
TOWARDS HPC-EMBEDDED.
CASE STUDY: KALRAY AND MESSAGE-PASSING ON NOC

PEDRO VALERO-LARA∗, EZHILMATHI KRISHNASAMY† , AND JOHAN JANSSON ‡

Abstract. Today one of the most important challenges in HPC is the development of comput-
ers with a low power consumption. In that sense, recently, new embedded many-core systems have
emerged. One of them is Kalray. Unlike other many-core architectures, Kalray is not a co-processor
(self-hosted). One interesting feature of the Kalray architecture is the Network on Chip (NoC) con-
nection. Habitually, the communication in many-core architectures is carried out via shared memory.
However, in Kalray, the communication among processing elements can also be via Message-Passing
on the NoC. One of the main motivation of this work is to present the main constraints to deal with
the Kalray architecture. In particular, we focused on memory management and communication. We
assess the use of NoC and shared memory on Kalray. Unlike shared memory, the implementation
of Message-Passing on NoC is not transparent from programmer point of view. To facilitate the
understanding of our work, codes are included in the paper. The synchronization among processing
elements and NoC is other of the challenges to deal with in the Karlay processor. Although the syn-
chronization using Message-Passing is more complex and consuming time than using shared memory,
we obtain an overall speedup close to 6 when using Message-Passing on NoC with respect to the
use of shared memory. Additionally, we have measured the power consumption of both approaches.
Despite of being faster, the use of NoC presents a higher power consumption with respect to the
approach that exploits shared memory. This additional consumption in Watts is about a 50% more.
However, the reduction in time by using NoC has an important impact on the overall power con-
sumption as well. In consequence, we obtained a better power consumption using NoC than using
shared memory.

Key words. Karlay, Embedded Architectures, High Performance Computing, Jacobi Method,
OpenMP, Power Measurements.

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction. Advanced strategies for the efficient implementation of com-
putationally intensive numerical methods have a strong interest in industrial and
academic community. In the last decade, we have lived a spectacular growth in the
use of many-core architectures for HPC applications [8]. However, the appearance of
other (low-power consumption) embedded many-core architectures such as Kalray [6]
has created new challenges and opportunities for performance optimization in mul-
tiple applications. In this work, we have explored some of these new opportunities
towards a supercomputing on a chip era.

Kalray integrates its own OS and is not in need of a co-processor as in the case
of other many-core processors [3, 6]. Highly expensive memory transfers from host
main memory to co-processor memory are not necessary in Kalray. Besides, this
architecture offers the possibility to communicate each of the processing elements via
a Network on Chip (NoC) connection composed by links and routers [3, 6]. Kalray has
been previously used for video encoding and Monte Carlo applications [1]. However,
these works lack information of how to implement these applications and what are
the most efficient programming strategies and architectonic features to deal with our
embedded processor. The NoCs have been recently used as a level in-between the
computing cores and shared memory [4, 11, 7]. The NoCs in these systems can be
configurable depending on the particular needs of the applications. However, the NoC

∗Barcelona Supercomputing Center, Spain. (pedro.valero@bsc.es).
†Basque Center for Applied Mathematics (BCAM), Bilbao, Spain (ekrishnasamy@bcamath.org.)
‡Basque Center for Applied Mathematics (BCAM), Bilbao, Spain, and KTH Royal Institute of

Technology, Stockholm, Sweden (jjansson@bcamath.org).

1

2 Pedro Valero-Lara, Ezhilmathi Krishnasamy, Johan Jansson

in Kalray is completely different. In Kalray, there are two different and independent
inter-connectors, one bus which connects each of the processing elements to shared
memory and one NoC which connects the different processing elements (clusters)
among them.

We have chosen as a test case a widely known and extended problem, that is
Jacobi method [10].

The main motivation of this work is twofold. While, on one hand, this work
presents the main challenges to deal with the Kalray architecture. On the other
hand, we present two different approaches to implement the communication among
the different processing elements of our Kalray processor, one based on using shared
memory and other based on using a Network on Chip which works as interconnection
among the set of processing cores. We detail and analyze deeply each of the approaches
presenting theirs advantages and disadvantages. Moreover, we include measurements
for power consumption in both approaches.

This paper is structured as follows. Section 2 briefly introduces the main features
of the architecture at hand, Kalray. Then, we detail the techniques performed for
an efficient implementation of the Jacobi method on Kalray processor in Section 3.
Finally, Section 4 contains a performance analysis of the proposed techniques in terms
of consuming time, speed-up and power consumption. At the end of this work, we
outline some conclusions.

2. Kalray Architecture. Kalray architecture [1] is an embedded many-core
processor. It integrates 288 cores on a single 28 nm CMOS chip with a low power
consumption per operation. We have 256 cores divided into 16 clusters which are
composed by 16+1 cores each. 4 quad-core I/O subsystems (1 core per cluster) are
located at the periphery of the processing array (Figure 3.1-left). They are used as
DDR controller for accessing to up to 64GB of external DDR3-1600. These subsystems
control a 8-lane Gen3 PCI Express for a total peak throughput of 16GB/s full duplex.
The 16 compute clusters and the 4 I/O subsystems are connected by two explicitly
addressed Network on Chip (NoC) with bi-directional links, one for data and the
other for control [1, 2]. NoC traffic does not interfere with the memory buses of the
underlying I/O subsystem or compute cluster. The NoC is implemented following a
2-D torus topology.

Figure 2.1. Kalray MPPA many-core (left) and compute cluster (righ) architecture [1].

The compute cluster (Figure 3.1-right) is the basic processing unit of our architec-

Towards HPC-Embedded. Kalray and Message-Passing on NoC 3

ture [1]. Each cluster contains 16 processing cores (C0,C1,C2,. . . ,C15 in Figure 3.1-
right) and one resource management (Syst. Core in Figure 3.1-right) core, a shared
memory, a direct memory access (DMA) controller, a Debug & System Unit (DSU),
and two routers, one for data (D-NoC) and one for control (C-NoC). The DMA is
responsible to transfer data among shared and the NoC with a total throughput of
3.2GB/s in full duplex. The shared memory compromises 2MB organized in 16 par-
allel banks, and with a bandwidth of 38.4 GB/s. The DSU supports the debug and
diagnosis of the compute cluster.

Each processing or resource management core is a 5-way VLIW processor with two
arithmetic and logic units, a multiply-accumulate & floating point unit, a load/store
unit, and a branch & control unit [1]. It enables up to 2GOPS or 800MFLOPS at
400MHz, which supposes almost 13 GFLOPS per cluster and almost 205GFLOPS in
total by using the 16 clusters. These five execution units are connected to a shared
register file which allows 11 reads and 4 writes per cycle. Each core is connected to
two (data & instruction) separate 2-way associate caches (8KB each).

Kalray provides a software development kit, a GNU C/C++ & GDB develop-
ment tool for compilation and debugging. Two programming models are currently
supported. A high level programming model based on data-flow C language called∑

C [5], where programmers do not care about communication, only data dependen-
cies must be expressed. The other programming model supported is a POSIX-Level
programming model [3, 6]. It distributes on I/O subsystems the sub-processes to be
executed on the compute clusters and pass arguments through the traditional argc,
argv, and environ variables. Inside compute clusters, classic shared memory program-
ming models such as POSIX threads or OpenMP pragmas are supported to exploit
more than one processing core. Specific IPC takes advantage of the NoC connection.
Unlike

∑
C, the POSIX-Level programming model presents more important challenges

from programmer side, however it allows us to have more control over hardware and
optimize both, communication and computation. In the present work, the authors
have followed the programming model based on POSIX.

3. Jacobi Method Implementation on Kalray. We have chosen as test case
the Jacobi method [10]. This is a good example which allow us to study and evaluate
different strategies for communication. The parallelization is implemented following
a coarse-grained distribution of (adjacent) rows across all cores. This implementation
is relatively straightforward using a few OpenMP pragmas on the loops that iterate
over the rows of our matrix (see Algorithm 1).

One of the most important challenges in Kalray is the communication and mem-
ory management. To address the particular features of Kalray architecture, we use
the Operating System called NodeOs [6], provided by Kalray. NodeOs implements
the Asymmetric Multi-Processing (AMP) model. AMP takes advantage of the asym-
metry found in the clusters between the Resource Management Core (RMC) and the
Processing Element Cores (PEC). RMC runs the operating system (kernel and NoC
routines) on the set of RM (single-core). PEC are dedicated to run user threads, one
thread per PEC. PEC can also call functions, such as syscall that are in need of OS
support, which are received and compute by RMC. When a PEC executes a syscall
call, it sends an event and it is locked until it receives an event from the RMC. This
process is necessary to know that the syscall has been processed. Data and param-
eters are exchanged using shared memory. We have two codes, one to be computed
in RMC (IO code) and other (cluster code) which is executed in PECs. The work is
distributed following a master/slave model that is well suited to Kalray architecture.

4 Pedro Valero-Lara, Ezhilmathi Krishnasamy, Johan Jansson

Algorithm 1 Jacobi OpenMP code.

1: jacobi(A,Anew,NX,NY)
2: float err;
3: #pragma omp parallel for
4: for int i = 1→ NY − 1 do
5: for int j = 1→ NX − 1 do
6: Anew[i ∗NX + j] = 0.25 ∗ (A[i ∗NX + (j − 1)] +A[i ∗NX + (j + 1)]
7: +A[(i− 1) ∗NX + j] +A[(i+ 1) ∗NX + j]);
8: err = maxf(err, fabs(Anew[i ∗NX + j]−A[i ∗NX + j]));
9: end for

10: end for
11: #pragma omp parallel for
12: for int i = 1→ NY − 1 do
13: for int j = 1→ NY − 1 do
14: A[i ∗NX + j] = Anew[i ∗NX + j];
15: end for
16: end for

The IO code is the master. It is in charge of launching the code and sending data to
be computed by slaves. Finally they wait for the final results. Otherwise, the cluster
code are the slaves. They wait for data to be computed and send results to IO cluster.

The POSIX-Level programming model of Kalray (NodeOs) allows us to implement
the communication among different clusters in two different ways. While shared
memory (accessible by all clusters) is used for the communication in the first approach
(SM), in the second approach (NoC), we use channels (links) and routers. For sake
of clarify, we include several pseudocodes in which we detail the main steps of each
of the approaches. Pseudocodes 2 and 3 illustrates the IO and cluster codes for the
SM approach and Pseudocodes 4 and 5 for the NoC approach.

The communication is implemented by using some specific objects and functions
provided by NodeOS. Next, we explain each of these objects and functions. The trans-
fers from/to global/local memory are implemented via portals. These portals must
be initialized using specific paths (one path per cluster) as A portal in Pseudocode 2.
Then, they must be opened (mppa open) and synchronized (mppa ioctl) before trans-
ferring (mppa pwrite in Pseudocode 2 and mppa aio read in Pseudocode 3) data
from/to global/local memory. The slaves are launched from master via mppa spawn
which include parameters and name of the function/s to be computed by cluster/s.
The communication among cluster via links (NoC) is implemented by using of chan-
nel. Similar to the use of portals, channels must be initialized using one path per
channel (see C0 to C1 channel in Pseudocode 2).

On the other hand, the synchronization is implemented by using of sync. They
are used to guarantee that some resources are ready to be used or cluster are ready
to start computing (for instance, see mppa ioctl in Pseudocodes 2, 3, 4 and 5).

In order to minimize the number of transfers among main and local memory (SM
approach) as well as among clusters through links (NoC approach), the matrix is di-
vided into rectangular sub-blocks (Figures 3.1 and 3.2). In particular, the distribution
of the workload and communication implemented in the NoC approach avoid multi-
level routing, connecting each of the cluster with its adjacent clusters via a direct
link.

Although, the ghost cells strategy is usually used for communication in distributed
memory systems [9], we have used this strategy in Kalray processor to avoid race

Towards HPC-Embedded. Kalray and Message-Passing on NoC 5

Algorithm 2 Shared Memory I/O code.

1: const char ∗ cluster executable = ”mainCLUSTER”;
2: static float A[SIZE]; static float Anew[SIZE];
3: int mainIO(int argc , char ∗ argv[])
4: long long dummy = 0; long long match = −(1 << CLUSTER COUNT);
5: const char ∗ root sync = ”/mppa/sync/128 : 1”;
6: const char ∗A portal = ”/mppa/portal/”CLUSTER RANGE” : 1”;
7: const char ∗Anew portal = ”/mppa/portal/128 : 3”;
8: //−−OPENING FILES−−//
9: int root sync fd = mppa open(root sync,O RDONLY);

10: int A portal fd = mppa open(A portal, O WRONLY);
11: int Anew portal fd = mppa open(Anew portal, O RDONLY);
12: //−−PREPARE FOR RESULT−−//
13: status| = mppa ioctl(root sync fd,MPPA RX SET MATCH,match);
14: mppa aiocb t Anew portal aiocb[1] = {MPPA AIOCB INITIALIZER
15: (Anew portal fd, Anew, sizeof(Anew[0]) ∗ SIZE)};
16: mppa aiocb set trigger(Anew portal aiocb, CLUSTER COUNT);
17: status| = mppa aio read(Anew portal aiocb);
18: //−−LAUNCHING SLAVES−−//
19: char arg0[10], arg1[10];
20: const char ∗ argv[] = arg0, root sync,A portal, Anew portal, 0;
21: for int rank = 1→ CLUSTER COUNT do
22: sprintf(arg0, ”%d”, rank);
23: status| = mppa spawn(rank,NULL, cluster executable, argv, 0);
24: end for
25: // Wait for the cluster portals to be initialized.
26: status| = mppa read(root sync fd,&dummy, sizeof(dummy));
27: // Distribute slices of array A over the clusters.
28: for int rank = 0→ CLUSTER COUNT do
29: status| = mppa ioctl(A portal fd,MPPA TX SET RX RANK, rank);
30: status| = mppa pwrite(A portal fd, (A+rank∗SIZE LOCAL)−(NX LOCAL∗

2),
31: sizeof(float) ∗ SIZE LOCAL, 0);
32: end for
33: // Wait for the cluster contributions to arrive in array |Anew|.
34: status| = mppa aio wait(Anew portal aiocb);
35: return status < 0;

conditions among each of the sub-blocks assigned to each clusters. The use of ghost
cells consists of replicating the borders of all immediate neighbors blocks. These ghost
cells are not updated locally, but provide stencil values when updating the borders of
local blocks. Every ghost cell is a duplicate of a piece of memory located in neighbors
nodes. To clarify, Figures 3.1 and 3.2 illustrate a simple scheme for our interpretation
of the ghost cell strategy applied to both approaches, SM and NoC, respectively.

Following these strategies, we ease the programming effort and decrease the pres-
sure on communication.

Figure 3.1 graphically illustrates the strategy followed by the SM approach. It
consists of dividing the matrix into equal blocks which are sent from main memory to
local memory. To avoid race condition, each of the blocks includes 2 additional rows
(gray and white rows in Figure 3.1) which correspond to the upper and lower adjacent
rows of the block. These additional rows work as ghost cell only in local memory.

6 Pedro Valero-Lara, Ezhilmathi Krishnasamy, Johan Jansson

Algorithm 3 Shared Memory CLUSTER code.

1: int mainCLUSTER(int argc, char ∗ argv[])
2: int i, j, status, rank = atoi(argv[0]);
3: const char ∗ root sync = argv[1], ∗A portal = argv[2], ∗Anew portal = argv[3];
4: float A[SIZE LOCAL], Anew[SIZE LOCAL]; long long slice offset;
5: slice offset = sizeof(float) ∗ (CHUNK ∗NX LOCAL+
6: ((rank − 1) ∗ (CHUNK − 1) ∗NX LOCAL));
7: // Each cluster contributes a different bit to the root sync mask.
8: long long mask = (long long)1 << rank;
9: //−−OPENING PORTAL−−//

10: int root sync fd = mppa open(root sync,O WRONLY);
11: int A portal fd = mppa open(A portal, O RDONLY);
12: int Anew portal fd = mppa open(Anew portal, O WRONLY);
13: //−−PREPARE FOR INPUT−−//
14: mppa aiocb tA portal aiocb[1] =
15: MPPA AIOCB INITIALIZER(A portal fd,A, sizeof(A));
16: status| = mppa aio read(A portal aiocb);
17: //−−UNLOCK MASTER−−//
18: status| = mppa write(root sync fd,&mask, sizeof(mask));
19: // Wait for notification of remote writes to local arrays |A|.
20: status| = mppa aio wait(A portal aiocb);
21: //−− JACOBIANCOMPUTE−−//
22: jacobi(A,Anew,NX LOCAL,NY LOCAL);
23: // Contribute back local array Anew into the portal of master array Anew.
24: status| = mppa pwrite(Anew portal fd,&Anew[NX LOCAL],
25: sizeof(Anew)− sizeof(float) ∗ 2 ∗NX LOCAL, slice offset);
26: mppa exit((status < 0)); return 0;

The blocks transferred from local memory to global memory (Figure 3.1-right) do not
include these additional rows (ghost rows).

Figure 3.1. Master (Global Memory) ↔ Slave (Local Memory) Communication.

Otherwise the communication among global and local memory is not necessary
in the NoC approach. The master (IO code) is only used for synchronizing. The
synchronization is necessary at the beginning and at the end of each master code.
I/O core and the rest of cores in each of the clusters must be also synchronized.
In particular the synchronization between IO core and computing cores (I/O− >

Towards HPC-Embedded. Kalray and Message-Passing on NoC 7

Algorithm 4 NoC I/O code.

1: const char ∗ global sync = ”/mppa/sync/128 : 1”;
2: const char ∗ IO to C0 sync = ”/mppa/sync/0 : 2”; . . .
3: const char ∗ C0 to C1 channel = ”/mppa/channel/1 : 1/0 : 1”; . . .
4: static const char ∗ exe[CLUSTER COUNT] = {”mainCLUSTER0”,
5: ”mainCLUSTER1”, . . .};
6: int mainIO(int argc, const char ∗ argv[])
7: // Global sync.
8: int ret, global sync fd = mppa open(global sync,O RDONLY);
9: long long match = −(1 << CLUSTER COUNT);

10: mppa ioctl(global sync fd,MPPA RX SET MATCH,match));
11: //−−IO TO C# SYNC−−//
12: int IO to C0 sync fd = mppa open(IO to C0 sync,O WRONLY);
13: int IO to C1 sync fd = mppa open(IO to C1 sync,O WRONLY); . . .
14: //−−LAUNCHING SLAVES−−//
15: for int i = 0→ CLUSTER COUNT do
16: mppa spawn(i,NULL, exe[i], argv, 0);
17: end for
18: // Wait for other clusters to be ready.
19: mppa read(global sync fd,NULL, 8);
20: // Write into I/O− > C# sync to unlock C# cluster.
21: mask = 1;mppa write(IO to C0 sync fd,&mask, sizeof(mask));
22: mppa write(IO to C1 sync fd,&mask, sizeof(mask)); . . .
23: //−−WAITING TO THE END OF CLUTERS EXECUTION−−//
24: for int i = 0→ CLUSTER COUNT do
25: ret = mppa waitpid(i,&status, 0);mppa exit(ret);
26: end for

C1 sync section in Pseudocode 5) is necessary to guarantee that there are no cluster
reading into channels before the corresponding cluster has opened the channel. After
computing the Jacobi method in each of the clusters, some rows of the local blocks
must be transferred to/from adjacent clusters. The first row computed (white upper
row C1 in Figure 3.2) must be transferred to the upper adjacent cluster (C0) to be
stored in the last row. Also, the last row computed (gray lower row C1 in Figure 3.2)
must be transfered to the lower adjacent cluster (C2) to be stored in the first row.
This pattern must be carried out in all clusters except the first and last clusters where
a lower number of transferences is necessary.

C0

C1

C2

C2(White)−>C1(Black)

C0(Black)−>C1(White)

C1(Black)−>C2(White)

C1(White)−>C0(Black)

Figure 3.2. Pipeline (Bus) Communication.

8 Pedro Valero-Lara, Ezhilmathi Krishnasamy, Johan Jansson

Algorithm 5 NoC CLUSTER code

1: int mainCLUSTER1(int argc, char ∗ argv[])
2: float A[SIZE LOCAL], Anew[SIZE LOCAL];
3: // Open all the resources needed for transfers.
4: //Global sync.
5: int global sync fd = mppa open(global sync,O WRONLY);
6: // C1− > C2 channel.
7: int channel0 fd = mppa open(C1 to C2 channel, O WRONLY);
8: // C2− > C1 channel.
9: int channel1 fd = mppa open(C2 to C1 channel, O RDONLY);

10: // C1− > C0 channel.
11: int channel2 fd = mppa open(C1 to C0 channel, O WRONLY);
12: // C0− > C1 channel.
13: int channel3 fd = mppa open(C0 to C1 channel, O RDONLY);
14: // I/O− > C1 sync.
15: int IO to C1 sync fd = mppa open(IO to C1 sync,O RDONLY);
16: long long match = −(1 << 1/ ∗ We sync only with I/O cluster ∗ /);
17: mppa ioctl(IO to C1 sync fd,MPPA RX SET MATCH,match)
18: // Write into global sync to unlock I/O cluster.
19: long long mask = 1 << mppa getpid();
20: mppa write(global sync fd,&mask, sizeof(mask))
21: //−−WAIT FOR IO TO C1 SYNC−−//
22: mppa read(IO to C1 sync fd,NULL, 8);
23: //−−CLUSTERS COMMUNICATION−−//
24: // Write data for cluster 0.
25: mppa write(channel0 fd,&A[NX LOCAL ∗ (NY LOCAL − 2)], sizeof(float) ∗

NX LOCAL);
26: // Read data from C0.
27: mppa read(channel1 fd,A, sizeof(float) ∗NX LOCAL);
28: // Read data from C2.
29: mppa write(channel2 fd,&A[NX LOCAL], sizeof(float) ∗NX LOCAL);
30: // Write data for cluster 2.
31: mppa read(channel3 fd,&A[NX LOCAL ∗ (NY LOCAL − 1)], sizeof(float) ∗

NX LOCAL);
32: mppa exit(0);

4. Performance Study. In this section, we analyze deeply both approaches, SM
and NoC, focusing on communication, synchronization and computing separately. In
order to find/focus on the performance of both approaches, we have used a relatively
small problem which can be full stored in local memory.

Next we present the commands used to compile and launch both approaches:
Compiling lines:
k1 − gcc −O3 −std = c99 −mos = rtems io.c −o io app −lmppaipc
k1−gcc −O3 −std = c99 −fopenmp −mos = nodeos cluster.c −o cluster −lmppaipc
k1 − create−multibinary −− cluster cluster −− boot = io app −T multibin
Launching line:
k1−jtag−runner −−multibinary multibin −−exec−multibin = IODDR0 : io app

The communication among I/O and computing cores in the NoC approach is
more complex and it is in need of a higher number of synchronizations. This causes
a higher execution time to compute the synchronizations with respect to the SM

Towards HPC-Embedded. Kalray and Message-Passing on NoC 9

 0

 5

 10

 15

 20

 25

Jacobian

G
lobal->Local

Local->G
lobal

Sync.

Total

 T
im

e
 (

m
s
)

Figure 4.1. Time consumption for the SM approach.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Jacobian

1x-C
om

m
.

4x-C
om

m
.

1x-Sync.

4x-Sync.

Total

 T
im

e
 (

m
s
)

Figure 4.2. Time consumption for the NoC approach.

approach, being almost 2.5× bigger (Figures 4.1 and 4.2). Note that we use a different
vertical scaling in each of the graphics illustrated in Figures 4.1 and 4.2. Despite of
the overhead caused by a higher number of synchronizations, the use of the NoC
interconnection makes the NoC approach (Figure 4.2) about 55× faster than the SM
approach.

As expected the time consumed for computing the Jacobi method is equivalent
in both approaches. The time consumed by synchronization, communication and
computing in the NoC approach is more balanced than in the SM approach. This
can be beneficial for future improvements, such as asynchronous communication.

Finally, we analyse the performance in terms of GFLOPS. First, we compute
the theoretical FLOPS for the Jacobi computation. The variant used in this study
performs six flops per update (Algorithm 1). Therefore, the theoretical FLOPS is
equal to the elements of our matrix multiplied by six.

10 Pedro Valero-Lara, Ezhilmathi Krishnasamy, Johan Jansson

In order to evaluate the overhead of each of the strategies, first, we show the
GFLOPS achieved by the Jacobi computation without the influence of the synchro-
nization and communication (see Jacobian in Figure 4.3). It achieves almost the peak
of performance of our platform (GFLOPS-Peak in Figure 4.3). The computation of
the Jacobian method is exactly the same in both approaches (SM and NoC). Next, we
include the overhead of the communication. Although both approaches present a fall
in performance when taking into account the time consumed by the communication,
the fall shown by the NoC approach is not so dramatic as the overhead suffered by
the SM approach (Figure 4.3).

 0

 50

 100

 150

 200

 250

G
F
L
O
P
S
-P

e
a
k

Ja
co

b
ia
n

N
o
C

S
M

 G
F

L
O

P
S

Figure 4.3. GFLOPS achieved by both approaches.

The software development kit provided by Kalray allow us to measure the power
consumption of our applications. This is done via this command:

k1−power −−k1−jtag−runner −−multibinary multibin −−exec−multibin =
IODDR0 : io app

Executing our binary using k1-power we obtain the power achieved in terms of
Watts. The average power achieved by the NoC approach is about 8.508W , while the
SM approach achieves an average of 5.778W in every execution. This is almost a 50%
more power when executing the NoC approach. However, the reduction in execution
time obtained by the NoC approach has an important impact on the overall power
consumed. Given that the Joules are computing by following the next expression:

Joules = Watts× Time

We obtain an overall consumption about 0.0047J and 0.16J for the NoC and
the SM approaches respectively. This is a 96% less of power consumed by the NoC
approach.

5. Conclusions and Future Work. Embedded many-core architectures such
as Kalray have emerged as a new HPC platform to deal with the problem of the
excessive power consumption.

Towards HPC-Embedded. Kalray and Message-Passing on NoC 11

In this work, we have presented two different approaches to implement the commu-
nication among the processing elements of the Kalray architecture. Both approaches
implement a ghost-cell strategy to avoid race conditions among the different blocks
assigned to each of the processing elements (clusters). This strategy has been adapted
to the particular features of our embedded processor and approaches, SM and NoC,
to minimize the number of transfers.

Although the communication via shared memory is more habitual and easier to
implement on many-core architectures, the particular features of the Kalray architec-
ture, in particular the communication via Message-Passing on NoC connection, offers
a much faster alternative. Although, the use of NoC needs a higher power, the reduc-
tion in time makes to this approach more efficient in terms of power consumption.

We plan to investigate other problems and more efficient strategies for memory
management and data distribution, such as the overlapping of communication and
computing via asynchronous transfers. In particular, the NoC approach could take
advantage of the asynchronous communication as the time consumed by its major
steps is balanced.

Acknowledgments. This research has been supported by EU-FET grant EU-
NISON 308874, the Basque Excellence Research Center (BERC 2014-2017) program
by the Basque Government, the projects founded by the Spanish Ministry of Economy
and Competitiveness (MINECO): BCAM Severo Ochoa accreditation SEV-2013-0323,
MTM2013-40824 and TIN2015-65316-P. We acknowledge Research Center in Real-
TIme & Embedded Computing Systes - CISTER for the provided resources.

REFERENCES

[1] Benôıt Dupont de Dinechin, Renaud Ayrignac, Pierre-Edouard Beaucamps, Patrice Couvert,
Benoit Ganne, Pierre Guironnet de Massas, François Jacquet, Samuel Jones, Nicolas Morey
Chaisemartin, Frédéric Riss, and Thierry Strudel. A clustered manycore processor archi-
tecture for embedded and accelerated applications. In IEEE High Performance Extreme
Computing Conference, HPEC 2013, Waltham, MA, USA, September 10-12, 2013, pages
1–6, 2013.

[2] Benôıt Dupont de Dinechin, Yves Durand, Duco van Amstel, and Alexandre Ghiti. Guaranteed
services of the noc of a manycore processor. In Proceedings of the 2014 International
Workshop on Network on Chip Architectures, NoCArc ’14, Cambridge, United Kingdom,
December 13-14, 2014, pages 11–16, 2014.

[3] Benôıt Dupont de Dinechin, Duco van Amstel, Marc Poulhiès, and Guillaume Lager. Time-
critical computing on a single-chip massively parallel processor. In Design, Automation &
Test in Europe Conference & Exhibition, DATE 2014, Dresden, Germany, March 24-28,
2014, pages 1–6, 2014.

[4] M. Dev Gomony, B. Akesson, and K. Goossens. Coupling tdm noc and dram controller for cost
and performance optimization of real-time systems. In 2014 Design, Automation Test in
Europe Conference Exhibition (DATE), pages 1–6, March 2014.

[5] Thierry Goubier, Renaud Sirdey, Stéphane Louise, and Vincent David. Σc: A programming
model and language for embedded manycores. In Algorithms and Architectures for Parallel
Processing - 11th International Conference, ICA3PP, Melbourne, Australia, October 24-
26, 2011, Proceedings, Part I, pages 385–394, 2011.

[6] kalray S. A. Mppa accesscore posix progamming reference manual. 2013.
[7] Matteo Monchiero, Gianluca Palermo, Cristina Silvano, and Oreste Villa. Exploration of dis-

tributed shared memory architectures for noc-based multiprocessors. Journal of Systems
Architecture, 53(10):719 – 732, 2007. Embedded Computer Systems: Architectures, Mod-
eling, and Simulation.

[8] Pedro Valero-Lara, Francisco D Igual, Manuel Prieto-Mat́ıas, Alfredo Pinelli, and Julien Favier.
Accelerating fluid–solid simulations (lattice-boltzmann & immersed-boundary) on hetero-
geneous architectures. Journal of Computational Science, 10:249–261, 2015.

[9] Pedro Valero-Lara and Johan Jansson. Lbm-hpc-an open-source tool for fluid simulations.

12 Pedro Valero-Lara, Ezhilmathi Krishnasamy, Johan Jansson

case study: Unified parallel c (upc-pgas). In Cluster Computing (CLUSTER), 2015 IEEE
International Conference on, pages 318–321. IEEE, 2015.

[10] David M. Young. Iterative solution of large linear systems. 2003. Unabridged republication of
the 1971 edition [Academic Press, New York-London, MR 305568].

[11] Hui Zhao, Ohyoung Jang, Wei Ding, Yuanrui Zhang, Mahmut Kandemir, and Mary Jane
Irwin. A hybrid noc design for cache coherence optimization for chip multiprocessors. In
Proceedings of the 49th Annual Design Automation Conference, DAC ’12, pages 834–842,
New York, NY, USA, 2012. ACM.

