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Abstract

Since many important real-world classification problems involve learning from
unbalanced data, the challenging class-imbalance problem has lately received con-
siderable attention in the community. Most of the methodological contributions
proposed in the literature carry out a set of experiments over a battery of specific
datasets. In these cases, in order to be able to draw meaningful conclusions from
the experiments, authors often measure the class-imbalance extent of each tested
dataset using imbalance-ratio, i.e. dividing the frequencies of the majority class by
the minority class.

In this paper, we argue that, although imbalance-ratio is an informative measure
for binary problems, it is not adequate for the multi-class scenario due to the fact
that, in that scenario, it groups problems with disparate class-imbalance extents
under the same numerical value. Thus, in order to overcome this drawback, in this
paper, we propose imbalance-degree as a novel and normalised measure which is
capable of properly measuring the class-imbalance extent of a multi-class problem.
Experimental results show that imbalance-degree is more adequate than imbalance-
ratio since it is more sensitive in reflecting the hindrance produced by skewed multi-
class distributions to the learning processes.

1 Introduction

Most of the well-known traditional machine learning techniques are designed to solve
classification problems showing reasonably balanced class distributions [24]. However,
this assumption does not always hold in reality. Occasionally, real-world problems have
skewed class distributions and, due to this, they present training datasets where several
classes are represented by an extremely large number of examples, while some others
are represented by only a few. This particular situation is known as the class-imbalance
problem, a.k.a. learning from unbalanced data [17], and it is considered in the literature
as a major obstacle to building precise classifiers: the solutions obtained for problems
showing class-imbalance through the traditional learning techniques are usually biased
towards the most probable classes showing a poor prediction power for the least probable
classes [10]. Thus, in an attempt to overcome this obstacle, hundreds of methodological
solutions have been proposed recently in order to balance the prediction powers for both
the most and the least probable classes.
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According to [28], the proposed solutions can be mainly categorised into the following
three major groups: (i) the development of inbuilt mechanisms [11], which change the
classification strategies to impose a bias toward the minority classes, (ii) the usage of data
sampling methods [3], which modify the class distribution to change the balance between
the classes, and (iii) the adoption of cost-sensitive learning techniques [22] which assume
higher misclassification costs for examples of the minority classes.

Usually, every paper proposed within those categories shares the same experimental
setup: the proposed method is compared against one or several competing methods over a
dozen or so datasets. However, although this experimental setup is reasonable enough to
support an argument that the new method is “as good as” or “better than” the state-of-
the-art, it still leaves many unanswered questions [27]. Besides, it is costly in computing
time [30]. Thus, in order to be able to perform more meaningful analyses, some authors
complement this experimental schema with a study of the inherent properties of the
checked datasets by extracting from them a set of informative measures [30, 31]. By
means of this data characterisation, more solid empirical conclusions may be e�ciently
extracted: on the one hand, a better understanding of the problem faced may be achieved
since it is a structured manner of investigating and explaining which intrinsic features
of the data are a↵ecting the classifiers [2]. On the other hand, the measured data can
be related to the classifier performance so that the applicability and performance of a
classifier based upon the data can be predicted, avoiding a great amount of computing
time [30].

In the literature, authors often measure the class-imbalance extent. In those works,
imbalance-ratio is the most frequently used summary of the class-imbalance extent due
to its simplicity [11]. It reflects the (expected) number of instances of the most probable
class for each instance of the least probable class. However, in this paper, we state
that whilst it is a very informative summary of the class-imbalance extent for binary
problems, it is not capable of completely and honestly describing the disparity among
the frequencies of more than two classes. In the multi-class scenario, there exists other
classes rather than the most and least probable classes and they are not taken into
account for the calculation of this summary. This may lead to the undesired situation
of characterising multi-class problems with disparate class-imbalance extents using the
same imbalance-ratio.

In order to clarify this drawback, let’s consider the toy example presented in Figure 1;
Imagine that a 3-class problem with an imbalance-ratio of 20 (100 : 5) is provided. This
means that there are 20 examples of the most probable class (c

1

) for each example of the
least probable class (c

3

). However, by means of just imbalance-ratio, little knowledge
can be extracted regarding the remaining class c

2

, i.e. the number of examples of c
2

can
vary from 5 to 100, and all these 95 di↵erent possible scenarios share an imbalance-ratio
equal to 20.

As can be easily noticed, the scenario with 100 examples for the second class – Figure
1a –, is far less problematic than having only 5 examples of the second class – Figure 1b
–. While there is only one minority class in the former scenario, we find two minority
classes in the latter. So, it can be straightforwardly concluded that imbalance-ratio is not

2



!! !" !#
!

"!

#!

$!

%!

&!!
'()* +,-)./+0

(a) Best unbalanced scenario.

!! !" !#
!

"!

#!

$!

%!

&!!
'()* +,-)./+0

(b) Worst unbalanced scenario.

Figure 1: Extreme cases of an unbalanced ternary toy example showing an imbalance-
ratio of 20.

a proper summary of the class-imbalance extent in the multi-class scenario as it groups
diverse problems with di↵erent class-imbalance extents under the same numerical value.

Thus, in order to bridge this gap, in this paper, we propose a new summary which
is capable of properly shortening the class distributions of both binary and multi-class
classification problems into a single value. This measure, which we name imbalance-
degree, represents the existing di↵erence between a purely balanced distribution and the
studied unbalanced problem, and it has the following three interesting properties:

1. By means of a single real value in the range [0,K), where K is the number of
classes, it not only summarises the class distribution of a given problem but also
inherently expresses the number of majority and minority classes.

2. Depending on the requirements of the experimental setup and the degree of sensi-
tivity sought, this measure can be instantiated with any common distance between
vectors or divergence between probability distributions.

3. A unique mapping between the class distributions and the numerical value of
imbalance-degree is ensured for problems showing di↵erent numbers of majority
and minority classes. Therefore, diverse problems cannot share a common numer-
ical value as happens with imbalance-ratio.

Experimental results show that imbalance-degree is a more appropriate summary
than imbalance-ratio. In the multi-class framework, the former is not only able of dif-
ferentiating class distributions than the latter groups with the same value but it also
achieves a greater correlation with the hindrance that skewed class distributions cause
in the learning processes.

The rest of the paper is organised as follows: Section 2 introduces the framework,
notation, and a review of the most-commonly used measures and summaries of the
class distribution. In Section 3, we introduce imbalance-degree as a more informative
measure for the multi-class scenario. After that, Section 4 presents an empirical study
of the adequateness of the proposed measure. Finally, Section 5 sums up the paper.
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2 Problem Formulation and State-of-the-art Measures for the Class-

imbalance Extent

Let �K be a K-class classification problem with a generative model given by the gener-
alised joint probability density function

⇢(x, c) = p(c)⇢(x|c), (1)

where p(c) is a multinomial distribution representing the class probabilities and ⇢(x|c) is
the conditional distribution of the feature space. For convenience, henceforth, we rewrite
the former as ⌘ = (⌘

1

, ⌘
2

, . . . , ⌘K), where each ⌘i = p(ci) stands for the probability of
each categorical class ci. Also, we denote the special case of equiprobability as e =
(e

1

, e
2

, . . . , eK), where 8i, ⌘i = 1/K = ei. Then, depending on the outline of its class
distribution ⌘, every classification problem �K can be catalogued into one of the following
groups: (i) �K may be a balanced problem, (ii) an unbalanced problem showing multi-
majority, or (iii) a multi-minority unbalanced problem. The formal definitions for these
groups, as expressed in [17] and [31], are the following:

Definition 1. A K-class classification problem, �K , is balanced if it exhibits a uniform
distribution between its classes. Otherwise, it is considered to be unbalanced. Formally,

�K is balanced () ⌘ = e. (2)

Definition 2. A multi-class classification problem (K > 2), �K , shows a multi-majority
class-imbalance if most of the classes have a higher or equal probability than equiproba-
bility, i.e.

�K is multi-majority ()
KX

i=1

✓
⌘i �

1

K

◆
� K

2
. (3)

Definition 3. An unbalanced classification problem, �K with K > 2, shows a multi-
minority class-imbalance when most of the class probabilities are below the equiprobabil-
ity. Formally,

�K is multi-minority ()
KX

i=1

✓
⌘i <

1

K

◆
>

K

2
. (4)

Here, (E) is the indicator function, 1 if the event E is true, 0 otherwise. Note that Figure
1a and Figure 1b correspond to multi-majority and multi-minority problems respectively,
and that only when facing multi-class problems do Definition 2 and 3 make sense.

Unfortunately, in most of the real-world cases, the generative model, along with the
real class distribution, is unknown. Thus, authors must estimate ⌘ from a training
dataset D in order to not only classify �K into one of the groups proposed in the defini-
tions, but also to be capable of using a close approximation of the real class distribution
to properly validate the conclusions exposed in their experimental schemas.
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Then, let D = {(x(1), c(1)), . . . , (x(l), c(l))} = {(x(n), c(n))}ln=1

be defined as a su-
pervised training dataset of size l drawn from the generative function1. There, let the
class labels {c(n)}ln=1

be i.i.d. random values drawn from ⌘ and let each observation
{x(n)}ln=1

2 D be also an i.i.d. random value but drawn from ⇢(x|ci). In order to esti-
mate the class distribution ⌘, we define the empirical distribution ⇣ = (⇣

1

, ⇣
2

, . . . , ⇣K). ⇣
is a multinomial distribution with K categories, which exhibits the information available
in the dataset about the class distribution of the problem �K . There, each statistic ⇣i
estimates each class probability ⌘i by just determining the frequency of the class ci in
the dataset. Formally, the statistic is defined as follows:

⇣i =
1

l

lX

n=1

(c(n) = ci). (5)

Unless otherwise stated, henceforth, we only use the estimator ⇣ of the class distribution
since having an unknown generative model is the most common scenario. Anyhow,
in the event of knowing the generative model, all the methodologies presented can be
directly used with ⌘ by just substituting the empirical class distribution by the real class
distribution in the formulae.

A few measures for the class-imbalance extent of the class distribution using the
empirical class distribution ⇣ have been already utilised in the experimental setups of
the state-of-the-art literature: the most simple manner to measure the class-imbalance
extent of a given problem is just to write down the empirical class distribution [3],
⇣, or to directly transcribe the occurrences of all the classes [13, 31] in the dataset,
i.e. l = (l

1

, l
2

, . . . , lK) s.t. 8i, li = l⇣i.
These descriptions seem to be a good choice due to the fact that they contain all

the information available in the dataset with regards to the class-imbalance extent of
the generative class distribution ⌘. However, analysing them can be quite tedious in
problems with a large number of class values, especially in highly multi-class problems
(K � 1, 000, [15]). In those cases, it is very common to find unbalanced distributions
among the classes. Additionally, these solutions are also more di�cult to read and/or
compare than single value summaries. Therefore, functions d(·) which assign di↵erent
single real numbers to disparate values of ⇣, i.e. d : ⇣ 7! and which are some-
how correlated with the hindrance that skewed class distributions cause on learning
algorithms mainly dominate the class-imbalance literature [11, 27]. Regarding the sum-
maries, imbalance-ratio (IR) between the majority and minority classes is, to the best
of our knowledge, the only summary for ⇣ used for multi-class problems. It is calculated
by dividing the maximum statistic ⇣i by the minimum. Formally,

IR(⇣) =
maxi ⇣i
minj ⇣j

. (6)

1Note that we assume that D is i.i.d. from eq. (1). Therefore, in this work, we only focus on the
case that the nature of the class-imbalance is in the probability distribution, not on the case of having
a biased training dataset.
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Table 1: Summary of measures for the class-imbalance extent of the class distribution ⌘
used in the literature and our proposal.

Measure Formula Strength Weakness Ref

Empirical

distribution

⇣ = (⇣1, ⇣2, . . . , ⇣K) It is the most informa-

tive measure.

Di�cult to read

and/or compare in

highly multi-class

problems.

[3]

Frequency of

the classes

l = (l1, l2, . . . , lK) s.t. 8i, li =
l⇣i

Very informative

(equivalent to the

empirical class distri-

bution).

Di�cult to read

and/or compare in

highly multi-class

problems.

[31]

Imbalance-

ratio

IR(⇣) = max

i
⇣i/min

j
⇣j It is a single value and

easily readable sum-
mary.

Inappropriate sum-

mary for multi-class

problems since the

injection is lost.

[27]

Imbalance-

degree

ID(⇣) =
d�(⇣, e)/d�(◆m, e) + (m� 1)

It is a single eas-

ily readable summary
appropriate for binary

and multi-class prob-

lems.

A total injection can

only be achieved by the

proper choice of the

metric/divergence �.

This

pa-

per

It is trivial to prove that IR : ⇣ 7! is an injective function for binary problems.
This property makes this summary appropriate for such scenarios due to the fact that
all possible unbalanced scenarios yield to di↵erent IR values and that any ⇣ can be
easily recovered from the IR(⇣). However, when the number of classes outnumbers 2,
the injection is lost (as previously shown in the toy example of Figure 1, where multi-
majority and multi-minority problems share the same numerical value). This is an
inappropriate characteristic for a summary of the class-imbalance extent since previous
papers have shown that multi-minority problems are harder than multi-majority [31].
This may imply that IR is not correlated with the hindrance produced by skewed multi-
class distributions.

Therefore, it can be concluded that neither of the presented measures (summarised
in Table 1) for the class-imbalance extent are appropriate for multi-class unbalanced
problems.

3 Imbalance-degree

In this section, our aim is to propose a new and more suitable summary for any empirical
class distribution ⇣ with K � 2 which, at least, fulfils the following properties: (i) it
must be an easily readable finite single valued summary of a multinomial distribution
and (ii) it needs to be correlated with the hindrance that highly unbalanced datasets
cause in the learning processes.

Thus, since the class distribution does harm the learning processes as it extremely
diverges from the balanced one [27], it is immediate to use a distance/similarity function,
d
�

(⇣, e), between both the empirical and balanced distributions, ⇣ and e, to summarise
the degree of skewness of a classification problem �K . Here, � stands for any chosen
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distance between vectors or divergence between probability distributions which can be
found in the literature.

However, just relying on the direct usage of a distance/similarity function has, for
our purpose, two undesirable properties which may clash with our aim of having an
informative easily readable or comparable summary function:

1. Similar to IR, di↵erent values for di↵erent number of majority/minority classes
cannot be assured. For instance, imagine we use the Kullback-Leibler divergence
[19] as a summary of two diverse class distributions ⇣(1) = (0.027009, 0.486495, 0.486495)
and ⇣2 = (0.712853, 0.143573, 0.143573). There, both calculi reach the same value:
dKL(⇣

(1), e) = dKL(⇣
(2), e) = 0.273.

2. Although a measure is always a finite positive value, it is not necessarily upper
bounded. For example, Kullback-Leibler divergence may be unbounded, and Man-
hattan and Euclidean distances [9], in this context, are upper bounded by the
values 2 and 1, respectively.

In order to overcome these drawbacks, we purposely divide the space of class distribu-
tions so that we can operate on the distance/similarity function and obtain an adequate
summary: let ZK be defined as the set containing all the possible empirical distributions
⇣ of a K-class problem and let ZK

m ⇢ ZK , m 2 {0, 1, . . . ,K � 1} be a subset containing
all the empirical class distributions containing exactly m minority classes. Formally,

ZK
m ,

(
⇣ 2 ZK : m =

KX

i=1

✓
⇣i <

1

K

◆)
. (7)

Straightaway, this severance of ZK into K di↵erent subsets ZK
m allows us to tackle

both problems:

1. On the one hand, di↵erent values for di↵erent numbers of minority/majority classes
can be directly provided in the summary function by just forcing di↵erent ranges of
values to di↵erent subsets. Here, the range (m � 1,m] is assigned to each subset
ZK
m in the summary (0 for ZK

0

).

2. On the other hand, a common upper bound for each subset, and consequently to
the summary, can also be assured by applying a 0-1 normalisation to the distance
of the empirical class distribution (a range of size 1 has been assigned to each
subset). This is achieved through the division of d

�

(⇣, e) by d
�

(◆m, e), being ◆m
the distribution in ZK

m most distant to e.

Then, through the application of these amendments on the distance/similarity func-
tion, we define our main proposal as:

Definition 4. The imbalance-degree (ID) of a multi-class dataset showing an empir-
ical class distribution ⇣ is given by

ID(⇣) =
d
�

(⇣, e)

d
�

(◆m, e)
+ (m� 1), (8)
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where m is the number of minority classes, d
�

is the chosen distance/similarity function
to instantiate ID, and ◆m is the distribution showing exactly m minority classes with the
highest distance to e (argmax⇣2ZK

m
d
�

(⇣, e)).

In eq. (8), the term m � 1 is intentionally added to the normalisation term to ensure
di↵erent values for di↵erent values ofm, i.e. ID(⇣) 2 (m�1,m] when ⇣ 2 ZK

m . Moreover,
in the purely balanced scenario ⇣ = e, our proposal ID(e) = 0 due to the fact that,
conventionally, d

�

(e, e)/d
�

(e, e) = 1.

4 Empirical Study

In order to determine the appropriateness of ID (over IR) as a summary of the class-
imbalance extent in the multi-class framework, we define two di↵erent sets of experiments
to empirically corroborate the following hypotheses:

• H
1

: While IR has a deficient resolution to summarise the class-imbalance extent
in the multi-class scenario, ID o↵ers a wide variety of high resolution summaries.

• H
2

: When used on real-world multi-class classification problems, ID is more sen-
sitive to the class-imbalance extent than IR. I.e. ID is more accurate than IR in
informing about a poor performance of traditional learning systems.

Since ID can be instantiated with any chosen distance/similarity function, we first
introduce the measures used in the experiments: from the metrics in the vector space
[9], Manhattan2, Euclidean and Chebyshev distances are chosen. Together, the f -
divergences [7], the most utilised measures for probability distributions, are also included.
Within the latter group, we introduce Kullback-Leibler divergence [20], Hellinger [18]
(closely related to, although di↵erent from, the Bhattacharyya distance [4]) and total
variation distances, and �2-divergence [26]. These measures are mathematically defined
in Table 2.

Additionally, in order to use eq. (8), the furthest distribution ◆m = (◆
1

, ◆
2

, . . . , ◆K)
to e must be calculated for every instantiation and every subset ZK

m . Opportunely, this
class distribution coincides for all the considered measures and for all values of m. It
satisfies that

KX

i=1

(◆i = 0) = m ^
KX

i=1

✓
◆i =

1

K

◆
= K �m� 1, (9)

i.e. the furthest distribution is composed of (i) m minority classes with zero probability,
(ii) K �m� 1 (all but one) majority classes with probability 1/K, and (iii) a majority
class with the remaining probability 1� (K�m�1)/K. This distribution always shows
the lowest entropy [29] in the subset ZK

m , whilst the balanced setting e corresponds to
the distribution with the highest entropy in Z. Note that, by symmetry, there may be

2Manhattan distance has been left out of the experimentation due to the fact that, for our purposes,
it is equivalent to total variation distance for any K � 2.
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Figure 2: Calculating ID using the Hellinger distance [18] for the dataset autos (K = 6,
IR = 16, IDHE = 2.44).

up to K! di↵erent furthest distributions ◆m. Fortunately, ID(⇣) is not a↵ected by an
arbitrary choice of ◆ since the entropy, H(◆m), and distance values, d

�

(◆m, e), remain
equal for all furthest distributions.

In order illustrate calculation of ID using the distance/similarity functions consid-
ered, Figure 2 shows, in a bar chart, an example to instantiate ID using the Hellinger
distance, dHE(⇣, e), on the UCI dataset called autos [21]. The numbers above the black
bars represent the value of each normaliser d

�

(◆m, e) for all possible scenarios of m of
minority classes in a 6-class problem. Since autos has 3 (out of 6) minority classes and
dHE(⇣, e) = 0.25, the problem has a (normalised) ID of 2.44 (0.25/0.58 = 0.44 plus
3� 1).

4.1 Study 1: Resolution and Diverseness of Imbalance-degree

The resolution of a measure is the smallest change which can be quantified. As previously
put forward, IR cannot be considered as a measure which has a satisfactory resolution
for multi-class problems; it only changes based on either the most or the least probable
classes. In the toy example, for instance, it groups 95 di↵erent class distributions using
the value IR = 20.

Thus, in order to corroborate the first hypothesis, those 95 scenarios are used to not
only show that ID is capable of assigning diverse and reasonable values to them, but also
to study the behaviours of the di↵erent instantiations of ID. Consequently, Figure 3 plots
the values of ID for the indicated 95 di↵erent frequency scenarios, i.e. l = (100, l

2

, 5),
where l

2

= {5, . . . , 100}, from the toy problem. The abscissa shows the number l
2

of instances of the second class and the ordinate shows the value of ID. From Table
2, Euclidean distance (IDEU ), Kullback-Leibler divergence (IDKL), Hellinger distance
(IDHE), total variation distance (IDTV ) and chi-square divergence (IDCS) are plotted.
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Table 2: Mathematical formulae for the distance/similarity functions used to instantiate
ID in the empirical studies.

Distance/Similarity Function � d�(⇣, e)

Metrics in the vector space

Euclidean distance EU

vuut
KX

i=1

(⇣i � ei)2

Chebyshev distance CH max
i

|⇣i � ei|

f -divergences

Kullback-Leibler divergence KL
KX

i=1

⇣i log
⇣i
ei

Hellinger distance HE
1p
2

vuut
KX

i=1

(
p

⇣i �
p
ei)2

Total variation distance TV
1

2

KX

i=1

|⇣i � ei|

Chi-square divergence CS
KX

i=1

(⇣i � ei)
2

ei

Note that Chevbysev distance is not included3.
Results show that ID is capable of di↵erentiating each and every di↵erent scenario

that IR groups with the value 20. Moreover, it can be seen that ID instantiations
behave di↵erently as result of the diversity of their distance/similarity functions: whilst
all the instantiations share a similar monotonically decreasing shape up to the limiting
point where the number the m changes from 2 to 1 (l

2

= 53), above that limit, two
di↵erent groups of instantiations can be perceived. On the one hand, IDEU , IDKL and
IDCS show a convex shape since they descent down to a minimum and then slightly
increase. On the other hand, IDHE and IDTV show a quasi-linear behaviour which
starts increasing soon after reaching the limiting point. Thus, it can be straightforwardly
concluded that there might be instantiations of ID which are more adequate to summarise
the class-imbalance extent than others. Seemingly, the latter group of instantiations
(IDHE and IDTV ) are more appropriate as they reflect the increased intricacy of the
classification problem above the limiting point. When l

2

> 53, the probability of the
minority class c

3

distance itself from the equiprobability causing an increase in the
intricacy of the classification problem. In Section 4.2, we also deal with this issue by
empirically determining which ID instantiations are more adequate summaries in real-
world multi-class datasets. Finally, we believe that, in practise, the above mentioned
diversity may also be potentially exploited to adapt ID to di↵erent requirements and
constraints resulting from real-world unbalanced problems.

3It holds that instantiations of ID using Chevbysev and total variation distances are equivalent for
the case K = 3.
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Figure 3: The variation of ID
�

in all the 95 possible scenarios (l
2

= {5, . . . , 100}) of the
toy problem of Figure 1. For these scenarios, IR = 20.

4.2 Study 2: Sensitivity and Validity of Imbalance-degree

A measure is sensitive to recognise a given set of events if it is capable of valuing them
di↵erently. Specifically, we can consider a summary of the class-imbalance extent to
be sensitive to recognise the hindrance that highly unbalanced data produce in the
traditional learning systems if it is correlated with the performance of those learning
systems. Thus, to determine which instantiation of ID is more sensitive to the exposed
hindrance than IR, in this section, the following experiment is carried out:

A database containing the 15 unbalanced multi-class datasets recommended in the
key work of [1] is assembled and the value of each summary presented in this paper (see
Table 2) is calculated for each dataset. Their values, along with some main characteris-
tics of the datasets, are presented in Table 3. There, each row corresponds to a dataset
and each column stands for a characteristic (name, features and number of classes) or a
summary (empirical class distribution, number of occurrences, IR and IDs). Afterwards,
each dataset is used to feed a representative learning algorithm from the traditional ma-
jor learning paradigms [27]. Specifically, for each problem, a di↵erent classifier is learnt
using 5 di↵erent popular supervised algorithms4: C4.5 (Decision trees), RIPPER (De-
cision rules), Neural Networks (Connectionism), Näıve Bayes (Probabilistic), and SVM
(Statistical learning). In order to assess the performance of each learnt classifier, three
di↵erent performance scores which are highly recommended for multi-class unbalanced
problems are used [24]: the arithmetic mean among the recall of the classes (A), the
geometric mean among the recalls (G), and the minimum recall obtained (min). In order
to obtain the values of these performance scores for each dataset, we estimate them using
10⇥ 10 fold cross-validation5.

4In this experimentation, all learning and error estimation tasks have been performed using the
software Weka 3 [16].

5These results can be downloaded, along with the source code.
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Figure 4: Pearson correlation ranking between the performance of the supervised learn-
ing paradigms on the studied datasets and the summaries, ↵ = 0.05.

Then, the correlation between the estimated values for the performance scores and
the summaries, IR and ID, are determined using the Pearson product-moment correlation
coe�cient [25] so that H

2

may be checked. Since a licit calculation of the correlation
requires an ideal scenario with a fixed number of minority/majority classes, we emulate
this requirement by subtracting (m � 1) from the ID value before the calculation so
that all considered classification problems are normalised in the same range [0, 1]. The
results are presented in Table 4; rows represent the summaries and columns represent the
estimated values for each score in each learning paradigm. Since the utilised scores assign
higher values to better performance, an adequate summary is expected to have a negative
correlation; the lowest the correlation, the better the sensitivity. We conclude from the
results that summaries are, in general, negatively correlated with the performance of the
classifiers, and that instantiations of ID are more sensitive than IR as the former obtain
a lower negative correlation. The best results (highlighted in Table 4) are obtained by
IDTV and IDHE .

Finally, to determine if there are summaries significantly more sensitive to the hin-
drance produced by skewed class distributions, a statistical hypothesis testing procedure
is performed: Friedman test [8] with Sha↵er’s static post-hoc with ↵ = 0.05 [12]. The
test results are represented by means of critical di↵erence diagrams (CDD) [8], which
show, in a numbered line, the arithmetic mean of the ranks of the correlation between
each summary and the estimation of each score in the database. If there is no statisti-
cally significant di↵erence between two summaries, they are connected in the diagram
by a straight grey line. Figures 4a, 4b, and 4 show the CDD for the Pearson correlation
between the summaries and A, G and min, respectively. Results confirm the second
hypothesis, in all rankings, IR shows the worst behaviour and significant di↵erences are
found between IR and other instantiations of ID for the performance scores. Moreover,
they also show that instantiating ID using either Hellinger or total variation (Manhattan)
distances produces significant robust summaries of the class-imbalance extent.
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5 Summary

Authors often measure the class-imbalance extent in their experimental schemas when
there is a reasonable suspicion of having unbalanced problems in the checked database.
Up to now, the most utilised summary of the class-imbalance extent of a dataset was the
imbalance-ratio, i.e. the (expected) number of instances of the most probable class for
each instance of the least probable class. Although it is a powerful measure for binary
problems, in this paper, we prove that it is a suboptimal summary for the multi-class
scenario. For that reason, we propose a new more adequate and robust summary of
the class-imbalance extent to deal with multiple classes, named imbalance-degree. It has
three interesting properties: (i) it is a single easy-readable real value in the range [0,K),
where K is the number of classes. (ii) Depending on the requirements of the sensitivity
sought in the tackled problem, it can be instantiated by any chosen metric or divergence.
(iii) It is an injective function for di↵erent class distributions showing di↵erent numbers
of majority/minority classes. Empirical results show that imbalance-degree has a higher
resolution and is more sensitive to express the hindrance that skewed class distributions
cause in the traditional supervised algorithms than imbalance-ratio. Additionally, it
can also be concluded that either Hellinger, total variation or Manhattan distances
are recommended distance/similarity functions to instantiate our proposal, imbalance-
degree.

This work can be extended in several ways. For example, only 8 di↵erent dis-
tance/similarity functions over 15 datasets are used in this paper. A more exhaus-
tive analysis can be carried out using a larger number of distance/similarity functions
[14, 5] over a larger set of unbalanced problems in order to statistically determine which
functions behave di↵erently and are recommended for highly di↵erent class-imbalanced
scenarios.

Another straightforward future path to this research can be a study on the variation
of the correlation between ID and the performance of the classifiers when class-imbalance
techniques, such as SMOTE [6], are used. This could be a step forward in determining
which intrinsic features of the data are a↵ecting the classifiers [2], and whether the
performance of a classifier can be predicted based upon the available data [30]. However,
note that, although the negative correlation between ID and the performance is expected
to decrease as long as the class-imbalance techniques alleviate the hindering e↵ect of the
class distribution, there might exist other hindering aspects [23] which may harm the
performance of the classifiers.
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Supplementary Material

The source code, in Python 2.7, used for the empirical studies of this manuscript can
be downloaded from http://github.com/jonathanSS/ImbalanceDegree.
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