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Abstract. This paper introduces a new KgT'pic-Matlab toolbox to gen-
erate I4TEX-embedded high-quality graphical artwork about the main
algorithms for Bézier curves and related topics. The package has been
implemented by the authors as a supporting middleware tool to generate
educational materials for a computer-aided geometric design (CAGD)
course at an advanced level (typically a Master/PhD course; even a
senior course in some engineering degrees). Its primary goal is to instill
geometric intuition in our students and help them develop critical think-
ing based on geometric reasoning for problem solving. We also aim at
providing the instructors of such courses with a computer library to
produce high-quality graphics for educational materials with a seamless
integration into KXTEX. In this regard, all graphical objects are encoded as
plain I¥TEX-readable source code that yields nice pictures after standard
ETEX compilation. The application of this package to generate educa-
tional materials is discussed through six illustrative examples of inter-
esting properties of the Bézier curves. They show that our package is
very easy to use, supports many different graphical options, and fosters
students’ creative geometric thinking with very little effort.

Keywords: Bézier curve + De Casteljau’s algorithm - Educational
materials -+ Graphical artwork - Matlab toolbox

1 Introduction

During the last few years, the authors have been deeply involved in the devel-
opment of high-quality educational materials for teaching and learning at var-
ious University levels. Among them, a course about CAGD (the acronym for
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Computer-Aided Geometric Design) is currently taught in the Master of Mathe-
matics and Computer Science of the University of Cantabria. Similar courses are
also delivered in many other Master and PhD programs, even in advanced senior
year of some engineering degrees (e.g., mechanical engineering, aerospace engi-
neering, ship building engineering). Although it also explores some remarkable
applications in many fields (such as computer-aided design and manufacturing -
CAD/CAM, and geometric modeling and processing for medical imaging in com-
puter tomography (CT) and magnetic resonance imaging (MRI), to mention just
two of them), the course is mainly focused on the mathematical and geometrical
aspects of curves and surfaces and their properties.

In our experience, the biggest challenge of this course is how to instill a
geometric intuition about the CAGD algorithms [1] in our students so that they
can properly apply geometric reasoning to problem solving. Very often, we find
that our students do solve problems by following an strictly algebraic approach:
they focus exclusively on the equations and perform algebraic manipulations
on them to get a proper solution to a given problem. However, they fail to
provide a geometric interpretation to this process and typically do not related
the obtained solution to any particular geometric configuration or whatever.
This is a critical indication that they are operating on a purely algebraic basis,
without any mental relationship with the real geometry of the problem. Clearly,
there is a need for a less mechanical, “automatic-pilot” approach for this kind
of courses.

In addition to other issues, part of the problem is related to the classroom
materials our students typically use. Many textbooks and other materials rely
on equations and algebraic manipulations more often than advisable, and usu-
ally skip the geometric interpretation. This approach, albeit undesirable, can
somehow be justified: producing good graphical materials is cumbersome and
time-consuming, and requires some expertise about computer tools for graphical
editing, which are also usually expensive and difficult to use. In this context, the
geometric flavor of our course poses a particularly challenging question:

How to provide our students with an affordable set of classroom materials with
high-quality graphical artwork?
In our opinion, such materials must fulfill the following conditions:

— they must have a strong focus on geometrical intuition: in this regard, they
should allow our students to grasp the subtle details of the most common
algorithms in CAGD in a geometrical fashion rather than the (most standard
but less effective) equation-based approach.

— they must be accurate: accuracy is essential in many CAGD geometric algo-
rithms; otherwise, they do not work properly and students will find troubles
in understanding them at full extent.

— they must have a high visual quality: classroom materials must include all
elements required to fully understand the algorithms. Generally, they include
axis labels and ticks, text annotations, legends, colors, varying types of lines
(solid, dashed, dotted) with varying sizes for line thickness, and many other
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graphical and text elements playing the role of visual clues for better under-
standing.

— they must be affordable to produce: this means that materials must be not only
meaningful in terms of contents but also somehow optimized regarding the
time and effort required to produce them. Instructors time is limited, so issues
such as a long learning curve for the programs or applications used to gen-
erate the classroom materials or a large production time should be avoided.
Typically, such programs should provide a number of valuable features on a
user-friendly ready-to-use approach.

— they must be easy to deploy: this implies that the storage size of the graph-
ical elements must be kept to the minimum. Typically, high-resolution art-
work demands large file sizes, thus preventing the materials to be smoothly
deployed over the web or attached to email messages. Vector graphics can be
the solution for this problem, but most vector-graphics programs are intended
for professional use in printing and publishing business; as a result, they tend
to be quite expensive and difficult to use. A good solution should ideally
overcome these drawbacks.

— they must be BTEX-compatible: BXTEX is a standard de facto tool for high-
quality scientific publishing and editing. Therefore, it is advisable for the
tools used to generate educational materials to have a seamless integration
into WTEX for optimal quality and performance.

Unfortunately, it is not easy to find computer tools providing all the features
mentioned above. A pioneering effort in this regard was launched a few years
ago under the KET'pic project (see Sect. 2 for details). In this paper, we propose
to tackle the issue by using a KgT'pic toolbox for Bézier curves developed by the
authors on the popular scientific computer program Matlab [8].

The structure of this paper is as follows: in Sect.2 we describe the main
features of our KgTpic-Matlab toolbox for Bézier curves. The application of
this toolbox to generate educational materials is discussed in Sect. 3 through six
illustrative examples of interesting properties of the Bézier curves. This section
also illustrates the potential of our toolbox as an educational supporting tool
for scientific visualization and critical geometric thinking. The paper closes with
the main conclusions and some ideas for future work in the field.

2 KgTpic-Matlab Toolbox for Bézier Curve Algorithms

This section describes the main features of our KgI'pic toolbox on Matlab. For
the sake of completeness, we also present briefly KEI'pic to those readers not
familiar with this interesting software.

2.1 About KgTpic

KgTpic (an acronym for Kisarazu Educational Tpic) is a middleware software
released in 2006 for high-quality mathematical drawing in WTEX [9]. The soft-
ware, conceived at the “Kisarazu National College of Technology” for educational
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purposes, has roots in Tpic system, a terminal driver that supports the INTEX
picture environment. Originally developed for the computer algebra system
Maple in April 2006, it was designed to provide KTEX end-users with exten-
sive support for visualization and printing of high-quality graphical objects. As
such, it is an ideal package to generate printed materials (books, slides, reports,
etc.) with graphical content for educational purposes and professional printing.
See [3-5,7,10,11] for several examples and additional information about this
software.

Briefly speaking, KgTpic is a library of macros and scripts to generate
ETEX-readable source code for high-quality scientific artwork. Such macros can
be implemented on different computer algebra systems and other scientific pro-
grams, thus yielding different versions of the package (used as plug-ins or add-ons).
Depending on the scientific system they are based on, these plug-ins might typi-
cally run internally in a quite different way, but the process is usually transparent
to end-users, thus minimizing the time required to get accustomed to the program.
Once KgT'pic is loaded, users are simply requested to execute commands in the
system of their choice to plot graphical data. Specialized embedded KgTpic com-
mands generate additional IATEX source code and files, which are subsequently
compiled in XTEX in the usual manner. As a result, accurate graphical figures are
readily obtained from small plain text files, an optimal solution for efficient data
storage and file transfer. A first KfT'pic version for standard mathematical curves
in Matlab is described in [2], then extended in [6].

2.2 KgTpic-Matlab Toolbox Pipeline

To use the KgT'pic-Matlab toolbox, we have to proceed according to the following
pipeline. The process starts up by opening Matlab for a new session and loading
the KETpic toolbox through the following command:

>> Ketinit

Generation of figures in BTEX from the original pictures created in Matlab
requires to carry out some steps. As mentioned above, any graphical object
is encoded as a plain text file to be compiled in ITEX. The following script
executes this process:

1 >> Openfile(’ filename.tex’) ;
Beginpicture(’’);

graphical functions here (see Sect. 3 for details)
Endpicture (#picture) ;
Closefile();

T W N

This script stores all data associated with the graphical object into the file
filename.tex for subsequent use in IXTEX. Line 1 of this script opens such a file
in the folder indicated in the namepath. Second line defines the units of length
for the final picture (with default value 1cm). The command Beginpicture
is also used to create the \begin{picture}...\end{picture} environment in
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ETEX. The graphical functions in line 3 convert the data points into a sequence
of IMTEX-readable commands to be inserted into the picture environment cre-
ated in line 2 for standard compilation. The command Endpicture() in line 4
performs two different actions: on one hand, it closes the picture environment
in the TEX file. On the other hand, it allows us to set up the display of cartesian
axes, according to its value: 1 (empty value is also feasible) if axes are to be
displayed and O otherwise. Finally, Line 5 closes the file.

The final output of this process is the file filename.tez in our workspace folder.
It contains a description of the graphical objects created in Matlab in terms of
ETEX and Tpic commands. The file can be embedded into a standard TEX file
for compilation. The following code will yield a printout of the graphical objects
within the file:

\documentclass[11pt]{article}

\newlength{\Width}
\newlength{\Height}
\newlength{\Depth}

\begin{document}
\input{ filename.tezx }
\end{document}

It is the typical M TEX code with a documentclass declaration and the
document environment. The only difference are three lines in the preamble
(between the start of the file and the \begin{document} command) that specify
new directives for the length units, and the \input command in the main body
of source code that causes the indicated file to be read and processed, exactly as
if its contents had been inserted in the current file at that point. Compilation of
the code above generates the graphical objects described in filename.tex in the
form of a DVI file.

3 Illustrative Examples

In this section, some illustrative examples about the application of the
KgTpic-Matlab toolbox described in previous section to different algorithms for
Bézier curves are described. In what it follows, we assume that the reader is
familiar with the main concepts about free-form parametric curves [1]. A free-
form parametric Bézier curve C(t) of degree n is defined as:

C(t) =) _P;B}(1) (1)
§=0
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where P; are vector coefficients (usually referred to as the control points), B} (t)
are the Bernstein polynomials of index j and degree n, given by:

Bio = (1) ¢ o )

and t is the curve parameter, defined on the finite interval [0, 1]. Note that in
this paper vectors are denoted in bold. By convention, 0! = 1.

3.1 Example 1: De Casteljau’s Algorithm for Evaluation

The De Casteljau’s algorithm is a recursive algorithm developed by French math-
ematician Paul de Casteljau in 1959 (while working for automotive company
Citroén) to evaluate a Bézier curve at a point given by the parameter value
t = tp. Such a point C(¢p) can be obtained by the recurrence relation:

P =p, i=0,...,n
(k) (k=1) (k=1), ¥
Pj :Pj (1—t0)+PJ—+1 to ]:O,...,’n—k;k’:O,...,n
In this case, C(tp) is evaluated in n steps of this algorithm as: C(tg) = Pé”).

A very exciting feature about the De Casteljau’s algorithm is the fact that
it has a straightforward and appealing geometric interpretation. The process is
shown graphically in Fig. 1. We start with an initial Bézier curve with 8 control
points, displayed in Fig. 1 (top-left). As the reader can see, the control points are
connected by a control polygon comprised of linear segments between consecutive
control points. Then, we subdivide each line segment of the control polygon
according to the ratio ¢g : (1 — o) and connect the resulting points to get a new
control polygon with one fewer control point (and hence, one fewer segment)
for each recursion step, until eventually reaching a single point. The different
steps of this process are shown in Fig. 1: the figure in top-right corresponds to
the first step, where seven control points (displayed in red) are obtained. Next
step is shown in the second row for six control points (displayed in green on the
left) and five control points (in blue on the right). The process ends after seven
steps, with a final point corresponding to the value ¢t = 0.4 (displayed in brown
in Fig. 1 (bottom-right)).

It is important to remark that the pictures in Fig.1 (and actually all pic-
tures in this paper) do not come from files in any graphical format, such as EPS,
JPG, GIF, or the like. Instead, they are a simple collection of I¥TEX-readable
instructions from a plain text file, generated as described in previous section.
As remarked above, this has the clear advantage of a very small file size (about
only a few KB). In addition, no graphical editor is needed to produce or manip-
ulate our artwork; just a few simple functions from our KgTpic-Matlab toolbox
are required. In this particular example, the function DeCasteljauAlgorithm is
invoked. Its syntax is as follows:

DeCasteljaullgorithm(cp, to, th, iter, lgopts)
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Fig.1. (left-right, top-bottom) Graphical representation obtained with our
KrTpic-Matlab toolbox of all steps of the De Casteljau’s algorithm for evaluation of a
Bézier curve at the parametric value tg = 0.4. (Color figure online)

where c¢p indicates the list of control points for the Bézier curve, ¢ is the para-
meter value at which the curve is evaluated, th means the line thickness for
the curve, iter means the number of steps for the De Castellau’s algorithm (by
default, this number is the degree of the curve, but it can be changed to any
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lower value), and lgopts is a list of graphical options available to improve our
artwork. These options include the point size and color for the control points,
line width, line type (e.g., solid, dashed, dotted, etc.), and color for the control
polygon, type of symbols used for the control points (e.g., diamond, star, bullet,
triangle, filled circle, empty circle, etc. as well as any TEX symbol), and other
related options, such as the font size and font family for legends and labels,
options for axis labels and ticks, options for grids, bounding boxes, and many
others. For instance, the new control points obtained at each step of the De
Casteljau’s algorithm in Fig. 1 are displayed as filled circles of a different color
for each step. Also, the iteration number is displayed in white within the filled
circle for a given font size. All these features can be modified at will by using
the list of options of the DeCasteljauAlgorithm function. This remarkable set
of available options allows us to increase notably the expressive power of the
resulting figures. Our students can now grasp all the details about how does this
algorithm actually work, and what is the meaning of each control point step by
step. As a result, the students’ focus is shifted from the mathematical equations
to the geometric intuition about the algorithm. Furthermore, the process dis-
played in Fig.1 can be executed in real time to generate an animation, which
can be displayed on a web browser and/or exported to a PDF file, for instance.

AN

Fig. 2. Two examples of Bézier curves generated with our KgT'pic-Matlab toolbox.
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P~

Py

Fig. 3. Application of the De Casteljau’s algorithm for curve subdivision: the original
Bézier curve with 8 control points in Fig. 1 (top-left) is subdivided at the parametric
value ts = 0.5. As a result, the curve is subdivided into two new Bézier curves with 8
control points each (displayed in red and blue color, respectively). (Color figure online)

Figure2 shows two examples of artistic shapes generated with our
KgTpic-Matlab toolbox and corresponding to the silhouette of a crane and a
giraffe, respectively. In this case, the function BezierCurve (cp, lgopts) is used.

3.2 Example 2: De Casteljau’s Algorithm for Subdivision

The De Casteljau’s algorithm can also be applied without any modification to
curve subdivision, i.e., to split a Bézier curve of degree n into two Bézier curves
of the same degree n joined together at an arbitrary parameter value t = t5. To
this aim, it is enough to apply the recursive process described in Sect. 3.1 and
then consider the two Bézier curves of degree n and control points:

{pg°>, IO ,Pg”)} and {Pg’”, P L P§?>} (4)

respectively.

The geometric interpretation of this process is graphically shown in Fig. 3.
The subdivision process of the original Bézier curve with 8 control points in
Fig. 1 (top-left) at the parametric value t; = 0.5 yields two new Bézier curves
with 8 control points each. The first one, displayed in red in Fig. 3, is obtained
by taking the initial control point of the control polygon for each step of the
De Casteljau’s algorithm, displayed in each picture of Fig.1 (i.e., first control
point Py (top-left), then first control point with label 1 (top-right), then first one
with label 2 (second row-left) and so on). The second curve, displayed in blue,
corresponds to a similar process but taking the last control point at each step
instead. The SubdivideCurve (cp,ts, options) function in our toolbox returns
this graphical output in one step.
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Fig. 4. Modified De Casteljau’s algorithm for degree raising: (top): original Bézier
curve of degree 7; (middle) original (in gray) and new control polygon (in blue) for
degree raising; (bottom) resulting Bézier curve of degree 8. (Color figure online)

3.3 Example 3: Modified Algorithm for Degree Raising

From Egs. (1)—(2), it is evident that the degree of curve C(¢) depends on the
number of control points. In general, increasing the degree makes the curve
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more complex and requires longer computation time, but it also gives the curve
higher flexibility and increases the curve ability to design more complicated
shapes. Because of this reason, it might be very helpful to be able to increase
the degree of a Bézier curve without changing its shape. This process, usually
called degree raising (also degree elevation), can be performed with a procedure
that is not exactly the De Casteljau’s algorithm, but quite similar to it.

Suppose a Bézier curve of degree n with control points {Pg,Py,...,P,}
defined as above. We want to increase the degree of the curve to n + 1 while
still preserving the same shape of the curve. The problem is now how to com-
pute the new control points {Qq, Q1, ..., Qut1}. Since the Bézier curve always
interpolate the end control points, we can take Qo = Py and Q,4+1 = P,. The
remaining control points can be computed as:

J J .
= —P.,_ —-— P, ; =1,... 5
Q] T ]1+( n+1> i o5 J s ) TV ()

The geometric interpretation of this process is shown in Fig. 4. Starting with a
Bézier curve of degree 7 (top), for each segment of the control polygon connecting
the points P;_; and P; we consider the point Q; on that segment that divides it

inaratio [ 1 — J : J . In this particular example, we have n+1 = 8 and
n+1 n+1

obtain the new control polygon in blue in Fig. 4 (middle). Note that the original
curve is now displayed in gray to emphasize visually the new control polygon.
The resulting Bézier curve of degree 8 is shown in Fig.4 (bottom). Note that
this curve and the original one have identical shape. They are obtained by using
the DegreeRaising(cp, options) function in our toolbox.

3.4 Example 4: Variation Diminishing Property

An interesting feature of the Bézier curves is the variation diminishing property,
which in short states that the curve is smoother than its control polygon. Geo-
metrically, this means that if a line is drawn through the curve, the number of
intersections with the curve will be less than or equal to the number of inter-
sections with the control polygon. In our Master course on CAGD, we challenge
our students to put this property in practice by using some educational materi-
als generated with the KETpic-Matlab toolbox described in this paper. Figure 5
shows an illustrative example. Top picture displays a geometric configuration of
a control polygon defined by the sequence of 5 control points in the picture and
the three lines depicted in the figure. Then, we ask the students to:

— draw the control polygon

— determine the maximum number of times that the curve can intersect each
of those lines

— draw the Bézier curve

determine how many times the curve does really intersect each of those lines

— explain the results.
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Fig.5. Example of the variation diminishing property of Bézier curves: (top) initial
configuration of control points and lines; (bottom) graphical solution to the problem.

Then, the students can check their results by using our toolbox to yield the
solution to this problem, shown in bottom picture of Fig.5. We found that
many students were surprised by this graphical result, as they did expect the
curve to replicate more faithfully the shape of the control polygon. Of course,
any other geometric configuration for the control points and lines can readily be
arranged with our toolbox, so even more intriguing situations can be discussed
and analyzed. This shows the potential of our toolbox as a learning tool, as
it encourages the student to think twice about this property and the expected
behavior of the Bézier curve.
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Fig. 6. Graphical representation of the Bernstein polynomials given by Eq. (2).

3.5 Example 5: Basis Functions and Partition of Unity Property

An interesting feature of the basis functions of a Bézier curve is the so-called
partition of unity property, which says that:

Zn:By(t) =1 ; vte[0,1] (6)

J=0

In this example, we show the basis functions in Fig. 6 associated with a Bézier
curve and ask our students to:

— determine the number of control points of the curve
— determine the degree of the curve
— check the partition of unity property for different parametric values.

While the first two questions can easily be answered from the figure, the last
one is more difficult to check. A remarkable feature of our toolbox in this regard
is the fact that all figures generated with it are metric, which means that all
distances are referred to a certain unit length, so the students can actually
measure distances on the figures. For instance, the reader can easily check that
the unit length in the vertical and horizontal axes is exactly the same, as opposed
to many other graphical representations where a golden ratio or other non-unit
value is applied to the axes ratio. In fact, our students were surprised to see the
basis functions displayed with equal sizes in both axes, as all textbooks show
a “more stylized” version. Owing to this feature, the students can check the
partition of unity directly on the figure without any size distortion.
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Fig. 7. Our readers are challenged to solve the problem described in Sect. 3.6 by using
this figure and their geometrical reasoning.

3.6 Example 6: Connecting Bézier Curves with a Given Continuity

A very interesting (and useful) property of the control polygon of a Bézier curve
is that not only the curve does interpolate the first and last control points but
also the end segments of the control polygon determine the tangency of the curve
at such control points. In particular, the tangent vector of the curve at the first
(respectively, last) control point is given by the first (resp., last) segment of the
control polygon. This property is very useful in order to connect several Bézier
curves with a certain order of continuity.

To emphasize this, we give Fig. 7 to our students and ask them to determine
(without using the mathematical equation of the displayed Bézier curve) some
feasible control points for a second Bézier curve of the same degree as the curve
shown in the figure so that:

— they are not connected at any point

they are connected at the leftmost control point with C°-continuity
— they are connected at the rightmost control point with C°-continuity
— they are connected at the leftmost control point with C'-continuity
— they are connected at the rightmost control point with C'-continuity

After reading all paper contents so far, we think that you, our reader, are ready
to solve this problem by using solely your geometrical reasoning, similar to our
students. And hopefully, you will also have the same feeling of satisfaction as
our own students when you realize that you grasped the main concepts about
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Bézier curves with little effort taking advantage of the toolbox described here.
We strongly encourage you to try. Good luck and let’s go!.

4 Conclusions and Future Work

In this paper we introduced a new KgIpic-Matlab toolbox to generate
ETEX-embedded high-quality graphical artwork about the main algorithms for
Bézier curves and related topics. The package was implemented by the authors as
a supporting middleware tool to generate educational materials for a computer-
aided geometric design (CAGD) course at an advanced level. Its primary goal is
to instill geometric intuition in our students and help them develop critical think-
ing based on geometric reasoning for problem solving. We also aim at providing
the instructors of such courses with a computer library to produce high-quality
graphics for educational materials with a seamless integration into IXTEX. In
this regard, all graphical objects are encoded as plain IXTEX-readable source
code that yields nice pictures after standard KTEX compilation. The application
of this package to generate educational materials is discussed through six illus-
trative examples of interesting properties of the Bézier curves. They show that
our package is very easy to use, supports many different graphical options, and
fosters students’ creative geometric thinking with very little effort.

Our KgTpic-Matlab toolbox has already been applied during the last aca-
demic year for two Master courses on CAGD with very encouraging results.
The feedback from our students has been very positive; they praised the strong
geometric orientation of the teaching materials generated with this software, its
ease of use, and its smooth integration into I#TEX. However, a deeper and more
formal analysis is still needed to determine its advantages and limitations at full
extent. This process will require larger groups of students and a more rigorous
statistical analysis based on questionnaires designed with the support of peda-
gogy and education sciences experts. We also plan to extend our package to the
(more difficult) case of Bézier surfaces. A user’s manual and some support mate-
rial for teachers and instructors would also be needed for wider dissemination of
this software and its adoption as a standard tool in CAGD courses worldwide.
All these tasks will be part of our plans for future work in this field.
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