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Abstract

The modified Hamiltonian Monte Carlo (MHMC) methods, i.e., importance sam-

pling methods that use modified Hamiltonians within a Hybrid Monte Carlo (HMC)

framework, often outperform in sampling efficiency standard techniques such as molec-

ular dynamics (MD) and HMC. The performance of MHMC may be enhanced further

through the rational choice of the simulation parameters and by replacing the standard

Verlet integrator with more sophisticated splitting algorithms. Unfortunately, it is not

easy to identify the appropriate values of the parameters that appear in those algo-

rithms. We propose a technique, that we call MAIA (Modified Adaptive Integration

Approach), which, for a given simulation system and a given time step, automatically
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selects the optimal integrator within a useful family of two-stage splitting formulas.

Extended MAIA (or e-MAIA) is an enhanced version of MAIA, which additionally

supplies a value of the method-specific parameter that, for the problem under con-

sideration, keeps the momentum acceptance rate at a user-desired level. The MAIA

and e-MAIA algorithms have been implemented, with no computational overhead dur-

ing simulations, in MultiHMC-GROMACS, a modified version of the popular software

package GROMACS. Tests performed on well-known molecular models demonstrate

the superiority of the suggested approaches over a range of integrators (both standard

and recently developed), as well as their capacity to improve the sampling efficiency of

GSHMC, a noticeable method for molecular simulation in the MHMC family. GSHMC

combined with e-MAIA shows a remarkably good performance when compared to MD

and HMC coupled with the appropriate adaptive integrators.

Introduction

The role of numerical integrators in enhancing the performance of Hybrid/Hamiltonian

Monte Carlo (HMC) has been a subject of active research in recent years.1–4 It has been

demonstrated that replacing the standard Verlet integrator with a splitting integrator spec-

ified by a suitable value of a parameter may significantly improve, for a range of step sizes,

the conservation of the Hamiltonian and thus the acceptance rate of the proposals.1,2 Such

integrators however possess shorter stability limits than the familiar Verlet algorithm.2 In

addition, the user is confronted with the problem of how best to choose the value of the

parameter. The drawbacks of the use of splitting integrators more sophisticated than Verlet

may be alleviated by resorting to the Adaptive Integration Approach, AIA.5 For a user-chosen

time step, this approach automatically identifies an optimal, system-specific integrator, by

using information on the highest frequencies of the harmonic interactions present in the

system; this information is typically extracted from the input data intended for a molec-

ular dynamics package. The term “optimal” refers to the fact that the selected integrator
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minimizes, within a family of two-stage integrators, the expectation of the energy error for

harmonic forces. When stability is an issue, AIA automatically chooses the Verlet integra-

tor and, as the time step is reduced below the Verlet limit, AIA moves to more accurate

integrators.

Another way to improve the performance of HMC is to introduce importance sampling

as suggested in refs 6–11. Taking advantage of the fact that symplectic integrators preserve

modified Hamiltonians more accurately than they preserve the true Hamiltonian, the au-

thors proposed to sample with respect to modified/shadow Hamiltonians and to recover the

desired distribution by reweighting. The resulting algorithms are capable of maintaining

high acceptance rates and usually exhibit better efficiency than their predecessor HMC.11–14

Moreover, in many applications, the Verlet integrator is sufficient to provide an amount of

accepted proposals adequate to generate good statistics, even with parameter settings for

which HMC fails. Thus, the methods seem to be less sensitive than HMC to the choice of

numerical integrator. However, it was shown that, for importance sampling HMC applied

to high-dimensional statistical problems, replacing Verlet with optimized two-stage splitting

integrators can improve the observed sampling efficiency by a factor of up to 4.11 That ref-

erence, however, does not offer a recipe for the rational choice of the integrator for a given

system and step size.

In this paper we propose an adaptive integration approach for molecular simulation,

MAIA, which extends the ideas of AIA, in order to automatically select, for a given sys-

tem and step size, the integrator with optimal conservation of the modified Hamiltonian,

and therefore with the highest acceptance rate, in modified Hamiltonian Monte Carlo meth-

ods. Extended MAIA (or e-MAIA) offers the extra feature of a control on the stochasticity

introduced in the momentum refreshment.
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Modified Hamiltonian Monte Carlo Methods

The family of modified Hamiltonian Monte Carlo (MHMC) methods consists of HMC algo-

rithms which, instead of sampling from the target canonical distribution

π(q,p) ∝ exp (−βH(q,p)) (1)

(where β = 1/kBT is the inverse temperature and kB the Boltzmann constant) known up to

a multiplicative constant, sample from an auxiliary importance canonical density

π̃(q,p) ∝ exp
(
−βH̃ [k](q,p)

)
, (2)

whereH is a Hamiltonian and H̃ [k] denotes a truncated modified Hamiltonian to be described

later. The familiar notations q and p are used for positions and momenta, respectively. Such

methods take advantage of two facts in order to enhance sampling efficiency of HMC. First,

the closeness of H̃ [k] to H makes it possible to implement an importance sampling approach

and use samples of π̃ as a means toward computing expectations with respect to π. Second,

the fact that the integrator preserves H̃ [k] better than it preservesH leads to a more favorable

value of the acceptance probability in the algorithms.

Symplectic integrators for the Hamiltonian dynamics with Hamiltonian function H(q,p),

while not preserving the value of H exactly along the computed trajectory, do preserve

exactly the value of a so-called modified Hamiltonian15–17

H̃ = H + ∆tH2 + ∆t2H3 + · · · ,

where ∆t is the integration time step. For an integrator of order p, H̃ = H + O(∆tp), so

that H2, . . . , Hp vanish. In eq 2, H̃ [k], k > p, is the truncation of H̃ given by

H̃ [k] = H + ∆tpHp+1 + · · ·+ ∆tk−1Hk.
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The expectation of the increment of H in an integration leg satisfies

Eπ[∆H] = O
(
D∆t2p

)
, (3)

(where D is the dimension), while

Eπ̃[∆H̃ [k]] = O
(
D∆t2k

)
, (4)

with k > p (see ref 18 and section MAIA below) and therefore MHMC algorithms may

benefit from high acceptance rates due to the better conservation of H̃ [k].

The objective of a modified Hamiltonian Monte Carlo method is to sample from a dis-

tribution with probability density function

π(q) ∝ exp(−βU(q)).

This is achieved indirectly, through sampling from the modified distribution (eq 2). In this

paper we consider Hamiltonians of the form

H(q,p) =
1

2
pTM−1p + U(q),

where M is a positive definite mass matrix and U is the potential, so that, under the target

(eq 1), the variable q has the marginal density ∝ exp(−βU(q)).

Since in MHMC methods the samples are generated with respect to the modified or

importance density, the computation of averages with respect to the target density after

completion of the sampling procedure requires reweighting. If Ωn, n = 1, 2, . . . , N , are the

values of an observable along a sequence of states (qn,pn) drawn from π̃ (eq 2), the averages
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with respect to π (eq 1) are calculated as

〈Ω〉 =

∑N
n=1 wnΩn∑N
n=1wn

,

where the importance weights are given by

wn = exp
(
−β
(
H(qn,pn)− H̃ [k](qn,pn)

))
.

If the target density π and the importance density π̃ were not close, one would typically

encounter high variability among weights, which would lead to large errors in the expectation,

as many samples would not contribute significantly to the computation of 〈Ω〉.

Let us now describe a generic MHMC algorithm. Given a sample (q,p) from the distribu-

tion π̃, the next sample (qnew,pnew) is defined as follows: (a) obtain the new momentum p∗

by applying a momentum update procedure that preserves the importance density π̃; (b) gen-

erate a proposal (q′,p′) by simulating the Hamiltonian dynamics with Hamiltonian function

H and with initial condition (q,p∗) using a symplectic and reversible numerical integrator;

(c) choose the next sample (qnew,pnew) to be (q′,p′) (acceptance) with probability

α = min

{
1,
π̃(q′,p′)

π̃(q,p∗)

}
. (5)

Otherwise (rejection) set (qnew,pnew) = (q,−p∗), i.e. carry out a momentum flip.

Since

π̃(q′,p′)

π̃(q,p∗)
= exp

(
−β
(
H̃ [k](q′,p′)− H̃ [k](q,p∗)

))
= exp

(
− β∆H̃ [k](q,p∗)

)
,

one may expect, in view of eqs 3 and 4, fewer rejections/momentum flips, and thus better

sampling/more accurate dynamics when sampling with H̃ [k] instead of H.8,19

The first methods of the MHMC class were derived for atomistic simulations and dif-
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fered from each other in the ways of refreshing the momentum, computing modified Hamil-

tonians and integrating the Hamiltonian dynamics. For example, in (Separable) Shadow

Hybrid Monte Carlo6,7 methods, a full momentum update is used, whereas in Targeted

Shadow Hybrid Monte Carlo20 and Generalized Shadow Hybrid Monte Carlo (GSHMC),8

suitable modifications of the partial momentum update of Horowitz21 are advocated in or-

der to better mimic the dynamics and enhance sampling. More recent MHMC methods

aim at specific applications, such as multiscale and mesoscale simulations (MTS-GSHMC

and meso-GSHMC respectively)9,10 and computational statistics (Mix&Match Hamiltonian

Monte Carlo).11 As demonstrated in the original papers, for some particular problems, the

use of MHMC methods resulted in a sampling efficiency several times higher than that ob-

served with the conventional sampling techniques, such as MD, Monte Carlo (MC) and HMC.

Further improvements can be achieved through the use of adaptive integration schemes as

indicated in ref 5. The MAIA proposed in this work is an adaptive approach which can suc-

cessfully replace the Verlet integrator in MHMC techniques with more powerful integration

schemes.

In this paper we follow the momentum update procedure used in GSHMC,8 which is

based on ideas from refs 21 and 22. We generate trial values

ptrial = cosϕp + sinϕu

utrial = − sinϕp + cosϕu

(6)

where ϕ ∈ (0, π/2] is a parameter and the noise vector u is drawn from the normal distribu-

tion N (0, β−1M). A low value of ϕ will result in ptrial being close to p and the behavior of

the algorithm will be close to conventional MD. For ϕ near π/2, ptrial will be very different

from p. The proposed trial momentum ptrial is accepted (p∗ = ptrial) with probability

αp = min

{
1,
π̂(q,ptrial,utrial)

π̂(q,p,u)

}
(7)
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where π̂ is the extended p.d.f.

π̂(q,p,u) ∝ exp
(
− βĤ(q,p,u)

)
corresponding to the extended Hamiltonian

Ĥ(q,p,u) = H̃ [k](q,p) +
1

2
uTM−1u. (8)

In case of rejection we set p∗ = p.

In the present study, we use splitting methods to integrate the Hamiltonian dynamics.

We use the symbols A and B to refer to the split systems

q̇ = 0, ṗ = −∇U(q)

and

q̇ = M−1p, ṗ = 0,

respectively. These have solution flows

φAt (q,p) = (q,p− t∇U(q)) (9)

and

φBt (q,p) = (q + tM−1p,p). (10)

We limit our attention to the family of two-stage integrators where the map that advances

the solution over a step of length ∆t is defined as

ψ∆t = φBb∆t ◦ φA∆t/2 ◦ φB(1−2b)∆t ◦ φA∆t/2 ◦ φBb∆t. (11)

Here 0 < b < 1/2 is a parameter that specifies the individual integrator within the family.
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These integrators are symplectic, as compositions of flows of Hamiltonian systems, and

reversible due to their palindromic structure. When b = 1/4, a step of length ∆t of the

integrator in eq 11 is equivalent to two successive steps of the velocity Verlet integrator each

of length ∆t/2.

When the error of the integrator is measured with respect to the modified Hamiltonian,

the choice of parameter leading to the minimum error method is b ≈ 0.2306;11 we shall

use the acronym M-ME (modified minimum error) to refer to this value. A minimization

procedure parallel to the one used in ref 2 suggests the value b ≈ 0.238011 that we shall

call M-BCSS. Due to well-known properties of the Verlet method, the choice b = 1/4 yields

the longest linear stability interval achievable in the family (eq 11). Therefore, generally

speaking, one would select b close to 1/4 if the value of ∆t is so large that stability is the

main concern and choose lower values of b, allowing for more accuracy in the conservation of

the modified Hamiltonian, when the user is prepared to operate with smaller values of ∆t.

In the next section we introduce algorithms which allow a rational choice of a value b in

order to achieve the best accuracy of integration in a simulation of a given problem.

In our analysis we shall rely on the computationally efficient procedures for the calculation

of modified Hamiltonians for the integrators of the family (eq 11) recently proposed in ref 11.

The modified Hamiltonians are evaluated through numerical time derivatives ∇U̇(q) of the

gradient of the potential function U , which are computed from quantities available during

the simulation (recalling that −∇U(q) is equivalent to the force) using centered differences.

Only two extra steps (one forward and another backward) are required. This makes feasible

the use of those families of integrators in MHMC.

For the two-stage family (eq 11) of interest here the fourth-order modified Hamiltonian

is given by11

H̃ [4](q,p) =
1

2
pTM−1p + U(q) + ∆t2

(
λpTM−1∇U̇(q) + µ∇U(q)TM−1∇U(q)

)
, (12)
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with

λ =
6b− 1

24
, µ =

6b2 − 6b+ 1

12
.

Adaptive Algorithms

In this section we describe two adaptive algorithms: the Modified Adaptive Integration

Approach (MAIA) and the extended MAIA (e-MAIA).

MAIA

MAIA is an algorithm which adapts the parameter b in eq 11 to the problem being solved

and the value of ∆t chosen by the user so as to maximize the expected acceptance rate α of

the proposal (q′,p′) in eq 5 or, equivalently, to minimize the expectation of the energy error

function

∆H̃ [4](q,p∗) = H̃ [4](q′,p′)− H̃ [4](q,p∗).

The analysis is based on a detailed study of the one-dimensional harmonic oscillator with

potential U(q) = (k/2) q2 (k > 0 a constant). For an integrator of the family in eq 11, the

modified Hamiltonian in eq 12 takes the form

H̃ [4](q, p) =
1

2

p2

M
+

1

2
kq2 + ∆t2λ

k

M2
p2 + ∆t2µ

k2

M
q2. (13)

As shown in the section S1 in the Supporting Information, if ω =
√
k/M is the angular

frequency of the harmonic oscillator and h denotes the nondimensional step size h = ω∆t,

then for the expected ∆H̃ [4] it holds

0 ≤ E[∆H̃ [4]] ≤ 1

β
ρ(h, b), (14)
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where ρ is the function

ρ(h, b) =
h8
(
b
(
12 + 4b(6b− 5) + b(1 + 4b(3b− 2))h2

)
− 2
)2

4
(
2− bh2

)(
4 + (2b− 1)h2

)(
2 + b(2b− 1)h2

)(
12 + (6b− 1)h2

)(
6 + (1 + 6(b− 1)b)h2

) . (15)

Note that the expectation E[∆H̃ [4]] is taken with respect to the probability π̃ (eq 2) sampled

by the algorithm. For a model consisting of D, possibly coupled, harmonic oscillators with

angular frequencies ωi, i = 1, . . . , D, the bound becomes

E[∆H̃ [4]] ≤ 1

β

D∑
i=1

ρ(hi, b),

with hi = ωi∆t. Minimization of the right-hand side will therefore ensure optimal conserva-

tion of the modified Hamiltonian in the harmonic model.

In MAIA, given a physical problem which includes nonharmonic forces and a value of

∆t, we estimate the fastest of the angular frequencies, ω̃, of the two-body interactions5 and

compute the nondimensional quantity

h̃ =
√

3ω̃∆t (16)

(
√

3 is a safety factor to be discussed presently). We then find the value of b that minimizes

max
0<h<h̃

ρ(h, b). (17)

Note that (0, h̃) is the shortest interval that contains all the values hi =
√

3ωi∆t, where

ωi are the frequencies in the problem. In contrast to AIA,5 where the factor of
√

2 had

to be used to avoid resonances of up to fourth order,23 in MAIA, the factor
√

3, covering

resonances of up to 5th order, was found to be appropriate.

The MAIA algorithm can be summarized as follows:

Given a physical system and a value of ∆t, the MAIA algorithm determines the value of

the parameter b to be used in eq 11 in the following way:
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1. Find the periods or frequencies of all two-body interactions in the system. Deter-

mine the minimum period T̃ = 2π/ω̃, with the fastest frequency ω̃, and compute the

nondimensional quantity h̃ in eq 16.

2. Check whether h̃ < 2
√

2, which is the usual stability limit in molecular simulation for

Verlet integrators.24 If not, there is no value of b for which the scheme (eq 11) is stable

for the attempted step size ∆t and the integration is aborted.

3. Find the optimal value of the parameter b by minimizing eq 17 with the help of an

optimization routine.

When ∆t is “large” for the problem at hand, in the sense that stability is the primary

concern, MAIA will choose b = 1/4, i.e. the Verlet integrator. Smaller values of ∆t allow

MAIA to reduce b and increase accuracy in the conservation of the modified Hamiltonian

(see Figure 1). Figure 1 also shows the advantage of MAIA when compared with the older

algorithm AIA,5 developed for the HMC method, which does not use modified Hamiltonians

and samples with respect to the target canonical density.

e-MAIA

The overall performance of an MHMC method depends not only on the acceptance rate α

of the proposal made after each MD integration leg (see eq 5), but also on the momentum

update acceptance rate αp in eq 7. The latter may play an important role in the quality

of sampling,8,13 since αp determines the frequency of the momenta resamplings. So far, we

have looked for the integrator that maximizes α and our next objective is to find a way to

control αp.

As we did above, we build the analysis on the use of a harmonic oscillator model. For the

scalar harmonic potential, the stationary marginal p.d.f.’s of the (stochastically independent
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Figure 1: Parameter b for different integrators as a function of h̃ (left) and bounds of the
expected energy error measured with respect to the true, in solid lines, or modified Hamil-
tonian, in dashed lines (right). For more details, a log-log plot is also provided as an inset
in the right panel. There are two lines for VV, as it may be used to sample from the true
(HMC) or the importance density (GSHMC). AIA operates with respect to the true energy
and MAIA with respect to its modified counterpart. Clearly the algorithms that operate
with modified Hamiltonians possess smaller expected errors. This explains why, in general,
VV GSHMC has higher acceptance rates than VV HMC and MAIA improves on AIA.

variables) p and u (see eq 6) are

π(p) ∝ exp

(
−β
(

1

2

p2

M
+ ∆t2λ

k

M2
p2

))
, π(u) ∝ exp

(
−β

2

u2

M

)
, (18)

respectively, and the extended Hamiltonian in eq 8 reads

Ĥ(q, p, u) = H̃ [4](q, p) +
1

2

u2

M
,

with H̃ [4] given in eq 13. As it was shown in ref 11, the difference in extended Hamiltonian

satisfies
∆Ĥ = Ĥ(q, ptrial, utrial)− Ĥ(q, p, u)

= ∆t2λ

(
sin2 ϕ

(
k

M2
u2 − k

M2
p2

)
+ 2 cosϕ sinϕu

k

M2
p

)
,

(19)
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and from here it is found that

E[β∆Ĥ] = ∆t2βλ sin2 ϕ
ω2

M

(
E[u2]− E[p2]

)
.

From eq 18 we have

E[p2] = β−1M
(
1 + 2∆t2λω2

)−1
, E[u2] = β−1M,

and then
E[β∆Ĥ] = ∆t2λ sin2 ϕω2

(
1−

(
1 + 2∆t2λω2

)−1
)

=
2∆t4λ2 sin2 ϕω4

1 + 2∆t2λω2
.

In terms of the dimensionless time step h = ω∆t, one obtains

E[β∆Ĥ] =
2h4λ2 sin2 ϕ

1 + 2h2λ
. (20)

For the model consisting of D harmonic oscillators with angular frequencies ωi, i = 1, . . . , D,

the equivalent of eq 20 is

E[β∆Ĥ] =
D∑
i=1

2h4
iλ

2 sin2 ϕ

1 + 2h2
iλ
≥ D

2h̄4λ2 sin2 ϕ

1 + 2h̄2λ
, (21)

where hi = ωi∆t are the dimensionless time steps and h̄ = ω̄∆t with ω̄ equal to the slowest

angular frequency among all the oscillators.

Using αp ≤ exp (−β∆Ĥ) (see eq 7), from the inequality 21 and for a concrete choice of

the angle ϕp, we can find the approximation

− logE[αp]

D
≈ 2h̄4λ2 sin2 ϕp

1 + 2h̄2λ
. (22)

It has to be remarked that the fastest oscillation frequency features in the analyses of MAIA
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and in its predecessor AIA5 but the slowest frequency is used in eq 22.

From eq 22, the expected acceptance rate in the momentum update may be controlled

by three parameters: the parameter λ = λ(b) that depends on the specific integrator being

used, the parameter h̄, which for a given problem is a function of ∆t, and the angle ϕ. This

fact motivates the algorithm that we call extended MAIA or e-MAIA. For a user-chosen

∆t, e-MAIA first finds an integrator within the family of two-stage schemes that maintains

the smallest expected modified energy error in the molecular dynamics part of the MHMC

algorithm and then adjusts the value of ϕ so as to achieve a desired acceptance rate for the

momentum update step. As explained above, the acceptance rates in the momentum update

step depend on the choice of angle ϕ, whereas the MAIA analysis does not depend on ϕ.

This means that, for some fixed values of ϕ and ∆t, the integrator nominated by MAIA may

not be favorable for maintaining an appropriate acceptance rate in the momenta. The goal

of e-MAIA is to provide an adaptive choice of the angle ϕ to achieve a target, user-specified

acceptance rate in the momentum update step while keeping the highest acceptance rate for

positions.

While a high acceptance rate in the MD part has a positive effect on sampling with

modified Hamiltonians, a too-frequent acceptance of momentum (close to 100 %) could lead

to two undesired scenarios: (i) an accuracy deteriorating thermalization of the simulation,

if the high acceptance rate is caused by a value of the angle ϕ very close to zero,13,19 or

(ii) a disruption of the dynamical trajectories if the momenta are always resampled while

ϕ is significantly bigger than zero.8 In the first scenario, the simulation will mimic an MD

behavior in the NVE ensemble. The rationale for introducing e-MAIA is the possibility of

simultaneously adapting the parameters b and ϕ to control both the acceptance probabilities

α and αp of the MD integration legs and the momentum updates.

The algorithm e-MAIA is as follows:

1. For a given physical problem, choose a time step ∆t for the integration of the equations

of motion, a target acceptance rate ARp for the momentum update, and an initial value
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ϕ0 of the angle ϕ.

2. Find the slowest and the fastest angular frequencies in the harmonic interactions, ω̄

and ω̃, respectively.

3. The integrator parameter b∗ is obtained as in MAIA by optimization of the function ρ

in eq 15. This choice of b∗ guarantees the highest possible acceptance rate for harmonic

interactions in the MD step.

4. The function which bounds the expected extended Hamiltonian error is given by (see

eqs 21-22)

τ(h̄, b∗, ϕ) =
2h̄4λ∗2 sin2 ϕ

1 + 2h̄2λ∗
,

where λ∗ is the value of λ when b = b∗ and

h̄ = ω̄∆t. (23)

The angle ϕ∗ is chosen as

ϕ∗ = arg min
ϕ∈(0,π/2]

θ(ϕ), (24)

with

θ(ϕ) =

∣∣∣∣− log (ARp)

D
− τ(h̄, b∗, ϕ)

∣∣∣∣ .
5. If the selected ϕ∗ is smaller than ϕ0, then either decrease the target ARp and go to

step 4 or, alternatively, define the function

σ(h, b, ϕ0) = ρ(h, b) + τ(h, b, ϕ0) (25)

and choose b∗∗ that minimizes max
0<h<h̃

σ(h, b, ϕ0). (The fastest oscillation is used again

for the momentum update part, since in this case we are constructing an upper bound

of the expected energy error.)
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We stress that for very small values of ϕ, an MHMC method loses its extra sampling

abilities and behaves similarly to standard molecular dynamics. In e-MAIA this possibility

is eliminated in step 5 of the algorithm in two optional ways. One way is to keep decreasing

the target ARp until ϕ∗ rises above ϕ0. Another option is to optimize the joint bound

function constructed for both expected errors, E[β∆H̃] and E[β∆Ĥ]. Though this sacrifices

the position acceptance rates, the expected loss is small provided that ϕ0 � π/2.

The reader should notice that, whereas MAIA in principle works for any method that

samples with respect to modified Hamiltonians, e-MAIA only works for those MHMC meth-

ods which perform the momentum update step in the way described in this paper (eq 6).

Implementation

MultiHMC-GROMACS

MAIA and e-MAIA have been implemented in the MultiHMC-GROMACS5,25,26 software

package. MultiHMC-GROMACS is a modified version of the popular molecular simulation

code GROMACS27,28 and offers a set of recently developed algorithms that aim at improv-

ing the accuracy and sampling performance of the original GROMACS without sacrificing

computational efficiency and parallel scaling properties. From the user’s point of view, there

is no difference in setting up a simulation with MultiHMC-GROMACS and doing so with

GROMACS, except for the need to specify a few additional parameters in the MultiHMC-

GROMACS input file .mdp.

A detailed description of the MultiHMC-GROMACS package may be found elsewhere;5,25,26

here we briefly review those features that are relevant to the present study.

Hybrid Monte Carlo Methods

Hybrid Monte Carlo (HMC),29 Generalized Hybrid Monte Carlo (GHMC)21,22 and Gener-

alized Shadow Hybrid Monte Carlo (GSHMC)8 are all available in MultiHMC-GROMACS.

17



The implementation of GSHMC in GROMACS has been discussed in detail in refs 25 and

26. The other methods, i.e. HMC and GHMC, are implemented as special cases of GSHMC

as described in ref 5.

Modified Hamiltonians

Two types of modified Hamiltonians are currently available in MultiHMC-GROMACS: the

shadow Hamiltonian in a Lagrangian formulation8 for the Verlet/leapfrog integrator and the

modified Hamiltonian (eq 12)11 for two-stage integrators of the family eq 11.

Two-stage Integrators

The two-stage integrators of the family eq 11 have been implemented in MultiHMC-GROMACS

as a concatenation of alternating updates of velocities and positions in the routine do_md()

in md.c. The v-rescale thermostat30 available in GROMACS has been adapted to work with

the two-stage schemes.5 In addition, the two-stage integrators are optionally coupled with

the SHAKE algorithm for simulation of constrained dynamics.5

At present MultiHMC-GROMACS may carry out simulations with the BCSS integrator,2

the McLachlan’s method,1 their counterparts for modified Hamiltonians11 and the velocity

Verlet two-stage integrator. These integrators are given by specific choices of the parameter

b in eq 11. In addition, the MultiHMC-GROMACS code implements the AIA integrator,5

where the algorithm tunes b to the particular simulation being carried out.

Implementing MAIA and e-MAIA

Similarly to AIA,5 MAIA and e-MAIA have been implemented in the GROMACS prepro-

cessing module grompp. The preprocessing module is run only once before any simulation

and, thus, does not introduce computational overheads in the simulation itself.

In the original GROMACS package, the module grompp reads the input files that contain

the essential information about the simulated system, such as topology and structure, and
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makes the necessary adaptation of that information for its use in the molecular dynamics

module mdrun. The module grompp also checks the .mdp file for choices of input parame-

ters for the simulation algorithms and, if necessary, generates warnings that allow users to

reconsider the chosen setup. The grompp module finishes by producing the file .tpr to be

used as input in the mdrun module for running molecular dynamics simulation.

In addition to these functionalities, a more advanced analysis of the harmonic interac-

tions is included in grompp in MultiHMC-GROMACS. As has been explained in ref 5, the

fastest harmonic interaction predetermines a maximal step size allowed for the stable nu-

merical integration of the equations of motion. On the other hand, the slowest harmonic

interactions are used in the e-MAIA algorithm to identify the best choice of the parameter ϕ.

In MultiHMC-GROMACS, grompp searches for the periods corresponding to the fastest and

slowest oscillations, T̃ and T̄ respectively. The value T̃ is used to define the upper limit of

the dimensionless time step, h̃ =
√

3(2π/T̃ )∆t, following the MAIA algorithm. The optimal

value of the parameter b for a MAIA or e-MAIA integrator is then found as the argument

that minimizes the maximum of ρ (eq 15) for the range of dimensionless time steps from

zero to h̃. As in ref 5, the minimization is performed with a particle swarm optimization

algorithm driven by a golden section search.31 The value T̄ is used to determine the angle

ϕ, as explained in the e-MAIA algorithm.

Both b and ϕ are stored in the input record structure introduced by GROMACS for

keeping all the input data during the whole simulation. Thus, b and ϕ can be accessed from

every routine in the package.

The flowchart in Figure S1 summarizes MAIA and e-MAIA algorithms.

Numerical Experiments

In order to evaluate the efficiency of the proposed (e-)MAIA algorithm, we first compared

its performance with that of several integration schemes which potentially can compete with
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it. Then we estimated the performance of GSHMC combined with (e-)MAIA in comparison

with other popular sampling methods. More precisely, e-MAIA was compared with fixed

parameters integrators specifically derived for MHMC methods. The counterpart of BCSS2

for modified Hamiltonians (M-BCSS) and the equivalent to the scheme of McLachlan1 that

minimizes the errors of modified Hamiltonians (M-ME) were included in the comparison.

Both M-BCSS and M-ME have been recently derived11 and implemented in MultiHMC-

GROMACS. All three integrators were combined with the GSHMC method. In addition,

e-MAIA was compared with integrators successfully used for molecular simulation in MD,

HMC and GSHMC. The velocity Verlet and AIA combined with GSHMC were selected in

this case. e-MAIA was compared with MAIA when both were implemented within GSHMC.

GSHMC was compared with HMC and MD. For each tested sampling method the most

efficient integrator was used: e-MAIA was chosen for GSHMC and AIA was employed in

MD and HMC.

To provide a fair comparison, the following issues have been taken into account while

producing the numerical results. To equalize the time spent on force calculations using

Verlet and two-stage integrators, Verlet was always run with half a step size and twice the

number of steps. Also, in the simulations with HMC and GSHMC, the number of Metropolis

tests was kept constant regardless of the acceptance/rejection output. The computational

overhead due to evaluation of modified Hamiltonians in GSHMC8 was taken into account by

normalizing calculated integrated autocorrelation functions with respect to computational

times. We notice that this overhead is, on average, of 1-2 % with respect to MD with

the v-rescale thermostat or with respect to HMC, since both MD and HMC have the same

computational cost. We also notice that the overheads of GSHMC tend to decrease when

the trajectory lengths increase.

The tests were performed using two benchmark systems (see below), both run over a

range of time steps ∆t. The aim was to monitor the evolution of the parameters b and ϕ

(eq 6) automatically chosen for each ∆t in (e-)MAIA, and estimate their effect on the overall
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sampling performance of GSHMC. In all plots in the Results, values of time steps correspond

to two-stage integrators and assume twice smaller time steps for velocity Verlet.

Different lengths of MD trajectories L in GSHMC simulations were also tested. This

parameter may play an important role in the sampling efficiency of GSHMC simulations

when values chosen are either too small or too large.13 However, for the sake of clarity,

in all tests presented in this work, the length of MD trajectories was fixed to 2000 steps

when two-stage integrators were used and to 4000 otherwise. These values were found to

be good choices for both GSHMC and HMC with different integration schemes and this is

also confirmed by findings in ref 5. Also, as discussed above, for this trajectory length L the

computational overheads of GSHMC w.r.t. MD are smaller than 1%.

With the obvious exception of e-MAIA, the angle used for the momentum refreshment

(eq 6) was set to 0.2 for all tests unless stated otherwise.

Each individual test has been repeated 10 times and every result reported in this paper

was obtained by averaging over the multiple runs to reduce statistical errors.

Benchmarks and Simulation Setup

The numerical experiments were performed using two benchmark systems: the coarse-grained

VSTx1 toxin in a POPC bilayer32 and the atomistic 35-residue villin headpiece protein sub-

domain.33,34 In the following we shall refer to these systems as toxin and villin, respectively.

Toxin is a coarse-grained system of 7810 particles. Four heavy particles were represented

on average as one sphere.35,36 Coulomb and van der Waals interactions were solved using the

shift algorithm. Both potential energies were shifted to 0 kJmol−1 at the radius of 1.2 nm.

Periodic boundary conditions were considered in all directions. The target temperature was

chosen to be 310 K and it was controlled in MD simulations by the v-rescale algorithm

whereas no additional thermostat was required in HMC and GSHMC. No constraints were

defined for this system. The total length of all simulations was 20 ns, which was sufficient for

equilibration of the system for those choices of time steps that provided a stable integration.
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The villin protein is a 9389 atoms system, composed of 389 atoms solvated with 3000

water molecules. Coulomb interactions were solved with the PME algorithm of order 6.

van der Waals interactions were considered as in the toxin system but with a radius of

0.8 nm. Periodic boundary conditions were defined in all directions. As in the previous

study,5 the bonds involving hydrogens were constrained using SHAKE/RATTLE. The use

of these constraints does not affect the accuracy of simulations but allows for longer time

steps which, due to the atomistic nature of the system, still are significantly shorter than

in the coarse-grained toxin system. The temperature of 300 K was maintained using the

v-rescale algorithm in MD and through the Metropolis tests in HMC and GSHMC.

Similarly to ref 5, an exhaustive study of the complete folding process of the villin protein

is out of the scope of this work. Instead, the aim is to show the beneficial effect of (e-)MAIA

on the accuracy and performance of the simulation of a constrained atomistic system. For our

purposes, the length of 5 ns for each villin experiment was found sufficient. This simulation

length was carefully chosen to make sure that the comparisons for simulations longer than

those presented in this study are at least as favorable to the algorithms we suggest as we

claim; they may be even more favorable as the simulations become longer. In the Supporting

Information, in Figure S2 we show that the efficiency of GSHMC with e-MAIA, relative to

MD, expressed in terms of radii of gyration, increases with simulation time.

Previously reported studies of the villin system have suggested that the use of a weak

coupling thermostat and a barostat may lead to a better agreement with experiments.37

Barostats are not considered, however, in this study, since the primary targets of the algo-

rithms presented here are modified Hamiltonian Monte Carlo methods, which if no extra

variations are introduced,8,26 sample in the NVT ensemble.
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Results

Toxin

We start by measuring the acceptance rates of positions and momenta in the GSHMC sim-

ulations with different integration schemes. For the sake of clarity, we excluded from the

plots the results for the MAIA algorithm, leaving only the data for e-MAIA. This makes

sense because the position acceptance rates for MAIA and e-MAIA are always very similar

(see step 3 of the e-MAIA algorithm), while e-MAIA has an obvious advantage over MAIA

as far as the acceptance rates for momenta are concerned. We shall provide more details on

this issue later.

The primary objective of the MAIA algorithm is to maximize the acceptance of position

proposals in an MHMC method by minimizing the expected errors in modified Hamiltonians.

Then, the first natural test for MAIA is to check whether the position acceptance rates

observed in GSHMC simulations combined with MAIA are not below those observed with

other two-stage integrators. In Figure 2, the effect of various integrators such as e-MAIA, the

modified versions of BCSS2 (M-BCSS) and ME1 (M-ME),11 the standard VV, and AIA5 on

the acceptance rates in GSHMC simulations is investigated. The trends presented in the left

plot are in good agreement with the theoretical prediction in Figure 1 (right panel). Indeed,

the acceptance rates obtained with the modified adaptive approach e-MAIA, over the range

of time steps considered, are never lower than the ones provided by the other integrators

tested. For small time steps, all integrators, except AIA, guarantee high acceptance rates,

but the situation changes as the time step increases and the shorter stability intervals of

M-BCSS and M-ME result in acceptance rates well below those achieved with e-MAIA and

VV. The low acceptance rates for AIA are not surprising, since this method was developed

for sampling with respect to the true Hamiltonian and provides the lowest expected errors

in Hamiltonian rather than in modified Hamiltonian. However, for the largest time step of

50 fs, the parameter b in AIA becomes equal to 1/4 and thus AIA is equivalent to VV (see

23



Figure 1, left). The same applies to MAIA/e-MAIA for the longest time step, as can also

be seen in Figure 1, left. This simply reflects the fact that the velocity Verlet integrator

possesses the longest stability interval among the two-stage integrators and the adaptive

methods AIA and MAIA select velocity Verlet when the time step goes beyond the stability

limit of other two-stage integrators.
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Figure 2: Toxin. Acceptance rates for positions (left) and momenta (right) observed in
GSHMC simulations when using M-BCSS, M-ME, VV, AIA (all dashed lines) and e-MAIA
(solid line). e-MAIA maintains the target ARp of 90 % for each value of ∆t (right).

The acceptance rates for momenta are shown in the right panel of Figure 2. For e-MAIA,

we fixed the target acceptance ARp to 90 % bearing in mind that too high (near 100 %)

acceptance rates may degrade accuracy, whereas low acceptance rates normally reduce the

sampling efficiency of GSHMC. With this target set, e-MAIA chose an appropriate value of

ϕ for each time step being tested. The simulations with other integrators were run with the

fixed value ϕ = 0.2. This was selected to achieve a good performance for the longest time

steps. Obviously, with any integrator, the parameter ϕ can be adapted, by trial and error,

to each simulation and time step, but we have to stress that, in practice, tuning blindly the

value of ϕ is rather time-consuming and not necessarily results in the optimal choice of ϕ.

That is why the ability of e-MAIA to optimize automatically such a choice is very welcome.

As follows from Figure 2, right, for all tested time steps, e-MAIA maintained well the target

ARp by varying ϕ. The other integrators being combined with GSHMC led to very high,
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unwelcome acceptance rates for most time steps tested.

We shall see next how the trends observed above for the acceptance rates impact the

sampling efficiency of GSHMC. In the case of toxin, this efficiency was measured in terms of

the integrated autocorrelation function IACF of the toxin drift d to the preferred interfacial

location over the “convergence period”. The IACF is defined as

IACFΩ =
K′∑
l=0

ACF(l), (26)

where ACF(l), l = 0, ..., K ′ < K is the standard autocorrelation function for the time

series Ωk of K samples, k = 1, ..., K.22,38 For GSHMC, the ACF’s are calculated taking

into account the weights collected during simulations.11 We notice that in all simulations

performed the normalized weights are close to 1 due to small differences between modified

and true Hamiltonians observed in the simulations as well as the choice of temperatures

(common for molecular simulations of biological systems) leading to β < 1. This means

that the metrics designed for weighted and nonweighted methods would not generate data

that are too different. This, however, is not expected in a general case and is not common

in statistical applications.39 The IACF in eq 26 gives a quantitative measure of the time

required, on average, to generate an uncorrelated sample. Low values of measured IACF

imply low correlations between samples and thus more efficient sampling.

Figure 3, left, presents the IACFs (normalized with respect to computational time) ob-

tained from GSHMC simulations using different integrators and time steps. Clearly, the

simulations with e-MAIA provided the lowest values of IACFs and thus the best sampling

for all choices of time step. All methods showed the good performance at ∆t = 40 fs and,

for this time step, the simulations with e-MAIA resulted in an efficiency (as measured by

IACF) from 5 (vs M-BCSS, VV) to 9 (vs AIA) times higher than the simulations with other

integration schemes. For the largest time step, ∆t = 50 fs, the performance achieved using

e-MAIA was 12 times better than in the simulations with M-BCSS and M-ME, but it did
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not differ anymore from those observed in the simulations with VV and AIA, because for

this long time step both AIA and e-MAIA chose velocity Verlet as integrator.
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Figure 3: Toxin. Sampling efficiency of GSHMC combined with the integrators used in
Figure 2. On the left, IACF of the drift, d, of the toxin to the preferred interfacial location
evaluated as a function of ∆t in GSHMC tests. On the right, the distribution of d observed in
GSHMC simulations with various integrators using a time step of 30 fs. The solid black line
(right) presents the “true” distribution produced with a ten times longer simulation (200 ns).

The right panel of Figure 3 compares the distributions of the distance d between the

center of mass (c.o.m.) of the toxin and the c.o.m. of the bilayer, collected from simulations

with ∆t = 30 fs with different integrators, against the “true” distribution obtained from an

MD simulation with velocity Verlet, over a time interval of length 200 ns, i.e., ten times

longer. As for all tests in this section, the plots have results averaged over 10 repetitive runs.

The curve corresponding to the simulation with e-MAIA (in red) shows the best match with

the “true” distribution (in black).

The performances of e-MAIA and MAIA are compared in Figure 4. We chose the target

ARp in e-MAIA to be 90 % and the angle ϕ in MAIA to be equal to 1.1, which was the

value found by e-MAIA for achieving the target ARp = 90 % in GSHMC simulations at the

smallest time step tested, ∆t = 20 fs. Figure 4 reveals that, even though both e-MAIA and

MAIA find the same integrator parameter b, leading to similar acceptance rates for positions,

a good choice of the angle ϕ may visibly improve the sampling performance of GSHMC. The
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improvement is by factors of 8 and 2 for ∆t = 40 fs and ∆t = 50 fs, respectively. The

evolution, as the time step increases, of the optimal parameter ϕ as calculated by e-MAIA

is also shown in Figure 4.
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Figure 4: Toxin. e-MAIA (solid) vs MAIA (dashed). Acceptance rates for positions and
momenta (left), IACFs (center) and the angle ϕ found by e-MAIA as a function of the time
step (right) observed in GSHMC simulations. The angle ϕ used in MAIA was 1.1 and the
target ARp for e-MAIA was 90 %.

To finalize the numerical experiments on the toxin benchmark, we compared, using the

normalized IACF metrics, the performance of three sampling methods, MD, HMC, and

GSHMC. For each method, the best performing integrator was selected. Thus, GSHMC was

combined with e-MAIA, based on the findings discussed above, whereas the AIA integrator

was used for HMC and MD, according to the recommendations in ref 5. Figure 5, left,

demonstrates the superiority of GSHMC over the other two methods, regardless the choice

of time step. For the optimal choice of time step for this system, namely, ∆t = 40 fs, the

sampling efficiency of GSHMC is 4 times higher than that of HMC and 11 times better than

that of MD. For the longest time step, ∆t = 50 fs, the difference is even more dramatic and

expressed in improvement factors of 17 and 30 over HMC and MD, respectively. Plotted

in Figure 5, right, are the distributions of the distance d between the c.o.m. of the toxin

and the c.o.m. of the bilayer produced by GSHMC, HMC, and MD simulations using a time

step of 30 fs; they also confirm the better convergence of the GSHMC results to the “true”

distribution.
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Figure 5: Toxin. Sampling efficiency: GSHMC (e-MAIA) vs HMC (AIA) vs MD (AIA).
The best integrator for each sampling method was employed. Sampling efficiency was mea-
sured by means of IACFs (left) and the distribution of the distance between the toxin and
the membrane bilayer (right). The solid black line (right) presents the “true” distribution
produced with a ten times longer simulation (200 ns).

Villin

As in the toxin case, we first inspected the acceptance rates for positions and momenta in

GSHMC simulations with different integrators and found that the e-MAIA method worked

as expected, i.e., provided the best position acceptance rates (Figure 6, left) and maintained

the target momenta acceptance rate of 90 % (Figure 6, right) for all choices of time steps.
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Figure 6: Villin. Acceptance rates for positions (left) and momenta (right) observed in
GSHMC simulations when using M-BCSS, M-ME, VV, AIA (all dashed lines) and e-MAIA
(solid line). e-MAIA maintains the target ARp of 90 % for each value of ∆t (right).
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In contrast to the coarse-grained toxin benchmark, a quantitative analysis of the MAIA’s

contribution to the GSHMC performance gain is not feasible with the atomistic villin bench-

mark. This is because such an analysis would require a long, computationally demanding

series of simulations, for a range of time steps, integrators, and sampling methods. It is

however possible to find evidence of the positive impact of MAIA on the sampling efficiency

of GSHMC by using comparatively short simulation runs of 5 ns and metrics directly related

to the quality of sampling.

One of such metrics is the radius of gyration (RG), which provides an estimation of the

compactness of the desired structure, and is computed as

RG =

(∑n
i=1‖ri‖2Mi∑n

i=1Mi

)1/2

,

where n is the number of atoms in the structure, ri the distance between atom i and the

center of mass of the structure, and Mi the mass of atom i. As in ref 37, we considered the

experimental value of 0.94 nm as a target value and investigated the level of convergence to

this value in short simulations when using different time steps, numerical integrators, and

simulation methods.

Another metric used in this study relates to the positional root-mean-squared deviation

(RMSD). The RMSD of a group of atoms in a molecule with respect to a reference structure

can be calculated as

RMSD =

√√√√ 1

n

n∑
i=1

δ2
i ,

where δi is the distance between the positions of atom i in the two structures being compared.

Following the ideas from ref 37, we calculated the maximal RMSD of the α-carbon be-

tween any two visited structures in each simulation in order to judge the level of exploration

of conformational space during the simulation.

In Figure 7 we plot, as functions of the time step, the radii of gyration and maximal

RMSDs of the α-carbon calculated from the data collected in GSHMC simulations using
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e-MAIA, M-BCSS, M-ME, VV and AIA integrators. Clearly, the simulations with e-MAIA

(red solid line) produced the best approximations to the experimental data (left plot), the

highest values of maximal RMSD (right plot) (implying better sampling) and the smallest

performance degradation at the longest time steps.

2 3 4 5 6
 ∆t (fs)

0.9

0.95

1

1.05

1.1

1.15

R
G

 (
nm

)

Target value
e-MAIA
M-BCSS
M-ME
VV
AIA

2 3 4 5 6
∆t (fs)

0.4

0.5

0.6

0.7

m
ax

 C
-α

 R
M

S
D

e-MAIA
M-BCSS
M-ME
VV
AIA

Figure 7: Villin. Sampling efficiency of GSHMC combined with the integrators used in
Figure 6: radius of gyration (left) and maximum RMSD of the α-carbon of the protein
(right). The black solid line (left) represents the target experimental value of 0.94 nm.

The comparison of the results obtained using MAIA and e-MAIA in GSHMC simulations

of villin confirmed the trends observed earlier in the toxin tests. Both methods achieved

almost the same position acceptance rates, whereas the momenta acceptance rates were

significantly higher in the simulations with e-MAIA (Figure 8, left). The latter was possible

due to the automatic tuning of the parameter ϕ provided by e-MAIA for maintaing the

target ARp = 90% (Figure 8, right); its positive effect can be noticed in Figure 8, center.

Figure 9 compares the radii of gyration (left) and maximal RMSDs of the α-carbon (right)

obtained from the simulations of villin using three different sampling methods, GSHMC,

HMC, and MD. As in the toxin case, the best performing integrator was used for each

sampler, i.e., e-MAIA was selected for GSHMC and AIA was combined with HMC and MD.

For both metrics, GSHMC demonstrated the best results over the range of time steps. Its

advantage over HMC and MD is most visible at longer time steps, when both HMC and MD

lose accuracy and sampling efficiency.
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Figure 8: Villin. e-MAIA (solid) vs MAIA (dashed). Acceptance rates for positions and
momenta (left), radii of gyration (center) and the angle ϕ found by e-MAIA as a function of
the time step (right) observed in GSHMC simulations. The angle ϕ used in MAIA was 0.9
and the target ARp for e-MAIA was 90 %.
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Figure 9: Villin. Sampling efficiency: GSHMC (e-MAIA) vs HMC (AIA) vs MD (AIA). The
best integrator for each sampling method was employed. Sampling efficiency was measured
through the radius of gyration (left) and the maximum RMSD of the α-carbon of the protein
(right). The black solid line (left) represents the target experimental value of 0.94 nm.

Additionally, we have generated Ramachandran plots considering all residues of the pro-

tein except for glycine. In Figure 10 the Ramachandran plots, obtained for the largest time

step ∆t = 6 fs, are presented as two-dimensional joint distributions of ϕ and Ψ angles.

Figure 10 confirms the advantages of GSHMC over other tested methods. Indeed, GSHMC

combined with e-MAIA is the only method capable of sampling all regions including the less

populated basins in the ϕ, Ψ > 0 region, which were out of reach for HMC and MD sampling.

Obviously, a deep atomistic study of the villin folding requires significantly longer runs

than those presented here, as well as the incorporation of additional sampling techniques,

31



− π

0

π

− π 0 π
ϕ

ψ

(a) GSHMC (e-MAIA).

− π

0

π

− π 0 π
ϕ

ψ
(b) HMC (AIA).

− π

0

π

− π 0 π
ϕ

ψ

(c) MD (AIA).

Figure 10: Villin. Sampling efficiency: GSHMC (e-MAIA) vs HMC (AIA) vs MD (AIA).
Ramachandran plots for all residues of the protein except for glycine with ϕ torsion on the
horizontal axis and Ψ on the vertical axis. The best integrator for each sampling method
was employed. The time step was 6 fs, the largest in these tests.

such as, for example, parallel tempering, to the simulations. The latter can be implemented in

a similar way, with similar cost for all three methodologies considered in our study. However,

the simulations will clearly be more efficient if the underlying sampling method provides

higher sampling efficiency, which is the case for GSHMC with e-MAIA.

Conclusions

We have proposed an adaptive approach for enhancing the accuracy and sampling efficiency

of modified Hamiltonian Monte Carlo (MHMC) methods, with the aim of making them

strong competitors of popular techniques such as molecular dynamics (MD) and hybrid

Monte Carlo (HMC). Given a system to be simulated and a user-chosen time step, the new

method, which we call Modified Adaptive Integration Approach or MAIA, identifies the

two-stage numerical integrator which, when used in the Hamiltonian dynamics step of an

MHMC method, provides the best conservation of the relevant modified Hamiltonian and

thus the highest acceptance rate of the proposed trajectories. An enhanced variant of MAIA,

e-MAIA, tailored to Generalized Shadow Hybrid Monte Carlo (GSHMC) methods, addition-

ally supplies a value of the parameter ϕ that, for the problem under consideration, keeps
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the momentum acceptance at a user-desired level. The MAIA algorithm has been imple-

mented, with no computational overhead during simulations, in MultiHMC-GROMACS, a

modified version of the popular software package GROMACS. The effect of the use of MAIA

on the sampling efficiency of GSHMC has been demonstrated by using constrained atomistic

and unconstrained coarse-grained benchmarks, and compared with the performance of other

suitable integration schemes, including the popular velocity Verlet integrator. The tests

revealed that the replacement in GSHMC of any fixed, two-stage integrator with e-MAIA

leads systematically to improvements in sampling efficiency of up to an order of magnitude.

The performance comparison of GSHMC, HMC, and MD combined with their best choices of

numerical integrators (e-MAIA, AIA, AIA, respectively) confirmed the efficiency and robust-

ness of the GSHMC-MAIA combination, whose advantages are especially noticeable when

using the longest possible simulation time steps. For such cases, GSHMC, while maintaining

good accuracy in simulation, provided a sampling efficiency (as measured with IACF) up to

30 times higher than the efficiency that may be achieved with MD.
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