
A Novel Fireworks Algorithm with Wind Inertia
Dynamics and its Application to Traffic Forecasting

Ibai Laña∗, Javier Del Ser∗,†,‡ and Manuel Vélez†
∗TECNALIA, 48170 Derio, Bizkaia, Spain

Email: {ibai.lana, javier.delser}@tecnalia.com
†University of the Basque Country UPV/EHU, Bilbao, Bizkaia, Spain

Email: {javier.delser, manuel.velez}@ehu.eus
‡Basque Center for Applied Mathematics (BCAM), Bilbao, Bizkaia, Spain

Abstract—Fireworks Algorithm (FWA) is a recently con-
tributed heuristic optimization method that has shown a promis-
ing performance in applications stemming from different do-
mains. Improvements to the original algorithm have been de-
signed and tested in the related literature. Nonetheless, in most
of such previous works FWA has been tested with standard test
functions, hence its performance when applied to real application
cases has been scarcely assessed. In this manuscript a mechanism
for accelerating the convergence of this meta-heuristic is proposed
based on observed wind inertia dynamics (WID) among fireworks
in practice. The resulting enhanced algorithm will be described
algorithmically and evaluated in terms of convergence speed by
means of test functions. As an additional novel contribution
of this work FWA and FWA-WID are used in a practical
application where such heuristics are used as wrappers for
optimizing the parameters of a road traffic short-term predictive
model. The exhaustive performance analysis of the FWA and
FWA-ID in this practical setup has revealed that the relatively
high computational complexity of this solver with respect to
other heuristics makes it critical to speed up their convergence
(specially in cases with a costly fitness evaluation as the one
tackled in this work), observation that buttresses the utility of
the proposed modifications to the naive FWA solver.

I. INTRODUCTION

Meta-heuristics – and in particular, evolutionary algorithms
– have been at the head of efficient optimization solvers over
the last four decades, but it is during the last ten years when
they have experienced a thriving expansion. Particularly, bio-
inspired algorithms conform an increasingly copious family
that grasps inspiration from the observation and emulation of
assorted natural processes [1], [2].

Among these, Fireworks Algorithm (FWA, [3]) is a young
heuristic optimization algorithm relying on the explosion and
sparks expansion phenomena observed in fireworks. In FWA
a set of n fireworks is generated, representing initial solutions
drawn uniformly at random from the search space spanned by
the vector of optimization variables x and the fitness function
f(x). Each of such fireworks explodes, generating stochastic
sparks that also represent solutions, located in the vicinity
of the originating firework, and with ranges of exploration
or amplitudes that depend on the both the fitness of the
firework and the parametrization of the heuristic (see Figure
1). The original implementation of the algorithm includes also
a subset of Gaussian distributed sparks to part of the fireworks
that adds diversity to the entire set of explored solutions.

A n-sized pool of selected solutions, including the best and
the worst fitness for diversity purposes, constitutes the set
of fireworks (solutions) held for the next generation of the
algorithm. Whereas the amplitude parameter allows balancing
the trade-off between exploration and exploitation during the
FWA search process, to obtain the n individuals of the next
generation a total of n + ns + m evaluations are needed,
being ns the total number of regular sparks and m the number
of gaussian distributed sparks. This increases the runtime in
comparison to other optimization algorithms, specially those
based on Swarm Intelligence.

(a) (b)

x1
x2

1 2f (x) > f (x)

Fig. 1. Best fitness fireworks (a) explode by generating more sparks in a
smaller amplitude – promoting exploitation – than worst fireworks (b), whose
sparks have larger amplitude and less cardinality, fostering exploration. A
maximization problem is implicitly assumed.

In this context research efforts have been lately conducted
towards overcoming this issue by reducing the convergence
time and consequently, improving the performance of the
algorithm using as fewer generations as possible. The so-called
Enhanced Fireworks Algorithm (EFWA, [4]) proposes to vary
the definition of the FWA operators to address performance
decay when the algorithm is applied to functions that do not
have their optimum at the origin. Likewise, the authors in
[5] strive to accelerate the convergence process by selecting
an elite of individuals at each generation obtaining, under
certain circumstances, better results than the baseline FWA.
Another strategy to speed up the algorithm is parallelization,
that has been performed using GPU processing [6], [7]. Other
modifications to the initial FWA and to the later contributed
EFWA include adaptive amplitude calculation [8], cooperation
among fireworks [9] or dynamic adjusting of parameters to
balance exploitation and exploration [10]. Aside from per-
formance improvements, applications of fireworks algorithm

978-1-5090-4601-0/17/$31.00 c©2017 IEEE
706

to real optimization scenarios are yet scant [11], [12], [13],
[14], [15] due to the relative youth of this heuristic. A
practical application of interest within the scope of this work
is [16], where FWA is used to optimize the parameters of a
spam detection algorithm. Model parametrization via heuristic
wrapper is indeed a common usage of optimization algorithms
[17], using the evaluation score of the model as the fitness
function of the wrapping solver.

This paper proposes a modification of the EFWA approach
inspired by the physical displacement effect of fireworks due
to blowing wind. We advocate that wind inertia resulting
from gradients in the explored solution space is able to boost
the convergence of the algorithm towards optimal solution in
less iterations. Enhanced and wind inertia dynamics (WID)
versions of the algorithm are tested on benchmark functions
and on a parameter optimization problem, consisting of a su-
pervised learning model aimed at predicting vehicular traffic in
the short term. Statistically significant performance gains at no
computational cost are shown to be achieved by our proposed
scheme with respect to its baseline EFWA counterpart, both
over the test functions and the practical application.

The paper is organized as follows: the proposed algorithmic
changes introduced to the EFWA algorithm are detailed in
Section II, whereas Section III discusses on the performance
attained by both EFWA and EFWA-WID on test functions.
Section IV elaborates on short-term traffic forecasting prob-
lem and the results obtained therein by the aforementioned
heuristics. Finally Section V summarizes the conclusions and
future research lines derived from this work.

II. PROPOSED FWA WITH WIND INERTIA DYNAMICS

As wind inertia version of the fireworks algorithm is built
on the basis of the enhanced fireworks algorithm [4], the
latter introducing five essential changes with respect to its
seminal version: 1) a minimal explosion amplitude check; 2)
an operator that displaces randomly some of the explosion
sparks; 3) a mapping operator that reallocates those sparks
generated outside the search space; 4) a displacement operator
for Gaussian sparks; and 5) a selection operator to reduce
runtime. EFWA requires multiple input parameters that define
the number of fireworks (n), the amplitude of explosion of a
firework (Ai), the number of explosion sparks per firework
(ns), the dimensions of the problem (d), the number of
Gaussian sparks (m) and control parameters for the minimum
and maximum sparks per firework (a and b), for the maximum
amplitude (A), and for the boundaries or range of exploration
for each variable characterizing the problem at hand. With
those parameters and the foretold changes, EFWA has been
proven to outperform considerably the original FWA in terms
of runtime. Our proposed version of the algorithm aims at
attaining a steeper convergence curve, which finds its rationale
in problems defined by costly fitness functions (as in e.g.
computational simulation). In such cases less iterations are de-
sirable, if not for the optimal solution, at least for a suboptimal
one obtained faster than those with milder convergence.

To achieve this, our proposal is inspired in the effect of wind
in fireworks, displacing them unidirectionally towards regions
indicated by the gradient in the atmospheric pressure. Our
figurative wind blows always in the direction of the best spark
of an iteration, pushing the rest of sparks that will conform the
fireworks of the next generation in that direction. This sacri-
fices exploratory capabilities of the algorithm, but this counter-
effect is compensated by including the worst performing spark
within the fireworks held for the next generation.

Algorithm 1: Proposed EFWA-WID Algorithm
Input : Fitness function f(x), number of fireworks n,

number of regular sparks ns, number of
Gaussian sparks m, minimum and maximum
sparks per firework a and b, maximum
amplitude A, wind speed ws, maxEpochs

Output: Optimal firework x∗
.
= {x∗j}dj=1

1 Initialize X (population) with n random fireworks
{x1, . . . ,xn}; compute their fitness; set i = 0

2 while i < maxEpochs do
3 foreach k in {1, . . . , n} do
4 Compute Ak based on ns as per [4, Eq. (1)]
5 Compute nsk based on ns as per [4, Eq. (2)]
6 foreach j in nsk do
7 Initialize spark sj = xk

8 foreach dimension in sj do
9 Calculate ∆x = A · rand(−1, 1)

10 Apply ∆x to random sparks
11 If needed, map sj to the potential space
12 end
13 end
14 end
15 Add m Gaussian sparks as per [4, Alg. 2]
16 Obtain best performing spark s∗,i and firework x∗,i

17 Obtain worst performing spark s×,i

18
�� ��Calculate wind inertia ci as per (1)

19 Create empty set X∅; set x∅,1 = s∗,i, x∅,2 = s×,i

20 Calculate epoch coefficient ec

21

�� ��Generate non-uniform sparks S. .
= {s.,k}nk=1

22 for k ← 2 to n do
23 for j ← 1 to d do

24

�
�

�
�x∅,kj = s.,k−1j + (cij · ws · ec)

25 end
26

�� ��Calculate fitness for x∅,k

27 end
28 X = X∅, i = i + 1
29 end
30 The output x∗ is given by the best firework in X

As represented in Figure 2, wind inertia is obtained from
the sparks {x∗,ij }ns∗j=1 of the best performing firework x∗,i at
epoch i as

ci
.
=

∑ns∗
j=1 x

∗,i
j f(x∗,ij)∑ns∗

j=1 x
∗,i
j

, (1)

707

where ci is a convergence vector with scalar displacements
for the rest of sparks; the j-th spark x∗,ij is a vector with d
dimensions; and ns∗ is the number of sparks associated to
the best performing firework. Each component of the wind
inertia ci is a scalar displacement computed independently
from each other and obtained at every iteration of EFWA-
WID once all fireworks and sparks have been evaluated. When
selecting the new fireworks for the next iteration, each of the
values of the convergence vector are added to each dimension
of selected spark. In order to modulate the intensity of the
wind inertia effect, a wind strength parameter ws ∈ R+ is
used as a coefficient for each convergence scalar value.

Epoch i

Best
performing
firework

: Firework
: Spark
 :ci(wind module vector)

x*, i

x*, i

x*, i

x*, i
1

2

3

Fig. 2. Schematic representation of the dynamic wind effect at epoch i. Sparks
are pushed towards the fitness-weighted center of mass of sparks generated
by the best performing firework in the iteration.

During its first iterations the algorithm produces fireworks
characterized by worse fitness evaluations. Consequently a
convergence of all sparks to those solutions is less desirable
and should be avoided. To this end, an epoch coefficient
ec ∈ R[0, 1] is further introduced in the algorithm to make
wind push sparks farther towards better regions in the solution
space. To this end the value of ec starts with values close
to 0 in early phases of the heuristic search, and is forced
to increase along iterations. Furthermore, for a faster conver-
gence, a fitness-proportionate firework generation scheme is
used, similar to what is done in the widely known roulette
wheel selection strategy in genetic algorithms. To do so, a
vector of probabilities is computed for all the sparks, assigning
higher probability of remaining in the next generation to those
fireworks with better fitness value. This fitness-proportionate
selection is applied independently of the wind modifications.

Algorithm 1 summarizes the fundamentals of the proposed
EFWA-WID algorithm, with changes highlighted in boxes.
After the initial extraction of fireworks and its sparks, wind
inertia is computed based on the best performing firework.
Then, the population for the next generation is generated, with
the best and the worst sparks of current iteration, and an elite
of random sparks pushed by the action of wind.

III. EVALUATION ON TEST FUNCTIONS

In order to gauge the impact of the proposed changes on
the convergence of the solver, computer experiments with

EFWA and EFWA-WID have been performed on a benchmark
comprising six standard test functions for single-objective
optimization: Ackley, Cigar, Sphere, Rosenbrock, Rastrigin,
and Griewank [18]. To ensure a fair comparison, the pa-
rameters have been configured identically for all the tests
and for both versions of the algorithm. In particular problem
instances of d = 10 dimensions will be considered, with
n = 10 fireworks kept among iterations, a reference value
of ns = 10 regular sparks (the number of sparks nsf for
each firework is varied in runtime as per [4, Eq. (2)]), and
m = 5 Gaussian sparks. Control parameters for minimum and
maximum number of sparks per firework are set to a = 0.04
and b = 0.8, while the maximum amplitude parameter is
A = 80. For each test function, both algorithms perform
maxEpochs = 5000 iterations, which is deliberately set two
or three orders of magnitude lower than previous works [3], [4]
since the inclusion of wind inertia is aimed at speeding up the
convergence in the early stages of the algorithm. Experiments
are run afresh for a total of 20 Monte Carlo experiments, which
will allow shedding light on the statistical behavior of the
algorithms in the benchmark. After a fine-grained grid search
for the best parameter configuration, wind speed parameter
(ws) is set to values 0.1, 0.5 and 0.9, making the process
consist of 4 executions (one without and three with wind)
of 20 Monte Carlo experiments of 5000 iterations; algorithm
solving function is therefore run 400000 times, each of them
including between 50 and 100 fitness evaluations (depending
on the number of sparks generated). Once configured, all tests
have been run on a Linux implementation deployed in an Intel
Xeon machine @ 3.07 GHz, yielding a running time of about
3 hours for the entire benchmark.

TABLE I
AVERAGED FITNESS DIFFERENCE AT DIFFERENT EPOCHS AND AT THE

EPOCH WITH HIGHEST RELATIVE PERFORMANCE DIFFERENCE

Function
Average fitness at different epochs

Max. difference (epoch) Epoch
500 100 50

Ackley 65.5% (984) 58.6% 24.4% 18.8%
Cigar 81.61% (433) 80.7% 72.4% 69.6%

Sphere 82.9% (538) 80.5% 70.3% 66.1%
Rosenbrock 65.4% (23) 40.1% 47.9% 60.6%

Rastrigin 73.2% (4969) 42.2% 25.4% 18.1%
Griewank 77.3% (478) 62.9% 68.1% 61.2%
Average 74.3% 62.98% 51.4% 49.1%

The discussion begins in Figure 3, where convergence plots
are shown with different scales for a better visual performance
assessment. In all plots it can be noted that in early stages of
the search process wind inertia entails a faster convergence
than the baseline EFWA. However, for most functions wind is
more effective when applied with less intensity as driven by
the value of ws. A higher wind speed produces results closer
to those of the original EFWA, except for the Ackley function
for which there are no significant differences among different
wind speeds. Considering the scale of each function, all four
versions reach similar results after the whole run, although this
end will be addressed afterwards.

708

0 200 400 600 800 1000
0.0

0.5

1.0

1.5

2.0

2.5
F

it
ne

ss
Ackley

0 100 200 300 400 500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

1e6 Cigar

0 50 100 150 200 250 300 350 400
0.0

0.5

1.0

1.5

2.0

2.5

3.0
Sphere

0 50 100 150

Iterations

0

200

400

600

800

1000

1200

F
it

ne
ss

Rosenbrock

0 1000 2000 3000 4000 5000

Iterations

0

20

40

60

80

100

120

140 Rastrigin

0 100 200 300 400 500

Iterations

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
Griewank

EFWA
EFWA-WID ws=0.1
EFWA-WID ws=0.5
EFWA-WID ws=0.9

Fig. 3. Convergence of the average fitness value along iterations for the EFWA and EFWA-WID heuristics during the initial iterations where differences were
found to be higher. In all cases the introduction of wind inertia accelerates the convergence of the algorithm without degrading – with statistical significance,
see Table II – the finally optimized value of the objective.

In light of the performance improvement observed in these
plots we next inspect the evolution of the relative difference
between results obtained with each version of the algorithm.
In this regard Table I collects the relative performance increase
between EFWA and EFWA-WID with ws = 0.1 at different
epochs of the search process, including the generation that
scored the highest relative performance increase. At this
point of maximum discrepancy an average of 74.3% relative
improvement is found for EFWA-WID over EFWA when
averaged over all test functions, although the epoch at which
such a performance improvement can be expected varies
significantly among test functions. Also remarkable is the fact
that with wind inertia, four of the functions achieve a relative
improvement higher than 60% by epoch 50, a relevant aspect
when the target is to speed up the algorithm due to e.g. a
computationally heavy fitness function.

Figure 4 depicts the evolution of the performance gain of
EFWA-WID (with ws = 0.1) over EFWA through epochs
for all test functions. While EFWA-WID features a constant
performance gain along iterations for the Rastrigin function,
in the rest of test functions the gain is positive during the
first 1000 epochs and degrades thereafter. As a result of
smaller scales, little changes produce acuter increments (or
decrements) in the last epochs.

In order to assess the statistical significance of these dif-
ferences among versions of the algorithm, Wilcoxon rank-

0 1000 2000 3000 4000 5000
Epoch

-400

-300

-200

-100

0

100

M
ed

ia
n

ga
in

of
ea

ch
fu

nc
ti

on

Ackley
Cigar
Sphere
Rosenbrock
Rastrigin
Griewank

0 1000 2000 3000 4000 5000

Epoch

−350

−300

−250

−200

−150

−100

−50

0

50

100

A
ve

ra
ge

ga
in

al
lf

un
ct

io
ns

Average 6 functions

Fig. 4. Evolution curves of the performance gain between EFWA and EFWA-
ID with ws = 0.1. The inner plot depicts median and interquartile range
computed over the aforementioned curves.

sum tests have been performed over samples of 20 individual
fitness values at different epochs to assess whether the medians
of their populations differ without assuming that such values

709

are normally distributed. Table II presents p-values obtained
from these tests, from which it can be concluded that the per-
formance gaps are always statistically relevant in the epochs
where such a gap scores higher.

TABLE II
WILCOXON P-VALUE COMPUTED BETWEEN RESULT SETS OF EFWA AND

EFWA-WID WITH ws ∈ {0.1, 0.5, 0.9}

Function Wilcoxon p-value at epoch 5000
ws = 0.1 ws = 0.5 ws = 0.9

Ackley 0.29 0.08 0.17
Cigar < 10−3 0.005 < 10−3

Sphere < 10−3 < 10−3 < 10−3

Rosenbrock 0.29 0.62 0.70
Rastrigin < 10−3 < 10−3 < 10−3

Griewank < 10−3 < 10−3 < 10−3

Function @ epoch Wilcoxon p-value at epoch with max. difference
ws = 0.1 ws = 0.5 ws = 0.9

Ackley @ 632 < 10−3 < 10−3 < 10−3

Cigar @ 31 < 10−3 < 10−3 < 10−3

Sphere @ 73 < 10−3 < 10−3 < 10−3

Rosenbrock @ 24 < 10−3 0.0168 < 10−3

Rastrigin @ 826 < 10−3 < 10−3 < 10−3

Griewank @ 84 < 10−3 < 10−3 < 10−3

IV. EVALUATION ON REAL DATA: TRAFFIC FORECASTING

Forecasting traffic conditions is a relevant functionality
of Intelligent Transport Systems (ITS), as it provides de-
cision makers with essential information of utmost utility
for traffic regulation and planning. Predicting variables like
traffic volume, road occupancy, level of service or average
speed has been addressed with diverse techniques since the
early 80s, from time-series analysis to non-parametric and
machine learning methods such as Artificial Neural Networks
(ANN), Support Vector Machines (SVM), Bayesian Networks
or Fuzzy Logic models [19]. Traffic-related data have become
increasingly available around the world along with the advent
and proliferation of open data initiatives. This has ignited the
pace at which advances in data-driven techniques have lead to
more precise predictions over wider geographical areas [20].
Machine learning methods are frequently chosen for these
tasks, often with relative success over naı̈ve (historic average
and last measurement predictions) and time-series models.
However, many of these algorithms operate in a black-box
manner, with their parameter setting often fine-tuned by means
of a trial-and-error procedure.

Evolutionary algorithms are a powerful tool to automate
the tuning of traffic forecasting machine learning methods
operating as a wrapping algorithm driven by the performance
of the wrapped predictive model. This approach has been ex-
plored in the literature mainly with Genetic Algorithms (GA)
[21], [22], yet recently with alternative bio-inspired methods
such as Particle Swarm Optimization (PSO) [23], [24]. In
this paper both EFWA and EFWA-WID will be applied to
obtain the optimal parameter configuration of a random forest
regressor [25], an extensively used supervised learning model
in forecasting applications built upon the iterated randomized
sampling of the dataset and the construction of ensembles

composed by weak tree learners as an effective means to
implement bagging and avoid overfitting.

A. Data Composition and Model Building

Data to build the regression model are obtained from a
public data repository [26] comprising traffic flow records of
a magnetic loop sensor placed in a center area of Madrid
(Spain). The location of the sensor under study has been
selected according to a completeness criterion, as none of the
loops deployed in this city has fully complete and valid data.
The selected loop is one of the devices with most complete
data in the repository, with ca. 30000 valid flow readings for
2015. With these data and their timestamps datasets are built
based on three specifications: 1) step, i.e. the time between
two readings (in this case 15 minutes); 2) depth or window
size, namely, the time span of past observations that are used
in each instance; and 3) prediction horizon, i.e. the number
of steps into the future for which the prediction is made. At
the time of the experiments, only three months of data were
available for 2016, which have been used for model testing.
This being so, the training and validation dataset covers the
first three months of 2015, as depicted in Figure 5. Using
the same time frame for training (2015) and testing (2016)
minimizes potential byproducts in the predictive scores due to
the existence of seasonalities.

o0 o1 o2 o3 o

x0,0 x0,1 x0,M y0

y1

y2

yN

...

x1,0 x1,1 x1,M
...

x2,0 x2,1 x2,M
...

xN,0 xN,1 xN,M
...

... ...

4
oNoM oM+1

oM+h

depth M

horizon h

Raw Data (N observations)

DATASET

Fig. 5. Dataset building process.

Given a timestamp flow readings form samples of a dataset
with M features (corresponding to the window size), which
represent the M observations prior to the timestamp. The yth

slot after the timestamp defines the target variable. Forecast
horizon is set to 4 steps (i.e. 1 hour into the future), which
aligns with other short-term traffic prediction horizons found
in the literature [19], [20]. Initially, predictions are based
on observations from the previous 2 hours, so the window
size parameter has a default value of M = 8. This initial
window size is an arbitrary one, as optimality of this value
depends deeply on the characteristics of the sensor location.
Furthermore, despite the low value of M selected as the

710

window size it should be noted that our goal is to show that
even in a supervised learning problem with minor needs for
feature selection the selection of one heuristic or another as
a configuration wrapper does make a difference in terms of
predictive accuracy. Thus, tailoring window size is one of the
aims of EFWA and EFWA-WID optimization in this research.
Many other evolutionary techniques have been adopted earlier
with this purpose [27], but to the best of authors’ knowledge,
none of them deals with fireworks algorithm nor with im-
proved variants of this solver as the one proposed in this work.

Random Forest
Regressor

x10

DATASET
BUILDING

DEPTH RANDOM FOREST PARAMETERS

Shuffled Split

ns+m Sparks

FWA Parameters

Generate
Population of

Fireworks

EFWA Iteration

R2 ns+m
Fitness Evaluations

ns+m Solution Vectors

Evaluate and select Fireworks
for next generation

Fig. 6. Integration of dataset building and regressor in the firework wrapper.

Both EFWA and EFWA-WID algorithms are used as a
wrapper that seeks 4-dimensional solutions. The first dimen-
sion is the optimal window size of the dataset, whereas the
remaining three dimensions represent configuration parameters
of the Random Forest Regressor model: number of estimators,
i.e. the amount of trees in the forest; the maximum depth of
trees; and the maximum amount of leaf nodes. Each time a
solution (spark or firework) obtained in EFWA or EFWA-WID
is evaluated to obtain its fitness, a new dataset is generated due
to the fact that a variation of window size parameter unchains
different dimensions for the training and test instances. To
obtain the output of the random forest regressor, the dataset
is randomly shuffled and 10-fold cross-validated, executing
the algorithm 10 times and obtaining 10 R2 metrics, which
averaged give rise to the fitness of the model. The wrapping
mechanism is schematically depicted in Figure 6.

B. Results and Discussion
Each evaluation takes between 30 seconds and 2 minutes in

an Intel Xeon processor, depending on the size of the dataset

and the random forest parameters. As foretold in previous sec-
tion, one epoch of FWA can easily reach 100 fitness function
evaluations, rendering optimization a highly time demanding
problem. Thus, in order to test the performance of both EFWA
and EFWA-WID we have configured the algorithms to execute
a total of 40 epochs, a substantially lower amount of iterations
than usual, expecting that the improvements proposed in this
paper allow an earlier convergence. Our enhanced FWA-WID
has shown that with some datasets, a good fitness solution
can be obtained in less than 100 epochs. Even after reducing
significantly the number of algorithm generations, running 10
Monte Carlo experiments with traffic data, a dynamic dataset
building (due to the consideration of the time window as an
optimization variable) and a random forest predictive with 10-
fold cross-validation has taken more than 20 days on two
dedicated machines (one for each algorithm).

The rest of FWA parameters are set to the values used
with test functions: n = 10, ns = 10, m = 5, a = 0.04,
b = 0.8, A = 80, and ws = 0.1 in EFWA-WID version, as it
is the best performing of the ones tested before. In addition,
all variables considered for the traffic prediction problem are
discrete, which requires an adaptation of FWA as it usually
operates in a continuous space. Random generation of values
for solution vectors is made with integer random generators,
whereas real values resulting displacements in the solution
space (e.g. wind) are rounded to its nearest integer value. This
leads to a more coarse-grained set of solutions, and results are
more staggered through epochs.

0 5 10 15 20 25 30 35 40

Iterations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

F
it

ne
ss

Traffic Forecast R2

EFWA
EFWA-WID ws=0.1
Default Random Forest

Fig. 7. Average R2 performance (bold lines with shaded region bounded by
the standard deviation of results over 10 Monte Carlo experiments) of EFWA,
EFWA-WID and a non-optimized default regression model over 40 iterations.

Figure 7 shows the evolution of the R2 score with both
versions of the algorithm versus that obtained with an off-
the-shelf configuration for the model (10 trees, no maximum
depth, no maximum leaf nodes) and a 4-step window size.
Both EFWA and EFWA-WID outperform easily the random
forest model configured with default parameter values starting
as early as in the second iteration. A significant 18% increase
is observable for EFWA (from an average R2 = 0.68 to

711

R2 = 0.83), while EFWA-WID starts at a lower initial
fitness, converging fast to obtain superior results from epoch
2 onwards. After 30 epochs, both algorithms stop to converge
to their final score results: a R2 coefficient of 0.845 for
EFWA-WID and 0.83 for EFWA. Although a deeper test could
eventually render better results, these performances represent
good estimators of one-hour-ahead traffic. However, the wind
powered version of the algorithm improvement is not as acute
as for the test functions.

The rationale for this performance gap degradation might
reside in the discretization of the solution space: within the
exploration range of defined fireworks, a vocabulary of less
than 100 possible values are defined for each dimension of the
solution vector. This low granularity and the operators of the
heuristic solver makes it specially critical to properly fine-tune
the parameters of the optimization algorithm, and increases the
chance to get stuck in local optima if this model tuning is not
performed. A grid search of the optimum parameters with the
same boundaries would have taken ca. 1004 evaluations of the
R2 score for each algorithm, by any means a higher amount
than the number of evaluations done in the above performance
plots. Anyhow, results obtained in first generations outline
good performance of FWA for this practical application, al-
though a good definition of the algorithm execution parameters
(more fireworks, less iterations) might be a required a priori
condition for every simulated solver.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a modification of the
enhanced fireworks algorithm EFWA inspired in wind inertia
dynamics, which has been tested, along with its original
counterpart, over six optimization test functions, obtaining for
all cases an earlier convergence to optimal solution. Being
FWA a relatively young algorithm for which examples of real
applications are scarce, a second contribution of this work
has been to test its enhanced and wind inertia versions on a
traffic flow prediction problem, jointly obtaining the optimal
regression parameters and dataset configuration. Retrieving the
fitness evaluation of this kind of problem is computationally
expensive, for which each epoch of firework algorithms, with
several evaluations involved, can take a considerable amount
of time. This requires adaptations in the algorithm for this
class of high computation problems, and any improvement for
an earlier convergence like the wind inertia proposed in this
paper, might be of utmost utility. In practice, we have observed
a huge computation time demand and a very early convergence
to a near optimal solution with both algorithms, obtaining a
slight performance difference between their final results.

Other FWA research initiatives point in the direction of
parallel computing, which combined with early convergence
strategies can render the algorithm even more effective. By un-
dertaking this research line a conveniently adapted FWA might
also become a good choice for optimization of problems with
high computational demands. Indeed this postulated hypoth-
esis will steer future research efforts towards implementing
this algorithm in Big Data architectures, jointly leveraging the

availability of computation cores and efficient programming
functionalities for large datasets for a proper scalability of this
search heuristic.

ACKNOWLEDGEMENTS

This research work has been partially funded by the Sev-
enth Framework Programme (FP7/2007-2013) of the Euro-
pean Commission under Grant Agreement 608885, and by
the Basque Government under the ELKARTEK programme
(BID3ABI project).

REFERENCES

[1] I. Fister Jr, X.-S. Yang, I. Fister, J. Brest, and D. Fister, “A brief review
of nature-inspired algorithms for optimization,” Elektrotehniški Vestnik,
2013.

[2] J. Vesterstrom and R. Thomsen, “A comparative study of differential
evolution, particle swarm optimization, and evolutionary algorithms on
numerical benchmark problems,” in Evolutionary Computation, 2004.
CEC2004. Congress on, vol. 2. IEEE, 2004, pp. 1980–1987.

[3] Y. Tan and Y. Zhu, “Fireworks algorithm for optimization,” in Interna-
tional Conference in Swarm Intelligence. Springer, 2010, pp. 355–364.

[4] S. Zheng, A. Janecek, and Y. Tan, “Enhanced fireworks algorithm,” in
2013 IEEE Congress on Evolutionary Computation. IEEE, 2013, pp.
2069–2077.

[5] Y. Pei, S. Zheng, Y. Tan, and H. Takagi, “An empirical study on influence
of approximation approaches on enhancing fireworks algorithm,” in
2012 IEEE International Conference on Systems, Man, and Cybernetics
(SMC). IEEE, 2012, pp. 1322–1327.

[6] K. Ding, S. Zheng, and Y. Tan, “A gpu-based parallel fireworks algorithm
for optimization,” in Proceedings of the 15th annual conference on
Genetic and evolutionary computation. ACM, 2013, pp. 9–16.

[7] Y. Tan, “Implementation of fireworks algorithm based on gpu,” in
Fireworks Algorithm. Springer, 2015, pp. 227–243.

[8] J. Li, S. Zheng, and Y. Tan, “Adaptive fireworks algorithm,” in 2014
IEEE Congress on Evolutionary Computation (CEC). IEEE, 2014, pp.
3214–3221.

[9] Y. Tan, “Cooperative fireworks algorithm,” in Fireworks Algorithm.
Springer, 2015, pp. 133–149.

[10] J. Liu, S. Zheng, and Y. Tan, “The improvement on controlling
exploration and exploitation of firework algorithm,” in International
Conference in Swarm Intelligence. Springer, 2013, pp. 11–23.

[11] A. Janecek and Y. Tan, “Iterative improvement of the multiplicative
update nmf algorithm using nature-inspired optimization,” in Natural
Computation (ICNC), 2011 Seventh International Conference on, vol. 3.
IEEE, 2011, pp. 1668–1672.

[12] H. Gao and M. Diao, “Cultural firework algorithm and its application for
digital filters design,” International Journal of Modelling, Identification
and Control, vol. 14, no. 4, pp. 324–331, 2011.

[13] L. Bing, Y. Ning, and D. YeHong, “Lav path planning by enhanced
fireworks algorithm on prior knowledge,” Applied Mathematics and
Nonlinear Sciences, vol. 1, no. 1, pp. 63–73, 2016.

[14] A. M. Imran and M. Kowsalya, “A new power system reconfiguration
scheme for power loss minimization and voltage profile enhancement
using fireworks algorithm,” International Journal of Electrical Power &
Energy Systems, vol. 62, pp. 312–322, 2014.

[15] R. Rajaram, K. Palanisamy, S. Ramasamy, and P. Ramanathan, “Selec-
tive harmonic elimination in pwm inverter using fire fly and fire works
algorithm,” International Journal of Innovative Research in Advanced
Engineering (IJIRAE), vol. 1, pp. 55–62, 2014.

[16] W. He, G. Mi, and Y. Tan, “Parameter optimization of local-
concentration model for spam detection by using fireworks algorithm,”
in International Conference in Swarm Intelligence. Springer, 2013, pp.
439–450.

[17] T. Bäck and H.-P. Schwefel, “An overview of evolutionary algorithms
for parameter optimization,” Evolutionary computation, vol. 1, no. 1,
pp. 1–23, 1993.

[18] T. Bäck, Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford
university press, 1996.

712

[19] C. Van Hinsbergen, J. Van Lint, and F. Sanders, “Short term traffic
prediction models,” in Proceedings of the 14th World Congress on
Itelligent Transport Systems (ITS), 2007.

[20] E. I. Vlahogianni, M. G. Karlaftis, and J. C. Golias, “Short-term traffic
forecasting: Where we are and where were going,” Transportation
Research Part C: Emerging Technologies, vol. 43, pp. 3–19, 2014.

[21] ——, “Optimized and meta-optimized neural networks for short-term
traffic flow prediction: a genetic approach,” Transportation Research
Part C: Emerging Technologies, vol. 13, no. 3, pp. 211–234, 2005.

[22] P. Lopez-Garcia, E. Onieva, E. Osaba, A. D. Masegosa, and A. Perallos,
“A hybrid method for short-term traffic congestion forecasting using
genetic algorithms and cross entropy,” IEEE Transactions on Intelligent
Transportation Systems, vol. 17, no. 2, pp. 557–569, 2016.

[23] A. Nagare and S. Bhatia, “Traffic flow control using neural network,”
International Journal of Applied Information Systems, vol. 1, no. 2, pp.
50–52, 2012.

[24] S.-y. Liu, D.-w. Li, Y.-g. Xi, and Q.-f. Tang, “A short-term traffic flow
forecasting method and its applications,” Journal of Shanghai Jiaotong
University (Science), vol. 20, pp. 156–163, 2015.

[25] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[26] Open data portal of the madrid city council. [Online]. Available:
http://datos.madrid.es/portal/site/egob

[27] E. I. Vlahogianni, M. G. Karlaftis, and J. C. Golias, “Spatio-temporal
short-term urban traffic volume forecasting using genetically optimized
modular networks,” Computer-Aided Civil and Infrastructure Engineer-
ing, vol. 22, no. 5, pp. 317–325, 2007.

713

