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Abstract 

It is well known that the Michelson-Sivashinky equation describes hydrodynamic 

instabilities in turbulent premixed combustion. Here a formulation of the flame 

front propagation based on the G-equation and on stochastic fluctuations imposed 

to the average flame position is considered to derive the Michelson-Sivashinky 

equation from a modelling point of view. The same approach was shown to 

reproduce the G-equation along the motion of the mean flame position, when the 

stochastic fluctuations are removed, as well ast the Zimont & Lipatnikov model,  

when a plane front is assumed. The new results here presented support this 

promising approach as a novel and general stochastic formulation for modelling 

turbulent premixed combustion. 

 

Introduction 

The research presented at the XXXVIII Meeting of the Italian Section of the 

Combustion Institute [1] is here continued. Further results on a novel promising 

formulation for modelling turbulent premixed combustion [1,2], see also [3], are 

derived. In particular, it is here reminded that such approach starts from a G-

equation that describes the mean flame position, and when stochastic fluctuations 

are introduced, a reaction-diffusion equation which describes the effective burned 

fraction follows under the assumption that the probability density function (PDF) 

of the random process underlying the random front motion is known [1,2,3].        

 

This formulation shows that two different approaches to model turbulent premixed 

combustion, and furthermore considered alternatives to each other, i.e. the G-

equation and the reaction-diffusion equation, are indeed complementary and they 

can be reconciled. When stochastic fluctuations are removed, such formulation 

reduces to the G-equation along the motion of the mean flame position, and when a 

plane front is assumed, the Zimont & Lipatnikov model [4,5] is recovered. 

Considered these results other efforts are porsued to develop further this novel and 

general stochastic formulation for modelling turbulent premixed combustion. 

 

Here this approach is used to derive the Michelson-Sivashinky equation [6,7,8]  

that describes hydrodynamic instabilities in turbulent premixed combustion. 
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Model Formulation 

The following presentation of the model formulation is based on [1]. Let the scalar 

function 𝐺(𝑥, 𝑡), 𝑥 ∈ ℝ𝑛, be a level surface that represents the front which devides 

burned and unburned domains and the front be denoted by 𝛤(𝑡), 𝑡 ≥ 0. Let 𝑥𝑐be a 

point on the level surface G=c at the instant 𝑡0, such that the corresponding front is  

𝛤0 = 𝛤(𝑡0) = {𝑥 = 𝑥0 ∈ 𝑆|𝐺(𝑥0, 𝑡0) = 𝑐}, where 𝑆 ⊆ ℝ𝑛. The level surface propagates 

with a consumption speed  given by the laminar burning velocity 𝑠𝐿in the normal 

direction n relative to the mixture element and its evolution is described by the 

following Hamilton-Jacobi equation where the flow velocity field is u 

 

    
𝜕𝐺

𝜕𝑡
+ 𝑢 ⋅ 𝛻𝐺 = 𝑠𝐿‖𝛻𝐺‖ ,   𝑛 = −

𝛻𝐺

‖𝛻𝐺‖
  .                        (1) 

 

Let the front motion be described by the random process 𝑋𝑐
𝜔(𝑥̂, 𝑡)where 𝜔 labels 

any independent realization, such that the random contour is 

 

         𝛤𝜔(𝑡) = {𝑥 = 𝑋𝑐
𝜔(𝑡) ∈ 𝑆|𝐺𝜔(𝑋𝑐

𝜔, 𝑡) = 𝑐}.                          (2) 

 

Let the mean value of 𝑋𝑐
𝜔be denoted by ⟨𝑋𝜔(𝑥̂, 𝑡)⟩ = 𝑥̂(𝑡), then if  𝑃(𝑥𝑐; 𝑡|𝑥̂) is the 

corresponding PDF, with initial condition  𝑃(𝑥𝑐; 𝑡0|𝑥̂) = 𝛿(𝑥 − 𝑥0), the mean flame 

position is given by the integral 

 

                              ⟨𝑥𝑐⟩ = ∫ 𝑥𝑐𝑃(𝑥𝑐; 𝑡|𝑥̂)𝑑𝑥𝑐 = 𝑥̂(𝑡)
ℝ𝑛

.                               (3) 

 

Introducing 𝐺̌(𝑥̂, 𝑡), with 𝐺̌(𝑥̂, 𝑡0) = 𝐺̌(𝑥0, 𝑡0) = 𝑐, as the implicit formulation of the 

mean flame position 𝑥̂, the ensemble averaging of (1) gives [9] 

 

                                
𝜕𝐺̌

𝜕𝑡
+ 𝑢̂ ⋅ 𝛻𝐺̌ = −𝑠𝐿𝑛̂ ⋅ 𝛻𝐺̌.                                        (4) 

 

Since the G-equation can be derived on the basis of considerations about  

symmetries, there is a unique model for the RHS term of equation (4) providing a 

relation between the laminar burning velocity 𝑠𝐿and the turbulent burning velocity 

𝑠𝑇[9], i.e. 

 

                    𝑠𝐿𝑛̂ = 𝑠𝑇𝑛̌  ,        𝑛̌ = −
𝛻𝐺̌

∥𝛻𝐺̌∥
.                                      (5) 

 

Finally, combining equation (4) and model (5), the G-equation that describes the 

surface motion along the mean flame position results to be 

 

                   
𝜕𝐺̌

𝜕𝑡
+ 𝑢̂ ⋅ 𝛻𝐺̌ = 𝑠𝑇‖𝛻𝐺̌‖.                                (6) 

 

Note in (5) that the normal vector of the mean flame front, i.e. 𝑛̌, is different from 
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the mean of the normal vectors to the random flame front, i.e. 𝑛̂. In general, the 

mean of the random level surface ⟨𝐺𝜔⟩is different from the level surface 𝐺̌depicted 

by the mean position of the flame [10]. 

 

Applying properties of the Dirac 𝛿-function, it follows 

 

                     𝐺𝜔(𝑋𝑐
𝜔, 𝑡) = ∫ 𝐺(𝑥, 𝑡)𝛿(𝑥 − 𝑋𝑐

𝜔(𝑥̂
ℝ𝑛

, 𝑡))𝑑𝑥,                     (7) 

 

as well as a formula including the stochastic fluctuations around the front depicted 

by the mean flame position, i.e. 

 

                           𝜙𝜔(𝑥, 𝑡) = ∫ 𝐺̌
ℝ𝑛

(𝑥̂, 𝑡)𝛿(𝑥 − 𝑋𝑐
𝜔(𝑥̂, 𝑡))𝑑𝑥̂.                  (8) 

Given the level surface 𝐺̌, the inner domain Ω̌(𝑡)enclosed by the front contour 

𝛤̌(𝑡) = {𝑥 ∈ 𝜕Ω̌(𝑡)}can be understood as the effective volume occupied by the 

burned fraction. Then the following indicator function is introduced 

 

                          𝐼Ω̌(𝑡) = {
1, 𝑥 ∈ Ω̌(𝑡),

0, 𝑥 ∉ Ω̌(𝑡).
                                            (9) 

 

In analogy with (8), the random indicator associated to the surface which enclose 

the volume of the burned fraction is given by the following formula 

 

        𝐼Ω̌
𝜔(𝑥, 𝑡) = ∫ 𝐼Ω̌(𝑥̂, 𝑡)𝛿(𝑥 − 𝑋𝑐

𝜔(𝑥̂, 𝑡))𝑑𝑥̂
ℝ𝑛 = ∫ 𝛿(𝑥 − 𝑋𝑐

𝜔(𝑥̂, 𝑡))𝑑𝑥̂
Ω̌

.          (10) 

 

Finally, ensemble averaging of (10) gives the effective fraction of the burned mass 

 

        ⟨𝐼Ω̌
𝜔(𝑥, 𝑡)⟩ = ∫ ⟨𝛿(𝑥 − 𝑋𝑐

𝜔(𝑥̂, 𝑡))⟩𝑑𝑥̂
Ω̌

= ∫ 𝑃(𝑥; 𝑡|𝑥̂)𝑑𝑥̂
Ω̌(𝑡)

= 𝑉(𝑥, 𝑡).          (11)                        

 

Applying the Reynolds transport theorem to formula (11), a reaction-diffusion 

equation follows [3]: 

 

                 
𝜕𝑉

𝜕𝑡
= ∫

𝜕𝑃

𝜕𝑡
𝑑𝑥̂ + ∫

Ω̌(𝑡)
𝛻𝑥 ⋅ [𝑠𝑇𝑛̌𝑃(𝑥; 𝑡|𝑥̂)]𝑑𝑥̂Ω̌(𝑡)

.                      (12) 

 

Equation (12) reduces to a Hamilton-Jacobi equation when no diffusion is assumed 

[1,2,3], and, when a plane front is assumed, it reduces to the same equation derived 

by Zimont & Lipatnikov [4] and studied in [5], see [1,2,3]. This suggests that 

equation (12) can be considered as the natural extension of Zimont & Lipatnikov 

model to the case with non null mean curvature. 

 

Derivation of the Michelson-Sivashinky equation 

Let −(−𝛻2)𝑠, 𝑠 ∈ (0,1)be the fractional Laplacian defined by its Fourier symbol 

−|𝑘|2𝑠. When 𝑠 = 1the classical Laplacian is recovered. It is here reminded that the 
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Lévy stable densities are the Green functions of the space-fractional diffusion 

equation 

  

                                             
𝜕𝑃

𝜕𝑡
= −(−𝛻2)𝑠𝑃,                                               (13) 

 

and in particular the Green function corresponds to the Gaussian density when 

𝑠 = 1and to the Lorentzian density when𝑠 = 1 2⁄ . The Gaussian density is 

associated to classical diffusion and the Lorentzian density can be associated to a 

lightly damped linear oscillator. 

 

Consider now equation (12), by setting 

 

                                         
𝜕𝑃

𝜕𝑡
= 𝛻2𝑃 − [−(−𝛻2)1 2⁄ 𝑃],                                   (14) 

 

where the second term on the RHS, because of the sign minus and 𝑠 = 1 2⁄ , may be 

understood as a counter-damping effect of an harmonic oscillator, and by setting 

       

                                        𝑠𝑇 = −
(∫Ω̌(𝑡) 𝛻𝑥̂𝑃(𝑥;𝑡|𝑥)𝑑𝑥)

2

∫ 𝛻𝑥̂⋅[𝑛̌𝑃(𝑥;𝑡|𝑥)]𝑑𝑥Ω̌(𝑡)

,                               (15) 

 

the multi-dimensional Michelson-Sivashinky equation is obtained. In fact, in the 

one-dimensional case it holds 

 

                                          
𝜕𝑉

𝜕𝑡
=

𝜕2𝑉

𝜕𝑥2
− (

𝜕𝑉

𝜕𝑥
)2 − 𝐷𝑥

1𝑉,                                      (16) 

 

which is the Michelson-Sivashinky equation [6,7,8], where𝐷𝑥
1is the fractional 

derivative of order 1 in the Riesz-Feller sense with Fourier symbol is−|𝑘|, which 

differs from the classical first derivative, and is related to the Hilbert transform by 

the formula 

 

                                       𝐷𝑥
1𝑉 =

1

π

𝑑

𝑑𝑥
∫
+∞

−∞

𝑉(𝑥′)

(𝑥′−𝑥)
𝑑𝑥′.                               (17) 

 

The solution𝑉(𝑥, 𝑡)to the Michelson-Sivashinky equation (16), or to its multi-

dimensional version, can be obtained computing the integral (11) where the kernel 

function𝑃(𝑥; 𝑡|𝑥̂)is the Green function of (14) and the domain of integration Ω̌(𝑡)is 

obtained by the indicator function (9) solving the G-equation (6) with 𝑠𝑇defined in 

(15). This procedure constitutes a practical scheme to compute numerically the 

solution to the Michelson-Sivashinky equation which is alternative to the pole 

decomposition method [11]. 

 

Summary and Outlook 

In the present extended abstract the evolution equation of reaction-diffusion type is 
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briefly derived for an observable that can be understood as the effective burned 

fraction. When stochastic fluctuations are removed, such equation reduces to the G-

equation along the motion of the mean flame position, which suggests that 

approaches based on reaction-diffusion equations and G-equation are indeed 

complementary and they can be reconciled. Moreover, when a plane front is 

assumed, the Zimont & Lipatnikov model is recovered. 
 

This promising approach has been adopted here to derive the Michelson-

Sivashinky equation from a modelling point of view. The random process 

underlying the front motion involves the classical diffusion and a second effect that 

may be understood as a counter-dumping effect when compared with a lightly 

damped linear oscillator whose intensity of oscillations follows the Lorentzian 

function. This second effect can be linked to the mechanism that, a given pressure 

gradient, accelerates the light products more than the heavier reactants and 

generates counter-gradient diffusion and turbulent energy production [12]. This 

physical interpretation will be the investigated in the future. 
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