ωh.

To test the convergence of the discretizations, we use the fact that when ϕm is
a nomalized eigenfunction of −∆ with the boundary condition B, then the B-
fractional Laplacian of ϕm can be computed analytically according to (2.7) as
(−∆B)sϕm = λsmϕm, where λm is the eigenvalue corresponding to ϕm.

7.1. One dimensional case. On the interval [0, L], the eigenfunctions and the
corresponding eigenvalues of the Laplacian are known to be [28]:

ϕm(x) = sin
(
mπx
L

)
λm =

(
mπ
L

)2
(Dirichlet case)

ϕm(x) = cos
(

(m−1)πx
L

)
λm =

(
(m−1)π

L

)2

(Neumann case)

ϕm(x) = sin
(
amx
L

)
+ am

κL cos
(
amx
L

)
λm =

(
am
L

)2
(Robin case)

for m ∈ N. The coefficients am in the Robin case are the unique solution of

2am
κL

cos(am) +

(
1−

(am
κL

)2
)

sin(am) = 0 for am ∈ [(m− 1)π,mπ].

For 1 we select three values of s ∈ (0, 1), namely s = 0.25, 0.5, 0.75, and compute
the error ‖(−∆B)su−Θs

hu‖0 as a function of the spatial discretization parameter h,
for the Dirichlet, Neumann, and Robin boundary cases. The function u is always
a normalized eigenvalue of the corresponding operator, i.e., u = ϕm/||ϕm||0, for
some m ≥ 1. All reported results were obtained with linear FE (k = 1), an implicit
temporal discretization scheme (θ = 1), and ∆t = η hk+1.

In the left column of 1 we compare the expected behavior (dashed lines) predicted
by our convergence result 3.1 with the error decay obtained numerically (solid lines)
for different boundary conditions and different values of s. On the right, for each
boundary condition, we show the exact value of (−∆B)su for the three values of s
considered.

In 2 we show the improved convergence obtained for the same functions consid-
ered in the tests of 1 when the higher order discretization method described in 4 is
used. We observe that the convergence decay actually outperforms the trend pre-
dicted from our theoretical results for all values of s and that the behavior improves
as s increases.

As mentioned various times in this work, the B-fractional Laplacian given by
1 is a boundary-dependent nonlocal operator, that is, the operator changes when
different boundary conditions B are considered. This can be seen by applying the
operator for different choices of B to the same function u. Letting 1D denote the
indicator function of the set D, in 3, we consider a compactly supported function

of the form u(x) = e−1/(r2−x2)
1|x|<r, with 0 < r < 1, on Ω = (−1, 1), and ap-

ply to it the B-fractional Laplacian with homogeneous Dirichlet, Neumann, and
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Figure 1. Error convergence and (−∆B)su(x) on Ω = (0, 1) for
the Dirichlet (top row), Neumann (mid row), and Robin (bottom
row) cases. In all cases u = ϕm/||ϕm||0 is a normalized eigenfunc-
tion of (−∆B). The value of m is as indicated in (b), (d), and (f),
respectively. Parameters of the experiment: k = 1, θ = 1, p = 1,
η = 0.001.

Robin boundary conditions for different values of the fractional parameter s. The
fractional Laplacian is computed via the higher order method.
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Figure 2. Error convergence for B-fractional Laplacian of the
same eigenfunctions considered in 1 on Ω = (0, 1) computed with
the higher order method, for values of s = 0.75, 0.5, 0.25. Parame-
ters of the experiment: k = 1, θ = 1/2, p = 1, η = 0.001.

For comparison purposes, in the top left of 3 we plot the standard Laplacian
of the considered u, which is boundary independent. As we can see, the standard
Laplacian of a compactly supported function is still a compactly supported func-
tion, whereas this does no longer hold in the purely fractional cases. The nonlocal
character of the operator in fact affects the result and produces functions that
are nonzero also on Ω \ [−r, r]. Moreover, differences between the three nonlocal
operators considered are clearly visualized for all choices of s < 1.

7.2. Two dimensional case. The spectrum of the classical Laplacian is known
analytically also in the two-dimensional case for some simple regular geometries,
such as rectangle, disk, or ellipse (see [28] for further details). To prove convergence
of our method in the two-dimensional case we exploit these analytical results and
use them to compute ‖(−∆B)su − Θs

hu‖0 as a function of the spatial discretiza-
tion parameter h, for the usual three different boundary conditions B, on the unit
square Ω = (0, 1)2. In this case, eigenfunctions are simply products of the one-
dimensional eigenfunctions corresponding to the particular boundary conditions
considered, namely

ϕml(x, y) = ϕm(x)ϕl(y),

and the corresponding eigenvalues are given by the sum of the one-dimensional
counterparts, that is, λml = λm + λl.
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Figure 3. Standard Laplacian (s = 1) and B-fractional Laplacian
with different boundary conditions applied to the same function for
s = 0.75, 0.5, 0.25. u(x) = exp(−1/(r2 − x2)) on [−r, r], r = 0.8,
and zero elsewhere, Ω = (−1, 1). Parameters of the experiment:
k = 1, θ = 1/2, p = 1, η = 0.001

.

The convergence results and the index of the particular eigenfunction ϕml used
for the test are given in 4.

In 5 we provide an example of the use of our method to compute the action of
the fractional operator Lsg on a function u satisfying non-homogeneous Dirichlet

boundary conditions on the unit square Ω = (0, 1)2. Specifically, we set g(x, y) =
0.1 sin(2πx) cos(πy) for (x, y) ∈ ∂Ω. Wanting to study convergence of the method
we let ϕ := u − z be a normalized eigenfunction of the homogeneous Dirichlet
Laplacian on the unit square so that (−∆B)sϕ is known explicitly.

Not knowing the analytic expresssion of z, we compute its FE approximation zh
and hence obtain the FE approximation uh = ϕ+ zh (satisfying non-homogeneous
boundary conditions) to be used as initial datum for the approximate computation
of Lsg. The solution is computed with the higher order method and the error once
again decays faster than expected for all three values of s considered.

7.2.1. Polygonal domain. As mentioned in the introduction, one could compute
the B-fractional Laplacian on a bounded domain Ω via equation (1.1). However,
the analytic expression of the required eigenpairs is not known for general domains
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Figure 4. Error convergence for B-fractional Laplacian on the
unit square. The indices of the considered eigenfunction ϕml are
as indicated in (a), (b), (c). Parameters of the experiment: k = 1,
θ = 1/2, p = 1, η = 0.001

.

and using (1.1) would imply that the solution of a very large number of eigenvalue
problems must be computed.

One of the main advantages of our approach and of the use of the numerical
method proposed in this work is that with the same strategy we can handle bound-
ary conditions that are not necessarily homogeneous Dirichlet conditions and at the
same time we do not need to know the eigendecomposition of the Laplacian on the
given domain to compute (−∆B)su. Exploiting (1.2) and due to the versatility of
the FE method in handling general geometries, we are able to compute (−∆B)su on
domains such as the one considered in 6, for which the eigenpairs are analytically
unknown. Although in our theoretical results, the choice of Nt depends on the first
nonzero eigenvalue of the Laplacian, clearly the same results hold if a lower bound
is used for the considered eigenvalue. These bounds are readily available and we re-
fer the reader to Section 4.2 of [28] and references therein for a thorough discussion
on these bounds for general domains and homogeneous Dirichlet, Neumann, and
Robin boundary conditions. An alternative approach not using bounds for the first
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Figure 5. Error convergence, function u, and nonlocal operator
Lsg with non-homogeneous Dirichlet boundary conditions applied
to u in the case s = 0.5. The domain is the unit square. The bound-
ary function is g(x, y) = 0.1 sin(2πx) cos(πy). Boundary nodes are
highlighted in red to help with visualization. Parameters of the
experiment: k = 1, θ = 1/2, p = 1, η = 0.001.

non-trivial eigenvalue simply consists in continuing to add terms to the quadrature
sum in (7.1) until the difference (W(j) −W(0)) reaches a steady value, up to a
given tolerance. The latter approach is the one we adopted for the computations
presented in 6.

Once again the value of the B-fractional Laplacian with s = 0.5 is computed for
the compactly supported function

u(x, y) = e−((x−x0)2+(y−y0)2)/(r2−((x−x0)2+(y−y0)2))
1{((x−x0)2+(y−y0)2)<r2}

with homogeneous Dirichlet, Neumann, and Robin boundary constraints. Different
views of (−∆B)su are reported to help in visualizing the differences (especially in
the behavior close to the boundary) between these three cases.

7.3. An explicit scheme for a fractional porous medium type equation.
As a possible application of our method, we compute the numerical approximation
of an evolution problem involving the homogeneous Dirichlet fractional Laplacian.
Specifically, on a given bounded domain Ω and for τ ≥ 0, we consider the fractional
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Figure 6. Fractional Laplacian (s = 0.5) with different bound-
ary conditions applied to the same function on convex polygonal
domain. Top row: view with an angle. Middle row: side view.
Bottom row: top view. Boundary nodes are highlighted in red to
help with visualization. Parameters of the experiment: r = 0.35,
x0 = 0.61, y0 = 0.54, k = 1, θ = 1/2, p = 1, η = 0.001

.

porous medium type equation

(7.2) ∂τu+ (−∆B)s(um) = 0,

where m is a suitable integer, m > 1. For a precise presentation of the theoretical
aspects regarding (7.2) we refer to [5, 6] and references therein.

Given an initial condition u(x, 0) = u(0)(x), we use an explicit discretization
scheme for the evolution variable τ with uniform step ∆τ > 0 and compute iter-
atively the numerical approximation of the solution to (7.2) at τn = (n + 1)∆τ ,
n ∈ N as

(7.3) u(n+1) = ∆τ
[
u(n) + Θs

h[(u(n))m]
]
.

As (7.3) is an explicit scheme, it may suffer from numerical instabilities when the
time step ∆τ is not properly chosen. We circumvent the issue by imposing on ∆τ
a CFL-type condition and setting ∆τ = h2s/m. More details about these facts can
be found in [?] dealing with (7.2) in RN .
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Figure 7. Fractional porous medium initial condition, numerical
solution (blue) and scaled eigenfunction determining the boundary
behavior (red). In all cases Ω = (−1, 1), Nh = 1001 (h = 0.002),
and ∆τ = h2s/m. Values of m, s, and τ as indicated in the
respective plots. Parameters of the experiment: k = 1, θ = 1,
p = 1, η = 1.

In 7 we report the results obtained for two different combinations of the param-
eters m and s, at the indicated time point τ . In both cases, the spatial domain
is Ω = (−1, 1), while the initial condition (plot on the left in 7) is the compactly
supported function u(0)(x) = e4−1/[(0.5−x)(0.5+x)]

1|x|<0.5.
For the particular combinations of m and s presented in 7 the theoretical results

of Bonforte et al. [5] predict a long-time boundary behavior of the type

u(x, τ) � v(x, τ) :=
φ1(x)1/m

τ1/(m−1)
,

where φ1 is the first eigenfunction of the Laplacian with homogeneous Dirichlet
boundary condition in Ω. Given a, b ∈ R+ we follow the notation used in [5]
and write a � b whenever there exist universal constants c0, c1 > 0 such that
c0b ≤ a ≤ c1b.

The predicted boundary behavior presented in [5] is recovered by our simulations
and shown in the second and third plots of 7, where the numerical solution obtained
with our method (blue) is compared to the expected function v(x, τ) (red).

8. Conclusions

In the present paper we investigate a method to define a nonlocal operator acting
on bounded domains that, in the unbounded case, recovers the classical definition
of the fractional Laplacian (−∆)s. The studied method is characterized by the fact
that the imposition of local boundary conditions is sufficient to obtain a well-posed
formulation of the nonlocal operator without requiring additional constraints to be
imposed on the complement of the considered finite domain, in analogy with local
problems. As pointed out in the introduction, this characteristic is relevant for
applied problems and for the physical foundation of fractional models.

We consider for our purposes the spectral definition of the fractional Laplacian
and exploit the equivalence between this definition and the heat-semigroup formu-
lation of the operator on bounded domains. The latter definition allows for a much
more intuitive and transparent formulation in which the role played by the local
boundary conditions (passed on to the local heat problem) is clear and all ambiguity
of having local conditions for a nonlocal operator is removed.
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This results in a power-law weighted integration of the evolving discrepancy
between the solution of the heat equation and its initial condition. Within this
framework, we propose a novel discretization scheme. An FE method is adopted
to obtain the approximated solution of the heat equation and suitable quadrature
formulas are used to approximate the integral.

Unlike other discretization methods, the proposed approach does not rely on
the computation (or the approximation) of the spectrum of the Laplacian operator
on the considered finite domain. In fact, a key feature of our strategy lies in the
flexibility offered by FE in handling well not only simple regular geometries but also
general bounded domains for which explicit knowledge of the Laplacian spectrum
is missing. Moreover, once the accurate computation of the heat equation solution
is available, our method simply requires the approximation of a one-dimensional
integral, independently from the dimension in which the fractional Laplacian of the
given function is sought.

In this work, we start by considering the case of homogeneous boundary con-
ditions and propose two discretizations of the fractional operator (depending on
a discretization parameter h) exhibiting two different rates of convergence. The
main difference between the two results lies in the quadrature approximation of the
power-law weighted integral. In the first discretization, we truncate the integral by
ignoring its singular part (near the origin), adopt a näıve mid-point quadrature rule
for the middle part, and exploit the exponential convergence to the steady-state of
the solution of the heat equation to approximate the tail. Doing so and suitably
choosing the parameters of the FE computation, we obtain an error that behaves
like O(hp(1−s)) for some positive p and for values of the fractional order s ∈ (0, 1).
This approach produces satisfactory results for values of s close to its lower bound.
By adapting the quadrature of the integral representing the operator and ensur-
ing that the FE provide the required higher temporal accuracy for the solution to
the heat equation, we derive a second discretization resulting in an error which is
O(hp(2−s)). Although the proof of this result comes at the expenses of requiring
some higher regularity to the function on which the action of the fractional Lapla-
cian is computed, the accuracy of this second discretization ensures a decay of the
error at least of the order O(hp), and hence this discretization is suitable to deal
with the case of s close to one.

The case of non-homogeneous boundary conditions is considered next. We pro-
pose a definition of a fractional-type operator consistent with these inhomogeneous
constraints and formulated as the power-law weighted integral of the evolving dis-
crepancy of a heat equation solution, in which non-homogeneous boundary condi-
tions are imposed, and its initial condition satisfying these conditions. We show
that such an operator can be rewritten as the fractional Laplacian coupled to ho-
mogeneous boundary conditions, for a suitable shifted function, and we use the
same two discretizations obtained in the homogeneous case to derive corresponding
discretizations of the new nonlocal operator.

Our numerical results show performance of our method for both one and two
dimensional domains. The theoretical rate of convergence is very well recovered in
all the analyzed cases and in the two-dimensional setting we also illustrate the per-
formance of our method on a general irregular bounded domain. We conclude the
numerical section with an example of a parabolic problem for which the computa-
tion of the fractional Laplacian could be used. In particular, we consider a fractional
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porous medium equation in which homogeneous Dirichlet conditions are imposed at
the boundary. We compare our numerical solution with the analytic results on the
boundary behavior of the solution given in [5] and show that the expected behavior
is well captured by our method, for both combinations of parameters considered.

The approach followed in this work provides a natural framework that can be
used to obtain either discretizations of the fractional Laplacian defined via the
heat-semigroup on the whole Rn or to compute discretizations of inverse fractional
powers of second order operators (i.e. solutions of elliptic problems associated to
fractional operators) on bounded domains. In the unbounded settings, the use
of FE to accurately model non rectangular domains is not required anymore due
to the absence of a boundary, and the simpler finite difference approach can be
adopted. On bounded domains, inverse fractional powers of second order operators
can still be represented via integral expressions involving the corresponding heat-
semigroups. The kernel of these expressions become locally integrable near the
origin, avoiding some of the difficulties we had to deal with in the present work,
but integrability is lost at infinity. Nevertheless, once again one can exploit the
exponential convergence of the solution to the heat equation towards a steady-state
to overcome this issue. Both these generalizations are current research topics of the
authors of this paper, and the outlined results will be presented in two forthcoming
papers.
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[33] M. Ilić, F. Liu, I. Turner, and V. Anh, Numerical approximation of a fractional-in-space

diffusion equation (I), Fract. Calc. Appl. Anal., 8 (2005), pp. 323–341.



FRACTIONAL LAPLACIAN IN BOUNDED DOMAINS 31

[34] M. Ilić, F. Liu, I. Turner, and V. Anh, Numerical approximation of a fractional-in-space

diffusion equation (II) - with nonhomogeneous boundary conditions, Fract. Calc. Appl. Anal.,

9 (2006), pp. 333–349.
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