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Abstract
We consider  a  model  formulation  of  the  flame  front  propagation  in  turbulent  premixed  combustion  based  on
stochastic fluctuations imposed to the mean flame position. In particular, the mean flame motion is described by a
G-equation, while the fluctuations are described according to a probability density function which characterizes the
underlying stochastic motion of the front. The proposed approach reproduces as special cases the G-equation along
the motion of the mean flame position, when the stochastic fluctuations are removed, and the Zimont & Lipatnikov
model,  when  a  Gaussian  density  for  fluctuations  is  used  together  with  the  assumption  of  a  plane  front.  The
potentiality  of  the  approach  is  here  investigated  further  focusing  on  the  Darrieus-Landau  (hydrodynamic)
instabilities. In particular, this model formulation is set to lead to the Michelson-Sivashinsky equation. Furthermore,
a formula that connects the consumption speed and the front curvature is established.

Introduction
It  is  known  that  Darrieus-Landau

(hydrodynamic)  instabilities  in  turbulent  premixed
combustion  are  described  by  the  so-called
Michelson-Sivashinsky  equation  [1,2,3].  A
preliminary  study  to  derive  this  equation  from the
framework  of  the  G-equation  was  presented  at  the
XXXIX  Meeting  of  the  Italian  Section  of  the
Combustion  Institute  [4].  Here  we  continue  that
study. 

This  derivation  is  performed  within  a  model
formulation  introduced  in  References  [5,6,7].  In
particular, this proposed approach is based on the G-
equation to describe  the motion of the mean flame
front and stochastic fluctuations are imposed on its
position according to a probability density function
(PDF)  which  characterizes  the  underlying  random
motion [5,6,7]. Hence the formulation is based on the
prior knowledge of the PDF of the fluctuations of the
front position.       

After the introduction of stochastic fluctuations
for the flame position, the evolution equation of the
resulting  effective  burned  fraction  emerges  to  be  a
reaction-diffusion equation. This shows that the two
classical  approaches  to  model  turbulent  premixed
combustion,  considered  so  far  alternatives  to  each
other, i.e., the G-equation and the reaction-diffusion
equation,  are  indeed  complementary  one  to  each
other.  Moreover,  if  the  stochastic  fluctuations  are
removed, such formulation reduces to the standard G-
equation for the motion of the mean flame position
and, when a Gaussian density for fluctuations is used
together  with  the  assumption  of  a  plane  front,  the

model  of  Zimont  & Lipatnikov  [8,9]  is  recovered.
Considered  these  special  cases,  other  efforts  are
pursued to further investigate this formulation.

Modeling Approach

Let the scalar function   be a level

surface that represents the front  , which
neatly separates  burned and unburned domains. Let

 be a point on the level surface G=c at the instant

,  such  that  the  corresponding  front  is

,  where

.  From  now  on  we  consider  the  zero-

isocontour  only,  i.e.,   c=0.  The  level  surface
propagates  with a  consumption speed  given by the
laminar burning velocity  in the normal direction

relative to the mixture element  and its  evolution is
described by the following Hamilton-Jacobi equation,
known in combustion literature as G-equation,

∂G
∂ t

+u⋅∇ G=sL‖∇ G‖, (1)

where u is the velocity field of the flow.
In  equation  (1)  the  propagation  in  the  normal
direction is stated by

s Ln=−s L
∇ G

‖∇ G‖
, (2)
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where n denotes the normal vector.

Let  the  front  motion  be  described  by  the  random

process  where   labels  any

independent  realization,  such that  the random front
contour is 

Γω ( t)={x=X c
ω( t )∈S|Gω( Xc

ω ,t )=c } . (3)

Let  the  mean  value  of   be  denoted  by

, then if   is the

corresponding  PDF,  with  initial  condition
, the mean flame position

is obtained by applying the integral formula

⟨xc⟩=∫
ℝ n

xc Pc (xc ;t| x̂ )dx c= x̂( t ). (4)

Introducing  Ǧ ( x̂ ,t ) ,  with  initial  condition

Ǧ ( x̂ ,t0 )=Ǧ ( x0 ,t 0)=c ,  as  the  implicit

formulation  of  the  mean  flame  position  ,  the
ensemble averaging of (1) gives

∂ Ǧ
∂t

+û⋅∇ Ǧ=−ŝLn⋅∇ Ǧ . (5)

This procedure was previously proposed by Oberlack
et al. [10].

Since the G-equation can be derived on the basis of
considerations  about  symmetries,  there  is  a  unique
model for the RHS term of equation (5) providing a
relation  between  the  laminar  burning  velocity  s L

and the turbulent burning velocity  [10], i.e.,

ŝL n=sT ň , ň=−
∇ Ǧ

‖∇ Ǧ‖
. (6)

Finally, combining equation (5) and model (6), the G-
equation that describes the surface motion along the
mean flame position is 

∂ Ǧ
∂t

+û⋅∇ Ǧ=sT‖∇ Ǧ‖. (7)

It is here stressed the difference between the mean of
the normal vectors to the random flame front,  i.e.,

, and the normal vector of the mean flame front,
i.e., , which is an important feature of the process.
In particular, the mean of the random level surface

 is generally different from the level surface

Ǧ  depicted by the mean position of the flame [2].

By  using  the  sifting  property  of  the  Dirac  -
function, it holds

Gω
( X c

ω ,t )=∫
ℝn

G ( x,t )δ ( x−X c
ω
( x̂ ,t ))dx , (8)

and  also  the  following  formula  including  the
stochastic  fluctuations around the front depicted by
the mean flame position, i.e.,

ϕω
( x,t )=∫

ℝn

G ( x̂ ,t )δ (x−Xc
ω
( x̂ ,t ))d x̂ . (9)

We  expect  that  further  investigation  of  the
relationships  between  formula  (8)  and  formula  (9)

leads to an explicit formula relating and Ǧ .
In the following, the evolution equation associated to
(9) is derived.

Given the level surface  , then the inner domain

 enclosed  by  the  front  contour

 can  be  understood  as  the
volume  occupied  by  the  reacted  fraction  and  that
outside  as  occupied  by  the  still  unreacted  fraction.
Then the following indicator function is introduced

IΩ (t )={1, x∈Ω ( t )
0, x∉Ω (t )

(10)

In analogy with (9), the random indicator associated
to  the  surfaces  which  enclose  the  volume  of  the
burned fraction is given by the following formula

I
Ω̌

ω
( x,t )=∫

ℝn

I
Ω̌
( x̂ ,t )δ( x−Xc

ω
( x̂ ,t ))d x̂ =

=∫
Ω̌

δ (x−Xc
ω
( x̂ , t ))d x̂ (11)

Finally, ensemble averaging of (11) gives

⟨ I
Ω̌

ω
( x , t)⟩=∫

Ω̌

⟨δ ( x−X c
ω
( x̂ , t ))⟩d x̂

= ∫
Ω̌(t )

Pc( x ; t| x̂ )d x̂=V e( x , t ) (12)

The observable V e(x , t )  can be understood as the

effective fraction of burned mass.  V e(x , t ) ranges

in  the  compact  interval   [0,1]  and  the front

contourn is given by selecting a threshold value.
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When  applying  the  Reynolds  transport  theorem  to
formula  (12)  we  obtain  the  following  evolution

equation of reaction-diffusion type

∂V e

∂ t
=∫

Ω̌ (t )

∂Pc

∂ t
d x̂ +

+ ∫
Ω̌( t)

∇ x̂⋅[ sT ňPc(x ; t|x̂ )]d x̂ . (13)

Equation  (13)  had  been  derived  with  a  different
argument in Reference [7]. 

Considering the general kinetic equation for  

∂ Pc

∂ t
=−∇ J , (14)

where J is the flux, equation (13) becomes
∂ V e

∂t
=−∇∫

Ω̌ ( t )
J( x ; t|x̂ )d x̂

+ ∫
Ω̌( t)

∇ x̂⋅[sT ňPc(x ; t|x̂ )]d x̂ (15)

If a flux-gradient relation is assumed, i.e., 

J ( x,t )=−D ∇ P
c
, (16)

where D is the diffusion coefficient, equation (15) 
can be re-written as

∂ V e

∂ t
=D ∇2V

e
+∫

Ω̌ (t )

∇
x̂
⋅[sT

ňP
c
(x− x̂ ; t )]d x̂ (17)

which reduces to the G-equation when no diffusion is
assumed [7].

Moreover,  when  the  mean  front  curvature
 is  taken  into  account,  and  turbulent

burning  velocity  reads  ,

equation (17) becomes

∂ V e

∂t
=D ∇2V

e
−∇⋅ ∫

Ω( t )

s
T

ň P
c
( x− x̂ ;t )d x̂ +

+ ∫
Ω̌(t )

Pc{∂ sT

∂κ
(∇ x̂κ )⋅ň+2 sT κ}d x̂ . (18)

Hence, if we consider a plane front, such that ,

we  have  that   and  ,  equation

(18) reduces to 

∂ V e

∂ t
=D ∇2V

e
+s

T
(t )‖∇ V

e
‖, (19)

that  is  the  same  equation  derived  by  Zimont  &
Lipatnikov [8]  and  studied  in  [9].  This  shows that
equation  (18)  can  be  considered  as  the  natural
extension  of  Zimont  &  Lipatnikov  model  to  the
multidimensional case with non null mean curvature.

Specific Objectives: Derivation of the Michelson-
Sivashinsky equation
The  Michelson-Sivashinsky  equation  in  the  one-
dimensional case reads, see, e.g., [1,2,3],

∂ g
∂ t

=
∂

2 g
∂ x 2

−( ∂ g
∂ x )

2

−D
x
1 g , (20)

where Dx
1 is  the  fractional  derivative  of  order  1  in

the Riesz-Feller sense with Fourier symbol is −|ξ| .
It differs from the classical first derivative, and it is
related to the Hilbert transform by the formula 

Dx
1g=

1
π

d
dx

∫
−∞

+∞ g (x')
(x '−x)

d x' . (21)

We  also  recall  here  the  fractional  Laplacian

−(−Δ)
s , s∈(0,1) , defined by its Fourier symbol

−|ξ|2 s
.  The classical Laplacian is recovered when

s=1 .  

It  is  well-known  that  the  dispersion  relation  of
equation (20) is 

e−ξ2 t+|ξ|t . (22)

This  suggests  the  following  fractional  differential
equation for the PDF of the fluctuations of the front
position:

{
∂Pc

∂t
=ΔPc−(−Δ )

1/2 Pc ,

Pc (x ,0)=δ (x ) .
(23)

Actually, the dispersion relation (22) is  the Fourier
transform of the Green function of (23).

It  is  here  highlighted  that  the  PDF  of  fluctuations
which solves  (23) emerges  to be a quasiprobability
distribution  showing  negative  values  that  requires
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high  care.   However,  these  negative  values  can  be
interpreted  as  due  to  local  extinction  phenomena
when local reversibility of the value of the progress
variable occurs following from the entering of fresh
mixture into a  volume just  now fully  burned.  This
effect  can  be  ascribed  to  the  so-called  counter-
gradient  that  is  generated  by the density  difference
between reactants and products.

We define the field  g(x , t)  in analogy with (12),
i.e., 

g ( x,t )= ∫
Ω̌(t )

Ǧ (x̂ , t ) Pc ( x−x̂ , t ) d x̂ . (24)

To  simplify  the  following  computations,  we  will
consider the evolution of the deterministic front only
on the hyper surface of unitary gradient embedding
the  burning  front  as  its  zero-isocontour:

∂ Ǧ
∂t

= sT ( x̂ ,t )‖∇ Ǧ‖;‖∇ Ǧ‖=1. (25)

Formulae (24) and (25) will give the evolution 
equation of the function g (x , t)  in the following 
form: 

∂ g
∂ t

=Δg−(−Δ1/2) g+ ∫
Ω̌(t )

s
T

( x̂ , t ) P ( x−x̂ t ) d x̂ (26)

It is worth noting that in one dimension,  it reduces to

∂g
∂t

=
∂2 g

∂ x2
−D x

1 g+∫ sT ( x̂ ,t ) P ( x− x̂ ,t ) d x̂ . (27)

Equation (27) recasts the Michelson-Sivashinsky (20)
except for the last term on the RHS. Then we impose
to such term of model equation (27) to be equal to the
negative square of the space derivative of  g (x , t)
in  order  to  stick  to  the  Michleson-Sivashinsky
equation (20), i.e., 

−(∂ g
∂ x )

2
=∫ sT ( x̂ t ) P ( x− x̂ t ) d x̂ . (28)

 
By using the Fourier integral transform marked with  
~  we have 

∂g
∂ x

=
i

2 π∫ e−i ξ xξ~P (ξ;t )~G (ξ,t ) dξ , (29)

And finally

−(∂ g
∂ x )

2
=( 1

2 π
∫ e−ikx k ~P (k;t )

~G ( k,t ) dk)
2

(30)

Results and Discussion
The formulas derived so far allow us to make at least
three  attempts  in  order  to  couple  the  proposed
formulation  with  the  at  Darrieus-Landau  instability
and get during this process useful information on the
speed of propagation of the flame.  We will address
from now on the RHS of equation (30) as  ω ( x,t ) .
Using simple properties of the Fourier transform, we
can rewrite (28) as 

~sT=
~ω
~p

=exp(ξ2t−|ξ|t)~ω (31)

That is, taking the anti-transform of the latter 
formula,

sT ( x,t )=
1

2 π∫e−i ξ xeξ
2
t−|ξ|t~ω (ξ,t ) dξ (32)

We obtain  the desired  formula  for  the speed  to  be
plugged  into  in  (26).  With  this  first  approach  a
possible  algorithm  for  the  computation  of  a  front
evolution would be a splitting method where at a first

time the  Ǧ ( x ,t )  field is advanced in (7), and then

 is computed and used in (32) to get another

time  step  for  the  sT (x,t )  field.

Let  u ( x , t )  be  defined  by  its  Fourier  transform

~u=
1
~
P

=e(ξ2 t−|ξ|t )
.   Another  approach  to  get

sT (x,t )   would  be  the  solution  of  the  evolution

equation for  u (x , t )  :

∂ u
∂ t

=
−∂

2u

∂ x2
+D

x
1 u;u ( x ,0 )=δ ( x ) (33)

The consumption speed sT (x,t )  is then computed 
by performing the following convolution integral

sT ( x,t )=∫u ( x−ξ,t )( ∂ g
∂ ξ )

2
dξ (34)

In this case the splitting algorithm would start at first

with Ǧ ( x,t ) , in order to obtain g ( x,t ) .  The latter

has  to  be used in (34)  along with  u ( x,t )  (who
comes  from  the  integration  of  (33))  to  compute
sT (x,t ) .  Once  the  speed  is  known  it  would  be

possible the advancing of  Ǧ ( x,t )  for another time
step.

A third use of the theoretical asset developed so far
concerns  a  multidimensional  analysis.  
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We recall that we still stick to a hypothesis of unitary

norm  for  the  gradient  of  Ǧ ( x,t ) .  Under  such
assumption the curvature reads

κ=∇⋅n=∇
2G (35)

so that in the Fourier domain we have the relation 

~κ=−ξ 2~G (36)

Recalling for the G-equation with the unitary-
gradient assumption, in the Fourier domain, it holds 

∂
~G

∂t
=~sT (37)

 
Then after multiplying both sides by the square of ξ
we have

∂(ξ2~G )

∂ t
=ξ 2~sT (38)

And finally

~sT=−( ∂
∂t

~κ
ξ2 ) (39)

Anti-transorming the last equation it holds 

sT (x , t )= −1
(2 π)n∫ℝn exp(−i ξ x) ∂

∂t (
~κ
ξ2 )dξ (40)

Equation (40) bears some explicit result: in order to
avoid a null  consumption speed the curvature  field
κ  cannot  be  constant  in  time;  if  the  curvature

depends  on  time  with  a  power  law  then  the
consumption speed with a power law less of 1 (which
means  that  for  a  curvature  filed  with  linear  time
dependence  the  consumption  speed  is  constant  in

time); if the curvature field is proportional to   ξ2

then the consumption speed is spatially reduced to a
delta-function. 

Conclusions 
In the present proceedings a promising approach
has  been  further  explored  to  derive  the
Michelson-Sivashinsky  equation  in  the
framework  of  the  G-equation.  This  has  been
possible by making use of a Fourier analysis of a
G-field averaged by a PDF, with the latter that is
assumed  from  the  physics  of  the  process.  At
least three possibilities of further improvement

of  the  model  have  been derived,  two of  them
that stick to a mono-dimensional analysis while
the  third  one  with  results  concerning  the
relationship between speed and curvature. 
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