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Abstract

A new Bayesian Poisson relative risk model is proposed for displaying the excess relative risk associated to a unique
exposure as a probability distribution in a closed form. The background risk can be modelled by a unique two levels factor,
e.g. gender or smoking status.
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1 Introduction

The excess relative risk (ERR) represents the excess risk of disease (e.g., leukaemia, brain tumour) per unit of exposure (e.g.,
absorbed dose of ionising radiation). In a linear relative risk model with one exposure, the risk is modelled by eη(1 + βD),
where the term β is the ERR, D represents the absorbed dose and eη is the background risk. Poisson relative risk models
are derived to calculate the ERR in follow-up studies, i.e.

Ci ∼ Pois (PYie
ηi(1 + βDi)) , (1)

where Ci, PYi and Di are the number of disease cases, the number of person-years of follow-up and Di is the mean dose
(weighted by the person-years) for stratum i respectively [1]. The linear predictor for the background risk has the form
ηi = α0 + α1xi, where xi represents a two levels factor, e.g. it is 1 if patient i is smoker, and 0 otherwise.

The model (1) is not the typical log-linear Poisson model [2], it mixes both log-linear and linear terms, so it is a Generalized
Nonlinear Model. The model proposed here is simple, with only one exposure, and one 2-stage fixed effect factor in the
background risk linear predictor.

The Bayesian analysis combines prior information, in form of probability distributions, with the likelihood function of an
assumed model, providing posterior results as probability distributions too. The Bayes’ theorem in its continuous version
establishes

P(Θ|X) =
L(Θ|X)P(Θ)∫
L(Θ|X)P(Θ)dΘ

, (2)

where Θ is the continuous parameter set, X is the observed data set, L(Θ|X) is the likelihood function, P(Θ) is the prior
probability density function of Θ and P(Θ|X) is the posterior probability density of Θ given data X. See Christensen et al.
2011 [3], for further description.

2 The posterior ERR

Following expressions (1) and (2):

Θ = {α0, α1, β},
X = {Ci, PYi, Di}ni=1,

L(Θ|X) =

n∏
i=1

(PYie
α0+α1xi(1 + βDi))

Ci exp(−PYieα0+α1xi(1 + βDi))

Ci!
.

(3)

The value n represents the number of patients in the follow-up.
Assuming α0, α1 and β are independent, the prior probability density remains P(Θ) = P(α0)P(α1)P(β). It is also

assumed that both priors are non informative, meaning that the probability is the same for all the values in the support of
the parameters. This leads to the following improper uniform priors:

α0 ∼ U(−∞,+∞),
α1 ∼ U(−∞,+∞),
β ∼ U(0,+∞).

(4)

1



The Bayesian framework affords the definition of improper prior distributions.
Applying the Bayes’ theorem (2), the posterior of Θ is

P(Θ|X) ∝ L(Θ|X) ∝
n∏
i=1

(PYie
α0+α1xi(1 + βDi))

Ci exp(−PYieα0+α1xi(1 + βDi))

= exp

(
Tα0 − eα0

n∑
i=1

PYie
α1xi(1 + βDi)

)
n∏
i=1

(PYie
α1xi(1 + βDi))

Ci ,

(5)

where T =
∑n
i=1 Ci is the total number of diseases in the follow-up.

The goal here is to get the marginal posterior of the ERR, the posterior distribution of β. First it is calculated the joint
marginal posterior of (α1, β) which it is proportional to the integration of expression (5) over α0, i.e.

P(α1, β|X) ∝
∫ +∞

−∞
P(Θ|X)dα0 =

[
n∏
i=1

(PYie
α1xi(1 + βDi))

Ci

]∫ +∞

−∞
exp

(
Tα− eα

n∑
i=1

PYie
α1xi(1 + βDi)

)
dα0

=

[
n∏
i=1

(PYie
α1xi(1 + βDi))

Ci

]
(T − 1)![

n∑
i=1

PYie
α1xi(1 + βDi)

]T ∝
n∏
i=1

(eα1xi(1 + βDi))
Ci

[
n∑
i=1

PYie
α1xi(1 + βDi)

]T . (6)

Then the marginal posterior of the ERR is proportional to the integration of expression (6) over α0,

P(β|X) ∝
∫ +∞

−∞
P(α1, β|X)dα1 ∝

∫ +∞

−∞

n∏
i=1

(eα1xi(1 + βDi))
Ci

[
n∑
i=1

PYie
α1xi(1 + βDi)

]−T
dα0

=

[
n∏
i=1

(1 + βDi)
Ci

]∫ +∞

−∞
eNα1

 ∑
i|xi=0

PYi(1 + βDi) + eα1

∑
i|xi=1

PYi(1 + βDi)

−T dα0

=

[
n∏
i=1

(1 + βDi)
Ci

]
(N − 1)!

N−1∏
i=1

(T − i)

 ∑
i|xi=0

PYi(1 + βDi)

N−T
 ∑
i|xi=1

PYi(1 + βDi)

N
∝

[
n∏
i=1

(1 + βDi)
Ci

] ∑
i|xi=0

PYi(1 + βDi)

N−T
 ∑
i|xi=1

PYi(1 + βDi)

N
,

(7)
where n0 denotes the number of cases, PY0i the person-years and D0i the absorbed dose for each patient i such that xi = 0.
Analogously for n1, PY1i and D1i for those xi = 1. Consequently,

P(β|X) =

[
n∏
i=1

(1 + βDi)
Ci

] ∑
i|xi=0

PYi(1 + βDi)

N−T

K

 ∑
i|xi=1

PYi(1 + βDi)

N
, (8)

where K is the normalising constant

K =

∫ +∞

0

[
n∏
i=1

(1 + βDi)
Ci

] ∑
i|xi=0

PYi(1 + βDi)

N−T  ∑
i|xi=1

PYi(1 + βDi)

−N dβ, (9)

that is calculated by numerical integration (there is not analytical solution). The probability density (8) has not a recognizable
form, but this is not rare when dealing with Bayesian analysis.

The integrals in Expressions (6) and (7) are calculated by recursive integration by parts.

3 Practical example

Pearce et al. 2012 [4] analysed the risk of leukaemia and brain tumour in young patients who were first examined with CT
in National Health Service centres in England, Wales, or Scotland in a 23 years retrospective cohort study. Table 1 displays
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Table 1: Cases of leukaemia, person-years, mean dose per group and relative risk for the different dose groups.
Dose group (mGy) Cases Person-years Mean dose (mGy) Relative risk

< 5 15 588,450 2.32 1.00
5− 9 17 438,828 7.08 1.44

10− 14 12 213,289 12.34 2.03
15− 19 11 244,844 16.54 1.53
20− 29 4 70,523 24.69 2.02
> 30 15 165,049 51.13 3.18
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Figure 1: Posterior probability density of the ERR (solid line) and its 95% HPD (shaded grey).

the data of the leukaemia dose response in six different dose groups. There were 74 leukaemia diagnosis for 178,604 patients,
and a total of 1,720,984 person-years in this study.

Following Equation (8), for the 2 years exclusion and lag-period person-year table in Pearce et al. 2012 [4], and taking
the attained age greater than 20 as the categorical variable in the baseline rate, the ERR is inferred.

Figure 1 shows the posterior density function of the ERR following expression (8). The modal posterior ERR value is
0.038 and its 95% highest posterior density (HPD) is (0.003, 0.150).

One of the big advantages of the Bayesian framework is that it is possible to get the probability of the studied parameter
for a range of values, for instance in this example there is a 53.15% chance for the ERR being greater than 0.050.

Following the classical procedure (frequentist), the maximum likelihood estimation of the ERR is β̂ = 0.036 and its
95% confidence interval is (0.005, 0.120). Although both the Bayesian and the frequentist methods provide estimation and
uncertainty results, when comparing them it is important to remark that they are not measuring the same thing, the
frequentist one assumes that the parameter is a fixed value and the maximum likelihood estimator is a random variable
whereas the Bayesian assumes the opposite.

4 Conclusion

The Bayesian model presented here for estimating the ERR in radiation epidemiology follow-up studies is simply and easy
to implement. The Bayesian analysis provides an accurate framework for dealing with uncertainties, with the results being
in the form of probability densities.
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One of the main criticism of the Bayesian analysis is the use of prior distributions for the parameters, along with how
the researcher defines them and how they can influence in the results. Here we propose a non-informative prior for both
parameters, so the priors do not influence the final outcome. If desired, it is possible to define informative priors, for instance
a normal for α and a gamma for β, but the model would lose its simplicity and closed form, although it would not be a very
complex one.
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